
PHYSICAL REVIEW FLUIDS 6, 074104 (2021)

Biorthogonal stretching of an elastic membrane
beneath a uniformly rotating fluid
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The flow generated by a biorthogonally stretched membrane below a steadily rotating
flow at infinity is examined. The flow’s velocity field is shown to be an exact, self-similar
solution of the fully three-dimensional Navier-Stokes equations with the solution governed
by a set of four ordinary differential equations. It is demonstrated that dual solutions exist
when the membrane is stretched in both directions (except in the radially symmetric case),
as well as for a range of parameters where the membrane is stretched in one direction and
allowed to shrink in the other. For stretching rates close to the radially stretched symmetric
case, four solutions exist, including one which has a large wall-jet velocity profile close to
the membrane. The linear stability of each solution is also examined, and it is found that
only a single solution is stable (where one exists) for a given stretching and rotation rate.
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I. INTRODUCTION

The flow of a steadily rotating viscous fluid above an infinite flat surface has received much
theoretical and experimental attention over the years. Bödewadt [1] showed that this flow is an
exact similarity solution of the three-dimensional Navier-Stokes equations, with the fluid being
sucked in radially at the plate, forced upward, and expelled at the center of the rotating flow. Such
exact solutions to the Navier-Stokes equations are significant because they often give insight into
more complicated flows and hence identifying such flows is an active area of research interest. For
example, Drazin and Riley [2], and all references therein, give a large set of exact solutions to the
Navier-Stokes equations which the reader might find of interest.

In this paper, we consider a flow similar to that studied by Bödewadt, but here the steady rotating
flow occurs above an elastic membrane which can be stretched along two perpendicular axes. The
case where both perpendicular stretching (or shrinking) rates are equal, i.e., a radially stretched
membrane, was considered by Turner and Weidman [3]. In their paper, they showed the solution for
the velocity field can again be cast as an exact similarity solution of the three-dimensional Navier-
Stokes equations and, in particular, that there exists a unique flow solution for each value of a/�.
Here a is the membrane stretching rate and � is the constant angular velocity of the flow at infinity.
Turner and Weidman [3] also examined the convective and absolute instability characteristics of
these solutions and found that they were predominately unstable, except for large a/� values (i.e.,
flows where stretching dominates over rotation) where the flow stabilizes (both temporally and
absolutely).

In the absence of a rotating flow at infinity, Crane [4] investigated the two-
dimensional flow induced by a stretching membrane and found the family of exact steady
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solutions

u(x, z) = axe−√
aνz, w(x, z) = √

aν(e−√
aνz − 1), (1.1)

where (u,w) are the velocity components parallel to the usual Cartesian coordinates (x, z) (with z
pointing perpendicular to the membrane), and ν is the kinematic viscosity of the fluid. The three-
dimensional problem of a radially stretched membrane was considered by Wang [5], who found a
similar single parameter family of possible solutions, except in this case, no closed form solution
was found. The case of a membrane stretched along two perpendicular axes with different stretching
rates was considered by Weidman and Ishak [6]. There they identified dual solutions for a range of
values of λ = b/a, which is the ratio of the membrane stretching rates, where one of the solutions
has algebraic decay at large z, rather than the exponential decay observed for the second solution.
In this paper, we revisit this problem and show that the algebraically decaying solutions are not
converged solutions and, in fact, we show that dual solutions only exist when the membrane is
stretched along one axis but shrunk along the other (λ < 0). For a stretched membrane along both
axes (λ > 0), we show a unique solution exists.

When a biaxially stretched membrane is placed below a Hiemenz or Homann stagnation point
flow, as in Weidman [7] and Turner and Weidman [8], respectively, the unique set of solutions for
differing stretching rates changes and multiple solutions are found in this region. For the Hiemenz
stagnation point flow, triple solutions were found in some regions of parameter spaces, while for the
Homann stagnation point flow two sets of dual solutions were identified. In this case, these branches
of solutions were found to spiral together, giving an infinite set of solutions with velocity profiles
which include an increasing boundary layer thickness, for the case of a membrane shrinking along
both axes with different rates. In this paper, we investigate the possible sets of solutions which exist
when a steadily rotating flow is placed above the membrane. This paper will generalize the problem
of Weidman et al. [9], who considered a rotating flow at infinity, above a membrane which was given
a special motion which included both a shearing and stretching motion simultaneously. The problem
generalization in this paper allows for a pure biorthogonal stretch of the membrane to be considered.

The current paper is laid out as follows. In Sec. II, we formulate the problem and show that
the similarity solutions reduce to solving a coupled sets of four ordinary differential equations,
while in Sec. III we identify special cases of this generalized problem. In Sec. IV, we present
numerical results of the governing ordinary differential equations, and the stability of these solutions
is analyzed in Sec. V. Concluding remarks are presented in Sec. VI.

II. PROBLEM FORMULATION

We use Cartesian coordinates (x, y, z) with the associated coordinate velocities (u, v,w) in these
directions. We assume that an elastic membrane is located at z = 0, and the surface velocities for an
impermeable membrane are

u = a x, v = b y, w = 0, (2.1)

where a is the stretching rate along the x axis and b is the stretching rate along the y axis. Here
z is the coordinate normal to the membrane pointing into the bulk fluid. The viscous fluid above
the membrane at z = ∞ has uniform rotation � k about the z axis where � is the constant angular
velocity of the flow, thus in the far field z → ∞ the horizontal velocities tend to solid body rotation.
For a schematic diagram of the setup, see Fig. 1. The fluid density, ρ, and kinematic viscosity, ν, are
assumed to be constants. Under these conditions, the problem is governed by the equation of mass
continuity,

ux + vy + wz = 0, (2.2)

and the steady three-dimensional Navier-Stokes equations,

uux + vuy + wuz = − 1

ρ
px + ν(uxx + uyy + uzz ), (2.3a)
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u(x, y, 0) = ax

v(x, y, 0) = by

u(x, y,∞) = −Ωy

v(x, y,∞) = Ωx

x

y

z

O

FIG. 1. Schematic diagram of an orthogonally stretched membrane in two dimensions below a constantly
rotating flow with angular velocity � at z = ∞.

uvx + vvy + wvz = − 1

ρ
py + ν(vxx + vyy + vzz ), (2.3b)

uwx + vwy + wwz = − 1

ρ
pz + ν(wxx + wyy + wzz ), (2.3c)

in which p is the thermodynamic pressure, and the subscripts denote partial derivatives.
We seek a solution of these equations in the form of a similarity solution where the horizontal

velocity field has the ansatz

u(x, y, η) = |a|(x f ′
1(η) + y f ′

2(η)), v(y, η) = |a|(xg′
1(η) + yg′

2(η)), η =
√

|a|
ν

z (2.4)

and the dashes denote ordinary derivatives with respect to η. Solutions of this form satisfy the
continuity equation when

w(η) = −
√

ν|a|( f1(η) + g2(η)), (2.5)

i.e., when the axial velocity is spatially invariant in the horizontal directions. Inserting the above
velocity field forms into the Navier-Stokes equations and applying the far-field conditions

u(x, y,∞) = −�y, v(x, y,∞) = �x

yields the set of four ordinary differential equations (ODEs)

f ′′′
1 + ( f1 + g2) f ′′

1 − f ′
2g′

1 − f ′2
1 = σ 2, (2.6a)

f ′′′
2 + ( f1 + g2) f ′′

2 − f ′
2( f ′

1 + g′
2) = 0, (2.6b)

g′′′
1 + ( f1 + g2)g′′

1 − g′
1( f ′

1 + g′
2) = 0, (2.6c)

g′′′
2 + ( f1 + g2)g′′

2 − g′2
2 − f ′

2g′
1 = σ 2, (2.6d)
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in which σ = �/|a| is the dimensionless rotation parameter and λ = b/|a| is the ratio of stretching
rates. The above set of ordinary differential equations are to be solved together with boundary and
far-field conditions:

f1(0) = 0, f ′
1(0) = ±1, f ′

2(0) = 0, f ′
1(∞) = 0, f ′

2(∞) = −σ, (2.7a)

g2(0) = 0, g′
1(0) = 0, g′

2(0) = λ, g′
1(∞) = σ, g′

2(∞) = 0. (2.7b)

Note that we have four third-order ODEs with ten boundary conditions. This is because both
f2 and g1, introduced differentiated in Eqs. (2.4), do not appear explicitly in the ODEs, and hence
these can be considered as second-order ODEs for f ′

2 and g′
1 giving the correct number of boundary

conditions and equations. We leave these terms differentiated in Eqs. (2.4), however, for consistency
and use the values f2(0) = g1(0) = 0 without loss of generality. Also, it is clear that f ′

2 and g′
1 satisfy

the same equations except for the sign switch in their far-field boundary conditions, thus f ′
2 ≡ −g′

1
and, hence, if we wish to, we need only solve for one of these quantities, or if we decide to solve for
both we require this symmetry to hold. Finally, we note that the governing equations do not depend
upon the sign of σ , as it only appears as σ 2, only the sign of the boundary conditions as η → ∞
change in Eqs. (2.7) if σ changes signs. Thus we need only consider the case σ > 0 with the σ < 0
case being determined by switching the signs of g1(η) and f2(η).

The boundary condition f ′
1(0) = ±1 is to distinguish between the two cases of a > 0 and a < 0.

In what follows, a positive/negative value of a [ f ′
1(0) = +1 or f ′

1(0) = −1 in Eq. (2.7a)] denotes
stretching/shrinking of the membrane parallel to the x axis while a positive/negative value of b (λ
positive/negative) denotes stretching/shrinking of the membrane parallel to the y axis.

The system pressure field is readily found by integrating Eq. (2.3c) to be

p(x, y, η) = p0 +
(

x2 + y2

2

)
ρ�2 − ρν|a|

(
( f1 + g2)2

2
+ ( f ′

1 + g′
2)

)
, (2.8)

which is also independent of the rotation direction, and the wall shear stress components are given
as

τx = μ
∂u

∂z

∣∣∣∣
z=0

= ρν1/2|a|3/2[x f ′′
1 (0) + y f ′′

2 (0)], (2.9a)

τy = μ
∂v

∂z

∣∣∣∣
z=0

= ρν1/2|a|3/2[xg′′
1(0) + yg′′

2(0)]. (2.9b)

III. SPECIAL CASES

The problem proposed in this paper considers general values of both λ and σ , however, it is worth
noting that the following special cases have been considered before:

(1) Case σ = 0, λ = 0, f ′
1(0) = 1: This case consists of unilateral stretching in the x direction

beneath quiescent fluid which was studied by Crane [4] who found the exact solution Eq. (1.1) (i.e.,
f1 = 1 − e−η, f2 ≡ g1 ≡ g2 ≡ 0), and the wall stress parameter given by

f ′′
1 (0) = −1.

(2) Case σ = 0, λ = 1, f ′
1(0) = 1: This case consists of a radially stretching membrane below a

quiescent fluid which was studied by Wang [5]. In this case, the flow was radially symmetric and so
f1 ≡ g2 (with f2 ≡ g1 ≡ 0) and the wall stress was found to be

f ′′
1 (0) = g′′

2(0) = −1.17372.

(3) Case σ = 0, λ finite, f ′
1(0) = 1: This case consists of biaxial stretching below a quiescent

fluid studied by Weidman and Ishak [6]. Here f2 ≡ g1 ≡ 0 and dual solutions were identified for a
range of λ values.
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(4) Case σ finite, λ = 1, f ′
1(0) = ±1: This case comprises a radially stretching or shrinking

membrane beneath a constantly rotating fluid. The problem was investigated by Turner and Weid-
man [3] who found a unique similarity solution for all values of σ .

IV. RESULTS

In this section, we present results found by numerically integrating Eqs. (2.6) and incorporating
the boundary conditions Eqs. (2.7). Equations (2.6) are integrated from the membrane surface at
η = 0 to some large upper boundary at η = ηmax, where ηmax is chosen to be large enough such
that the obtained results are independent of ηmax. The numerical scheme used is the shooting-
splitting method presented by Firnett and Troesch [10], which has since been utilized by the
authors in related problems [8,11]. The method splits the domain [0, ηmax] into N identically
sized subdomains [ηi, ηi+1] for i = 0, ..., N . In each of the subdomains, the vector of quantities
f = ( f1, f ′

1, f ′′
1 , f ′

2, f ′′
2 , g′

1, g′′
1, g2, g′

2, g′′
2) is integrated from ηi to ηi+1 via a fourth-order Runge-Kutta

method with a step size of 
η = 10−3, which we find to be small enough for results to have
converged. The values of the integrated vector f at η = ηi+1 are then used to update the values
of f at η = ηi via Newton’s method by requiringthat the quantities in f are continuous at each
ηi for i = 1, ..., N and that the far-field boundary conditions are satisfied at ηN+1. Hence this
results in a Newton iteration step where 10N equations have to be solved simultaneously, and this
process is continued until some convergence tolerance is met, which in this paper we set to be
|fn+1 − fn| < 10−10, where n denotes the iteration number. For the majority of this paper, we use
N = 100 subintervals and set ηmax = 100. We find this value of ηmax to be significantly larger than
actually needed for much of the parameter space, but as the results below will show, there are some
regions of parameter space which have velocity profiles with thick boundary layer profiles, and thus
the large value of ηmax is needed to deal with these values.

In the shooting-splitting method, we are required to invert a 10N × 10N Jacobian matrix, as
opposed to a 4 × 4 Jacobian for a single-domain shooting approach, making it computationally
slower and more expensive. However, this shooting-splitting approach is preferred to the single-
domain approach because it is much less sensitive to the initial values of the unknowns, as the
exponential growth of these initial ‘incorrect’ guesses is restricted to a short domain, hence keeping
them numerically finite, and thus making it more likely that the scheme converges. This also then
allows for much larger values of ηmax to be considered, which we find is required to achieve
converged results in this problem.

In Fig. 2(a), we plot the surface stress stress parameters f ′′
1 (0) and g′′

2(0) for the case f ′
1(0) = 1

with no external flow (σ = 0), and hence the components satisfy f2 ≡ g1 ≡ 0. Here we see in the
absence of a rotating flow that there is a single unique solution for λ > 0, but there are dual solutions
for −0.251 < λ < 0, i.e., for a stretching membrane in one direction while shrinking in the other.

By continuing the two solutions for −0.251 < λ < 0 to λ > 0, it may appear at first that there
are, in fact, two solutions for λ > 0 as noted in Weidman and Ishak [6], but it is possible to show
that only one of these solutions produces a converged result in Figs. 2(b) and 2(c). In Fig. 2(b), we
consider the two dual solutions at λ = −0.1 and plot the parameter f ′′

1 (0) for various values of ηmax.
It is clear that by ηmax ≈ 40, both solutions have converged to different results. Now fixing ηmax = 5
and parameter continuing these results to λ = 1, we still find two distinct solutions in Fig. 2(c), but
as we increase ηmax only the solid curve result converges and, in fact, the dashed result appears to
very slowly tend to the solid line result as ηmax increases. Also in this figure are the two shear stress
values identified in Weidman and Ishak [6] given by the dotted lines. The lower line is obscured
by the solid curve as these agree exactly, while the upper line is seen not to be a converged result
when compared to the dashed line, which is continued up to ηmax = 550, which is the upper limit
of what we could achieve in double precision. While this numerical result does not explicitly rule
out the existence of converged results that decay algebraically as η → ∞, we believe there to be
only one unique converged result for σ = 0 and λ > 0. We note that using other values of ηmax to
parameter continue the results from λ = −0.1 leads to the same conclusion, and that on the upper
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f 1 (0)
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(c)

FIG. 2. (a) Plate stress parameters f ′′
1 (0) (solid curve) and g′′

2(0) (dashed curve) as a function of λ for σ = 0.
The turning points occur at (λmin, f ′′

1 (0), g′′
2(0)) = (−0.251, −0.935, 0.031). Note there is a unique solution for

λ � 0 and dual solutions for λmin < λ < 0. (b) Plate stress parameter f ′′
1 (0) as a function of ηmax for λ = −0.1

and σ = 0. The lower f ′′
1 (0) branch solution is given by the solid curve and the upper branch solution is given

by the dashed curve. (c) Plate stress parameter f ′′
1 (0) as a function of ηmax for λ = 1 and σ = 0. The solid

curve is the lower f ′′
1 (0) branch solution from Fig. 2(b) parameter continued from λ = −0.1 with ηmax = 5

while the dashed curve is the upper f ′′
1 (0) branch solution from Fig. 2(b) parameter continued from λ = −0.1

with ηmax = 5. Only the lower branch solution definitely converges for the values of ηmax calculated. The two
dotted lines give the converged results for the two branches quoted in Weidman and Ishak [6].

f ′′
1 (0) branch of solutions in Fig. 2(a) we had to increase the value of ηmax to ηmax = 500 as we

approached λ = 0 from below to achieve converged results. If algebraically decaying solutions as
η → ∞ of Eqs. (2.6) with σ = 0 exist, then Weidman and Ishak [6] have shown that they have the
asymptotic form f1,2 ∼ A1,2η

−1, g1,2 ∼ B1,2η
−1 in this limit, for constants A1,2, B1,2. Hence they

can be searched for numerically, again by using the shooting-splitting method, but by including the
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far-field asymptotic conditions

f ′
1,2

f1,2
= − 1

ηmax
, and

g′
1,2

g1,2
= − 1

ηmax

at η = ηmax in the Newton update step.
In Figs. 3(a)–3(c), we consider the three wall stress parameters f ′′

1 (0), f ′′
2 (0), and g′′

2(0), respec-
tively, as a function of σ for f ′

1(0) = 1 and λ = −0.1, 0.1, 0.25, 0.5, 0.75, and 1 numbered 1–6,
respectively. Here we see that as σ is increased from zero, the single unique solution for λ > 0 (two
solutions for λ = −0.1) becomes dual solutions for 0 < σ < σmax, except for the radially stretching
case (λ = 1) which remains as a single solution for all σ > 0. This result agrees with that presented
in Turner and Weidman [3]. The results along the lower branch of solutions for f ′′

1 (0) [which
corresponds to the upper branch solutions of f ′′

2 (0) and g′′
2(0)] appear to have a similar behavior,

i.e., f ′′
1 (0) decreases in magnitude away from the σ = 0 value. As the value of λ is increased, the

magnitude of the difference in the wall stress values on the two branches increases greatly. In Fig. 4,
we consider how this difference manifests itself in the forms of the velocity profiles.

Figures 4(a)–4(d) show the components of the velocity field f ′
1, f ′

2, g′
2 and −( f1 + g2) for the

results from Fig. 3 at σ = 0.2 along the lower f ′′
1 (0) branch. The results show that each velocity

field has a very similar structure, due mainly to the similar values of wall stress parameter values
obtained. Both f ′

1 and f ′
2 have monotonically decaying boundary layer profiles from their membrane

values to 0 and −σ , respectively, as η → ∞. The g′
2 profiles are slightly different, but this is because

this is the direction in which the stretching rate of the membrane is being varied. In any case, the flow
in the axial direction in Fig. 4(d) shows that this axial flow is always directed toward the membrane,
sucking down fluid which is then ejected out parallel to the membrane at the membrane surface.
This is in contrast to the zero-stretching Bödewadt [1] solution where this axial flow is directed
away from the plate, suggesting that in all the presented results in Figs. 4(a)–4(d), the stretching of
the membrane contributes the most significant component to the flow. Figures 4(e)–4(h) show the
same plots as above, except this time for solutions along the upper f ′′

1 (0) branch. The results for each
value of λ appear similar to the upper f ′′

1 (0) branch results, except when λ � 0.5 where the velocity
components parallel to the strain axes, f ′

1 and g′
2, take on a wall-jet-type structure, with the maximum

velocity in these directions now being located away from the membrane surface. This then sets up a
strong perpendicular velocity profile f ′

2. If we now consider the axial velocity profile in Fig. 4(h), we
see that while for these values of λ the axial velocity is still strictly negative (flow directed toward
the membrane), there is more structure now and the λ = 0.75 result is close to changing sign near
to η = 4. Therefore, it appears we should be able to find regions of parameter space where the axial
velocity changes sign within the flow. This is significant because it creates separated regions of the
flow domain because the axial velocity is spatially invariant for this similarity solution, and thus if
−( f1 + g2) = 0 anywhere in the flow, the axial velocity is zero at this height for all x and y.

In Fig. 3(a), it appears as if the solution curve for the case λ = 0.75 is beginning to deform in
such a way that it might lead to multiple solutions if λ is increased further, and this is exactly what
we find for λ = 0.9 in Fig. 5(a). Here we observe that for 0 < σ < 1.180 and 1.265 < σ < 1.425,
we have dual solutions but for 1.180 < σ < 1.265 we, in fact, have four possible solutions. We also
note the big increase in the magnitude of the stress values on the upper f ′′

1 (0) branch compared to
those in Fig. 3(a). When we consider the velocity profiles of the four different solutions at σ = 1.2,
labeled 1–4 in Figs. 5(a)–5(e), we see that results 1 and 4 behave very similarly to the dual results in
Fig. 4, while results 2 and 3 have behaviors which transition between the two. The most interesting
result appears to be result 2 because this result extends much further in the η direction than the other
three results, which have asymptoted to their far-field behaviors by η ≈ 30. Result 2 does eventually
asymptote to its far-field value, leading to a converged solution, but not until η ≈ 90. For the axial
flow in Fig. 5(e), we see in this case that for results 2, 3, and 4, there is a region of the flow domain
where −( f1 + g2) > 0 and hence the axial flow is directed away from the membrane in this region
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FIG. 3. Plate stress parameters (a) f ′′
1 (0), (b) f ′′

2 (0), and (c) g′′
2(0) as functions of σ for λ =

−0.1, 0.1, 0.25, 0.5, 0.75, and 1.0 labeled 1–6. The maximum values σmax for the results shown are
0.226, 0.429, 0.579, 0.834, 1.099, and ∞, respectively.

074104-8



BIORTHOGONAL STRETCHING OF AN ELASTIC …

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. Velocity profiles (a) f ′
1(η), (b) f ′

2(η), (c) g′
2(η), and (d) −( f1 + g2)(η) for σ = 0.2 and λ =

−0.1, 0.1, 0.25, 0.5, 0.75, and 1 along the lower f ′′
1 (0) branch. Velocity profiles (e) f ′

1(η), (f) f ′
2(η), (g) g′

2(η),
and (h) −( f1 + g2)(η) for σ = 0.2 and λ = −0.1, 0.1, 0.25, 0.5, and 0.75 along the upper f ′′

1 (0) branch. The
arrows indicate the direction of increasing λ.
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FIG. 5. (a) Plate stress parameters f ′′
1 (0), f ′′

2 (0), g′′
2(0) as a function of σ for λ = 0.9. The three turning

point values σmax for the results shown are 1.180, 1.265, and 1.425. Velocity profiles (b) f ′
1(η), (c) f ′

2(η), (d)
g′

2(η), and (e) −( f1 + g2)(η) for σ = 1.2 and λ = 0.9. The results numbered 1–4 correspond to the solutions
numbered in Fig. 5(a).
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(albeit a very small region for result 2). Hence, for these cases, the flow domain is divided into
distinct regions above the membrane, between which no fluid can pass.

In Fig. 6, we consider the shear stress solution curves f ′′
1 (0), f ′′

2 (0), and g′′
2(0) now as a function

of λ for the fixed values of σ = 0.1, 0.3, 0.8, 1.2, and 1.4 in Figs. 6(a)–6(e), respectively. These
are the equivalent σ 	= 0 plots to that in Fig. 2(a), which depicts the σ = 0 case. These figures show
that the single unique solution for λ > 0 with σ = 0 is now a dual solution for the whole range of λ

values, except at λ = 1 where the only solution is the radially symmetric result found by Turner and
Weidman [3], and the second solution asymptotes to λ = 1. For σ = 0.1 in Fig. 6(a), the minimum
value of λ is given by λmin = −0.208 and so for weakly rotating flows at infinity we can still find
solutions with a stretching membrane in one direction and a shrinking membrane in the orthogonal
direction. When σ is increased to σ = 0.3 in Fig. 6(b), this region of λ < 0 solutions has almost
disappeared, but the dual solutions for all λ > 0 (except λ = 1) are still observable. With the value
of λmin increasing in value as σ is increased, we wish to know what happens as this value approaches
λ = 1 where, from Turner and Weidman [3], we know there is a solution for all values of σ . As σ

increases to 0.8 and 1.2 in Figs. 6(c) and 6(d), we observe that the solution curves for λ < 1 begin
to have multiple solutions, as we saw in Fig. 5(a). Increasing σ further, we find that that the two
distinct branches coming from λ = ∞ become closer and closer, and at σ ≈ 1.395 the two solutions
branches touch and bifurcate. For σ greater than this value, see σ = 1.4 in Fig. 6(e), there is a dual
set of solutions for λ > 1.084 and a small region close to λ = 1 where there are multiple solutions.

In all the results presented thus far, we have considered only the case when f ′
1(0) = 1, i.e., when

the membrane is stretched parallel to the x axis. We now consider the case when f ′
1(0) = −1, i.e.,

the membrane is shrinking in the x direction. In this case, when λ > 0, this is just the case of the
membrane shrinking in one direction and being stretched in another, which, with a rescaling of
parameters, has already been considered above. However, what hasn’t been considered is whether
there are any solutions with f ′

1(0) = −1 and λ < 0, i.e., a shrinking membrane in both directions.
From Turner and Weidman [3], we know that the radially symmetric problem has a solution in this
case, but what about the asymmetric case? In Fig. 7(a), we consider the membrane stress parameters
for the case σ = 0.1 with f ′

1(0) = −1. From Fig. 6(a), we know that there will be solution branches
for λ > 0 and these branches move to λ = ∞ as σ increases, and disappear for σ � 0.3 as found
in Fig. 6(b). However, for λ < 0 the vertical line denotes a set of solutions close to λ = −1. The
variation of this result from λ = −1 is very small, as can be seen by the blown-up image in Fig.
7(b), where we plot λ + 1 on the horizontal axis. We can see that the variations from λ = −1 are of
O(10−11) for this value of σ . Increasing the value of σ retains this set of solutions close to λ = −1
but the variation from this value reduces further, and hence we don’t plot these results here.

V. STABILITY OF SOLUTIONS

Having identified dual, or multiple in some cases, solutions, we now investigate the temporal
stability of these solutions by considering the unsteady form of the Navier-Stokes Eqs. (2.3). We
introduce the dimensionless time variable τ = |a|t which upon inserting Eqs. (2.4) and (2.5) leads
to the coupled system of partial differential equations:

f ′′′
1 + ( f1 + g2) f ′′

1 − f ′
2g′

1 − f ′2
1 − f ′

1τ = σ 2, (5.1a)

f ′′′
2 + ( f1 + g2) f ′′

2 − f ′
2( f ′

1 + g′
2) − f ′

2τ = 0, (5.1b)

g′′′
1 + ( f1 + g2)g′′

1 − g′
1( f ′

1 + g′
2) − g′

1τ = 0, (5.1c)

g′′′
2 + ( f1 + g2)g′′

2 − g′2
2 − f ′

2g′
1 − g′

2τ = σ 2. (5.1d)

To study the temporal stability of these equations, we follow the approach laid out in works such
as Turner and Weidman [8,12]. We split the flow into a steady basic flow element, and a small
amplitude, time-dependent perturbation in the form

[ f1, f2, g1, g2](η, τ ) = [ f10, f20, g10, g20](η) + δe−κτ [F1, F2, G1, G2](η), (5.2)
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FIG. 6. Plate stress parameters f ′′
1 (0), f ′′

2 (0), g′′
2(0) as a function of λ for (a) σ = 0.1, (b) σ = 0.3, (c)

σ = 0.8, and (d) σ = 1.2. The minimum value λmin in these cases are −0.208, −0.029, 0.468, and 0.842
respectively. (e) Plate stress parameters f ′′

1 (0), f ′′
2 (0), g′′

2(0) as a function of λ for σ = 1.4. The minimum value
λmin on the two branches emanating from λ = ∞ is 1.084.
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FIG. 7. (a) Plate stress parameters f ′′
1 (0), f ′′

2 (0), g′′
2(0) as a function of λ for σ = 0.1 with f ′

1(0) = −1. The
minimum value λmin on the two branches emanating from λ = ∞ is 4.033. (b) Blow up of Fig. 7(a) close to
λ = −1.

where δ 
 1, and κ is an eigenvalue, where κ < 0 denotes an unstable solution. The quantities
f10, f20, g10, and g20 are the basic flow solutions of Eqs. (2.6) found in Sec. IV, while at O(δ) the
perturbation quantities satisfy the linear system:

F ′′′
1 + ( f10 + g20)F ′′

1 + f ′′
10(F1 + G2) − f ′

20G′
1 − g′

10F ′
2 − 2 f ′

10F ′
1 + κF ′

1 = 0, (5.3a)

F ′′′
2 + ( f10 + g20)F ′′

2 + f ′′
20(F1 + G2) − f ′

20(F ′
1 + G′

2) − ( f ′
10 + g′

20)F ′
2 + κF ′

2 = 0, (5.3b)
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G′′′
1 + ( f10 + g20)G′′

1 + g′′
10(F1 + G2) − g′

10(F ′
1 + G′

2) − ( f ′
10 + g′

20)G′
1 + κG′

1 = 0, (5.3c)

G′′′
2 + ( f10 + g20)G′′

2 + g′′
10(F1 + G2) − 2g′

20G′
2 − f ′

20G′
1 − g′

10F ′
2 + κG′

2 = 0. (5.3d)

The above system is then solved with the homogeneous boundary conditions,

F1(0) = F ′
1 (0) = F ′

2 (0) = F ′
1 (∞) = F ′

2 (∞) = 0, (5.4a)

G2(0) = G′
1(0) = G′

2(0) = G′
1(∞) = G′

2(∞) = 0, (5.4b)

using the same numerical scheme as for the base flow. We are again free to choose the extra
conditions F2(0) = G1(0) = 0 as these functions do not appear explicitly in Eqs. (5.3), and we
fix F ′′

1 (0) = 1. This leaves four unknown variables to determine to fully solve the system, namely,
F ′′

2 (0), G′′
1 (0), G′′

2 (0) and κ , which are updated via Newton iterations to satisfy the far-field boundary
conditions Eqs. (5.4). Results of the form Eq. (5.2) produce an infinite set of real eigenvalues
κ1 < κ2 < κ3 < · · · , where our interest lies in determining the value of κ1. If κ1 > 0, then the
resulting flow is stable and we would expect to observe it in an experiment, while if κ1 < 0 then the
flow is unstable and we would not expect to observe it.

The calculation of the eigenvalues for these stretching plate flows is tricky, because as was
shown by Davies and Pozrikidis [13] for the two-dimensional Crane flow (1.1), the perturbation
eigenmodes are able to penetrate a large distance into the main bulk of the fluid due to the weak
convection toward the membrane in the far field, given by f10(∞) + g20(∞) = w∞. The same is
true for the problem considered here, and in the limit as η → ∞, Eqs. (5.3), can be written as

F ′′′
1 + w∞F ′′

1 + σG′
1 − σF ′

2 + κF ′
1 = 0, (5.5a)

F ′′′
2 + w∞F ′′

2 + σ (F ′
1 + G′

2) + κF ′
2 = 0, (5.5b)

G′′′
1 + w∞G′′

1 − σ (F ′
1 + G′

2) + κG′
1 = 0, (5.5c)

G′′′
2 + w∞G′′

2 + σG′
1 − σF ′

2 + κG′
2 = 0. (5.5d)

This constant coefficient system can be solved by seeking exponential solutions of the form

[F1, F2, G1, G2] = [A, B,C, D]eqη,

where A, B, C, and D are constants, leading to the matrix problem⎡
⎢⎢⎣

q(q2 + w∞q + κ ) −σq σq 0
σq q(q2 + w∞q + κ ) 0 σq

−σq 0 q(q2 + w∞q + κ ) −σq
0 −σq σq q(q2 + w∞q + κ )

⎤
⎥⎥⎦

⎡
⎢⎣

A
B
C
D

⎤
⎥⎦ = 0.

(5.6)
Nontrivial solutions to this system lead to seven independent values of the eigenmode decay rate q:

q1 = 0, q2 = −w∞
2

+
√

w2∞
4

− κ, q3 = −w∞
2

−
√

w2∞
4

− κ,

q4 = −w∞
2

+
√

w2∞
4

− κ − 2iσ, q5 = −w∞
2

−
√

w2∞
4

− κ − 2iσ ,

q6 = −w∞
2

+
√

w2∞
4

− κ + 2iσ , q7 = −w∞
2

−
√

w2∞
4

− κ + 2iσ .

In our extensive search of parameter space, we only identified real values of κ , in which case q6 = q4

and q7 = q5 where (·) denotes the complex conjugate, and q2 and q3 are complex conjugates for
κ > w2

∞/4. In Sec. IV, we found that w∞ > 0 but this value is a function of λ and σ , and so the
expected exponential decay of the eigenmode is hard to predict, making the numerical calculations
tricky due to the eigenvalue being relatively dependent on the domain truncation size ηmax. However,
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FIG. 8. (a) Lowest eigenvalue κ1(λ) for the case σ = 0 from Fig. 2(a). For λ < 0, the lower f ′′
1 (0) branch

results from Fig. 2(a) are stable, and the corresponding upper branch results are unstable. (b) Lowest eigenvalue
κ1(σ ) for the λ = −0.1 (solid line), λ = 0.5 (dashed line) and λ = 1 (short-dashed line) from Figs. 3(a)–3(c).
For λ = −0.1 and 0.5, the lower f ′′

1 (0) branch results from Fig. 3(a) are stable, and the corresponding upper
branch results are unstable, while for λ = 1 (which only has a lower f ′′

1 (0) branch) results are stable for all σ .

we find the shooting-splitting method with ηmax = 100 suitable to handle this problem and gives
domain independent results.

Figure 8(a) plots the value of κ1 for the σ = 0 result from Fig. 2(a) and shows that for λ > 0,
where there is a unique solution, this solution is stable and, in fact, the stability of the solution
increases with increasing λ. At λ = 0, the growth rate is κ1 = 1

4 in agreement with the result of
Davis and Pozrikidis [13] and for λ < 0, one of the dual solutions is stable [the lower f ′′

1 (0) branch
from Fig. 2(a)] and one is unstable [the upper f ′′

1 (0) branch from Fig. 2(a)], with the change in
behavior occurring at the turning point λmin = −0.251. In Fig. 8(b), we examine the stability of the
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dual solutions from Fig. 3 with σ 	= 0, in particular, we plot κ1 for λ = −0.1, 0.5, and 1. We find
that for both λ = −0.1 and 0.5, only the lower f ′′

1 (0) branch solution in Fig. 3(a) is stable, with the
turning point denoting the change in stability. For the λ = 1 case, there is no lower f ′′

1 (0) branch
and we find that κ1 → 0 from above as σ is increased, and for σ � 1.395, the value of κ1 < 10−3,
thus the solutions are approximately neutrally stable beyond this point. This value of σ ≈ 1.395 is
the same value of σ where we found the two solutions branches touch and bifurcate in Fig. 6. In
terms of the stability of the branches of solutions plotted in Fig. 6, this means that only the f ′′

1 (0)
branch of solutions which connects the turning point λmin to λ = ∞ is stable [see Figs. 6(a)–6(d)],
while after the pinching of the branch solutions has occurred [see Fig. 6(e)] then only the upper
f ′′
1 (0) branch of solutions connecting λmin and λ = ∞ is stable. The stability results in Fig. 8(b)

then suggests that the symmetric solution at λ = 1 is approximately neutrally stable and, in fact, we
find moving away from this solution leads to an unstable solution.

VI. CONCLUSIONS

In this paper, we examined the flow generated by a biorthogonally stretched membrane below
a steadily rotating fluid. The problem was nondimensionalized such that the stretching rates of the
membrane along the orthogonal axes were 1 (or −1) and λ, respectively, while the rotation rate at
η = ∞ was σ , where η is a nondimensional coordinate measured perpendicular to the membrane.
Note that a negative stretching rate corresponds to a steadily shrinking membrane. The results
showed that for a fixed value of λ > λmin there are two solution branches in the (σ, f ′′

1 (0)) plane,
where f ′′

1 (0) is proportional to the shear stress at the membrane along one of the stretching axes. No
solutions exist for λ < λmin. The results also showed that for each λ there was a maximum value of
σ = σmax above which it was not possible to find solutions of the similarity type sought here.

For a fixed value of σ and λ, it is shown that only one solution branch is stable to three-
dimensional perturbations, while the remaining branch is unstable. Along the stable branch the
velocity profiles parallel to the surface of the membrane mainly have a boundary-layer-type profile
where the maximum flow value lies at the membrane itself. As λ is increased, the thickness of
the boundary layer thins, which is accompanied by an increased axial flow toward the membrane
from infinity. Along the unstable branch, the velocity profiles have a wall-jet-type structure with the
maximum flow velocity now located away from the wall in the bulk of the fluid.
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