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The main objective of the present study is the derivation of exact analytical expressions
for the orientation and trajectory of a spherical microswimmer submitted to general
linear flows and to an external (gravitational or magnetic) force field, a problem known
as gyrotaxis or magnetotaxis. We consider linear shear, hyperbolic, solid-rotation, and
stagnation flows. The evolution equations of the swimmer orientation and its position are
nonlinear and analytical results are the exception rather than the rule. Most available results
for cell orientation and trajectories are obtained numerically. The solution for the swimmer
orientation is inspired from a method due to Bretherton, initially developed for a different
nonlinear equation. We show here that this method can be generalized to our evolution
equation. We see that the swimmer under flow exhibits both run (a motion where the
orientation angle is kept constant with time) and tumble (the orientation angle is cyclic
with time) regimes, and a variety of cell trajectories are extracted analytically, such as
parabolic, elliptic, and helical. This study offers a framework to generalize the results to
other types of flows.
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I. INTRODUCTION

Swimmers range from self-propelled microorganisms to macroscopic animals such as fish.
Macroscopic organisms use inertia in their motion, whereas microorganisms, like bacteria, sperma-
tozoa, microalgae, etc., have a low enough Reynolds number (Re) for inertial effects to be ignored
in describing their locomotion.

In the zero-Re limit, the governing equations of fluid motion are linear (the Stokes equations) and
invariant under time reversal. As a result, microorganisms must deploy nonreciprocal deformations
in time in order to move forward (the scallop theorem or the reciprocal theorem) [1,2]. Microorgan-
isms, like spermatozoa, bacteria, and microalgae, can move with the help of flagella or cilia [3,4]
thanks to nonreciprocal elementary strokes. Other cells may use ample shape deformations, known
as amoeboid [5], for their locomotion.

Many microorganisms respond to both flow and other stimuli (e.g., external force), such as grav-
ity (gyrotaxis), a magnetic field (magnetotaxis), and light (phototaxis). The interplay between flow
and external force leads to a variety of complex motions. Most trajectories of these microswimmers
have so far been obtained numerically, as described below.
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Under flow and an external field the orientation vector (denoted as p) and the position
(denoted x) of a microswimmer with a spherical shape assumption are described by

ṗ = 1
2ω × p + λ[ j� − (p. j�)p], ẋ = u0(x) + vs, (1)

where ω is the fluid vorticity vector, j� accounts for the applied external field characterized by λ

(λ = 0 in the absence of the external field), proportional, for example, to gravity for a heavy bottom
particle (i.e., when the mass center differs from the sphere center [6–8]), vs = vs p is the swimming
velocity, and u0 is the applied flow.

Brenner [6,7] investigated the effect of shear flow for cases where ω and j� are either per-
pendicular or parallel, whereas Hall and Busenberg [8] studied the general case where the angle
between ω and j� can be arbitrary. Their results essentially show that the particle either tends to
a fixed orientation or describes a periodic motion. These two motions are referred to as run and
tumble motions. This is not to be confused with the run-and-tumble trajectory, where the straight
trajectory is interrupted by sudden changes of orientation. Here we mean by ‘run’ that the particle
always keeps a given orientation and by ‘tumbling’ that the particle undergoes a cyclic motion.
Brenner [6,7] determined the equilibrium orientation (corresponding to d p/dt = 0) and derived the
condition under which an equilibrium orientation exists and is stable. When the steady orientation
ceases to exist the particle is expected to tumble. Hall and Busenberg [8] used an application of the
Poincaré-Bendixon stability theorem [9] to predict that the particle achieves a unique stable terminal
orientation when the applied field and vorticity are not perpendicular.

In the same spirit as in [6–8], Pedley and Kessler [10] have shown how to calculate equilibrium
orientations of spheroidal microorganisms in a general flow and how to predict run and tumble
motions. The corresponding evolution equation for spheroidal shapes is different from (1) and
contains an additional cubic term for p due to the straining part of the flow. They provided a
general expression for equilibrium orientations in terms of polar angles and discussed their stability.
However, in all these studies [6–8,10] no analytical solution was provided either for the orientation
angle in the tumbling regime or for the particle trajectory.

It has been observed that the interplay between fluid vorticity and external field can lead to
several consequences regarding swimmer distribution under nonlinear flows, such as a Poiseuille
flow. More precisely, Kessler [11] has studied experimentally and theoretically the trajectory and
spatial distribution of Chlamydomonas or Dunaliella cells, which are subject to a torque induced
by gravity (Gyrotaxis) in a Poiseuille flow. It is shown that when shear and gravity torque balance,
cells keep a fixed orientation (run regime) for a sufficiently small vorticity and accumulate near
the center of the vertical tube with a downward flow. For upward flow, the particles move away
from the axis and accumulate at the periphery of the cylinder, where they perform tumbling motion
(if the vorticity is large enough). Kessler [11] has provided the run solution (constant orientation)
and the condition for its stability. No analytical solution to the orientation vector or to the particle
trajectory is given. Kessler provided, however, a nice solution for the concentration field supporting
his observation (accumulation at the center or at the periphery).

In [12], Zottl and Stark have considered a spherical swimmer in Poiseuille flow in the absence
of external force [λ = 0 in Eq. (1)] besides noise. The authors showed that the deterministic part
of the trajectory evolution equations can be mapped onto a Hamiltonian system and different
interesting behaviors of swimmer trajectories are determined. In Ref. [13], the authors presented
an experimental study of bioconvection and cell dispersion in horizontal tubes with and without
flow. Numerical trajectories are presented for a spherical cell (in Poiseuille and plug flows) by
making use of equations of type (1) in which the cell is assumed to swim with a fixed orientation
(run regime). However, no analytical solution of trajectory is presented. In [14], the distribution
of gyrotactic prolate ellipsoidal microorganisms in a steady vortical flow is examined. Numerical
simulations showed a rich variety of trajectories, including closed and spiral trajectories, that are
highly dependent upon two physical parameters: the swimming speed relative to a characteristic
fluid speed and the magnitude of the gyrotactic torque. Very recently, the effect of motility and
shape on the microswimmer dynamics in a two-dimensional axisymmetric (stationary Lamb-Oseen)
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vortex flow is studied [15]. The swimmer is modeled as an ellipsoidal particle having a given
swimming direction. By using a dynamical system theory (Poincaré-Bendixson theorem), rich
dynamics is obtained by classifying the fixed-point structures as a function of the particle shape and
the relative swimming velocity. Different trajectories are obtained numerically showing bounded
and unbounded trajectories and transitions among them. In particular, it is found that prolate
microswimmers tend to align parallel to the velocity field, while oblate microswimmers tend
to remain perpendicular to it. For spherical swimmers, a homogeneous distribution is obtained.
Matsunaga et al. [16] presented a method to control particle trajectories in a Poiseuille flow thanks to
a static magnetic field. The authors showed, by numerical simulations, that the ellipsoidal magnetic
particle can be focused to an arbitrary transverse position. Equation (1) in the presence of gravity
and fluid acceleration (solid body rotation) parallel to gravity has been studied regarding migration
of plankton [17,18]. An approximate solution for the particle trajectory (see Sec. V for more detail)
is provided, allowing for an exact solution determination.

The orientation and trajectory of spherical microorganisms in one-dimensional vertical shear
flow and under gravitactic and intrinsic torques are studied numerically in Ref. [19]. In particular,
the effect of the intrinsic torque on the particle orientation and trajectory are investigated. Analytical
solutions for trajectories are obtained only if the cell has a fixed orientation (run regime). Thorn
et al. [20] have considered the motion and the transport of spherical particles in different types
of flows in the x-y plane (shear flow, solid-body rotation, straining flow) and for arbitrary angle
between the fluid vorticity and the external field (due to gravity), with and without additive
stochastic reorientation. In the deterministic case, expressions of the equilibrium orientations of
(1) are presented and their stability is discussed. Particle trajectories are obtained numerically in the
tumbling regime.

In summary, in all the above studies, except for run motion, or in the absence of external force,
the determination of the orientation vector as a function of the time and particle trajectories has
been done numerically. Here, we examine several cases with linear flows (shear and straining
flows, rigid rotation, etc.) and external fields with different orientations. We show that in almost
all cases studied here explicit analytical solutions can be obtained for both particle orientation and
trajectories.

The determination of exact solutions for the orientation was motivated by our previous study
in a different context (vesicle and red blood cells under flow), where we showed that the problem
could be mapped onto that of a heavy-bottom spherical particle (in higher dimensions) [21]. Since
we had earlier derived an exact analytical solution for vesicles [22], this allowed us to show exact
solutions (not known before) describing rigid heavy-bottom particle orientation in the presence of
linear shear flow. These solutions can now be generalized to different flows and orientations of
external fields. The first step here is to calculate the particle orientation, by presenting a general
method à la Bretherton, instead of using the strategy followed for our analytical solution [22].
This new way allows for an easier generalization to different types of equations and external
fields (flow and external force). Two main types of motion are characterized: the runlike solu-
tion and the tumblelike solution. Once the orientation vector solution is found, our second step
consists in extracting analytically the particle trajectories. A rich variety of trajectory patterns
is revealed.

II. ORIENTATION EVOLUTION EQUATION

We focus on the dynamics of an isolated rigid spherical (magnetic or gyrotactic) swimmer in
general linear flows and in the presence of an external field. The swimmer moves at a velocity
vs = vs p, where p is the unit particle vector orientation and vs, the magnitude of the swimming
velocity, is assumed to be constant. It is assumed here that the speed vector is at any instant oriented
along p. In the absence of rotary Brownian motion, the evolution of the unit orientation vector (or
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swimming direction) p and position x = (x, y, z) of the particle can be modeled (at low Reynolds
number) by the equations [6,8,23]

ṗ = 1

2
ω × p + M

8πμr3
[B − (p.B)p], (2)

ẋ = u0(x) + vs p, (3)

where u0 is the fluid velocity and ω = ∇ × u0 is the fluid vorticity vector. We use Cartesian
coordinates (x, y, z), with corresponding unit vectors denoted (i, j, k). Note that ω × p can be
replaced by �.p, where matrix � is the vorticity tensor given by

� =

⎛
⎜⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎟⎠, (4)

where ω = (ω1, ω2, ω3). The other parameters appearing in the above equations are the radius of
the spherical particle, r, the kinematic viscosity of the suspending fluid, μ, the uniform external
field vector, B, and M = |M|, where M is the dipole moment of the particle.

We introduce the unit vector j� such that B = B j�. Therefore, Eq. (2) can be rewritten as

ṗ = 1
2 [�.p + λ( j� − j�.pp)], (5)

where λ is a real physical parameter given by

λ = M B

4πμr3
(6)

for a magnetic swimmer. The same equation is derived for a spherical gyrotactic particle (called a
heavy-bottom particle [6,7,24]), with

λ = �hg

3μ
, (7)

where � is the cell density, h is the center-of-mass offset from the geometrical center, and g is
the acceleration due to gravity. Quantity λ−1 represents the typical characteristic time a perturbed
particle takes to return to orientation j� if � = 0 (i.e., ω = 0).

As mentioned in Sec. I, Eq. (5), and more general equations for spheroidal particles, have been
studied by Brenner [6,7] and Hall and Busenberg [8]. Two types of motions are obtained depending
on the parameter χ = λ/ω, where ω is the strength of ω, and ψ the angle between ω and j�.
If ψ �= π/2 or if ψ = π/2 and χ > 1, orientation p tends in time to a certain fixed orientation
irrespective of its initial orientation (run regime). For ψ = π/2 and χ < 1, orientation p describes
one of an infinite family of periodic closed orbits (tumble regime). In the tumbling regime no
analytical solution was given. The extraction of analytical solutions for the orientation vector (for
both run and tumble regimes) is the first objective of the present paper.

In what follows we see how to exhibit exact solutions to Eq. (5), by using an idea due to
Bretherton [25]. The next section introduces a simple and general method to analytically solve a
class of equations of the type of (5), for arbitrary parameter λ and vorticity tensor �. Another
important new feature, which constitutes the second objective of the paper, is to derive analytically
the particle trajectory in linear flows, by exploiting the exact analytical expression of the particle
orientation.

III. A UNIFIED METHOD FOR THE ORIENTATION EQUATION

Recently, as mentioned before, we have studied the dynamics of quasispherical vesicles under
shear flow [21] and have shown that the shape evolution equation can be mapped onto that of
a rigid sphere similar to Eq. (5), with appropriate λ, in five dimensions and with an appropriate
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fictitious vorticity �. Based on this mapping and on our previous exact analytical solutions for
vesicles [22], we can solve Eq. (5). Here, instead of the method of [21], we provide a more general
analytical approach which can be more easily extended to other physical situations (such as arbitrary
orientations of the external field).

A. Bretherton approach

After the famous work by Jeffery [26] on the dynamics of a rigid ellipsoid under shear flow,
Bretherton [25] extended it to particles with a more general shape. More precisely, he showed that
any rigid nonspherical particle in Stokes flow obeys the evolution equation

ṗ = S · p + βs[E · p − (p · E · p)p] (8)

or, equivalently,

ṗ = A · p − (p · A · p)p, (9)

with A = S + βsE, S = (∇u0 − ∇uT
0 )/2 and E = (∇u0 + ∇uT

0 )/2 are the vorticity and rate-of-
strain tensors, respectively, and parameter βs is the shape factor (its value is 0 for a sphere and
different from 0 for any other shape). In Eq. (8), p is the orientation vector taken to be along the
major semiaxis.

To solve (9), Bretherton [25] insightfully noted that the term (p · A · p)p in Eq. (9), which is
parallel to p, acts only to conserve the unit length of p and does not affect its orientation. He showed
that the temporal evolution of the orientation vector p can be deduced from any vector q that is
parallel to p and evolves according to

q̇ = A · q, (10)

and then the solution to Eq. (9) follows

p = q
|q| , (11)

where

q = exp (At )q(0), (12)

in which exp denotes the matrix exponential.
In summary, from a mathematical point of view, the main idea of the Bretherton approach is to

use the ansatz

p = α(t )q, (13)

which reduces Eq. (9) to the ordinary differential equation satisfied by α,

dα

dt
= α3(q · A · q), (14)

which is easy to integrate. The Bretherton approach is extended and adapted to solve our problem
in a closed form.

B. Extension to the present problem

It is not obvious how to adopt a priori the method in the previous section to our equation [Eq. (5)].
Appendix A describes how to handle this question. As explained in that Appendix for the particular
and interesting case in which j� and p0 are perpendicular (this orthogonality will naturally emerge,
as discussed below), the general solution of Eq. (5) can be written as

p(t ) = p0 + exp
(

1
2 �̃0t

)
q(0)

α−1(0) + λ
2

∫ t
0 j� · exp

(
1
2 �̃0s

)
q(0)ds

, (15)
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with

p0 = ξω + λ

ω2
ω × j�, (16)

where ξ ∈ R, and where matrix �̃0 is defined by

�̃0 = � − λp0 j�T
. (17)

It can be shown that the parameter ξ plays the same role as the Jeffery orbit constant (it can be
checked in our explicit calculations below that it can be absorbed into the Jeffery constant). α(0)
and q(0) (initial conditions) have to be chosen such that |p| = 1.

The general solution, (15), is obtained by employing the ansatz

p = p0 + α(t )q. (18)

IV. DYNAMICS OF A MICROSWIMMER IN ONE-DIMENSIONAL UNIDIRECTIONAL FLOWS

The goal now is to draw a global picture of a microswimmer orientation and its trajectory, for a
class of external stimuli and linear flow geometries. We study in this section flows which have only
one nonzero velocity component (unidirectional flows). Bidirectional flow is considered in the next
section.

A. Swimming direction in one-dimensional linear shear flow

We will see that the swimmer will exhibit a fixed orientation (run regime) or a cyclic one
(tumbling regime) over the course of time, depending on the flow strength. The imposed fluid
velocity has the representation

u0 = (γ̇ y, 0, 0), (19)

γ̇ being the steady shear rate. We also assume that the external field is parallel to j, so that j� = j.
The fluid vorticity is given by ω = −γ̇ k. From (16) we get the one-parameter family,

p0 = ξk + λ̃i, (20)

where λ̃ = λ/γ̇ (= −λ/ω3). The exact expression of the orientation vector is calculated from (15)
by taking p0 = λ̃i [actually it can be checked that ξ entering into (20) is unimportant and can be set
to 0]. We assume that λ (or λ̃) is positive. Two cases can be distinguished:

(1) For λ̃ > 1,

px = λ̃ − 
2

λ̃

cosh
(


γ̇ t
2

)
a + cosh

(

γ̇ t

2

) , py = 


λ̃

sinh
(


γ̇ t
2

)
a + cosh

(

γ̇ t

2

) , pz = 
c

λ̃

1

a + cosh( 
γ̇ t
2 )

, (21)

where


 =
√

|λ̃2 − 1|, (22)

and a and c are integration constants determined by the initial orientation and satisfy (due to the
normalization condition; note that λ̃2a2 � 1)

c = ±
√

1 − λ̃2a2. (23)

(2) If λ̃ < 1,

px = λ̃ + 
2

λ̃

sin(
γ̇ t/2)

a + sin(
γ̇ t/2)
, py = 


λ̃

cos(
γ̇ t/2)

a + sin(
γ̇ t/2)
, pz = 
c

λ̃2

1

a + sin(
γ̇ t/2)
, (24)

where 
 is defined in (22), a is a real parameter, and c = �
|�|

√
�2 − λ̃2, in which � = λ̃2a satisfying

|�| � λ̃.
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FIG. 1. Motion of orientation p in the tumbling case. λ̃ = 0.5, γ̇ = 1, and a = 4.

Now, we are ready to easily analyze the dynamics of p.
Case 1. λ̃ > 1. In the limit t → ∞,

p → λ̃−1i +
√

1 − λ̃−2 j = peq. (25)

This is a pure run motion, showing that the particle orientation tends to the unique stable terminal
orientation (irrespective of its initial orientation). During the run motion, the alignment angle 0 <

φ < π/2, between the microswimmer orientation (or p) and the external force (or j), is given at
any instant by

φλ = arctan

(

−1 aλ̃2 + cosh

(

γ̇ t

2

)
sinh

(

γ̇ t

2

)
)

. (26)

For large t, φλ approaches

φλ(∞) = arctan(
−1) = sin−1(λ̃−1). (27)

Since peq is perpendicular to ω the swimmer is unable to rotate for large t .
Case 2. λ̃ < 1. In this situation, the equilibrium orientation angle, (27), does not exist, and as is

known and transparent from Eq. (24), the particle performs tumbling motions or periodic orbits (see
Fig. 1) with period

T = 4π

γ̇
√

1 − λ2
. (28)

For the particular case where there is no preferred swimming direction λ = 0 (strong rotation or
absence of external torque), we get

px = a0 cos(γ̇ t/2 + θ0), py = a0 sin(γ̇ t/2 + θ0), pz = ±
√

1 − a2
0, (29)

where θ0 and a0 are constant parameters (depending on the initial orientation), showing that p
describes a family of circular orbits about the vertical z axis [27].
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B. Swimming trajectories in one-dimensional linear shear flow

The aim of this section is to examine the long-term transport of the particle in simple shear flow.
Recall that the time evolution of its center-of-mass position is given by

ẋ = u0(x) + vs, (30)

in which vector vs = vs p is the swimming velocity vector relative to the fluid and the magnitude
vs = |vs| is assumed to be constant.

It is well known that several physical forces may influence particle trajectories. For instance, as
mentioned in Sec. I, a gyrotactic cell may swim at a fixed orientation or it may tumble [10,11].
Taking advantage of the explicit expressions of the orientation vector p, we derive here exact
expressions for the swimmer position x = (x, y, z), by solving the set of equations

dx

dt
= γ̇ y + vs px,

dy

dt
= vs py,

dz

dt
= vs pz. (31)

1. Trajectories in the run regime

We assume that the swimmer is in the (stable) equilibrium orientation p = peq [see Eq. (25)].
The y equation, (31), is solved by

y(t ) = y(0) + vs

√
1 − λ̃−2t, (32)

from which one deduces

x(t ) = x(0) + (γ̇ y(0) + vsλ̃
−1)t + γ̇ vs

2

√
1 − λ̃−2t2. (33)

The z component is constant; z(t ) = z(0). Equations (32) and (33) show that coordinates x and y
tend to infinity with time t and that the x-y plane projection of the trajectory has the form

x − x(0) = γ̇ y(0) + vsλ̃
−1

vs

√
1 − λ̃−2

(y − y(0)) + γ̇

2vs

√
1 − λ̃−2

(y − y(0))2, (34)

which describes a parabola. Note that the long-time behavior of the x-y plane projection trajectory
is given by

x ≈ λ

2vs

y2. (35)

This result is identical to that of a spherical gyrotactic particle studied in [20].
For the general run regime, the trajectories are described by (recall that a2λ̃2 � 1)

x(t ) = x(0) +
(

γ̇ y(0) + vs

λ̃
− 2vs

λ̃
ln(a + 1)

)
t + 2vs

λ̃

∫ t

0
ln

(
a + cosh

(
γ̇ 


2
s

))
ds

+ 4a√
1 − a2

vs(λ̃2 − 1)


λ

{
tan−1

(
1√

1 − a2
(a + e(γ̇ 
/2)t )

)
− tan−1

(
1√

1 − a2
(a + 1)

)}
,

y(t ) = y(0) + 2vs

λ
ln

(
a + cosh

(
γ̇ 


2

)
t

a + 1

)
. (36)

The z component is given by

z(t ) = z(0) + 4
√

1 − λ̃2a2

√
1 − a2

vs

λ

{
tan−1

(
1√

1 − a2
(a + e(γ̇ 
/2)t )

)
− tan−1

(
1√

1 − a2
(a + 1)

)}
.

(37)
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FIG. 2. Example of a periodic trajectory in the absence of external torque [Eqs. (39)–(41)]. Parameters are
θ0 = π/2, a0 = 0.5, vs = 1, and γ̇ = 2.

For large values of t the z component tends to a constant and the components x and y approach a
parabola satisfying Eq. (35) (trajectories are parallel to the x-y plane).

2. Trajectories in the tumbling regime

Let us first consider two particular examples. The first case corresponds to the situation where
the swimming speed is very low in comparison to the imposed flow speed. Neglecting terms
proportional to vs in (36), meaning that the particle is simply advected by the flow, we have

x(t ) = x(0) + γ̇ y(0)t, y(t ) = y(0), z(t ) = z(0), (38)

meaning that the particle migrates perpendicular to the applied external field and parallel to the x-y
plane.

In the second example we assume that λ = 0 (no external force). In this case we obtain from (29)
and (31)

x − x(0) = {γ̇ y(0) + 2a0vs cos(θ0)}t + 4avs

γ̇
(sin(θ0) − sin(γ̇ t/2 + θ0)), (39)

y − y(0) = 2a0vs

γ̇
(cos(θ0) − cos(γ̇ t/2 + θ0)), (40)

and

z − z(0) = ±vs

√
1 − a2

0t, (41)

leading to two different scenarios (recall that a0 and θ0 are constant parameters depending on the
initial orientation). For example, if a2

0 �= 1, we deduce that if |γ̇ y(0)/2a0vs| � 1, the particle may
follow a periodic trajectory. To be more precise, if γ̇ y(0) + 2a0vs cos(θ0) = 0, the swimmer moves
along a helical path (with the helix pitch along the z axis; see Fig. 2), while if |γ̇ y(0)/2a0vs| > 1
or γ̇ y(0) + 2a0vs cos(θ0) �= 0, the swimmer trajectory is unbounded along both the x and the z
directions (Fig. 3). However, in the frame moving along x at velocity γ̇ y(0) + 2a0vs cos(θ0) the
trajectory is a helix with the pitch along z; the helix wanders around the z axis, as in Fig. 2. For
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FIG. 3. Trajectory showing a cycloid in the absence of external torque [Eqs. (39)–(41)]. Parameters are
θ0 = π/3, a0 = 0.5, vs = 1, and γ̇ = 2.

the particular case where λ = 0, which corresponds to the absence of external torque, the spherical
particle tumbles and its trajectory describes a cycloid in the shear plane.

In [28], ten Hagen et al. have derived similar expressions for x and y, Eqs. (39) and (40), to
describe two-dimensional trajectories of a self-propelled spherical particle under linear shear flow
and rotating in a magnetic field parallel to the fluid vorticity. In their case the applied magnetic
torque is constant and only adds up to vorticity in Eq. (5). Their equation is linear in p (λ = 0) and
the total angular velocity for the particle in this case is given by the sum of the fluid vorticity and
the external torque; O = (−γ̇ /2 + M )k, where M is the magnitude of the external torque.

Let us now return to the case λ �= 0. For a general tumble trajectory a simple integration of (31)
shows that the particle position is given by (a = λ−2� > 1)

x(t ) = x(0) +
(

γ̇ y(0) + vs

λ̃
− 2vs

λ̃
ln(a)

)
t + 2vs

λ̃

∫ t

0
ln

(
a + sin

(
γ̇ 


2
s

))
ds

− 4a√
a2 − 1

vs


λ

{
tan−1

(
1√

a2 − 1
(1 + a tan (γ̇ 
/4t )

)
− tan−1

(
1√

a2 − 1

)}
,

y(t ) = y(0) + 2vs

λ
ln

(
a + sin

(
γ̇ 


2

)
t

a

)
. (42)

The z component is given by

z(t ) = z(0) + 4
vs

λ

√
λ̃2a2 − 1√
a2 − 1

{
tan−1

(
1√

a2 − 1
(1 + a tan ((γ̇ 
/4)t )

)
− tan−1

(
1√

a2 − 1

)}
.

(43)

This result shows, as expected, that components y and z describe periodic curves, while component x
is unbounded with time. However, in the moving frame along x at velocity (γ̇ y(0) + vs

λ̃
− 2vs

λ̃
ln(a))t ,

the trajectory is periodic in the three directions (a closed trajectory). The trajectory is helical in the
laboratory frame with a certain angle with respect to Cartesian axes (Fig. 4).

To sum up the main results of this section, we have presented a simple method to analytically
solve the (minimal) model that describes the motions of a spherical rigid sphere under flow and
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FIG. 4. Trajectory showing a helical shape. λ̃ = 0.6, vs = 1, γ̇ = 1, � = 0.8.

an external field. We have been able to derive a closed form of trajectories for the run and tumble
regimes. In particular, it is found that the x-y projection of the run trajectory describes a parabola,
while in the tumbling regime the trajectory y component oscillates and the x component increases
with time; the trajectory is a helix. This result suggests, for example, that magnetotaxis might
provide a method for identifying or separating rigid spherical magnetic swimmers as a function of
their radii. More precisely, the swimmer exhibits a parabolic trajectory in the shear plane provided
its radius [arising from λ̃ = λ/γ̇ > 1; run regime; see Eq. (6) for the definition of λ] satisfies
r < M h/4πμ|γ̇ | = rc, while if r > rc (λ̃ = λ/γ̇ > 1), its trajectory is helical. Note that the critical
radius rc is determined by a competition between the flow and the external field (e.g., magnetic,
gravitational).

V. TWO-DIMENSIONAL BIDIRECTIONAL FLOWS

In this section, we consider the general velocity field

u0 = (δx + γ̇1y, γ̇2x − δy, 0), (44)

where δ, γ̇1, and γ̇2 are arbitrary constants. The above velocity field representation can be motivated
by the fact that, in many cases, on the particle scale, the flow field may be linearized. We consider
here three cases: (a) external force is orthogonal to vorticity, (b) external force is parallel to vorticity,
and (c) external force is neither orthogonal nor parallel to vorticity. We consider gravity force and
Coriolis force [17,29,30].

Let us note that since the (local) fluid vorticity is given by ω = −γ̇ k, where γ̇ = γ̇1 − γ̇2, we
may assume that δ = 0 (since only ω enters the p equation), i.e.,

u0 = (γ̇1y, γ̇2x, 0), (45)

where γ̇1γ̇2 �= 0. The opposite case, where δ �= 0 and γ̇1 = γ̇2 = 0, which corresponds to a stagna-
tion flow, is treated in Sec. V C. Since vorticity is along k, the solutions for orientation vector p
obtained for a simple shear flow remain valid.
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A. Vorticity and external force are perpendicular

Let us consider first the effect of gravity g and take it to be parallel to j, g = g j. The orientation
p satisfies Eq. (5) with j� = j, ω1 = ω2 = 0, ω3 = −γ̇ , and parameter λ = mgh/4πμr3 [see (7)].
According to (25), the stable equilibrium orientation (if |γ̇ | < |λ|) is given by

peq = γ̇

λ
i + 1

λ

√
λ2 − γ̇ 2 j. (46)

As we have seen, the particle tumbles if |γ̇ | > |λ| and its orientation is given by solution (24). The
particle trajectory is obtained by solving the following system:

dx

dt
= γ̇1y + vs px,

dy

dt
= γ̇2x + vs py,

dz

dt
= vs pz. (47)

Note that the flow can also be defined by a stream function � as

�(x, y) = 1
2 (γ̇1y2 − γ̇2x2). (48)

1. Run trajectory

We suppose that |λ̃| > 1 (we recall that λ̃ = λ/γ̇ ) and that the swimmer is in the stable equi-
librium orientation, (46). Therefore, the position x = (x, y, z) is governed by the following linear
system:

dx

dt
= γ̇1y + vsλ̃

−1,
dy

dt
= γ̇2x + vs

√
1 − λ̃−2,

dz

dt
= 0. (49)

Two different trajectories are obtained, depending on the sign of γ̇1γ̇2.

(a) For γ̇1γ̇2 > 0, the general solution has the expression

x = ae
√

γ̇1γ̇2t + be−√
γ̇1γ̇2t − vs

γ̇2

√
1 − λ̃−2, (50)

and

y = a
1

γ̇1

√
γ̇1γ̇2e

√
γ̇1γ̇2t − b

1

γ̇1

√
γ̇1γ̇2e−√

γ̇1γ̇2t − vs

γ̇1
λ̃−1, z = z(0), (51)

where a and b are arbitrary constants. Clearly, if a = 0, x and y tend to − vs
γ̇2

√
1 − λ̃−2 and − vs

γ̇1
λ̃−1,

respectively, while for a �= 0, the x-y plane projection long-time behavior is given by

y ∼ 1

γ̇1

√
γ̇1γ̇2x (52)

or, equivalently,

γ̇2x2 ∼ γ̇1y2. (53)

A similar result can be found in [20], where it is shown that the x-y trajectories are hyperbolas. In
fact, it is easily seen from (50) and (51) that x and y satisfy the equation(

x + vs

γ̇2

√
1 − λ̃−2

)2

−
(

γ̇1√
γ̇1γ̇2

y + vs√
γ̇1γ̇2

λ̃−1

)2

= 4ab, (54)

confirming that the trajectories are hyperbolas for any time (see Fig. 5). This result shows that the
run trajectories follow the streamlines [see (48)].

(b) In the second case we suppose that γ̇2.γ̇1 < 0 and that the particle is in the equilibrium
orientation (as in the first case). Note that the above linear system, (49), still holds. Exact analytical
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FIG. 5. Run trajectories when vorticity and external torques (gravity) are perpendicular. The fluid velocity
is given by (45). Parameters are λ̃ = 1.5, γ̇1 = 2, and vs = 0.5. For the parabola (dashed-dotted blue line) γ̇2 =
0.5 and for the ellipse (solid red line) γ̇2 = −0.5. For both trajectories the initial condition is x(0) = y(0) = 0.

expressions of x = (x, y, z) can easily be obtained upon integration, yielding for some real parame-
ters a and θ0

x = a cos(
√

|γ̇1γ̇2|t − θ0) − vs

γ̇2

√
1 − λ̃−2,

y = −
√|γ̇1γ̇2|

γ̇1
a sin(

√
|γ̇1γ̇2|t − θ0) − vs

γ̇1
λ̃−1,

z = z(0). (55)

As a result, the x-y projection of the trajectory has the form(
x + vs

γ̇2

√
1 − λ̃−2

)2

+
(

γ̇1√|γ̇1γ̇2|
y + vs√|γ̇1γ̇2|

λ̃−1

)2

= a2, (56)

and so, the trajectories are ellipses constrained to a plane parallel to the x-y plane [z = z(0)] (see
Fig. 5). As in item (a) above, the trajectories follow the streamlines.

Note that, as a corollary of the above results, if we consider the linear external flow [31]

u0 = s(x j + yi) + ω0(x j − yi), (57)

in which s is a measure of the strength of the elongation flow component and 2ω0k is the vorticity
vector, one sees that for |ω0| sufficiently small, we have elliptical trajectories if |s| < |ω0|, while in
the opposite case the trajectories are hyperbolas.

2. Tumble trajectory

We consider the case where γ̇1 = −γ̇2 > 0 (the case γ̇1 �= −γ̇2 did not allow extraction of the
exact solution for the trajectory). The tumbling regime corresponds to |λ̃| < 1. We easily obtain the
trajectory for x′ = (x, y) (the x-y plane projection) by introducing x′

c = x + iy (in complex notation),
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FIG. 6. A tumble trajectory in the x-y plane according to (59) with x′
c(0) = 0. Parameters are λ̃ = 0.6,

vs = 4, γ̇ = 1, γ̇1 = 0.5, and a = 3.

which satisfies [according to Eq. (3)]

d

dt
(eiγ̇1t x′

c) = vse
iγ̇1t (px + ipy). (58)

Then the expression of x′
c can be rewritten as (solution for p remains formally identical as for a

simple shear flow)

x′
c = e−iγ̇1t x′

c(0) + vse
−iγ̇1t

∫ t

0
eiγ̇1s

(
λ−1[� + sin(
γ̇1s)] + iλ̃−1
 cos(
γ̇1s)

a + sin(
γ̇1s)

)
ds. (59)

Equation (59) shows that x′
c or (x, y) describes periodic trajectories (see Fig. 6). The z component

of the particle position, which is periodic in time, is given by (43). The present findings agree with
the conclusion in [20], obtained by numerical simulations. The trajectory is a sort of spherical helix
(Fig. 7).

B. External force parallel to vorticity

Here we consider the case where gravity is parallel to vorticity. This is a simple and interesting
example in which the orthogonality, (A13), condition is not satisfied. As found previously [6–8], in
this case the swimmer orientation evolves in a run regime. However, we cannot use our approach to
solve the equation of the orientation p in a closed form. We then restart from the evolution equation
itself and it turns out that the solution is simply obtained in this case.

By assuming g = −gk, orientation p satisfies

2
d px

dt
= γ̇ py + λpz px,

2
d py

dt
= −γ̇ px + λpz py,

2
d pz

dt
= λ

[
p2

z − 1
]
. (60)

The above system has exactly two stationary solutions, p = ±k, and only equilibrium −k is stable.
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FIG. 7. Trajectory showing a helical shape. λ̃ = 0.6, vs = 1, γ̇ = 1, � = 0.8.

In this case only the run trajectory exists, and the trajectory is obtained by solving

dx

dt
= γ̇1y,

dy

dt
= γ̇2x,

dz

dt
= −vs. (61)

Here, it is assumed that the swimmer is in the stable equilibrium orientation (p = −k).
As above, two different run trajectories are obtained, depending on the sign of γ̇1γ̇2.

(a) For γ̇1γ̇2 > 0, we have

x = ae
√

γ̇1γ̇2t + be−√
γ̇1γ̇2t , (62)

y = a
1

γ̇1

√
γ̇1γ̇2e

√
γ̇1γ̇2t − b

1

γ̇1

√
γ̇1γ̇2e−√

γ̇1γ̇2t , (63)

and

z = z(0) − vst, (64)

where a and b are arbitrary constants.
(b) For γ̇2.γ̇1 < 0, the particle trajectory satisfies, for real parameters a and θ0,

x = a cos(
√

|γ̇1γ̇2|t − θ0),

y = −
√|γ̇1γ̇2|

γ̇1
a sin(

√
|γ̇1γ̇2|t − θ0),

z = z(0) − vst . (65)

Let us note that by making use of the above exact solutions for system (61), components x and y
satisfy

γ̇1x2 − γ̇2y2 = const. (66)

This shows that the x-y trajectories are hyperbolas for γ̇1.γ̇2 > 0, while for γ̇1γ̇2 < 0 the swimmer
trajectory describes an elliptical cylinder.
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C. Solid body rotation with external force having a general orientation with respect to vorticity

Here, we study the orientation dynamics and the trajectories of spherical gyrotactic particles
subject to a solid body rotation (δ = 0, γ̇1 = −γ̇2 = −γ̇ ),

u0 = −γ̇ (yi − x j), (67)

which has the property that the vorticity, which is parallel to the z axis, has a constant angular
velocity; ω = ∇ × u0 = 2γ̇ k. Here, we assume that gravity is parallel to vorticity; g = −gk. This
section is motivated by a (deterministic) model given in [17,29,30] for which the equation of the
swimming direction is rewritten (following their notation for the sake of comparison) as

ṗ = − 1

2v0
[A − A · pp] + 1

2
ω × p, (68)

where v0 = 3μ/h, h is the cell center-of-mass displacement, μ the fluid kinematic viscosity, and (in
the presence of fluid acceleration) A the total acceleration, which is given by [17,29,30,32]

A = g − a, (69)

where the fluid acceleration a = (−γ̇ 2x,−γ̇ 2y, 0). This is the Coriolis force due to cylinder rotation
[17,29,30]. Equation (68) is used in [18] to study the effect of the fluid acceleration on the spherical
gyrotactic microorganism orientation. Note that unlike j� in Eq. (5), A is not normed to unity. Here,
we first investigate in detail two limiting cases; A = g and A = −a. The generalized case A = g − a,
which seems not to be amenable to an exact analytical solution, is discussed in the last subsection.
Note that in this case the total acceleration A is neither orthogonal nor parallel to the fluid vorticity
[and the orthogonality condition on j� and p0 is not fulfilled so that solution (15) cannot be used].
This means that solution (A15) does not apply, and we use a different approach.

1. Effect of gravity

In the first limit A = g, the external field and the fluid vorticity are parallel. In this situation, it is
known that the orientation vector tends to a certain fixed orientation (see Refs. [6–8]). Comparing
the swimming direction equations given by (68) and (5), we have j� = k, λ = g/v0, ω1 = ω2 = 0,
and ω3 = 2γ̇ . Since here g and ω are not orthogonal, the fixed orientation solution, (A15), is not
valid, and one thus has to go back to the original equation, which turns out to have a simple solution.
In terms of the Cartesian coordinates of p, Eq. (68) reads

d px

dt
= γ̇ [−py − λ̃gpz px],

d py

dt
= γ̇ [px − λ̃gpz py], (70)

d pz

dt
= γ̇

[
λ̃g − λ̃gp2

z

]
,

where

λ̃g = g

2v0γ̇
. (71)

Note that p = ±k are the (only) two exact stationary solutions for all values of parameter λ̃g.

First solving the pz equation and substituting it into the first and second equations (70) yields

px = 2
px(0) cos(γ̇ t ) − py(0) sin(γ̇ t )

(1 + pz(0))eγ̇ λ̃gt + (1 − pz(0))e−γ̇ λ̃gt
, (72)

py = 2
px(0) sin(γ̇ t ) + py(0) cos(γ̇ t )

(1 + pz(0))eγ̇ λ̃gt + (1 − pz(0))e−γ̇ λ̃gt
, (73)

074102-16



EXACT TRAJECTORY SOLUTIONS OF A SPHERICAL …

and

pz(t ) = (1 + pz(0))eγ̇ λ̃gt − (1 − pz(0))e−γ̇ λ̃gt

(1 + pz(0))eγ̇ λ̃gt + (1 − pz(0))e−γ̇ λ̃gt
, (74)

with p2
x(0) + p2

y(0) + p2
z (0) = 1.

Thus, we see that, as t → ∞, p tends to the (only) stable steady solution peq = k (recall that
γ̇ λ̃ > 0). This shows that the gyrotactic particle exhibits a run motion and aligns in the direction
opposite to gravity for large t .

Expressions (72) and (73) are obtained by introducing q = px + ipy, as in the proof of (59). It is
easily found that

q = 2q(0)
eiγ̇ t

(1 + pz(0))eγ̇ λ̃gt + (1 − pz(0))e−γ̇ λ̃gt
. (75)

This result can also be deduced by introducing ρ =
√

p2
x + p2

y, which satisfies the simple ordinary

differential equation

dρ

dt
= −γ̇ λ̃gpzρ. (76)

For the particle position, it is convenient to solve the system

dxc

dt
= γ̇ ixc + vsq (77)

and

dz

dt
= vs pz, (78)

where xc = x + iy and q is given by Eq. (75). Therefore,

xc = eiγ̇ t

[
xc(0) + vse

iθ0

∫ t

0
ρ(s)ds

]
(79)

and

z = z(0) + vs

γ̇ λ̃g
ln

H (t )

2
, (80)

where θ0 is the initial angle of q [i.e., q(0) = ρ(0)eiθ0 ] and

H (t ) = (1 + pz(0))eγ̇ λ̃gt + (1 − pz(0))e−γ̇ λ̃gt . (81)

Note that if pz(0) = ±1 [this holds (only) if the particle is in the stable or unstable equilibrium
orientation], we easily deduce that the full three-dimensional trajectory is given by

xc = eiγ̇ t xc(0), z = z(0) ± vst, (82)

which describes exactly a helical trajectory in the positive z direction for pz(0) = 1 at the speed
vs. Each particle exhibits a helical trajectory with radius |xc(0)|. This means that a homogeneous
dilute suspension (i.e., particle-particle interaction is negligible) remains homogeneous where each
particle rotates around the z axis following a helical path with a radius given by the initial position.

Next, we assume that pz(0) �= ±1. By making use of the exact expression of ρ, one sees that xc

can be written as

xc = eiγ̇ t

[
xc(0) + eiθ0

2vs

γ̇ λ̃g
(arctan(deγ̇ λ̃gt ) − arctan d )

]
(83)
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or, equivalently for 0 < d < ∞,

xc = eiγ̇ t

[
xc(0) + eiθ0

2vs

γ̇ λ̃g
(arctan(d−1) − arctan d−1e−γ̇ λ̃gt )

]
, (84)

where d = √
(1 + pz(0))/(1 − pz(0)). Equations (80) and (83) or (84) define the trajectory of a

spherical gyrotactic particle in rotating fluid.
Note that parameter d can be written as

d =
√

1 + cos(φ0)

1 − cos(φ0)
, (85)

where 0 � φ0 � π is the angle between k and the initial orientation vector p(0).
Let us examine in detail the behavior of the trajectory for large t . The explicit exact solutions

show that, for large t, trajectories converge exponentially to different helical trajectories, depending
on the initial conditions (initial position and orientation);

e−iγ̇ t xc → x̃d (0) = xc(0) + eiθ0
2vs

γ̇ λ̃g
arctan d−1, z(t ) → vst . (86)

Note that the quantity eiθ0 2vs/γ̇ λ̃g arctan d−1 depends only on the initial orientation p(0).
As an example, let us assume that xc(0) = 0. Rewriting Eq. (84) gives

x(t ) = 2vs

γ̇ λ̃g
(arctan d−1 − arctan d−1e−γ̇ λ̃gt ) cos(γ̇ t + θ0),

y(t ) = 2vs

γ̇ λ̃g
(arctan d−1 − arctan d−1e−γ̇ λ̃gt ) sin(γ̇ t + θ0). (87)

Recall that coordinate z is given by (82). In terms of the dynamical system, we may conclude that
there exists a family of trajectories represented by

Ad = (eiγ̇ t x̃d (0), vst ) (88)

in C × R that are possible attractor of the dynamics. For each 0 < d < ∞, the set Ad describes a
cylinder or helical (trajectory) whose radius, designated ρd , is given by

ρd = 4
vsv0

g
arctan d−1. (89)

Note that the x-y projection of the trajectories follows the streamlines and that radius ρd decreases
from 2πvsv0/g (the radius of the upper helical) to 0 as d increases from 0 to ∞. In the limiting
case d = 0 [i.e., p = (0, 0,−1), the unstable equilibrium orientation] or d = ∞ [i.e., p = (0, 0, 1),
the stable equilibrium orientation], the particle moves along the z axis at the velocity ∓vs. For
0 < d < ∞, the trajectory is three-dimensional. The particle migrates to the helical trajectory [with
the radius satisfying (89)], which may play the same role as an attractor (see Fig. 8).

Ad can be considered a pseudoattractor or “streamlining” attractor in the sense that for any initial
position (xc(0), z(0)) ∈ Ad such that 0 < d < ∞ [i.e., x(0)2 + y2(0) �= 0], the particle migrates
from (xc(0), z(0)) to Ãd = (eiγ̇ t x̃d (0), vst ). The final state depends on initial conditions, so that the
final trajectory is not a limit cycle.

The above result suggests that two particles, 1 and 2, such that x̃1d (0) = x̃2d (0) will tend to
approach the same helical trajectory for large times. Counterintuitively, we find that two particles
with the same initial position but with different initial orientations do not tend to the same trajectory.
Thus, if initially particles are prepared with different orientations, they form different helical paths
as time proceeds (see Fig. 9).
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FIG. 8. An example of trajectories showing that the microswimmer approaches a pseudoattractor. Parame-
ters are λ = 1, λ̃g = 2, γ̇ = 1, θ0 = π/3, vs = 1, and d = 4.

In passing, we may observe from (85) that the quantity ρd reads simply

ρd = 2
vsv0

g
φ0, (90)

indicating that ρd increases linearly with the angle φ0.

FIG. 9. Different x-y trajectories of the microswimmer as a function of the initial position [x(0), y(0)] and
the parameter d or the initial orientation φ0. Here, the parameters are λ = 1, λ̃g = 2, γ̇ = 1, θ0 = π/3, vs =
1, and d = 4 (dotted-dashed brown line), d = 8 (solid black line), and d = 20 (dashed blue line). Trajectories
show that the microswimmer approaches a circular path in the x-y plane.
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2. Effect of fluid acceleration

Here, we briefly consider Eqs. (67) and (68) in the limiting case A = −a = (γ̇ 2x, γ̇ 2y, 0) (gravity
is neglected), which isolates the effect of fluid acceleration [17]. Vector j� is then given by

j� =
(

x√
x2 + y2

,
y√

x2 + y2
, 0

)
, (91)

which is orthogonal to the fluid vorticity ω = 2γ̇ k. According to Sec. III, the swimmer exhibits a
tumbling regime in the region where γ̇ 2(x2 + y2) < 4v2

0, while in the region γ̇ 2(x2 + y2) > 4v2
0,

the particle swims in the stable equilibrium direction

peq = 1

λ

λ2a2 − ω2
3

bω3 + a
√

λ2 − ω2
3

i + 1

λ

λ2ab + ω3

√
λ2 − ω2

3

bω3 + a
√

λ2 − ω2
3

j, (92)

where

ω3 = 2γ̇ , a = x√
x2 + y2

, b = y√
x2 + y2

, λ = − γ̇ 2

v0

√
x2 + y2. (93)

We may then conclude that a gyrotactic swimmer in the considered fluid acceleration may
accumulate towards the center of the cylinder. To show this we study the swimmer trajectory. Since
the swimmer position satisfies [z(t ) = z(0)]

dx

dt
= −γ̇ y + vs

λ

λ2a2 − ω2
3

bω3 + a
√

λ2 − ω2
3

,
dy

dt
= γ̇ x + vs

λ

λ2ab + ω3

√
λ2 − ω2

3

bω3 + a
√

λ2 − ω2
3

, (94)

one deduces that the radial position, ρ =
√

x2 + y2, evolves according to

ρ
dρ

dt
= −v0vs

γ̇ 2

√
γ̇ 4

v2
0

ρ2 − ω2
3. (95)

The solution of the above equation is

γ̇ 4

v2
0

ρ2 = ω2
3 +

(√
γ̇ 4

v2
0

ρ2(0) − ω2
3 − γ̇ 2vs

v0
t

)2

. (96)

Solution (96) predicts that the radial distance of a swimmer located initially in the run region [i.e.,
γ̇ 2(x2 + y2) > 4v2

0] decreases as t increases and that the particle reaches the cylinder

A = {
γ̇ 2(x2 + y2) = 4v2

0

}
(97)

at finite time t�;

t� = v0

γ̇ 2vs

√
γ̇ 4

v2
0

ρ2(0) − ω2
3. (98)

Let us recall that cylinder A separates the tumble and run regions. In fact, we can see that any
horizontal trajectory of A satisfies system (116). Hence, we may conclude that any run trajectory
reaches cylinder A at a finite time and after this time the swimmer executes a circular orbit (around
the rotation axis) that follows a streamline,

x(t ) = 2v0

γ̇
cos

(
γ̇

(
− 1 + vs

2v0

)
t + θ0

)
, y(t ) = 2v0

γ̇
sin

(
γ̇

(
− 1 + vs

2v0

)
t + θ0

)
, (99)
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FIG. 10. Exact solutions to the ordinary differential equation, (95), with γ̇ 2/v0 = 1, vs = 1, ρ(0) = 2 and
for different values of w3 (w2

3 = 3, solid brown line; w2
3 = 3.25, dotted-dashed black line; and w2

3 = 3.5, dotted
blue line). ρ reaches the fixed point 2v0/γ̇ at finite time, t �, and satisfies ρ = 2v0/γ̇ for all t > t �.

where θ0 is a constant. This result shows that fluid acceleration may generate accumulations at a
finite time around a cylinder of radius 2v0/γ̇ . Time t� can be referred to as the focusing time for a
run trajectory (see Fig. 10).

3. Gyrotactic swimmer in a fluid acceleration field

We consider here both gravity and fluid acceleration. In this case, the total force A is neither
parallel nor perpendicular to the vorticity. As a preliminary step we investigate Eqs. (67)–(69) in the
limit where the vorticity is relatively small. This leads to an approximate solution of the trajectory
equations, (67)–(69). The solution of this particular case has been reported in [29]. Neglecting the
vorticity the swimmer direction equation [Eq. (68)] becomes

ṗ = 1
2λ(A − A · pp), (100)

where λ = −1/v0 and (total acceleration) A = (γ̇ 2x, γ̇ 2y,−g). The above equation has one stable
equilibrium swimming direction given by p�

eq = −A/‖A‖;

p�
eq =

(
− x√

x2 + y2 + κ2
,− y√

x2 + y2 + κ2
,

κ√
x2 + y2 + κ2

)
, (101)

where κ = g/γ̇ 2. The equation of the radial swimmer position, ρ2 = x2 + y2, can be written as

dρ

dt
= −vs

ρ√
ρ2 + κ2

. (102)

For the two limiting cases ρ 
 κ and ρ � κ the above ordinary differential equation becomes
linear and we may deduce that ρ decays exponentially if ρ 
 κ, while if ρ � κ one sees that the
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radial swimmer position is given by ρ(t ) = ρ(0) − vst . This linear decrease can also be deduced
from (96).

For arbitrary ρ(0), a solution to Eq. (102) can be obtained by a simple integration. It is found
that the radial swimmer position (for a small vorticity) can be deduced from√

(ρ/κ )2 + 1 =
√

(ρ(0)/κ )2 + 1 − vs

κ
t − 1

2
ln

(
H (t )

H (0)

)
, (103)

where

H (t ) =
√

(ρ/κ )2 + 1 − 1√
(ρ/κ )2 + 1 + 1

. (104)

It follows from (103) that the radial particle position behaves, for t → ∞, as

ρ(t ) ∼ 2κe− vs
κ

t . (105)

Let us now return to Eqs. (67)–(69), in which the swimmer is subjected to both gravitational and
fluid acceleration.

Let us recall that A is not orthogonal to the fluid vorticity, so that over time the swimmer direction
will tend to a certain (stable) equilibrium orientation irrespective of its initial orientation. We will
see that taking into account the vorticity will lead to some difference from the above study.

Equation (68) is rewritten as

γ̇ −1ṗ = k × p + λ[ j� − j� · pp], (106)

where j� = −A/‖A‖ ≡ ( j�x , j�y , j�z ) and

λ = λ0

√
x2 + y2 + κ2, λ0 = γ̇

2v0
. (107)

Assuming ṗ = 0, the equation of the equilibrium swimming direction is then

0 = −py + λ j�x − λ j� · ppx,

0 = px + λ j�y − λ j� · ppy,

0 = λ j�z − λ j� · ppz. (108)

By making use of the third equation in system (108), one can easily check that the system admits
exactly two equilibrium orientations, p±

eq = (p±
x , p±

y , p±
z ), satisfying

p±
z = ±

√√√√1 − λ2 +
√

(1 − λ2)2 + 4λ2
0κ

2

2
, (109)

and

p±
x = −λ0yp2

z − λ2
0κxp±

z

p2
z + λ2

0κ
2

, p±
y = λ0xp2

z − λ2
0κyp±

z

p2
z + λ2

0κ
2

. (110)

The ‘+’ solution is stable and the ‘−’ solution is unstable. Note that for (x, y) = 0 we have j� =
(0, 0, 1). In this case, it is shown (see Sec. V B 1) that p tends to k (opposite to gravity) as t tends to
infinity.

As above, it is possible to analytically show that swimmers accumulate exponentially in time at
the z axis. By making use of the position equation, one deduces that the time evolution of the radial
position (ρ =

√
x2 + y2) and the z component are described by

dρ

dt
= −vsκλ2

0ρ
p+

z

p2
z + λ2

0κ
2
,

dz

dt
= vs p+

z . (111)
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FIG. 11. An example of trajectories, for large t, of a gyrotactic swimmer in a fluid acceleration. Parameters
are γ̇ = 1, κ = 1, vs = 1, a0 = 2, and θ0 = π/3. The particle reaches the z axis.

We see therefore that ρ tends to 0 as t tends to infinity, and in addition, Eqs. (111) behave, for large
t, as

dρ

dt
= −vsκλ2

0
ρ

1 + λ2
0κ

2
,

dz

dt
= vs. (112)

Therefore, for large t, z(t ) = vst, and the radial position (the distance from the rotation axis)
asymptotically tends to 0 for t → ∞ as

ρ(t ) = const.e
− vsκλ2

0
1+λ2

0κ2 t
. (113)

This result deviates from that obtained in [29]. In fact, in [29], it was argued that the stable
equilibrium is simply −A/‖A|, which is valid only if the vorticity is neglected [see Eqs. (100)
and (101)]. This leads to the asymptotic solution for radial distance, (105), with time constant vs/κ

instead of vsκλ2
0/(1 + λ2

0κ
2), given by our exact asymptotic solution, (113).

Making use of the results in this section we can write

1

xc

dxc

dt
= 1

ρ

dρ

dt
+ i

[
γ̇ + vsλ0

p2
z

p2
z + λ2

0κ
2

]
, (114)

which leads to

xc(t ) = xc(0)
ρ(t )

ρ(0)
e

i(γ̇ t+vsλ0
∫ t

0
p2

z
p2

z +λ2
0κ2 ds)

. (115)

The above result shows that the swimmer oscillates an infinite number of times around the rotation
axis and reaches this axis for t → ∞.
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FIG. 12. Projection of a particle trajectory in the x-y plane according to Eq. (121). Parameters are δ =
1, vs = 1, and j�i = 1/

√
3, i = 1, 2, 3. The initial condition is x(0) = 0 and y(0) = 1 for the solid red curve,

which is a part of the full hyperbolic trajectory, (121); the complementary trajectory is shown as the dotted blue
line.

An approximate particle trajectory, for large t, can be found by using again Eq. (114) or
Eq. (115). It is found that (see Fig. 11)

x(t ) ∼ a0ρ(t ) cos

((
γ̇ + vsλ0

1 + λ2
0κ

2

)
t + θ0

)
,

y(t ) ∼ a0ρ(t ) sin

((
γ̇ + vsλ0

1 + λ2
0κ

2

)
t + θ0

)
, (116)

z(t ) ∼ vst,

where ρ is given by (113) and a0 and θ0 are real parameters.
In summary, in the presence of gravity alone we have a pseudoattractor [the final trajectory

depends on the initial condition; see Eq. (88)]. When only fluid acceleration is present, the trajectory
tends towards a limit cycle at finite times [see Eqs. (97) and (98)]. When both gravity and
fluid acceleration are present, the trajectory focuses towards the cylinder axis at long times [see
Eq. (113)].

D. Stagnation point flow

This is our final example corresponding to a swimmer placed in a two-dimensional stagnation
point flow. The velocity profile of the flow is known to be given by

u0 = (δx,−δy, 0), (117)

where δ is a positive constant, or by the stream function � = δxy.
The particularity of the above profile is that the flow has zero vorticity. Thus, the equation of

orientation for p [Eq. (5)] reads [see Eq. (100)]

ṗ = 1
2λ( j� − j� · pp). (118)
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TABLE I. Summary of different trajectories obtained analytically.

Type of flow and force Run regime Tumble regime

Linear shear flow
u0 = (γ̇ y, 0, 0), ω = −γ̇ k Parabolic trajectory Inclined helix

2D linear flow
u0 = (γ̇1y, γ̇2x, 0), ω = (γ̇2 − γ̇1)k

Vorticity perpendicular to force
g = g j

γ̇1γ̇2 < 0 Hyperbolic trajectory in x − y. Spherical helix
z = constant.

γ̇1γ̇2 > 0 Parabolic trajectory in x − y. No analytical solution
z = constant.

Vorticity parallel to force
g = −gk

γ̇1γ̇2 > 0 Hyperbolic trajectory in x − y, z ∼ t . No tumbling
γ̇1γ̇2 < 0 Elliptical trajectory in x − y, z ∼ t . No tumbling

3D trajectory is an elliptical helix.

Rigid body rotation
u0 = −γ̇ (y, −x, 0), ω = 2γ̇ k

External force A = g − a
a = (−γ̇ 2x, −γ̇ 2y, 0)

A = g = −gk Run along k with helical trajectory No tumbling
with radius depending on initial condition

A = −a Particle reaches cylinder No analytical solution
A = {γ̇ 2(x2 + y2) = 4v2

0}
at finite time t∗

A = g − a Particle reaches cylinder axis No tumbling

with radius behaving as ρ(t ) = const.e
− vsκλ2

0
1+λ2

0κ2 t

Stagnation flow
u0 = (δx, −δy, 0) Run along j∗, an arbitrary force direction No tumbling

with hyperbolic trajectory in x − y, z = constant

The stagnation flow makes the mathematical study relatively simple. Equation (118) has two
equilibrium orientations ± j�, and only the ‘+’ equilibrium orientation is stable; p tends to j� as
t approaches infinity.

It is a simple matter to show that the trajectory is given by, with j� = ( j�1, j�2, j�3),

x(t ) =
(

x(0) + vs

δ
j�1

)
eδt − vs

δ
j�1, y(t ) =

(
y(0) − vs

δ
j�2

)
e−δt + vs

δ
j�2, (119)

z(t ) = z(0) + vs j�3t . (120)

By making use of (119) one deduces(
x + vs

δ
j�1

)(
y − vs

δ
j�2

)
=

(
x(0) + vs

δ
j�1

)(
y(0) − vs

δ
j�2

)
, (121)

showing that the x-y plane projections follow the streamlines; the particle trajectory is a hyperbola
(see Fig. 12).
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For the case where parameter λ is negative, we start from Eq. (100) with − j� instead of j�.
Repeating the above analysis we deduce that swimmer direction p tends to − j� as t tends to infinity,
and the swimmer trajectory satisfies (119) and (120) with − j�i , i = 1, 2, 3, instead of j�i .

VI. SUMMARY OF THE MAIN RESULTS

We provide in Table I a summary of the different trajectories obtained for different flows and
external forces.

VII. CONCLUSION

One of the major focuses of the paper is to analytically solve a family of equations of the type

ṗ = 1
2 [� · p + λ( j� − j� · pp)], (122)

in which λ is a real (physical) parameter, � is an arbitrary vorticity tensor that may contain all
components of the fluid vorticity ω, and j� is an arbitrary (unit) vector. Equation (122) describes the
time evolution of the orientation of a spherical particle in an arbitrary flow and subject to an external
force j�.

We have shown that a solution to the above problem can be given explicitly. We have studied a
(general) model of a spherical gravitactic or magnetotactic swimmer and have analyzed its orienta-
tion and trajectories in general linear flows. First, we have shown how to solve the problem easily
in the spirit of [25], and then we have obtained exact analytical solutions for the orientation and the
trajectory of the particle. Depending on the parameter λ, it is found that the particle can perform run
or tumble dynamics. In addition, we have derived analytically several swimming trajectories. The
particle orientations and trajectories can be quantitatively and qualitatively controlled by an external
field (e.g., gyrotactic or magnetic field). A natural extension is to study this problem for other flows
(e.g., Poiseuille flow) and for nonspherical particles. We hope to investigate this matter in a future
work.
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APPENDIX A: ADOPTION OF THE BRETHERTON SOLUTION TO OUR PROBLEM

Without any algebraic transformation, it seems difficult to apply or follow the Bretherton
approach directly due to the structure of Eq. (5), which is clearly different from that of (8). The
main idea is to transform this equation into an equation for which the analysis is particularly simple
in the spirit of [25].

To solve Eq. (5) we first use the ansatz

p = p0 + α(t )q, (A1)

where p0 is a steady unknown vector and α and q are unsteady unknown quantities. Our idea is to
split the resulting equation into three equations. The first equation is that satisfied by p0,

� · p0 + λ j� − λ j� · p0 p0 = 0, (A2)

which is nothing but the stationary version of (5).
The second equation is that obeyed by q:

q̇ = 1
2 [�q − λ j� · qp0]. (A3)
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This equation is linear and its solution is given by

q(t ) = exp
(

1
2 �̃0t

)
q(0), (A4)

where matrix �̃0 is defined by

�̃0 = � − λp0 j�T (A5)

or, equivalently,

�̃0 · q = � · q − λ j� · qp0. (A6)

Finally, the equation of α is found to be

dα

dt
= −λ

2
[α j� · p0 + α2 j� · q]. (A7)

The general solution to the above ordinary differential equation, which is of the Bernoulli type, can
be expressed as

α−1(t ) = α−1(0)e
λ
2 j�·p0t + λ

2

∫ t

0
e

λ
2 j�·p0(t−s) j� · q(s)ds, (A8)

once the expression of p0 (determined below) and the expression of q are known [Eq. (A4)].
Equation (A8) is simply derived by making the change of variable α → α−1. Therefore, any solution
to Eq. (5) can be written as

p(t ) = p0 + exp
(

1
2 �̃0t

)
q(0)

α−1(0)e
λ
2 j�·p0t + λ

2

∫ t
0 e

λ
2 j�·p0(t−s) j� · exp

(
1
2 �̃0s

)
q(0)ds

. (A9)

In expression (A9), α(0) and q(0) (initial conditions) have to be chosen such that |p| = 1. Here, we
see that exact solutions for various cases can be framed in terms of Eq. (A9). The general expression
of p is interpreted as a linear superposition of independent solutions to Eq. (A3).

For the particular and interesting case in which j� and p0 are perpendicular (this orthogonality
will naturally emerge, as discussed below), Eq. (A9) reduces to

p(t ) = p0 + exp
(

1
2 �̃0t

)
q(0)

α−1(0) + λ
2

∫ t
0 j� · exp

(
1
2 �̃0s

)
q(0)ds

. (A10)

We only need now to determine p0 given by Eq. (A2). A priori, a solution p0 to (A2) satisfies

j� · p0(1 − |p0|2) = 0, (A11)

indicating that any solution to (A2) has to satisfy either the unit norm condition, |p0| = 1, or the
orthogonality condition with j�,

j� · p0 = 0. (A12)

If this solution is selected, it is easily seen from Eq. (A2) that this implies

ω · j� = 0. (A13)

If this orthogonality between external field and vorticity is not fulfilled (see later), one thus has to
consider the other solution of Eq. (A11), |p0| = 1, which is not sufficient to determine a full solution
of p0. We thus have to go back to (A2) and to analyze it explicitly. An example is treated in Sec. V C.

In the frequent cases where the orthogonality condition, (A12), is satisfied, we obtain (see
Appendix B) a (ξ, ε) family of solutions satisfying this equation, which can be decomposed as

p0 = ξω + λ��(ε) · j�, (A14)
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where ξ ∈ R and ε = (ε1, ε2, ε3) ∈ R3, such that ε1 + ε2 + ε3 = 1, are parameters. Matrix ��(ε)
is the vorticity or rotation matrix associated with (vorticity) vector ω�(ε) = (ε1/ω1, ε2/ω2, ε3/ω3),
with the convention εm = 0 and εm/ωm = 0 if ωm = 0. Equation (A14) can also be written as

p0 = ξω + λω�(ε) × j�. (A15)

A more practical choice of ε = (ε1, ε2, ε3) would be to take εi = ω2
i /ω

2, i = 1, 2, 3. In this case
(A15) simply reads

p0 = ξω + λ

ω2
ω × j�. (A16)

The solution, (A10), with p0 given by (A15) or (A16), will constitute our basic solution of the
model equation, (5), which is used now in order to determine the explicit expressions of p(t ) and the
particle trajectory. Before embarking on our explicit calculations, we stress that expression (A10)
contains parameter ξ [in view of (A15)], which plays the same role as the Jeffery orbit constant (it
can be checked in our explicit calculations below that it can be absorbed into the Jeffery constant).

APPENDIX B: SOLUTION OF p0

Looking for a stationary (pseudoequilibrium) solution to (5), or to Eq. (A2), satisfying (A12),
one sees that this solution is also a solution to the homogeneous linear system

� · p0 = −λ j�, (B1)

which appears to be amenable to a simple analytical treatment, despite the fact that matrix � is
singular. Most importantly, since p · � · p = 0, for any vector p, any solution to (B1), when it exists,
is a pseudoequilibrium orientation in the sense that Eq. (5) is automatically satisfied.

Thus, it is more convenient to examine Eq. (B1). Since the matrix we are dealing with is
singular, as mentioned before, it is known that Eq. (B1) has no solution or infinitely many solutions.
Moreover, any (possible) solution can be written as

p0 = ph
0 + pp

0, (B2)

where ph
0 is a solution of the homogenous system

� · ph
0 = 0 (B3)

and pp
0 is a particular solution to (B1). Clearly, Eq. (B3) is automatically satisfied if ph

0 = ω and the
orthogonality condition, (A12), is also satisfied if pp

0 is written as

pp
0 = ω′ × j� (B4)

for some vector ω′. However, it is not obvious whether Eq. (B1) admits a (particular) solution and
whether this solution can be represented as Eq. (B4).

In fact, it is readily seen, on the one hand, that Eq. (B1) has (multiple) solutions only if the
fluid vorticity and the external field are perpendicular. On the other hand, under the orthogonality
condition, we obtain a (ξ, ε) family of pseudoequilibrium solutions that can be decomposed as

p0 = ξω + λ��(ε) · j�, (B5)

where ξ ∈ R and ε = (ε1, ε2, ε3) ∈ R3, such that ε1 + ε2 + ε3 = 1, are parameters. Matrix ��(ε)
is the vorticity or rotation matrix associated with (vorticity) vector ω�(ε) = (ε1/ω1, ε2/ω2, ε3/ω3),
with the convention εm = 0 and εm/ωm = 0 if ωm = 0. This is our central result for Eq. (B1).
Equation (A14) can also be written as

p0 = ξω + λω�(ε) × j�. (B6)

Let us observe that ω�(ε) describes an infinite number of (vorticity) vectors satisfying

ω · ω�(ε) = 1. (B7)
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The corresponding (vorticity) matrix is given by

��(ε) =

⎛
⎜⎝

0 − ε3
ω3

ε2
ω2

ε3
ω3

0 − ε1
ω1

− ε2
ω2

ε1
ω1

0

⎞
⎟⎠, (B8)

which can be written as

��(ε) = ε1

ω1
�1 + ε2

ω2
�2 + ε3

ω3
�3, (B9)

where ��
i , i = 1, 2, 3, is the usual basis of rotation matrices in R3.

We would like to stress that any (pseudoequilibrium) p0 given by (A14) satisfies p0 · j� =
ξω · j�. This observation, supplemented with the above analysis, may provide a natural explanation
of the orthogonality condition between the external field and the fluid vorticity to find exact
analytical solutions. In fact, the orthogonality condition is necessary and sufficient to solve the
pseudoequilibrium equation under the additional assumption p0 · j� = 0, which, as mentioned
before, simplifies the construction of the exact general expression, (A9).

A more practical choice of ε = (ε1, ε2, ε3) would be to take εi = ωi/ω
2, i = 1, 2, 3 (recall that

ω = ‖ω‖). In this case (A15) simply reads

p0 = ξω + λ

ω2
ω × j�. (B10)

Let us note that since a pseudoequilibrium orientation given by (B10) satisfies

‖p0‖2 = ξ 2ω2 + λ2

ω2
, (B11)

we get an equilibrium orientation for

ξ 2ω2 = 1 − λ2

ω2
, (B12)

provided that 1 > λ2

ω2 .

Once a pseudoequilibrium is known [see (A14)], our approach can also be used to derive the
exact expression of the equilibrium orientations of Eq. (5) and to easily study their stability without
calculating the exact general expression of p [see (A9)]. This is a further evidence of our approach.
According to ansatz (A1), orientation p can be written as

p = p0 + p̃, (B13)

where p̃ satisfies

˙̃p = 1
2 [�̃0 · p̃ − λ( j� · p̃)p̃], (B14)

with matrix �̃0 given in (A5) or (A6). This suggests that an equilibrium orientation may be written
as

peq = p0 + p̃eg, (B15)

where p̃eg is an equilibrium solution to (B14);

�̃0 · p̃eg = λ j� · p̃eg p̃eg. (B16)

Even if the above nonlinear equation seems to be difficult to solve, in general, it suffices to note
that Eq. (B16) indicates that p̃eg and λ j� · p̃eg are an eigenvector and an eigenvalue, respectively, of
matrix �̃0. Therefore, if p̃0 is an eigenvector of matrix �̃0 associated with an eigenvalue χ �= 0, a
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solution to Eq. (B16) can be written as

p̃eg = χ

λ j� · p̃0
p̃0 (B17)

if j� · p̃0 �= 0, and then

peq = p0 + χ

λ j� · p̃0
p̃0. (B18)

If j� · p̃0 = 0, we use (A6) to deduce first that p̃0 is also an eigenvector of matrix � and then that
p̃0 = 0, from which we get

peq = p0, (B19)

provided that |p0| = 1; otherwise we obtain a contradiction and then j� · p̃0 �= 0.

To check the stability of the stationary solutions of Eq. (B14) and then the stability of peq, we
recall that the solution of Eq. (B14) with initial condition p̃(0) has been shown to be

p̃(t ) = exp
(

1
2 �̃0t

)
p̃(0)

1 + λ
2

∫ t
0 j� · exp

(
1
2 �̃0s

)
p̃(0)ds

. (B20)

In the following we denote by χd the real eigenvalue of matrix �̃0 (if any) which strictly dominates
(the real part of) other eigenvalues. Therefore, it is easy to see that if χd > 0, the corresponding
eigenvector, p̃d

0 , is the unique stable stationary solution of Eq. (B14). Therefore, orientation p tends
to peq as t approaches infinity, where

peq = p0 + χd

λ j� · p̃d
0

p̃d
0 . (B21)

Let us note that since p0 and j� (or j� and ω) are perpendicular the stability of peq requires that
λ j� · peq > 0. A similar conclusion is derived in [7] by a linearized stability analysis involving a
small perturbation from peq and perpendicular to it. In fact, it is not difficult to demonstrate that the
condition λ j� · peq > 0 is necessary and sufficient for the (strict) stability of peq given by (B21).
Let us note that if matrix �̃0 has exactly one real eigenvalue χr such that χr � 0, then p exhibits a
tumble regime.

By way of illustration without excessive calculation, we first consider two cases. Each of these
cases may in turn be carried out in a variety of practical situations. Recall here that we are concerned
with exact solutions to Eq. (5) in which j� is perpendicular to the vorticity ω in most cases.

(1) ω1 = ω2 = 0 and ω3 �= 0. The orthogonality condition is satisfied for j� = ai + b j, where
a and b are (arbitrary) real parameters such that a2 + b2 = 1. For ε, there is only one choice: ε1 =
ε2 = 0 and ε3 = 1. For p0, we may take ξ = 0;

p0 =
(

− λ

ω3
b,

λ

ω3
a, 0

)
. (B22)

It follows from this that

�̃0 =

⎛
⎜⎝

λ2ab
ω3

−ω3 + λ2b2

ω3
0

ω3 − λ2a2

ω3
− λ2ab

ω3
0

0 0 0

⎞
⎟⎠, (B23)

which has zero and two nontrivial real or pure imaginary complex eigenvalues satisfying

χ2 = λ2 − ω2
3. (B24)

Hence, we may conclude that we have two types of motions (run or tumble regime), depending on
whether or not the quantity λ2 − ω2

3 is positive.

074102-30



EXACT TRAJECTORY SOLUTIONS OF A SPHERICAL …

First, we consider the simple case in which (for instance) ω2
3 = λ2a2. Hence, the spectrum of

matrix �̃0 is given by σ (�̃0) = {0,±λ2ab/ω3}. Clearly, we have χd = λ2ab/ω3 if λ2ab/ω3 > 0.

The corresponding eigenvector is shown to be p̃d
0 = (1, 0, 0) and together with (B21) we deduce

that

peq = b

|b| (0, 1, 0). (B25)

In a similar way we get for the case χd = −λ2ab/ω3 > 0 the stable equilibrium orientation

peq = b

|b| (2ab, b2 − a2, 0). (B26)

Next, we consider the case where λ2 − ω2
3 > 0 and assume that ω2

3 �= λ2a2 and ω2
3 �= λ2b2. The case

ω2
3 = λ2b2, which is similar to the case ω2

3 = λ2a2, is left to the reader.

From (B24), we have χd =
√

λ2 − ω2
3 and a simple calculation leads to the eigenvector

p̃d
0 =

⎛
⎝λ2ab + ω3

√
λ2 − ω2

3

ω2
3 − λ2a2

, 1, 0

⎞
⎠ (B27)

or

p̃d
0 =

⎛
⎝1,

λ2ab − ω3

√
λ2 − ω2

3

ω2
3 − λ2b2

, 0

⎞
⎠, (B28)

which are collinear. The stable equilibrium orientation is then given by

peq =
(

− λ

ω3
b,

λ

ω3
a, 0

)
+

√
λ2 − ω2

3

λ

1

j� · p̃d
0

p̃d
0 , (B29)

where p̃d
0 satisfies (B27) or (B28). For the special case in which j� = j (a = 0, b = 1) with λ2 > ω2

3,

we deduce from (B27) and (B29)

peq =
(

− ω3

λ
,

1

λ

√
λ2 − ω2

3, 0

)
. (B30)

If we suppose that λ2 < ω2
3, we can see from (B13) and (B20) that any solution to (5) oscillates

(tumble regime).
(2) ω1, ω2 �= 0, ω3 = 0. In this case, we have different possibilities for ε = (ε1, 1 − ε1, 0) and

for j�. Here, setting j� = k and making use of (A14), one sees that a pseudoequilibrium solution
can be expressed as (ξ = 0)

p0 = λ

(
1 − ε1

ω2
,− ε1

ω1
, 0

)
. (B31)

Matrix �̃0 reads

�̃0 =

⎛
⎜⎝

0 0 ω2 + λ2(ε1−1)
ω2

0 0 −ω1 + λ2ε1
ω1

−ω2 ω1 0

⎞
⎟⎠ (B32)

and has one null eigenvalue and two eigenvalues satisfying

χ2 = λ2 − ω2
2 − ω2

1, (B33)
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leading, as above, to a run or a tumble regime depending on whether the quantity λ2 − ω2
1 − ω2

2 is
positive or negative.

For λ2 > ω2
1 + ω2

2 (run regime), we have χd =
√

λ2 − ω2
1 − ω2

2 and the corresponding eigenvec-
tor can be written as

p̃d
0 =

(
ω2

2 + λ2(ε1 − 1)

ω2χd
,
−ω2

1 + λ2ε1

ω1χd
, 1

)
. (B34)

The analog of (B29) is

peq = λ

(
1 − ε1

ω2
,− ε1

ω1
, 0

)
+

√
λ2 − ω2

1 − ω2
2

λ

1

k.p̃d
0

p̃d
0 , (B35)

from which one obtains

peq =
(

ω2

λ
,−ω1

λ
,

√
λ2 − ω2

1 − ω2
2

λ

)
. (B36)

It is important to note that the particle motions or the eigenvalues of matrix �̃0 do not depend on the
choice of parameter ε1. We have seen, for example, that the choice p0 = λ/ω2i (ε1 = 0) is sufficient
to derive an analytical expression for the orientation vector.
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