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In the present paper we study the biphasic co-flow through a Hele-Shaw cell with an
abrupt change, either expansion or contraction, in channel width. Assuming gentle varia-
tion of the flow in the streamwise direction (valid at small capillary number), we derive the
third-order nonlinear differential equation governing the shape of the interface separating
the two fluids. The interfacial profiles obtained by solving this nonlinear equation are
further used as the initial guess for the interface shape in the rigorous numerical solution of
the two-dimensional free-boundary problem by the finite element method. The theoretical
results are then compared with the experimental findings showing a good agreement. The
amplitude of the capillary ridge emerging upstream from a sudden expansion (for moderate
expansion ratios up to 1:3) and leading to narrowing of the thread of the disperse phase is
significant, however not large enough to trigger its instability and breakup.

DOI: 10.1103/PhysRevFluids.6.074201

I. INTRODUCTION

The so-called Hele-Shaw flow [1] in which two immiscible fluids are confined to the thin gap
between two parallel flat plates has a long history. The confinement is narrow, so that the vertical
component of the velocity may be neglected, while the plates exert friction upon the fluids so that
their depth-averaged two-component velocity along the plates may be described by a potential flow,
mimicking the Darcy flow through a porous medium [2]. In their pioneering works Saffman and
Taylor applied the Hele-Shaw formulation to model displacement of viscous fluid by a less viscous
fluid [3] (known as the Saffman-Taylor problem) and determine the velocity and shape of a gas
bubble [4] in a porous medium. While most later studies of the Saffman-Taylor type of problems (see
[5]) employed the two-dimensional (2D) Hele-Shaw flow approximation, the realistic modeling of
the dynamics of strongly confined (pancake-shaped) bubbles (or droplets) requires going beyond the
2D hydrodynamics by considering the 3D thin lubrication films sandwiched between the pancake
droplet and the plates [6]. Thickness and topography of such films are dynamically controlled and
should thus be determined as part of the solution, while the need for high spatial resolution within
ultrathin lubrication films and small integration time step (both due to typically rather low capillary
number) renders this problem computationally expensive [7,8].

Confined Hele-Shaw flows are particularly useful in droplet-based microfluidics. Hele-Shaw
cells were exploited, for instance, to study dynamics of confined 2D droplet emulsions [9];
geometry-mediated breakup of biphasic and triphasic Hele-Shaw co-flow at the topological step
(i.e., due to a sudden change in channel depth) is used for step emulsification, allowing for
high-throughout production of highly monodisperse single [10–12] and double emulsions [13],
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respectively; vertically confined slug drops formed at the Hele-Shaw microfluidic T junction can
be controllably broken into a collection of N identical microdrops to be assembled into predesigned
colloidal structures [14].

Stone and co-workers [15] demonstrated how the capillary instability of the biphasic co-flow
in a Hele-Shaw geometry can be passively controlled by the channel geometry (i.e., its width w

or height b). The constant width � of the thread of the disperse (inner) fluid 1, engulfed by the
co-flowing continuous fluid 2, is given by �/w = (1 + k)−1, where k = q2μ2/q1μ1, with qi and μi

being the flow rate and viscosity of the respective phase. For stable biphasic co-flow, the channel
walls should be well wetted by the continuous fluid and poorly wetted by the disperse phase. Once
the thread width becomes comparable to the channel height, � ≈ b, the vertical confinement is
lost and capillary (Rayleigh-Plateau) instability of a cylindrical liquid thread becomes operative
resulting in its breakup into droplets. As long as the thread is well confined vertically, i.e., � > b,
the capillary instability is suppressed and steady parallel co-flow takes place. This allows simple
geometric control over the thread stability: a sudden change in the channel width w or depth b can
either stabilize or destabilize the biphasic co-flow. These arguments, however, are only valid with
regard to a steady parallel co-flow, while the flow and the shape of the thread in the vicinity of an
abrupt transition in the channel geometry have not been previously investigated.

In Ref. [12] the shape of biphasic co-flow in a Hele-Shaw channel prior to the topological step,
i.e., the inlet to a deep (and wide) reservoir, was studied. The confined thread of the inner liquid
undergoes capillary focusing before the step due to loss of confinement and corresponding reduction
in the capillary pressure and its shape can be described using the 2D Hele-Shaw hydrodynamics
[12]. The shape of the thread was determined employing the long-wave approximation (assuming
gentle variation of the flow in the streamwise direction, i.e., neglecting pressure variation across
the channel) in Ref. [12], while this limitation was relaxed and the thread shape was computed
numerically using the volume-of-fluid (VoF) formulation in Ref. [16]. Most recently, a similar
problem of capillary focusing in triphasic co-flow in the Hele-Shaw channel was studied employing
the finite element method (FEM) [13]. In these studies, however, the complex 3D flow in the
reservoir beyond the step was not resolved, and some ad hoc outlet pressure boundary conditions
had been imposed at the entrance to the reservoir.

In this paper we report a study of the biphasic co-flow through a Hele-Shaw channel with
an abrupt (steplike) change of its width (i.e., expansion or contraction) that combines theory,
experiments, and numerical solution, and determine the flow and the shape of the thread of the
disperse (inner) fluid. In contrast to a biphasic flow through a Hele-Shaw channel conjugated
with a deep reservoir, in this case the flow remains vertically confined meaning that the same
Hele-Shaw formulation applies everywhere, i.e., upstream and downstream from the transition.
We first derive the third-order nonlinear ordinary differential equation (ODE) that governs the
shape of the free interface separating the two phases using the long-wave theory in Sec. II and then
use this approximate solution as the initial guess for the numerical FEM scheme in Sec. III. The
experimental setup is briefly described in Sec. IV, while the theoretical findings are compared with
the experimental results in Sec. V.

II. LONG-WAVE THEORY

Let us start with the description of the steady-state position of the free interface between the
two immiscible co-flowing fluids. The micrographs of the biphasic co-flow through a Hele-Shaw
cell with a sudden contraction and expansion are shown in Figs. 1(a) and 1(b), respectively. The
depth-averaged velocity in the two immiscible fluid phases, i.e., inner (disperse) phase 1 and outer
(continuous) phase 2, are governed by the quasi-2D Hele-Shaw equations (see, e.g., [2]):

vi = − b2

12μi
∇‖ pi, (1)
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FIG. 1. Experimental micrographs of the biphasic Hele-Shaw flow through a sudden 3:1 contraction (upper
panel) and 1:3 expansion (lower panel). The widths of the inlet and outlet channels are w±, the local width of
the inner fluid stream is �(x); away from the expansion there is parallel co-flow with constant widths controlled
by the flow rates and viscosities of the two phases (1: inner fluid; 2: outer fluid).

in which pi(x, y) is the pressure in the region occupied by ith fluid phase of viscosity μi, b is the
cell height, and ∇‖ = ∂

∂x x̂ + ∂
∂y ŷ is the projection of the gradient operator onto the (x, y) plane. We

assume that the inner (e.g., organic) phase does not wet the channel walls, while the continuous
(e.g., aqueous) phase perfectly wets the walls of the channel [the polydimethylsiloxane (PDMS)
channel pretreated with plasma to render them hydrophilic; see Sec. IV for details]. We also assume
that variations of the flow in the streamwise direction are gentle (the validity of the assumption
will be discussed later) and the pressure variation across the channel is negligible. Rewriting the
Hele-Shaw equations (1) via respective flow rates qi of the two fluids, we readily obtain

q1 = − b3�

12μ1

d p1

dx
, q2 = −b3(w± − �)

12μ2

d p2

dx
, (2)

where w− and w+ are the respective widths of the inlet (left) and outlet (right) Hele-Shaw cells
satisfying w± � b, and �(x) is the local stream width (of the inner fluid 1) in both channels.

At the stationary interface separating the two co-flowing phases in a Hele-Shaw cell, the pressure
jump is balanced by the Laplace (capillary) pressure due to a constant transverse curvature of
semicircular menisci of radius b/2 and the varying 2D curvature (with radius of curvature R � b)
of the projection of the tip of the meniscus, y = ±�(x)/2, onto the horizonal (x, y) plane (see the
Appendix for details),

p1 − p2 ≈ γ

(
2

b
+ π

4
∇‖ · n

)
≈ γ

(
2

b
− π

4
�xx

)
, (3)

where γ is the surface tension, n is the unit normal to the projection of the tip of the meniscus
in (x, y) plane (pointing into the continuous phase 2; see Fig. 1); the last approximate equality
holds assuming gentle variance in the streamwise direction, i.e., �2

x � 1. The boundary condition
(3) is in agreement with a more general condition for the pressure jump across the moving (along
n) boundary in a problem of two-phase displacement in a Hele-Shaw cell [17]. Notice that the
dynamical contribution to the pressure jump in [17] (reported earlier by [18]), ∝ O( γ

b Ca2/3
n ) to

the leading approximation, where the capillary number Can = Unμ2/γ is based on the velocity of
the interface displacement Un, vanishes in the present case, since Un = 0. It is also worth mentioning
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that in contrast to the problem of two-phase displacement in [17], where the vertical thickness of
the film of the continuous fluid 1 sandwiched between the bounding horizontal walls of the cell and
the disperse phase is determined dynamically, in the present problem it should be determined from
static considerations (balance between, e.g., van der Waals, electrostatic, or other forces).

Differentiating the last equation with respect to x, substituting the pressure gradients from (2),
and introducing dimensionless variables η = �/w−, ζ = x/w−, we arrive at the single nonlinear
ODE for the scaled width of the thread:

ε−1 ηζζζ = 1

η
− k

α − η
, (4)

where k =μ2q2/μ1q1, ε = Caβ2 with the capillary number being defined as Ca = 48μ1q1/πγ bw−
and β = w−/b � 1 is the aspect ratio of the inlet Hele-Shaw channel. Here α is the Heaviside step
function:

α =
{

1, ζ < 0,

A, ζ � 0,

where the width ratio A=w+/w− >1 or A<1 for expansion and contraction, respectively. Since
the height of channel is fixed, we expect the interface to be a smooth function of the position so that
Eq. (4) holds everywhere and there is no need for matching the separate solutions obtained in the
inlet and outlet channels at their conjugation at ζ =0.

Notice that the flow is governed by the parameter ε (modified capillary number), which is
equal to Ca multiplied by a large factor of the (inlet) cell aspect ratio squared, β = (w−/b)2 �1,
emphasizing the importance of the viscous forces (due to large transverse velocity gradients) in a
strongly confined Hele-Shaw geometry. In other words, in a Hele-Shaw cell the flow dominated by
the surface tension requires not just Ca � 1, but a more restrictive condition, Ca � (b/w−)2 � 1.
It can be readily seen from (4) that �x = O(ε

1
3 ) and, therefore, the assumption of gentle variations

in the flow direction requires ε
1
3 = o(1), similarly to the well-known thin film lubrication equation

(e.g., [18]). However, in most practical cases [10–12] ε = O(1) or higher due to the large factor
of (w−/b)2 multiplying small Ca. For now we shall assume that the long-wave approximation
holds and address its accuracy later on by comparing its prediction to the rigorous FEM numerical
solution.

One can also eliminate the parameter ε containing Ca in (4) by rescaling the streamwise
coordinate, ξ = ε

1
3 ζ . In terms of ξ the Eq. (4) becomes

η′′′ = 1

η
− k

α − η
, (5)

where the prime stands for d/dξ . Notice that the rescaled Eq. (5) does not contain Ca, while the
rescaled distance ξ ∝ Ca

1
3 is a weak function of Ca, indicating that the resulting interfacial profiles

do not strongly vary with the capillary number. Far upstream or downstream from the expansion (or
contraction) at ξ → ±∞, we have ηξξξ → 0 and η → η±∞, whereas from (5) one can readily find
the simple closed-form solution for the parallel co-flow far from ξ = 0:

η±∞ = �±∞
w−

= α

1 + k
. (6)

The validity of Eq. (6) was demonstrated experimentally in [15], justifying the applicability of the
quasi-2D Hele-Shaw equations (2) in the presence of thin lubricating films of the continuous phase
separating the confined thread and the walls of the channel.

At some finite distance upstream or downstream from the expansion (or contraction) at ξ = 0,
the stream width η(ξ ) starts to slightly deviate from the constant width η±∞ in Eq. (6), so we can
write η = η±∞ + η̃, where |̃η| � |η±∞|. When η is close to η∞, the Eq. (5) can be linearized:

η̃′′′ + λ3η̃ = 0 , (7)
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(a) (b)

FIG. 2. The inner stream width η vs the rescaled axial distance ξ = ε
1
3 ζ computed using the long-wave

approximation: (a) sudden expansion for fixed value of k = 2/3 upon varying the width ratio A = w+/w− =
1.2, 1.5, 2, and 3. The inset shows the same for an expansion with fixed width ratio A = 3 for k = 1/6, 1/3,
2/3, and 4/3; (b) sudden contraction for a fixed value of k = 0.4 upon varying the width ratio A = 0.33, 0.5,
0.67, and 0.83.

where λ = (1 + k)/(α2k)
1
3 . The linearized Eq. (7) can be readily solved to give

η̃ = ae−λξ + be
1
2 λξ cos

(√
3

2
λξ

)
+ ce

1
2 λξ sin

(√
3

2
λξ

)
,

where a, b, and c are integration constants. As η̃ should decay away from the expansion we can
explicitly write the asymptotic form of the solution upstream at ξ → −∞:

η ≈ 1

1 + k
+ be

1
2 λ−ξ cos

(√
3

2
λ−ξ

)
+ ce

1
2 λ−ξ sin

(√
3

2
λ−ξ

)
,

where λ− = (1 + k)/k
1
3 , and downstream at ξ → ∞

η ≈ A

1 + k
+ ae−λ+ξ , (8)

where λ+ = (1 + k)/(A2k)
1
3 .

These asymptotic results indicate the appearance of the capillary wave (ridge) with an amplitude
decaying exponentially fast upstream from the transition as ξ → −∞. A similar capillary ridge
emerges at the rear end of Bretherton’s slender bubble moving in a tube [18] and in free unbounded
[19,20] and confined [21] viscous films flowing over topography. An interesting question is whether
the emergence of the capillary ridge may destabilize the thread at the expansion (contraction), even
though its width far upstream or the downstream width satisfies �±∞ � b.

We solve the two-point boundary value problem in Eqs. (5) and (6) as the initial value problem
using the “shooting” method. We numerically integrate Eq. (5) starting from some large value of
ξ =ξp upstream in the negative ξ direction to some large (negative) value of ξ = −ξm, where the
parallel co-flow takes place. We use the asymptotic form of the solution upstream (8) to determine
the value of the function and its two derivatives at ξ = ξp: η′ = −aλ+e−λ+ξp and η′′ = aλ2

+e−λ+ξp .
The adjustable constant a is varied to satisfy the downstream boundary condition at ξ = −ξm of the
parallel co-flow, i.e., η ≈ 1/(1 + k).

The obtained results for the thread width are shown in Figs. 2(a) and 2(b) for expansion and
contraction, respectively, vs the rescaled streamwise distance ε

1
3 ζ upon varying the width ratio A

for a fixed upstream thread width (for k = 2/3). It can be observed that prior to a transition (at
ξ = 0) there is a capillary ridge of magnitude that enhances with the increase in expansion ratio A
(or A−1 for contraction). The inset in Fig. 2(a) shows the stream width in a sudden 1:3 expansion
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upon varying k (the constant upstream width of the thread η−∞). Notice that the amplitude of the
capillary ridge increases slowly as k decreases, reaching ≈60% of η−∞ in Eq. (6) for k = 1/6,
meaning that sudden 1:3 expansion cannot trigger capillary instability and perhaps transition to a
much wider outlet channel is needed in order to destabilize the thread. This conclusion, of course,
relies on the accuracy of the long-wave approximation which we shall test below.

III. NUMERICAL SCHEME

We use the finite element method (FEM) package in Mathematica [22] to solve the problem for
pressure, pi(x, y), numerically. The simulation domain is the upper half of the two conjugated Hele-
Shaw channels (due to reflection symmetry at y = 0), [(−Lm, 0), (0, 1/2)] ∪ [(0, Lp), (0, A/2)],
where all lengths are scaled with the width of the inlet channel, w−: ζ = x/w−, η = y/w−.

The pressure in both phases is normalized with p∗ = 12μ1q1/b3 and it is a harmonic function
satisfying the Laplace equation, i.e., ∇̂2 p̂i = 0 (i = 1, 2). At the side walls the conditions are the
zero flux, i.e., either ∂ p̂i/∂ζ = 0 or ∂ p̂i/∂η = 0, depending on the boundary, including at the
centerline (η = 0) due to symmetry. The inner phase 1 at the left boundary (at ζ = −Lm) occupies
the interval 0 < η < 1

2 (1 + k)−1, while the outer phase 2 occupies the interval 1
2 (1 + k)−1 < η < 1

2 .
Similarly, at the outlet (at ζ = Lp) the inner phase 1 occupies the interval 0 < η < 1

2 A(1 + k)−1,
and the phase 2 occupies the interval 1

2 A(1 + k)−1 < η < 1
2 . Within the domain the two fluids are

separated by the free boundary η = f̂ (ζ ) whose position has to be found.
At the left (inlet) boundary the pressure derivatives are determined by the constant flow rates of

both phases:

∂ p̂1

∂ζ
= ∂ p̂2

∂ζ
= −(1 + k),

∂ p̂1,2

∂η
= 0 at ζ = −Lm. (9)

At the right (outlet) boundary the pressure difference across the interface (assuming parallel co-flow)
is just p1 − p2 = 2γ /b, and then in the dimensionless form it gives the following (outlet pressure)
conditions:

p̂1 = 8

π
ε−1β, p̂2 = 0 at ζ = Lp, (10)

where we recall that ε = Caβ2 with the capillary number being defined as Ca = 48μ1q1/πγ bw−
and β = w−/b�1 being the inlet channel aspect ratio. The kinematic condition at the free bound-
ary, η = f̂ (ζ ), separating the two immiscible phases at steady state, is ∂ p̂i/∂n = 0. The normal
stress (pressure jump) boundary condition in Eq. (3) rewritten in the dimensionless form reads

p̂1 − p̂2 = ε−1

(
8

π
β + ∇̂‖ · n

)
at η = f̂ (ζ ), (11)

where the in-plane mean curvature is computed as ∇̂‖ · n = − f̂ ′′/(1 + f̂ ′2)3/2.
We use the long-wave approximation, f̂ (ζ ) = 1

2η(ε
1
3 ζ ), as the initial guess for the position of

the free boundary. The Laplace equation for the harmonic pressure is solved using FEM in each
of the domains occupied by the two phases subject to the conditions ∂ p̂1,2/∂n = 0 at the free
interface and the corresponding inlet and outlet boundary conditions (9) and (10). Then the interface
is discretized and the pressure difference, p̂1− p̂2, across the interface is computed at each point.
Then the interface position is shifted in the direction of the local normal �n in order to minimize the
difference between the actual and the prescribed in (11) pressure jump.

The boundary is defined as a discrete set of equidistant points which is used to produce a smooth
boundary employing third-order interpolation. After the position of the boundary is updated, a
new interpolation via the updated set of points is performed to maintain interface smoothness.
The Laplace equation for the pressure p̂i is then solved again in the updated domains 1 and 2
and the procedure is repeated until convergence, i.e., until pressure difference in (11) is satisfied
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within a prescribed accuracy of 5×10−4 everywhere. Notice that due to the Neumann condition at
the free boundary for the pressure, shifting the free interface along the local normal results in the
second-order accuracy numerical scheme.

IV. EXPERIMENTAL SETUP

A. Microfluidic device

The device is made of PDMS replicated from a silicon wafer, which is fabricated via standard
photolithography. The channel has two inlets, one for the inner (oil) phase, the other for the outer
(aqueous) phase. The two fluid phases are injected separately, meet at a junction, and co-flow
through a shallow Hele-Shaw channel. The outer aqueous phase wets the walls of the channels
and it completely engulfs the oil stream. The Hele-Shaw channel has the height b = 20 μm and
different widths of the inlet channel: w− = 200, 400, and 600 μm corresponding to the channel
aspect ratio β = w−/b = 10, 20, and 30, respectively. The fluids co-flow through an abrupt change
of channel width w− → w+, with the channel width ratio A = w+/w− = 1.5, 2, 3 (for expansion)
and A = 0.67, 0.5, and 0.33 (for contraction). The two fluids are injected into the microchannel by
syringe pumps (Longerpump LSP02-2A) with glass syringes (Hamilton 500 μl and 1 ml) allowing
for tight control over the values of the parameters Ca and k. The flow is monitored through a micro-
scope (Nikon Ti2-U), and microphotographs are taken using a fast camera (Photron Fastcam SA5).

B. Microfabrication

Geometry of the microchannels is designed by AutoCAD (Autodesk, USA), a silicon wafer is
fabricated with a standard photolithography [11,12]. The channel is fabricated from polydimethyl-
siloxane (PDMS) by mixing the resin with a curing agent (Sylgard 184, Dow Corning) at weight
ratio 9:1. The mixture is then centrifuged to eliminate air bubbles prior to being poured onto the
silicon wafer with channel layout. The entity is heated in an oven at 85 ◦C for 1.5 h. Then the
PDMS block is peeled off from the silicon wafer. Holes for connecting the tubes are punched at the
inlets and outlets of the PDMS channel. The glass slide is glued onto the PDMS block using plasma
cleaner (Harrick Plasma PDC-32G-2) to form a sealed channel. The channel is rendered hydrophilic
following the plasma treatment, and hydrophilicity can be maintained for an extended period of time
provided that the aqueous solution is injected into the channel immediately right after the plasma
treatment [13].

C. Fluid characterization

A fluorinated oil FC40 (3M, USA) is used as the inner phase, and an aqueous glycerol solution
at concentration (40% w/w) is used as the continuous (outer) phase. The surface tension between
the two fluids is 45.3 mN/m measured by the pendent drop method (Dataphysics, OCA20). The
viscosity of FC40 oil is 4.2 mPa s, and that of the glycerol solution is 3.72 mPa s, both measured by
a cone-and-plate rheometer (Anton-Paar MCR 302, with a rotor CP50-1 with 50 mm diameter and
a cone angle of 1◦) at the temperature of 20◦C.

V. RESULTS AND DISCUSSION

The approximate theory in Sec. II suggests that the biphasic co-flow through a sudden expansion
(or contraction) is only weakly dependent on the capillary number, via Ca

1
3 dependence of the

rescaled axial distance ξ . Figure 3 depicts the experimentally measured stream width of the disperse
phase 1 (symbols) in a sudden 2:1 contraction obtained upon proportionally varying the flow rates of
both phases, such that q2/q1 = const. Under these conditions Ca is varied, while k is kept constant.
Inspired by the scaling of the approximate solution, we plot the experimental results vs the rescaled
axial distance ε

1
3 ζ . It can be readily seen that the result is independent of the capillary number, as all
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FIG. 3. The experimentally measured width of the thread of the disperse phase η plotted vs the rescaled
axial distance ξ = ε

1
3 ζ for a sudden 2:1 contraction for β = 20 and fixed value of k = 1.12 upon varying

the capillary number: Ca = 0.0039 (◦), 0.0058 (�), and 0.0078 (�). The solid curve stands for the long-wave
approximate solution.

points corresponding to different Ca’s fall on the same master curve. The long-wave solution (solid
line) does not approximate the master curve closely everywhere (in particular the magnitude of the
capillary ridge before the contraction is somewhat underestimated by the theory), since contrary to
the assumption of the theory, in the experiment ε is not small and varies between 1.6 and 3.2.

The comparison between the experimental profiles (symbols) and the numerical prediction (solid
lines) are depicted, using equal aspect ratio of both axes, in Figs. 4(a)–4(d) for some selected values
of A. The long-wave approximate profiles (shown for comparison as dashed lines), were used in the
numerical solution as the initial guess for the interface position. In all cases the agreement between
the numerical and experimental results is rather close, although not excellent; the numerical solution

(a)

(c) (d)

(b)

FIG. 4. The width of the inner fluid thread η vs dimensionless axial distance ζ : the experimental results
(empty circles), the numerical prediction (red solid lines), and the long-wave approximation (dashed lines).
(a) 1:3 expansion with k = 0.354, Ca = 0.0148, and β = 10 (ε = 1.48); (b) 1:2 expansion with k = 0.354,
Ca = 0.0148, and β = 10 (ε = 1.48); (c) 3:1 contraction with k = 0.664, Ca = 0.0079, and β = 30
(ε = 7.06); (d) 2:1 contraction with k = 0.17, Ca = 0.011, and β = 20 (ε = 4.55). In all cases the location of
sudden expansion or contraction is at ζ = 0.
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(a) (b) (c)

FIG. 5. Numerically computed interfacial profile (solid red line) in the upper half channel of the sudden
1:3 expansion with aspect ratio β = 10 together with the flow field of both phases (colored stream lines) for
a fixed capillary number Ca = 0.0148 (ε = 1.48), upon varying k. The experimental results (empty circles)
and the long-wave approximation (dashed lines) are shown for comparison. (a) k = 0.354; (b) k = 0.664;
(c) k = 0.886.

somewhat underestimates the amplitude of the upstream capillary ridge as compared to experiment.
For example for k = 0.354 in Fig. 4(a), the minimal width of the thread in experiment reaches
∼60% of its upstream width η−∞, while in the numerical solution it is ∼75%. Yet, the capillary
instability does not seem to materialize in the 1:3 expansion and it may require a larger value of the
expansion ratio A.

Notice that the interface determined using the long-wave theory (dashed lines), which does
not explicitly account for the actual flow domain, in some cases crosses the channel boundary
rendering the solution nonphysical. To illustrate this, we plot the numerical profiles (red solid
line), the experimental data (symbols), and the approximate solution (dashed line) together with
the (upper half) channel boundary for 1:3 expansion in Figs. 5(a)–5(c) upon varying k for a fixed
Ca ≈ 0.01. The numerically computed flow field of both fluids is also shown (as colored stream
lines). It can be readily seen that the approximate interface crosses the channel side walls at x = 0
in, e.g., Fig. 5(a). The numerical profiles computed with FEM, on the other hand, agree very
well with the experimental result almost everywhere, except the near vicinity (upstream) of the
expansion, where the numerical solution somewhat underestimates the amplitude of the capillary
ridge [see, e.g., Fig. 5(a)]. The discrepancy is probably due to the fact that the interface approaches
the channel corner at x = 0. The distance between the interface and the corner point for the sudden
expansion in Fig. 5(a) is only ∼9.5 μm, which is about half of the channel height b = 20 μm. Since
depth-averaged Hele-Shaw equations do not hold in the O(b) vicinity of the side wall, one may
expect a rather different pressure distribution (due to a higher pressure drop) and flow around the
corner than the one computed numerically using the Hele-Shaw hydrodynamics. In agreement with
this argument, the discrepancy between the numerical solution and the experimental measurements
diminishes as k increases, i.e., as the thread becomes narrower and the gap between the interface
and the corner point increases [see Figs. 5(b) and 5(c)].

In the experiments the fluid inertia was negligible, as the flow should satisfy the condition
(b/w)Re � 1, where the Reynolds number is defined as Re = ρub/μ, with u = b2|∇p|/μ being
a characteristic velocity of the flow in a Hele-Shaw cell [23]. For biphasic flow, the Reynolds
number based on the (heavier) disperse phase 1 reads Re = ρu1b/μ1 = ρ(1 + k)q1/μ1w−. The
flow rate of FC40 oil in the experiments in Fig. 5 varied between 120 and 150 μL/h; using
density of the FC40 oil ρ = 1.85 g/mL and viscosity 4.2 mPa s, for w− = 200 μm we arrive at
Re ≈ 0.12–0.17 � w−/b = 10, indicating that the effect of fluid inertia is negligibly small and it is
not likely to be the reason for the observed discrepancy between the experimental observations and
the numerical solution.

The corresponding comparison for 3:1 contraction is depicted in Fig. 6. Notice that the width of
the gap between the free boundary and the corner point is about the channel height, 19.5 μm, also re-
sulting in a discrepancy between the experimental profile and the numerical solution upstream, right
before the contraction. Nevertheless, given that the solution of the full 3D low-capillary-number
free boundary problem with ultrathin lubrication films is computationally expensive, the Hele-Shaw
approximation yields a simple 2D formulation that can be efficiently solved on a standard PC
yielding quite accurate predictions.
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FIG. 6. Numerically computed interfacial profile (solid red line) in the upper half channel of the sudden 3:1
contraction with β = 30 for k = 0.664 and Ca = 0.0079 (ε = 7.06); colored stream lines stand for the flow
field of both fluids. The experimental results (empty circles) and the long-wave approximation (dashed lines)
are shown for comparison.

VI. CONCLUDING REMARKS

In the present paper we studied the stationary biphasic co-flow through a sudden change in a
width (expansion or contraction) of Hele-Shaw channel. Using depth-averaged Hele-Shaw hydro-
dynamics and neglecting transverse pressure variation (i.e., assuming gentle streamwise variance in
the flow), it is possible to reduce the problem of determining the shape of the horizontal projection
of the tip of the free interface separating the two fluids to a single third-order nonlinear ordinary
differential equation. This equation can be readily integrated numerically subject to parallel co-flow
conditions upstream and downstream from the expansion or contraction. Within the approximate
model the shape of the interface depends on two dimensionless parameters: k, which incorporates
the flow rate and viscosity ratios of the two fluids and expansion or contraction width ratio A. The
other two parameters—the capillary number Ca, measuring the relative importance of the viscous
and surface tension forces, and the Hele-Shaw aspect ratio β—only slightly affect the interfacial
profiles by rescaling them in the streamwise direction by a factor ε

1
3 , where ε = Caβ2. Relaxing

the assumption of gentle variation of the flow in the streamwise direction, we formulated and
numerically solved (employing the finite element method), the corresponding 2D free-boundary
problem using the approximate solution as the initial guess for the shape of the interface. The
theoretical predictions show a fair agreement with our experimental results. However, the numerical
solution somewhat underestimates the amplitude of the capillary ridge emerging prior to a sudden
expansion or contraction, probably due to the proximity of the interface to the channel side wall
where the Hele-Shaw description fails. It suggests that perhaps full 3D numerical simulations of the
confined biphasic co-flow are required to clarify the observed discrepancy. In any case, our results
indicate that the amplitude of the capillary ridge (for moderate expansion ratios up to 1:3) is not
large enough to narrow and destabilize the confined stream of the disperse phase prior to the sudden
expansion and cause its breakup.
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APPENDIX: NORMAL STRESS BOUNDARY CONDITION AT THE INTERFACE

The normal stress boundary condition at the interface separating the two fluids (see Fig. 1) is
given by

n · (σ2 − σ1) · n = γ∇ · n, (A1)
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where σ is the stress tensor, n is the unit normal to the interface (pointing into the continuous phase
2), and γ is the constant surface tension. The stress tensor (using Cartesian tensor notation) is given
by σi j = −pδi j + τi j , where δi j is the Kronecker delta and τi j = μ(∂ jui + ∂iu j ) is the viscous stress
tensor.

For stationary interface, whereas the flow does not possess a normal component at the boundary,
one can safely neglect the viscous contribution to the normal stress, τi jnin j ≈ 0. Therefore, the
normal stress boundary condition (A1) reduces to the equilibrium-type equation, where the pressure
jump across the interface is balanced by the capillary (Laplace) pressure proportional to the mean
curvature ∇ · n:

�p ≡ p1 − p2 = γ∇ · n. (A2)

We next assume that the interface is given by y = F (x, z), where z ∈ [−b/2, b/2]. The mean
curvature ∇ · n of the stationary interface in the right-hand side of Eq. (A2) then can be written as

∇ · n = − ∂

∂x

[
Fx(

1 + F2
x + F2

z

)1/2

]
− ∂

∂z

[
Fz(

1 + F2
x + F2

z

)1/2

]

= −
(
1 + F2

z

)
Fxx − 2FxFzFxz + (

1 + F2
x

)
Fzz(

1 + F2
x + F2

z

)3/2 , (A3)

whereFx, Fz, etc., stand for the corresponding partial derivatives of F . Assuming that the interface
shape can be written as y = F (x, z) = g(z) + f (x), where f (x) is the projection of the tip of the
interface onto the horizontal (x, y) plane, we find that Eq. (A3) reduces to

∇ · n = − (1 + g′2) f ′′ + (1 + f ′2)g′′

(1 + g′2 + f ′2)3/2
, (A4)

Now consider the coordinate system, obtained by rotation of the original coordinate system in the
(x, y) plane, in a way such that the at specific point (x0, y0) at the interface the curve f (x) is locally
horizontal, i.e., meaning f ′(x0) = 0. Then − f ′′(x0) = 1/R, where R is the 2D radius of curvature
of the interface in (x, y) plane and thus Eq. (A2) without loss of generality for an arbitrary z reduces
to

�p

γ
= −g′′ + (1 + g′2)R−1

(1 + g′2)3/2
. (A5)

The shape of the interface should be determined by solving Eq. (A5) for some constant values of
�p and R. Thus for R → ∞ (e.g., far from the abrupt change of channel width at x = 0) Eq. (A5)
reduces to

�p

γ
= − g′′

(1 + g′2)3/2
. (A6)

Looking for an even convex solution (recall that the disperse phase does not wet the bounding walls
at z = ±b/2) satisfying g(z) = g(−z) such that g′(±b/2) = ∓∞ (i.e., dz/dy = 0 at the boundary
z = ±b/2) leads to the semicircular meniscus solution:

g(z) = γ

�p

√
1 −

(
�p

γ

)2

z2, �p = 2γ

b
. (A7)

The case of finite R � b can be handled similarly. We first rewrite the Eq. (A5) as

Rg′′

(−α
√

1 + g′2)(1 + g′2)
= 1,
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where we introduced the dimensionless parameter α = R�p/γ . Then for the last equation over z
we obtain

R tan−1 g′ − αR√−1 + α2

(
tan−1 g′√

1 + g′2√−1 + α2
+ tan−1 αg′

√−1 + α2

)
= z + C,

where C is the constant of integration. Using the same boundary conditions at the bounding walls
of the Hele-Shaw cell, i.e., g′(±b/2) = ∓∞, gives the two relations

R
2

(
−π + π

α√−1 + α2
+ 2α cot−1 (−1 + α2)√−1 + α2

)
= b

2
+ C,

R
2

(
π − π

α√−1 + α2
− 2α cot−1 (−1 + α2)√−1 + α2

)
= −b

2
+ C,

resulting in C = 0 and

b

R
= −π + π

α√−1 + α2
+ 2α cot−1 (−1 + α2)√−1 + α2

. (A8)

Equation (A8) determines the pressure jump across the interface �p as a function of R and b. In
the limit α � 1 it admits the expansion in the series in powers of α−1 as

b

R = 2

α
+ π

2α2
+ 4

3α3
+ O(α−4).

The last equation can be readily inverted to give

α = 2R
b

+ π

4
+

(
1

3
− π2

32

)
b

R + π

128
(−10 + π2)

(
b

R

)2

+ O
(

b3

R3

)
.

Substituting the definition of α = R�p/γ in the last equation and keeping only two leading terms
gives

�p ≈ γ

(
2

b
+ π

4R

)
. (A9)

The result in Eq. (A9) agrees with Eq. (6.1) in [17], where the more general analysis of a pressure
jump across a moving interface displacing a viscous fluid is provided. Notice that in [17] there are
also dynamic contributions to the pressure jump, e.g., O( γ

b Ca2/3
n ) at the leading order, where the

capillary number Can = Unμ2/γ is based on the velocity of the interface displacement Un. In our
case of stationary interface we have Un = 0, while the static contribution to the pressure jump due
to finite in-plane curvature [the third term in the right-hand side of Eq. (6.1)] in [17] is identical to
the one obtained here [the second term in the right-hand side of Eq. (A9)].
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