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We numerically investigated steady axisymmetric flow through and around a porous disk
with aspect ratio (χ ) ranging from 1 to 20, Reynolds number (Re) varying from 10 to 120,
and Darcy number (Da) ranging from 10−6 to 1. The wake characteristics are presented in
terms of the streamline patterns, the geometrical parameters as well as the occurrence of
the recirculating wake. In particular, the bifurcation curves in the Re-Da parametric space
can be collapsed onto approximately the same curve for all χ when the modified χDa is
used. Both χ and Da are demonstrated to be closely related to the drag and have similar
effects on the flow behavior. The formation mechanism of recirculating wake at different
χ is further discussed with respect to the base bleed quantified by the flow rate as well as
the vorticity accumulation and decay.
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I. INTRODUCTION

Permeable bluff bodies immersed in fluid flow are widely seen in nature and engineering
applications, such as the insect wings (Thrips) composed of filaments [1], the dandelion clock
made of numerous florets [2], the “flocs” of material in liquid-solid reactors [3], and the permeable
scaffold for transporting nutrients in bioreactors [4]. The above-mentioned porous media are usually
simplified as nonaxisymmetric or axisymmetric porous bodies in experimental or numerical studies.

There are several studies on flow through and around a nonaxisymmetric porous cylinder.
Noymer et al. [5] studied the effects of Reynolds number (Re) and Darcy number (Da) on the drag
exerted on a permeable circular cylinder by using both numerical and experimental methods. For the
two-dimensional (2D) numerical study, Re was set to 10, 100, 1000, and Da ranged from 10−6 to 10;
for the experimental tests, Re varied from 800 to 10 000 and Da was set to 1.7 × 10−5, 6.6 × 10−5.
The computational results were in good agreement with experimental results. Between low and high
extremes in permeability, a distinct dependence of the drag on Re was observed. More recently,
Bhattacharyya et al. [6] numerically (2D) studied the drag and wake of a porous circular cylinder
in low-Re flow by using a more generalized Brinkman-Darcy-Forchheimer equation. Yu et al. [7]
reported 2D numerical results on the steady wake structure behind a porous circular cylinder and

*yup6@sustech.edu.cn

2469-990X/2021/6(7)/074101(25) 074101-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2492-2646
https://orcid.org/0000-0003-2073-7512
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.074101&domain=pdf&date_stamp=2021-07-06
https://doi.org/10.1103/PhysRevFluids.6.074101


TANG, XIE, YU, LI, AND YU

provided more abundant information on the intermediate wake behaviors, i.e., the recirculating wake
is either detached from or penetrated into the permeable body. Yu et al. [8] and Valipour et al. [9]
also studied 2D flow through and around porous square and diamond-square cylinders, respectively,
in the parameter space of Re and Da. Though different shaped bodies were considered [7–9], the
wake behaviors were found to be quite similar, for instance, under a certain range of the Da, the
wake initially increases but then decreases in size with increasing Re, and eventually disappears
when Re is sufficiently large. The relevant 2D pore-scale study [10] also supports the findings with
modified permeability. Ledda et al. [11] studied 2D flow past and around a rectangular cylinder via
linear stability analysis. The neutral stability curves also presented similar trends for the base flow
and the qualitative behaviors remained the same for all the investigated thickness-to-height ratios.

For axisymmetric geometries, the body shape can be characterized by the aspect ratio (χ ) defined
as the ratio of the maximum diameter and the thickness measured along the axis of revolution.
Typical axisymmetric bodies include sphere, spheroid, and disk. Neale et al. [12] analytically
studied the creeping flow through permeable spheres via the 2D Darcy equation and found that
the drag of a permeable body was smaller than its impermeable counterpart. Masliyah and Polikar
[3] conducted experiments for a porous sphere with porosity of 0.98 for both low and high Re,
the results of which were later demonstrated to be compared well with the three-dimensional (3D)
numerical solution of the Brinkman-extended Darcy equation [13]. Yu et al. [14] studied the wake
structure of steady flow past and around a porous sphere by using 2D simulations and found that the
recirculating wake may penetrate deeper with increasing Re for Da � 10−4, which might be applied
to the nutrient transport from the surrounding culture medium into a scaffold. The previous studies
of flow through and around a porous spheroid are mainly focused on the 3D analytical solution in
the Stokes flow regime, e.g., Refs. [15–17].

Comparatively, there has been much less research on flow through and around a porous disk
although the permeable disklike geometry is widely seen in nature (e.g., the dandelion pappus
[2], the permeable insect wing [1], the disklike canopy as well as the firebrand) and in physical
applications (e.g., the small flying vehicle [18], the porous scaffold [4], the wind farm [19], and
the parachute). Liu et al. [20] conducted experiments for flow past a honeycomb disk with χ = 5
at Re = 104. Two recirculation regions were observed: the smaller region right behind the rear
of the disk, which is separated by small jets through the disk into several species; and the larger
region located further downstream, which is comparably smaller than the recirculation zone behind
a solid disk. Cummins et al. [21] numerically (2D) investigated the flow through and around a
permeable disk for Re ranging from 10 to 130, Da varying from 10−9 to 1, and fixed χ = 10.
Three flow regimes were observed: in regime I (Da � 10−6), the wake is characterized by the
presence of a toroidal vortex whose length is approximately equal to that of an impervious disk;
in regime II (10−6 < Da � 10−3), the vortex decreases in size and moves further downstream with
increasing Da; in regime III (Da > 10−3), no recirculation region is formed. The description is also
qualitatively consistent with that of the other porous bodies. More recently, Ledda et al. [22] studied
the flow dynamics of an anisotropic and nonhomogeneous rigid porous thin disk, which resembled
the morphology of a dandelion pappus, by using the linear stability analysis technique (3D). The
results demonstrated that the flow could be characterized by a separated, steady, and axisymmetric
recirculating vortex ring if the mean porosity was beyond a certain threshold.

The impermeable axisymmetric bodies of sphere and flat disk were also studied previously
by using 3D numerical simulations [23,24] and experimental tests [25], where the differences in
flow transition, instability, and drag between sphere and flat disk were analyzed. Meliga et al. [26]
numerically (3D) studied the wake of a flat disk (χ = 103) and found that all nonlinear interactions
between modes took place in the recirculation bubble. Gao et al. [27] numerically (3D) studied the
flow around an inclined solid disk with fixed χ = 50 and focused on the bifurcation sequences
in the parametric space of Re and the inclination angle. From 3D computations, Shenoy and
Kleinstreuer [28] also indicated that the transition process in the range of 10 � Re � 300 for a
solid disk (χ = 10) differs from that for a sphere as they observed a loss of symmetry plane in the
third regime due to a twisting motion of the axial vorticity strands in the wake of a disk. Auguste
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et al. [29] numerically (3D) investigated the dynamics in the wake of a relatively thick circular disk
(χ = 3). Five nonaxisymmetric regimes were defined in the range of 150 � Re � 280, including
the states similar to those identified in the flow around a sphere or an infinitely thin disk, and a new
state characterized by the existence of two distinct frequencies.

Besides, the effects of χ on the impervious axisymmetric bodies were demonstrated to be
significant. Chrust et al. [30] numerically (3D) studied the transition in the wake of both oblate
spheroids and flat cylinders or disks and found significant similarity between both configurations.
Fernandes et al. [31] experimentally investigated flat cylinders with 1.5 � χ � 20 and found
that the transition Reynolds number (Recr) for steady axisymmetric flow is a function of χ , i.e.,
Recr = 116.5(1 + χ−1). For flat disks (χ = ∞), a reasonable consensus has been reached for the
value of Recr between 115 and 117 [23,24,30]. For a disk with χ = 10, Recr was found to be 135 in
Ref. [28] and 129.6 in Ref. [30]. For a thicker disk (χ = 3), Recr was reported to be approximately
159.4 [27]. Willmarth et al. [32] experimentally studied impervious circular disks with multiple χ

falling in a viscous fluid at low Re. The motions and wakes of freely falling disks exhibit systematic
dependence on Re and the dimensionless moment of inertia, which are largely affected by the aspect
ratio of the disk.

Since χ largely influences the behavior of flow around an impervious disk, it is reasonable to
predict that χ also has nonnegligible effects on the wake structure behind a porous disk. Also, the
porous disk can be regarded as a solid counterpart when the macroscopic permeability is extremely
small. As far as we know, the effects of χ on the flow past and around a porous disk are not fully
understood yet, which should be significant since it alters the drag exerted by the flow in the porous
medium. Nevertheless, the flow behaviors with various χ are expected to be similar in terms of
the occurrence of the recirculating wake, as implied for the above-mentioned nonaxisymmetric and
axisymmetric porous bodies. Accordingly, the present study aims to, on the one hand, identify the
distinct flow features for various χ , and, on the other hand, understand the common wake behaviors
for all χ as well as the underlying wake formation mechanism. The present study is expected to
provide complementary information about the effects of aspect ratio with respect to the previous
study [21] on flow through and around a permeable disk (with fixed χ = 10). Also, the present
work intends to constitute an analogy to the previous study [11] on flow through and around 2D
rectangular cylinders with various aspect ratios.

The rest of the paper is organized as follows. In Sec. II, the numerical method is described
with regards to the geometry configuration, governing equations, computational domain and meshes
employed, followed by the verification and validation of the computational setup. In Sec. III, the
numerical results and discussion are presented in terms of the streamline pattern, the properties of
recirculating wake and drag, the bifurcation diagrams for the wake existence, the flow rate, as well
as the vorticity field. Finally, the summary and conclusions are provided in Sec. IV.

II. NUMERICAL METHOD

A. Flow configuration and governing equations

Figure 1(a) shows a 2D axisymmetric flow configuration in the present study. The porous disk
is immersed in a uniform flow with velocity U∞ at zero angle of attack. The coordinates of the
reference system are represented by (r, z), where the r axis lies along the radius of the disk and the
z axis points in the direction of the freestream velocity. The origin of the system is located in the
center of the front surface of a disk. The half section of the porous disk has a radial length of D/2
and a vertical thickness of T . The original 3D structure can be recovered by revolving around the
axisymmetric line (r = 0).

In the present study, the investigated range of χ = D/T is from 1 to 20. The disk becomes
thinner as χ increases, as illustrated in Fig. 1(b). Based on the formula of Recr (for the transition
from steady axisymmetric flow to the regular bifurcation) provided in Ref. [31] for an impermeable
disk, the upper limit of Re = U∞D/ν (ν is kinematic viscosity) is set to be 120 for all χ ; and the
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(a)

(b)

FIG. 1. Sketch of the flow configuration: (a) recirculating wake formed behind a porous disk; (b) examples
of the disk with different χ .

investigated lower limit of Re is 10. Although the investigated Re are in the stable regime for solid
disks, it is shown in Ref. [22] that porosity/permeability enhances the stability of the wake of thin
disks in terms of critical Reynolds number, so it is very probable that the configurations considered
here are stable.

For steady axisymmeric flow around a fixed solid disk, it is known that a toroidal vortex may
appear behind the disk and attach to the rear surface of the disk for a certain range of Re [28,31].
However, it is found in Ref. [21] as well as in this study that the recirculating wake can be detached
from or penetrate into a porous disk, similar to that of flow through and around a nonaxisymmetric
body, e.g., Refs. [7,9,11]. The geometrical parameters of LL and LR are the downstream distances
from the rear surface of the disk to the leading and trailing saddle points of the recirculating wake,
respectively. The wake length can thus be calculated as LM = LR − LL. The positive and negative
values of LL indicate that the recirculating wake is detached from or penetrate into the porous disk,
respectively.

In the clear fluid region, the governing equations for incompressible, steady, Newtonian fluid
flow in cylindrical coordinates can be expressed as
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where ur and uz are the radial and axial velocities in the r and z directions, respectively; p is pressure;
ρ represents density; and μ is dynamic viscosity.

In the porous region, where the porous medium is considered to be rigid, homogeneous, isotropic
and saturated with the same single-phase fluid as that in the clear fluid region, the governing
equations can be expressed as
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The present formulation used to model flow in a porous medium can be deducted from the
volume averaging theory [33–36] and the control volume principle [37]. Two types of averaging
operators were used in the averaging procedure: the superficial average and the intrinsic average.
The superficial average of a given variable � in the representative averaging volume V is defined
as � = (

∫
Vfd

�dV )/V and the intrinsic average is defined as �∗ = (
∫

Vfd
�dV )/Vfd , where Vfd is the

volume of fluid. In Eqs. (2a)–(2c), ur and uz are the superficial velocity component in the radial and
axial directions, respectively; p∗ is the intrinsic pressure, φ the porosity, and K the permeability.
For simplicity, the averaging notations of ¯ and ∗ are omitted for variables in porous media in the
following sections. The dimensionless form of Eqs. (2a)–(2c) indicates that both Re and Da = K/D2

are the control parameters of the flow. In the present study, Da is varied from 10−6 to 100 to cover a
fairly wide range of flow phenomena.

The boundary conditions imposed at the interface between the fluid and the porous medium are
expressed as

ur | f = ur |p, (3a)

uz| f = uz|p, (3b)
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Here, Eqs. (3a) and (3b) describe the continuity of velocity components at the interface; the
subscripts of f and p represent the fluid and the porous medium, respectively. Equation (3c) is the
shear stress jump condition [38], and Eq. (3d) describes the continuity of the normal stress at the
interface. The coordinate of n is normal to the interface and the coordinate of t is perpendicular to n.
The stress jump parameters of β1 and β2 are associated with the excess viscous and inertial stresses,
respectively. In the present study, the stress jump parameters are set to zero, and the porosity is fixed
at 0.95, which was previously demonstrated to be suitable for low-Re flow through and around a
porous bluff body [8,14].

The drag coefficient (CD) of an impermeable disk can be calculated from [39]

CD = F · ẑ
1/2ρU 2∞Ad

, (4)

where ẑ is the unit vector in the axial direction and Ad is the characteristic frontal area of the disk.
The force is expressed as [40]

F =
∫

Sd

(pI − τ) · n̂dSd , (5)

where τ is the stress tensor, I the identity matrix, Sd the surface area of disk, and n̂ the unit surface
normal vector of the surface. The pressure and viscous drag coefficients (CDp and CDv) are calculated
in the same way as Eq. (4) using pressure and viscous forces, respectively.

However, the drag calculation based on the surface integration (SI) [Eq. (5)] may not be very
accurate for permeable disks since it neglects the change of momentum in fluid through the porous
body. Alternatively, the force exerted on the body can be calculated based on the linear momentum
balance on a control volume (CV) far away from the surface of the disk. The net force is written as

F =
∫

Sc

(pI − ρvv) · n̂dSc, (6)
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FIG. 2. Sketch of the computational domain and the typical mesh near the interface of the porous and fluid
regions.

where Sc is the surface area of the CV and v = (ur, uz ) the velocity vector. In the present study, both
the CV [Eq. (6)] and the SI [Eq. (5)] methods are adopted for drag analyses.

B. Computational domain and grid

The computational domain has a width of 40D in the z direction and a height of 20D in the r
direction, as indicated in Fig. 2. For cases with χ > 1, the whole domain is divided into three blocks:
block I is the porous disk region; block II is the fluid region with a width of D(1 − 1/χ ) and the same
height as that of block I; block III is the large fluid region outside of blocks I and II. The χ is adjusted
by increasing T of block I into block II, with the largest T = D since the smallest investigated χ is
one. Blocks I and II are placed in the middle of the lower boundary with a distance of 19.5D from
the front surface of the disk to the inlet boundary of the whole domain. The distance between the rear
surface of the disk and the outlet boundary is sufficiently long compared with the previous studies
[21,28]. In the current study, the CV for the drag calculation is (r, z) ∈ [0, 20D] × [10D, 30D].

Figure 2 also shows a typical mesh for the present simulations. The uniform orthogonal grids are
used in blocks I and II, where the total number of grids is fixed for various χ . The O-type grid is
used in block III, where the grid size increases in an exponential fashion from the outer boundaries
of blocks I and II to the boundaries of the computational domain. The boundary conditions of the
computational domain are as follows: the uniform velocity U∞ is prescribed at the inlet boundary;
the Neumann condition for the velocity is employed at the outlet boundary; the stress-free and
axisymmetric conditions are used at the upper and lower boundaries, respectively.

C. Verification and validation

In the present study, the finite volume method was used to solve the governing equations on
colocated grids. The pressure-velocity coupling was treated with the SIMPLEC algorithm [41]. The
checkerboard instability was avoided by the interpolation method proposed by Rhie and Chow [42].
The detailed numerical treatment for the porous-fluid coupling interface was provided in Ref. [43],
thus it is not repeated here.

The grid independence test is first performed for flow around an impermeable disk with χ = 10
by using three sets of grids: 240×270 (coarse), 360×280 (intermediate), and 480×280 (fine). The
total number of grids are varied according to the resolution of the first-layer-grid adjacent to the
solid wall of the disk. The numerical results of both drag coefficient (CD) and LM are produced for
10 � Re � 130. The percent errors between the coarse and fine grid solution range from 0.3% to
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(a) (b)

FIG. 3. Comparisons of the present results with the previously reported data (e.g., Roos and Willmarth
[25], Shenoy and Kleinstreuer [28], Cummins et al. [21]) for flow around an impermeable disk with χ = 10:
variations of (a) CD and (b) LM with Re.

0.8% for CD, and from 0.22% to 0.33% for LM . The percent errors between the intermediate and
fine grids are even less, as expected.

The results of the fine grids are presented in Fig. 3. The results are validated through the
experimental results in Ref. [25]. The CD of the present study agrees very well with the experimental
result for the investigated range of Re. Following the analysis of Cummins et al. [21], the percent
errors in the estimate of CD for Re = 10 and Re = 130 are 0.61% and 3.75%, respectively, compared
with the experimental results obtained from the best-fit curve [21]. The error is less than the
corresponding validation uncertainty calculated from the numerical and experimental uncertainties.
Therefore, the current results are validated at a level of 4.17% for Re = 10 and 4.37% for Re = 130.
The 2D results from [21] and 3D results from [28] are also presented for comparison. It is observed
that the present results are slightly smaller than those of the previous numerical results, one possible
reason of which is that the blockage ratio applied in the present study is smaller, which results in
smaller CD. The blockage effects on CD were also studied in Refs. [21,44], which indicate the same
variation trend as that of the present study. Also, as seen in Fig. 3(b), the current results of LM agree
well with those of the previous studies [21,28], especially well with those of the 2D study [21].

The grid sensitivity test is also performed for flow through and around a permeable disk at fixed
Da = 2.5 × 10−4 and χ = 10. Three sets of meshes are employed for the whole computational
domain: 120×600 (coarse), 180×650 (intermediate), and 240×680 (fine). The numerical results
demonstrate that the percent errors between the coarse and fine grid are no greater than 0.8% and
0.4% for CD and LM , respectively, for the investigated range of Re. The percent errors between
successive grids are even smaller. Therefore, the fine grid is guaranteed to produce nearly grid-
independent solutions.

The current fine-resolution results for χ = 10, Re = 130 and different Da are also compared
with the previous numerical results [21] calculated from the finite element method. Figures 4(a) and
4(b) show that the present results of p and uz agree very well with the previous results [21] for each
Da. The current results at Da = 10−6 compare well with the literature results at Da = 10−9 since
both cases are similar to an impermeable situation. The p and uz upstream of the disk for the present
study are slightly smaller than those in Ref. [21], especially at smaller Da, which may be due to the
different upstream distance used. Figures 4(c) and 4(d) show the uz profile with r at fixed z = D/χ

and z = D(1/χ + 1), respectively. For r � D/2, the uz compares very well with the literature result;
while for r � D/2, the uz is noticeably smaller than that in Ref. [21], which is more evident with
decreasing Da. This is because the blockage effects on the porous disk with larger Da are smaller
due to stronger advection, which is also demonstrated in Ref. [21] when comparing the porous disk
and the impermeable disk. The smaller uz also indicates that the shear stress on top of the disk as
well as the CD of the present study are slightly smaller than those in Ref. [21].
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(a) (b)

(c) (d)

FIG. 4. Verification for flow through and around a permeable disk: (a) p and (b) uz along the streamwise
distance z; (c) uz along the radial distance r at the rear surface of the disk; (d) uz along r at the downstream
position of z = D(1/χ + 1). Present results are represented as � for Da = 10−6, © for Da = 2.5 × 10−4, and
� for Da = 1 × 10−3. Results from Cummins et al. [45] are represented as solid lines for Da = 10−9, dotted
lines for Da = 2.5 × 10−4, and dash-dotted lines for Da = 1 × 10−3.

III. RESULTS AND DISCUSSION

A. Flow pattern

The flow pattern can be significantly altered by χ of the porous disk under different Re and
Da. Figure 5 shows the streamline and pressure contours at relatively small Da = 10−4 for two
representative χ and Re. The flow patterns are typical for those at an even smaller Da. For χ = 1, the
recirculating wake behind the porous disk, which increases in size with increasing Re, is similar to
that of flow around an impermeable disk. Differently, the recirculating wake is observed to penetrate
into the porous disk, as seen in Fig. 5(a). This is because the fluid flowing through the disk is largely
decelerated by the porous structure of the disk. Within the porous disk, the pressure first decreases
in the axial direction of the flow, but then increases in the same direction. The decelerated flow is
easily affected by the adverse pressure gradient (APG), which results in flow separation from the
axisymmetric line.

The recirculating wake is also closely linked to the flow around the edges of the disk. When the
flow is impacting on the front surface of the porous disk, the velocity in the middle of the front
surface is greatly decreased and the pressure is highly increased, similar to flow situations at the
“stagnation point” on an impermeable wall. As the fluid flows around the edges of the half-disk
from the “stagnation point,” the pressure first decreases to a very small value near the corner, but
then gradually increases along the rest of the edges. A low pressure region also appears at the rear
corner, which is mainly due to the relatively weak reverse flow in the “inner” (porous medium)
part of the corner compared with the inertial flow in the “outer” (clear fluid) part of the corner. The
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(a)

(c)

(b)

(d)

FIG. 5. Streamlines and pressure contours at Da = 10−4 for (a) Re = 50, χ = 1; (b) Re = 120, χ = 1;
(c) Re = 50, χ = 20; (d) Re = 120, χ = 20.

combination of the “outer” and “inner” APG gives rise to the formation of recirculating wake. For
Re = 120 [Fig. 5(b)], the penetration depth, defined as the distance between the flow separation
point within the porous disk and the rear of the disk, is larger and the reverse flow is stronger.
Therefore, the secondary decreased pressure region is not formed at the rear corner. The larger
penetration depth also indicates that the “inner” APG is mainly caused by the outer inertial flow.

In addition, the penetrating phenomenon was also reported for the porous sphere and the circular
cylinder in the previous studies [7,14], but not observed for the porous square cylinder [8]. The
penetration is greatly affected by the frictional “side-wall” of the porous body since the viscous
boundary layer developed from the porous side wall would retard the flow and provide a chance for
the penetrating APG. The side-wall is the wall area that is parallel to the streamwise flow. Another
important factor affecting the formation of the penetrating vortex is the amount of inertial fluid
flow through the porous body, confronting the APG. Accordingly, a dimensionless parameter rp

indicating the ratio of the inertial to the frictional forces can be defined as rp = Vf /Vs, where Vf

and Vs are the differential volume of the inertial fluid and the “side-wall”, respectively. Here, Vs =
Asdt , where As is the differential “side-wall-area” and dt the differential length in the streamwise
direction.

Table I summarizes the Vf , Vs, and rp for various geometries. For 2D nonaxisymmetric bodies,
only a slice of fluid with the cross-section area and the differential height in the axial direction dh is
considered since the body is assumed to be infinitely long in the axial direction. For circular cylinder,
Vf = ldtdh, where l is the chord length of the circular cross-section, and Vs = πDdhdt , thus rp =
l/πD. Straightforwardly, we have Vf = Ddtdh and Vs = 2Ddhdt for square cylinder. As seen in
Table I, rp for circular cylinder is smaller than that of square cylinder as 0 � l � D, implying less
resistance to the “side-wall” friction. In other words, the curvature shape of circular cylinder makes
it easier for penetration of vortex compared with square cylinder. For 2D axisymmetric bodies, the

TABLE I. The differential volumes of Vf and Vs as well as the ratio rp for different geometries.

Geometry Circular cylinder Square cylinder Circular disk Sphere

Vf ldtdh Ddtdh 0.25πD2dt 0.25π l2dt
Vs πDdhdt 2Ddhdt (πD2/χ )dt πD2dt
rp l/πD 1/2 χ/4 l2/(4D2)
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(a)

(c)

(b)

(d)

FIG. 6. Streamlines and pressure contours at Da = 10−3 for (a) Re = 50, χ = 1; (b) Re = 120, χ = 1;
(c) Re = 50, χ = 20; (d) Re = 120, χ = 20.

slice of fluid flowing through the body is obstructed by the surrounding “side-wall.” Therefore,
we have Vf = 0.25πD2dt , Vs = (πD2/χ )dt for circular disk and Vf = 0.25π l2dt , Vs = πD2dt for
sphere. For χ = 1, the rp of sphere is no greater than that of circular disk and both geometries show
very similar penetration depths � 30%D. In general, the rp of sphere and circular disk (χ = 1) are
smaller than those of the circular and square cylinders, indicating easier vortex penetration. For
larger χ , the situation can be different.

For χ = 20, the recirculating wake no longer penetrates into the porous disk [see Fig. 5(c)] since
the rp is 5, which is much larger than those of the geometries mentioned above. Without much
friction drag from the wall, the fluid flows through the disk easily and presents the so-called “based
bleed.” Accordingly, the recirculating wake is detached from the rear of the disk, as also presented
in the previous studies, e.g., Refs. [14,21]. It is also observed that LM is larger compared with that of
χ = 1. Different from Fig. 5(a), the small pressure region at the rear corner becomes larger owing
to the more blunt shape of the disk. The pressure within the porous disk also decreases continually
without the “inner” APG. For larger Re [Fig. 5(d)], the recirculating wake is much longer and the
small pressure region is divided into two parts, one is still at the rear corner, another one moves
further downstream in the vortex zone. Here, the recirculating wake is also longer and wider than
that shown in Fig. 5(b), the formation mechanism of which is mainly associated with the vorticity
accumulation and decay, as will be discussed in Sec. III E.

Figure 6 shows the flow pattern at relatively large Da = 10−3. For χ = 1 [Figs. 6(a) and 6(b)],
the recirculating wake also penetrates into the porous disk, but with smoother streamlines at the rear
surface, compared to the smaller Da cases. The penetration depths along the axial direction for both
Re are similar to those at Da = 10−4 [Fig. 5(a)] though the total penetration area is comparably
smaller. The LM is also similar to that at a smaller Da for Re = 50, but is noticeably larger for Re =
120. This implies that the larger permeability of Da = 10−3 may provide even more obstruction to
the incoming flow for χ = 1 due to the increasing interaction between the inertial and viscous forces
within the porous structure, while for smaller Da most fluid flows around the disk. In Figs. 6(a) and
6(b), the negative pressure peak also moves further downstream due to the stronger advection at
larger Da.

For the disk with χ = 20 [Figs. 6(c) and 6(d)], the recirculating wake completely disappears for
both Re in contrast to those shown in Figs. 5(c) and 5(d). This suggests that Da = 10−3 represents
relatively high permeability for χ = 20 with negligible drag, while the same Da means fairly low
permeability for χ = 1 with large obstructing effects on the flow. The pressure difference between
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(a)

(c)

(b)

(d)

FIG. 7. Variations of (a) LL , LR and (b) LM , CD (calculated from the CV method) with Da at fixed Re = 120
and different χ as indicated. (c) Comparison of CD calculated from the CV and SI methods. (d) CDp and CDv

obtained from the SI method.

the front and rear surface of the porous disk also decreases evidently, compared with the smaller χ

case. As Re increases, the streamlines are almost parallel to each other and the pressure contours
are almost symmetric around the radial centerline of the porous disk. The increasing inertial forces
have opposite influences on the thinner and thicker disks for Da = 10−3, which are not observed for
Da = 10−4.

B. The recirculating wake and drag properties

The dimensionless geometrical parameters of LL and LR varying with Da at three representative
χ and fixed Re = 120 are shown in Fig. 7(a). One common trend for all χ is that LL increases with
increasing Da, which is mainly due to the larger amount of fluid exiting the rear of the porous disk.
Another shared characteristic for all χ is that LR first increases slowly, until reaching a maximum
value, and then decreases rapidly with increasing Da. At maximum Darcy number (Damax), LR and
LL coincide, indicating the disappearance of recirculating wake. This trend was also observed in
the previous studies [21,46] on flow through and around a porous bluff body at relatively large
Re. Apart from this, the effects of χ on the LL-Da and LR-Da relationships are clearly seen. The
evidently increased LL is observed at larger Da for smaller χ , which is reasonable since it is more
difficult for the fluid to penetrate through a thicker porous medium. The LR at fairly small Da = 10−6

is noticeably larger when the disk becomes thinner. Among the presented cases, the LR of χ = 20
remains the highest for Da � 10−4, but then rapidly decreases with increasing Da. The increasing
trend of LR is more obvious for smaller χ . Also, the Damax increases as χ decreases. These behaviors
are largely related to the drag, base bleed as well as vorticity, as will be discussed later.

The LM and CD under the same flow condition are also presented in Fig. 7(b). The variation
trend of LM is somewhat consistent with that of CD. When CD gradually increases towards ∼1.2,
LM decreases marginally and even increases for larger χ . As CD begins to decrease noticeably, LM
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decreases sharply at approximately the same Da. The difference of variation trends between the drag
and the wake is also evident. For relatively large Da, the wake completely disappears while the drag
is still comparable with that at very small permeability. Also, for relatively small permeability, the
increasing trend of drag is observed for all χ , but the increasing trend of LM is only evidently seen
at χ = 2. The radial width of the recirculating wake is also found to exhibit similar behaviors with
LM , which is several times smaller than LM though not shown here.

Figure 7(c) shows CD calculated from the CV and the SI methods. For both χ , the SI method
underestimates CD in the investigated range of Da since the momentum change (δm) for flow through
the porous disk is neglected. At χ = 2, the absolute value of momentum change (|δm|) first keeps
relatively low (� 0.08) for 10−6 � Da � 10−4 then apparently increases to a maximum value at
Da ≈ 5 × 10−3 and finally decreases to zero at very large Da. Besides, comparing Figs. 7(b) and
7(c), it is found that |δm| reaches the maximum value when the vortex disappears. This is because the
viscous base bleed from the rear of the disk and the inertial flow around the disk form an extended
shear layer that prevents the APG as well as the reverse flow, which induces additional viscous drag
in the form of momentum change. Similar variation trend of δm with Da is also observed for large
χ = 20. However, the maximum |δm| is much smaller than that of χ = 2 since the effective length
scale for the viscous flow around the solid phase is constricted by the small thickness of the disk.

Figure 7(d) presents the components of pressure and viscous drag obtained from the SI method.
For both χ , it is seen that CDp is dominant over CDv for the whole range of Da. This seems
contradictory to the microscopic results reported previously [47] for flow through and around a
porous square cylinder, where the viscous drag is even larger than that of the pressure drag for
a relatively small solid fraction. The reason is that the CDp and CDv integrated from the porous
surfaces here are different from those integrated from the surfaces of the solid phase in the porous
medium from a microscopic perspective considering that the viscous forces within the porous disk
have contributed to the pressure drag macroscopically, i.e., the Darcy force. Another observation is
that for all the presented χ , both CDp and CDv first increase and then decrease with increasing Da.
This is consistent with the trend of the total drag. As indicated above, the increasing trend is mainly
due to the strong viscous force within the porous medium. In addition, comparing Figs. 7(b) and
7(d), it is clearly seen that the pressure drag is still large when the wake disappears since CDp is
influenced by both the fluid within and the fluid outside of the porous disk. Therefore, the total drag
can be expressed as

CD =
∫ T

0

∫ 0.5D
0 (μUa/K )2πrdrdz

0.5ρU 2∞π (0.5D)2
+ C′

Dp + CDv + |δm|, (7)

where Ua is the superficial velocity in the porous disk; C′
Dp is the pressure drag due to the vortex

behind the porous disk; T is the thickness of the disk. The first term on the right-hand side (RHS)
of Eq. (7) describes flow through the porous disk; the other three terms on the RHS account for flow
around the disk.

For very high permeability, we have C′
Dp, CDv , |δm| → 0 and Ua → U∞, so the expression of CD

can be simplified as

CD =
∫ T

0

∫ 0.5D
0 (μU∞/K )2πrdrdz

0.5ρU 2∞π (0.5D)2
= 2

χDaRe
. (8)

Equation (8) can also be derived from the asymptotic analysis referring to the leading order uniform
flow [21]. Similar formulas with modified coefficients were reported in Ref. [5] for porous circular
cylinder and in Ref. [48] for spheres. The CD calculated from Eq. (8) is also presented in Fig. 7(d).
It is seen that the analytical formula presents better agreement with the numerical results of χ = 20
than those of χ = 2 since the CDv is almost zero for a larger range of high permeability for χ = 20.
Besides, an even better data consistency is observed between the analytical formula and the CD

calculated from the CV method, as shown in Fig. 7(c). This implies that the addition of viscous
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(a) (b)

(c) (d)

FIG. 8. Variations of (a) LL , LR and (b) LM , CD (calculated from the CV method) with χ at fixed Re = 120
and different Da as indicated. (c) Comparison of CD calculated from the CV and SI methods. (d) CDp and CDv

obtained from the SI method.

forces and |δm| may make up for the difference between a finite and an infinite porous medium
when the permeability is not extremely high.

Figure 8(a) shows the geometrical parameters LL, LR varying with χ for the solid disk as well as
the porous disk at different Da. For the solid disk, LR first increases sharply to ∼2 for 1 � χ � 5,
and then increases slightly with increasing χ ; LL is trivially zero since the disk is impermeable.
For Da = 1 × 10−4, the tendency is very similar to that of the solid counterpart except at χ = 1
where the flow penetrates into the porous disk so LL is negative. Similar trends are also observed
for Da < 1 × 10−4. For χ � 2, LL increases slowly and almost linearly with increasing χ . For
χ > 4, LR is ∼ 2 and LL is ∼ 0.1, which may remain the same for an infinite thin disk. For larger
Da = 5 × 10−4 and Da = 1 × 10−3, LR and LL form a half closed curve with a maximum χmax

and the geometrical parameters disappear when χ > χmax. The existence range of χ decreases with
increasing Da. The trends shown in Fig. 8(a) are somewhat similar to those shown in Fig. 7(a).
The corresponding LM and CD are also shown in Fig. 8(b). For smaller Da and the solid case,
LM increases monotonically. For relatively large Da, LM first increases and then decreases rapidly
with increasing χ . The LM decreases to zero at χ � 6 and χ � 12 for Da = 1 × 10−3 and Da =
5 × 10−4, respectively. The variation trend of the radial width of the recirculating wake is also
similar to that of LM . The decreasing rate of CD is however much smaller than those shown in
Fig. 7(b), consistent with the decreasing rate of LM .

Figure 8(c) shows CD calculated from the SI method is smaller than that obtained from the CV
method for the whole range of χ at fixed Da, but the variation trends of CD with χ are consistent for
both methods. For higher Da = 10−3, the |δm| first increases and then decreases with χ . The largest
|δm| occurs at χ � 6, where the vortex disappears. Differently, for lower Da = 10−4, the |δm| first
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(a) (b)

(c) (d)

FIG. 9. Variations of (a) LL , LR and (b) LM , CD (calculated from the CV method) with Re at fixed Da = 10−3

and different χ as indicated. (c) Comparison of CD calculated from the CV and SI methods. (d) CDp and CDv

obtained from the SI method.

decreases and then increases though not very obvious. The |δm| is overall larger for higher Da, as
expected. Figure 8(d) shows the variations of CDp and CDv with χ . For Da = 10−4, CDp increases
with χ due to the larger recirculation zone behind the disk; while CDv decreases with χ owing to
the smaller side surface area. Since the CDp is dominant over CDv , the total CD barely decreases. For
Da = 10−3, CDp first increases and then decreases with increasing χ . Apparently, the first increasing
CDp is due to the increasing wake size. It is also observed that CDp decreases almost linearly with χ

for χ � 6; a linear relationship CDp = −0.03χ + 1.138 is found, as shown in Fig. 8(d). Differently,
CDv is almost the same for both Da; the decreasing CDv contributes to the decrease of the total drag
at relatively small χ . For χ � 6, the expression of CD can be simplified as

CD =
∫ T

0

∫ 0.5D
0 (μUa/K )2πrdrdz

0.5ρU 2∞π (0.5D)2
= 2Ua

χDaReU∞
, (9)

since the vortex disappears and the contributions from the CDv and δm are very small. In this case,
CD � CDp is mainly described by the Darcy force within the porous medium.

The effects of Re and χ on the geometrical parameters at fixed Da = 10−3 are demonstrated
in Fig. 9. For χ = 2, LR increases almost linearly with increasing Re, while LL is approximately
zero for the range of Re. For larger χ = 6, the LR first increases and then decreases with increasing
Re, while the opposite trend is observed for LL. The existence range of the geometrical parameters
decreases as χ further increases to 8. Also, the variation trends of LR and LL with Re for various χ

(at fixed Da) are very similar to the trends for various Da (at fixed χ ), i.e., for relatively small Da, the
LR increases linearly with Re, while for relatively large Da, the LR first increases and then decreases
with increasing Re, as shown in the previous study [2]. Therefore, the χ and Da are considered

074101-14



EFFECT OF ASPECT RATIO ON FLOW THROUGH AND …

TABLE II. Estimations of Damax and Remax for each χ .

χ 1 2 3 5 6 8 10 15 20

Damax 0.00838 0.0044 0.0029025 0.00173 0.001443 0.0010925 0.000883 0.0006 0.000457
Remax 52±1 49±1 48±1 46±1 46±1 45±1 44±1 43±1 42±1

to have similar effects on the geometrical parameters varying with Re. Figure 9(b) shows that LM

increases linearly with Re for χ = 2, while it first increases and then decreases for larger χ . Also,
CD decreases monotonically with Re; CD is larger for thicker disk, though in general it does not
differ much among all χ .

Figure 9(c) also shows the SI method underestimates CD for the whole range of Re at both
small and large χ . The |δm| increases with Re for 10 � Re � 50 and remains nearly constant for
Re � 60. This is because at small Re, the viscous force is large, which affects a large distance away
from the porous disk; at large Re, the opposite occurs. The drag calculated with the SI method is
further decomposed into the pressure and viscous drag, as presented in Fig. 9(d). For χ = 2, as Re
increases, both CDp and CDv decrease due to smaller viscous forces. The larger CDp at lower Re
can also be observed in the flow pattern [Fig. 5(a)], where a small pressure region appears at the
rear corner. As Re increases, CDp becomes more dominant due to the increasing recirculation zone
behind the disk. For χ = 20, CDv gradually decreases to approximately zero as Re increases to 120;
while CDp is still large although the wake disappears for the presented range of Re. At Re � 20,
CDp is almost the same for both χ , indicating that it is mainly the viscous force that contributes to
the difference in the total drag between the two χ . In addition, the drag for χ = 20 also satisfies
Eq. (9) since the effects of vortex, viscous force, and momentum change are very small. The power
law of CDp � CD � 8.5032Re−0.561 is also shown in Fig. 9(d) for χ = 20, which indicates that
Ua ∝ Re0.439 by substituting the power law into Eq. (9).

C. The bifurcation diagram

As presented in Sec. III B, the recirculating wake disappears when Da, χ , or Re is greater
than a critical value. This indicates that the bifurcation diagram exists for any combinations of
the parametric spaces of Re-Da, Da-χ , and Re-χ for the occurrence and disappearance of the
recirculating wake. Figure 10(a) shows the Re-Da bifurcation diagram at various χ . For each
bifurcation curve, the recirculating wake exists on the left side and does not exist on the other
side. There exists a maximum Damax that when Da > Damax, no recirculating wake exists. The
corresponding Re is denoted as Remax. It is observed that the range of Da for the existence of
recirculating wake is wider for smaller χ . Each bifurcation curve can be fitted into the equation
[21]:

Da(Re) = Damaxexp[−c1ln2(Re/Remax)]exp[c2(Re/Remax)2 − 2c2ln(Re/Remax) − c2], (10)

where the coefficients of Damax, Remax are presented in Table II for each χ . The Damax for each
curve decreases with increasing χ . The corresponding Remax also decreases from 52 to 42 in
the investigated range of χ . The fitting coefficients of c1 ≈ 0.82 and c2 ≈ 0.098 are found to be
applicable for all χ .

It is also observed that the bifurcation curves in Fig. 10(a) are almost parallel to each other,
suggesting that the difference in log(Da) between any two χ is nearly the same for all Re. By using
linear interpolation, the Da at fixed Re is obtained for each χ . The variations of Da with χ at various
Re are presented in Fig. 10(b). For all Re, Da decreases monotonically with χ , which tells that as χ

increases, a smaller Da is required for the wake to be vanished. The bifurcation curve in the Da-χ
plane, for each Re, can be expressed as log[Da(χ )] = −aln(χ ) + b by using the logarithmic fitting
with the coefficient of determination R2 ∼0.999. The coefficients are a ≈ 0.431 and b ≈ 2.1 for all
the presented Re. These bifurcation curves can be roughly collapsed onto the same curve, below
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(a) (b)

(c) (d)

FIG. 10. (a) The Re-Da bifurcation diagram for the existence of recirculating wake at various χ ; (b) the
Da-χ bifurcation diagram at various Re; (c) the Re-χDa bifurcation diagrams of the present results (solid lines
with various symbols) and the previous results (dashed lines with symbols + for sphere [14] and × for disk
[21]) showing consistency in different axisymmetric bodies; (d) the CD (calculated from CV) varying with χDa
at different χ and fixed Re = 120.

which the recirculating wake exists and above which the recirculation zone disappears. Note that
the Damax can also be expressed as a function of χ for Re = Remax, so that the effects of χ can be
incorporated into Eq. (10). The logarithmic fitting curve also hinted that, for two arbitrary aspect
ratios χ∗ and χ∗∗, we have

log[Da(χ∗)] − log[Da(χ∗∗)] = a[ln(χ∗∗) − ln(χ∗)], (11)

which leads to

ln[Da(χ∗)] − ln[Da(χ∗∗)] = aln10[ln(χ∗∗) − ln(χ∗)] � ln(χ∗∗) − ln(χ∗), (12)

where aln10 ≈ 1 for all Re. Therefore, we have

χ∗Da(χ∗) � χ∗∗Da(χ∗∗), (13)

which suggests that χDa is approximately the same for the range of investigated χ at an arbitrarily
fixed Re.

Equation (13) also indicates that the bifurcation curves varying with χDa can be roughly
collapsed onto the same curve, as demonstrated in Fig. 10(c), especially for the intermediate χ

with similar Remax. Since the bifurcation curve in the Da-χ plane is similar for all Re [Fig. 10(b)],
Da on the bifurcation curve can be expressed as a function of only χ . Therefore, as observed in
Fig. 10(c), Re can be expressed as a function of only χ or Da or vice versa. The effect of χ and
Da on the flow is somewhat replaceable. The bifurcation curves for axisymmetric bodies in the
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(a) (b)

FIG. 11. Flow rate along with the vertical length of the porous disk for (a) χ = 2 and (b) χ = 15.

previous studies [14,21] are also presented in Fig. 10(c). The bifurcation curve for the porous disk
with χ = 10 [21] compares well with the present result, as expected. The bifurcation curve for the
porous sphere [14] can also be collapsed onto that of the disk with χ = 1 when Da is increased by
a factor of 1.5 times. In this case the Da is modified by a shape factor which is calculated from the
ratio of the volume of disk with χ = 1 to the volume of the sphere with the same diameter.

The roughly collapsed bifurcation curves with respect to χDa were also reported for the
nonaxisymmetric bodies of rectangular cylinders in Ref. [11], where the neutral stability curve
was regarded as the bifurcation curve. However, the difference among the collapsed curves for
the rectangular cylinders seems larger than that for the present axisymmetric bodies. Besides, one
may be interested in the consistency between the axisymmetric and nonaxisymmetric bodies when
χ is set to be the same, however, the bifurcation curves for the nonaxisymmetric bodies of square
and circular cylinders [7,8] cannot be collapsed onto that of the disk (with χ = 1) because of their
intrinsic shape differences; also, the ranges of Re for the steady flow regime of the nonaxisymmetric
bodies are much smaller than those of the axisymmetric bodies.

Since Da is closely related to the drag of the porous disk, the CD for various χ is calculated at
Re = 120, as presented in Fig. 10(d). Interestingly, CD for all χ also approximately collapsed onto
the same curve when varying with χDa. For very high permeability, this indicates that the shape
factor of χ alters the drag exerted on the porous body. Equation (8) implies that, at the same Re, the
larger χ disk requires smaller Da to achieve the same CD as the smaller χ disk. If the modified χDa
is employed, the drag exerted on the disk is approximately the same, and the bifurcation behaviors
of the occurrence and disappearance of recirculating wake are similar among all χ . For relatively
low permeability, this also suggests that the summation of the RHS terms of Eq. (7) is almost the
same for fixed χDa.

D. The flow rate

The effects of χ on the volumetric flow rate (Q) through the porous circular disk are also
investigated. Here, Q is calculated as the integration of uz over the circular area for a particular
z position, i.e.,

Q(z) = 2π

∫ R

0
uz(r, z)rdr. (14)

Figure 11(a) shows the variation of Q along with the nondimensional vertical length of the disk
(z/D) at different Da and Re with fixed χ = 2. For the presented Re, the Q at Da = 10−4 is close
to zero due to the large obstructing effects in the porous medium. The Q at Da = 10−3 is noticeably
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(a) (b)

FIG. 12. Flow rate at the rear surface of the porous disk (Qr) varying with (a) Re for Da = 10−3 and (b) Da
for Re = 120.

larger than those at Da = 10−4 for the range of z/D, as expected. For both Da, Q is observed to first
decreases and then increases with z/D when Re is relatively small, as clearly seen in the zoom-in
plot. While for larger Re, Q decreases monotonically with z/D. This is because, for a small Re,
the flow velocity in most part of the passageway is low except that near the outer boundaries of
the porous disk where an increase transition to the free-stream velocity is required. As the distance
z/D increases, the inertial effects from the outer flow exceed the obstructing effect of the porous
medium, giving rise to a larger Q. However, for a large Re, the flow velocity in the middle part of
the passageway is fairly large, which decreases gradually along the radial direction due to the porous
disk wall. The increment of velocity near the outer boundary also exists due to the free-stream flow.
Along with z/D, the obstructing effects from the porous disk wall outstrips the inertial effects from
the outer flow so that Q continue decreasing.

Figure 11(b) shows the variation of Q along with z/D at fixed χ = 15. Different from the thicker
disk, the Q decreases slightly and almost linearly with the distance z/D for all cases, demonstrating
that the obstructing effects of the thinner disk are much smaller than those of the thicker disk under
the same Da and Re. The trivial difference of Q between the front and rear surfaces of the porous
disk also suggests a small pressure drag. The variation trends of Q with Re and Da are also similar
to those in Fig. 11(a). Since the distance z/D of a thin disk is too short for flow development, the
variation trend of Q along z/D here is simpler compared to those in Fig. 11(a). Also, the large Q at
the rear surface of the disk implies a large amount of base bleed, which may prevent the recirculation
formation behind the disk.

The flow rate through the rear surface of the porous disk (Qr) is also calculated for various Re and
Da since the base bleed from a porous bluff body was found to have large effect on the wake structure
behind the body [7,8]. Figure 12(a) shows the variation of Qr with Re at different χ . For χ � 2, Qr

is close to zero for the presented range of Re, which is owing to the reverse flow penetrating the rear
surface. As Re increases, the recirculating wake becomes larger, bringing more reverse flow into the
thick porous disk. The thicker the disk becomes, the smaller the velocity will be at the rear surface
so that it is more difficult to resist the reverse flow. This is revealed in the observed trends that Qr

decreases monotonically with Re for χ = 1; while Qr first decreases and then increases with Re for
χ = 2. For larger χ of 4 and 8, Qr increases almost linearly with Re since the thin disk does not
have much impedance on the flow. For χ = 8, we have Qr = 0.021Re + 0.286. For larger χ � 15,
the linear relationship between Qr and Re is not satisfied and Qr increases slowly for larger Re,
which is due to the upper bound of the flow rate, i.e., the free stream velocity flow rate.

Note that the linear relationship may occur at different χ for different Da. For instance, we
have Qr = 0.0055Re + 0.0854 for χ = 20 and Da = 10−4. For particular χ and Da, usually at
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relatively large χ and small Da, the uz is nearly constant within the porous disk except at the
boundary between the porous disk and the clear fluid. Therefore, it is reasonable to assume
that Qr = πr2uz(Re) + B(Re), where B(Re) is the part affected by the flow at the fluid-porous
interface. Considering the Darcy law within the porous medium, i.e., uz = K∇p/μ (∇p is pressure
gradient), the formula can be expressed as Qr = ARe + B(Re) with A = (πr2∇pDaD)/(ρU∞). The
coefficient A can be a constant if ∇p is not affected by Re, which seems applicable from Fig. 11(b).
Since uz is dominant in the porous medium, the effects of Re on the part of flow near the boundary
is assumed to be negligible so that B(Re) is a constant. Therefore, the linear relationship with Re is
recovered. However, for a small χ , the uz varies greatly with r due to the boundary effects, thus the
assumption of uniform uz within the porous medium is not valid. For a large Da, the boundary flow
is largely affected by Re, so that B(Re) is not a constant. In these cases, the linear relationship of Qr

with Re does not exist.
Figure 12(b) presents the variation of Qr with χDa at fixed Re = 120. As χ increases, the flow

rate becomes larger at a smaller Da. Interestingly, the Qr curves of all χ can also be roughly
collapsed onto the same curve, similar to the bifurcation curves. The Qr first increases slowly
for relatively small Da, and then increases greatly for an intermediate range of Da, and after that
increases slowly again for a large Da. For the high permeable cases, the curves can be fitted into
Qr = −k1/(χDa) + k2, where the coefficients k1 = 0.0136 and k2 = 3.1418. The expression is very
similar to that of CD at high permeability limit [Eq. (8)]. Indeed, the Qr is closely related to CD since
it greatly affects the wake structure. Therefore, the collapsed curves of Qr are consistent with the
collapsed curves of CD [Fig. 10(d)].

E. Vorticity generation and attenuation

The vorticity accumulation was demonstrated to be closely linked to the wake structure behind
the porous body, as discussed in Refs. [14,46]. Vorticity is mainly generated from the no-slip
condition and the surface curvature. Also, the vorticity decay, along with vorticity accumulation
contribute to the formation of the recirculating wake, as analyzed in Ref. [46] for a group of circular
cylinders. In this section, the vorticity is examined for the 2D axisymmetric flow in an attempt to
interpret the wake signature at different Re, Da, and χ . Figure 13 shows a slice of the dimensionless
vorticity field �(r, z)D/U∞ in the negative azimuthal direction, where �(r, z) = ∂uz/∂r − ∂ur/∂z,
at representative χ under different Re and Da. The same range of vorticity [0.2, 4.68] and the same
area of interest (r/D) × (z/D) ∈ [0, 1.25] × [−0.25, 1] are used for all cases.

Figures 13(a)–13(c) show the vorticity distribution χ of 2, 8, 20, respectively, at fixed Da = 10−3

and Re = 30. For all cases, the large vorticity is accumulated about the top left corner of the porous
disk. Also, the position of the largest vorticity moves gradually towards the downstream side as χ

increases. The vorticity layers in front of and on the lateral side of the disk also become thinner
with an increment in χ . The overall vorticity in the region of interest is relatively small for larger
χ . All these indicate that a larger χ at the specific Da and Re is much easier for flow to pass
through. For a larger Re = 120, the tendency with increasing χ is even more obvious, as shown in
Figs. 13(d)–13(f). For the larger Re, the vorticity layers become thinner for all cases. The vorticity is
easily advected downstream and the vorticity peak moves further downstream, especially for χ = 8
and 20, where the vorticity peak occurs at the right corner of the porous disk. For smaller Da = 10−4

at Re = 120 in Figs. 13(g)–13(i), the vorticity layers and vorticity values are similar for all disks.
The increasing χ does not have weakening effects. It is also observed that the negative vorticity is
accumulated on the rear side of the disk and the peak of the negative vorticity moves to the right
corner of the disk as χ increases. The largest vorticity all reside near the left corner of the disk.
Compared with the larger Da cases, smaller Da obviously produces more vorticity.

The vorticity peak, defined as �p = max0<r<20D,−19.5D<z<20.5D(�D/U∞), is also obtained at
various Re and Da for representative χ . Figure 14(a) shows the variations of �p with Re at
two fixed Da. For relatively small Da = 10−4, �p is roughly the same for all the presented χ ,
which demonstrates an monotonically increasing trend with Re since the stronger velocity gradient
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 13. The dimensionless vorticity field |�(r, z)|D/U∞ for (a, d, g) χ = 2, (b, e, h) χ = 8, (c, f, i) χ = 20
at different Da and Re as indicated on the left.

produces larger vorticity. A crossover point is also observed at Re ≈ 70 for various χ with fixed
Da = 10−4. For Re � 70, �p increases with increasing χ , while for Re � 70, �p decreases with
increasing χ . The reason for this may be that, for smaller Re, the curvature of bluff body produces
more vorticity than the velocity gradient at the surface, while for larger Re, the velocity gradient
becomes dominant over the curvature effects in vorticity generation. For relatively large Da = 10−3,

(a) (b)

FIG. 14. Variations of �p with (a) Re and (b) Da at different χ as indicated.
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(a) (b)

(c) (d)

FIG. 15. Variation of �m with downstream distance at different χ , Re and Da as indicated.

the nonmonotonous trend of �p with Re is observed for all χ . The increasing Re indicates that more
vorticity is generated in the boundary layer developed on the front surface of the disk; however as
Re further increases, the vorticity is advected through the porous disk with weakened boundary
layer, resulting in smaller �p. Overall, the �p is much smaller than that at lower permeability. The
�p is also observed to increase with increasing χ for χ = 2, 4, 8, while the �p for χ = 20 is much
smaller.

Figure 14(b) shows the variation of �p with Da at two fixed Re. For relatively small Re = 40, the
�p for all χ decrease with increasing Da, which is expected since larger permeability allows more
flow through the disk and therefore more vorticity is advected downstream. Also, the �p for all χ

are almost the same with small differences, which indicates that the curvature of large χ and the
longer side surface of smaller χ have similar effects on the vorticity accumulation. For relatively
large Re = 120, the �p also decreases with increasing permeability with a larger decreasing rate
than that at smaller Re since the combination effects of large Da and Re gives rise to larger vorticity
advection. For smaller Da, the �p is evidently larger at smaller χ since more vorticity is generated
at the surface. As Da becomes larger, the difference among χ is more trivial.

The vorticity decay with the downstream distance is also investigated to further under-
stand the wake behaviors. The variations of the maximum vorticity (�m), defined as �m(z) =
max0<r<20D(�D/U∞), with downstream distance (2z/D) at representative χ , Re, and Da are
presented in Fig. 15. The two main processes that lead to decreased �m are diffusion and vorticity
annihilation, which correspond to decay rates of z−1/2 and z−1, respectively [39,46]. Therefore, the
decay laws are also presented in each part of Fig. 15 for the ease of comparison. Besides, the vertical
lines at 2z/D = 0.1, 0.25, 1.0 are drawn to represent the rear surfaces of the porous disk with χ =
20, 8, 2, respectively, so that the shaded area on the left side of the vertical line represents the porous
region for a specific χ .
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For relatively small Da = 10−6 and Re = 40 [Fig. 15(a)], the vorticity profiles for all the
presented χ are almost collapsed onto the same line, except for an obvious jump occurring at the
rear surface for χ = 2. The sudden increase in �m is mainly due to the vorticity accumulation along
the side surface, which is longer for smaller χ , as well as the sharp corner of the porous disk.
For 0.1 � 2z/D � 2, the decay rates of all χ follow the z−1/2 law although the range of distance
indicates different media for various χ , i.e., complete wake flow for χ = 20, partial wake flow
for χ = 8, and near-complete porous medium for χ = 2. With the presence of porous media, this
slower decay is mainly due to the skin friction on the porous surface; otherwise, the slower decay
is mainly supported by the entrained fluid flow from the outside, which forms the recirculation
zone. For 2z/D � 2, where the vorticity is � 20% of the original value (at 2z/D = 0.1), the
decay rates gradually transition to be equal to or even higher than z−1. This suggests that the
diffusive recirculating wake right behind the rear surface of the porous disk is longer for larger
χ since the axial position of the rear surface is smaller for larger χ , while the axial position of the
decay-rate-transition point is almost the same for all the presented χ .

As Re increases to 120 while keeping the Da fixed at 10−6 [Fig. 15(b)], the �m within the
downstream distance is overall larger compared with the �m presented in Fig. 15(a). The decay
rates for all χ are almost collapsed onto the same line, especially for the clear fluid flow region.
The sudden increase at the rear surface for χ = 2 is not presented since more vorticity is advected
to the downstream with the larger inertial force. With the same decay rate of z−1/2 for the first 80%
decrement of vorticity, the decaying distance here is larger since the �m at 2z/D = 0.1 is compar-
atively larger than the smaller Re cases in Fig 15(a). The larger decaying distance also indicates
longer recirculating wake due to diffusion. The faster decay follows the z−1 law exactly due to the
intermingle of positive and negative vorticity. Also, the wake length for thinner disk can be larger
due to the formation of recirculation zone right behind the rear surface of the disk, as stated above.

For relatively large permeability (Da = 10−3) at Re = 40, the difference in �m among all the
presented χ becomes larger, especially within the downstream distance of slower decay, as seen in
Fig. 15(c). Under this circumstance, more fluid flows through the porous disk with larger velocity,
interacting with the viscous flow near the porous-walls and contributing to more vorticity generation.
Therefore, the decay rate with the presence of porous media for χ = 2, 8 is even smaller than the
decay law of z−1/2. For χ = 2, a small bump is also shown at the rear surface of the porous disk,
though much flatter than that in Fig. 15(a). The vorticity also decays to approximately 20% of
its original value. The decaying distance also becomes larger since the porous medium raises the
vorticity to some extent for χ = 2, 8. For χ = 8, the vorticity first decreases very slowly in the
porous region, and then decays faster after the rear surface. A larger amount of fluid flow through
the disk so that a shear layer is formed by the base bleed flow and the flow outside of the disk,
resulting a smaller recirculating wake further downstream. For χ = 20, the vorticity first decreases
following the z−1/2 law, and then decreases with the z−1 law. There is sufficiently large amount of
fluid flowing out of the rear surface, supporting the diffusion decay, therefore no fluid is entrained
to the near wake.

Figure 15(d) shows the vorticity decay at relatively large Re = 120 and the same Da = 10−3

with Fig. 15(c). The effects of inertial force on the flow within the porous region is more significant.
It is observed that although the vorticity at 2z/D = 0.1 is similar for all χ , it further increases for
χ = 2, 8 within its corresponding porous regions, while decreases with the z−1/2 law for χ = 20.
The increasing vorticity also somewhat elongates the decaying distance. For χ = 2, since the base
bleed flow velocity is small, the recirculating wake forms due to the fluid entrainment. For larger
χ = 8, 20, the base bleed is even larger at Re = 120, which is sufficient to remain the diffusion
decay rate, and therefore the vortex is not formed behind the disk.

IV. SUMMARY AND CONCLUSIONS

The problem of steady axisymmetric flow through and around a porous disk is solved numeri-
cally with a porous-fluid coupling method. The present results are verified and validated for both
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impermeable and permeable cases. The interplay of three important nondimensional parameters: χ ,
Re, Da, are investigated with a focus on the wake structure and the drag exerted on the porous disk.
In particular, the influence of χ on the flow behavior is studied in terms of the streamline patterns,
the geometrical parameters of recirculating wake, drag components, and the bifurcation diagram in
the investigated parametric space.

For low permeable cases, the recirculating wake behind a thinner disk (larger χ ) is longer than
that behind a thicker disk (smaller χ ); while the opposite trend is observed for high permeable cases.
The variations of the geometrical parameters with Da, χ , Re all imply that the recirculating wake
would disappear when the nondimensional parameters are greater than the corresponding critical
values. The drag is calculated from both the SI and the CV methods. The SI method is found to
underestimate the total drag due to neglecting the momentum change. The effects of the Darcy
flow through the porous disk, the vortex behind the disk, the shear stress on the porous boundaries,
and the momentum change are discussed with regards to their contributions to the total drag. The
bifurcation diagrams in the Re-Da parametric space for all the investigated χ can be collapsed
approximately into the same curve in the Re-χDa space. Also, the bifurcation diagrams in the Da-χ
space for all Re can be collapsed roughly into the same power law curve. This indicates that χ and
Da are somewhat replaceable, which modifies the drag exerted on the porous disk and affects the
existence of recirculating wake. Also, CD is observed to be approximately the same for a particular
fixed χDa.

The flow rate and vorticity are also investigated to further understand the wake behaviors. It is
demonstrated that the base bleed (flow rate at the rear surface of the disk), which increases with all
the controlling parameters of Re, χ , Da, directly affects the recirculating wake formation. The rear
flow rates are almost the same for a wide range of χ when varying with χDa since the Qr is closely
related with the drag exerted by the fluid. Furthermore, it is found that the vorticity accumulation is
mainly affected by Da and Re, which does not differ much among all the χ . Also, for all presented
cases, the vorticity decay follows the z−1/2 law until the vorticity is decreased to ∼20% of its original
value at 2z/D = 0.1. The slower decay rate requires sufficient entrainment of fluids behind the
porous disk, which is satisfied by forming a recirculating wake for low permeable cases, and by the
large amount of base bleed for high permeable cases.

Finally, it is noted that the results and regular patterns for the porous disk in the present study
may also be applicable for the oblate spheroid and even the nonaxisymmetric bodies, as partially
demonstrated previously for flow through and around a porous rectangular cylinder in Ref. [11]. It
should also be mentioned that the steady axisymmetric assumption, made under the current ranges
of controlling parameters, is based on flow around an impermeable disk. The transition parameters
to steady nonaxisymmetric and unsteady flow regimes are expected to be different for permeable
cases, which will be studied with 3D simulations in the future.

ACKNOWLEDGMENTS

The authors appreciate the financial support from NSFC (Grants No. 11672124 and
No. 12002148), the Shenzhen Peacock Plan (Grant No. KQTD2016022620054656), Guang-
dong Provincial Key Laboratory of Turbulence Research and Applications (Grant No.
2019B21203001), and Shenzhen Key Laboratory of Complex Aerospace Flows (Grant No.
ZDSYS201802081843517). This work is also supported by the Center for Computational Science
and Engineering of Southern University of Science and Technology. The authors thank Dr. Y. Zeng
from NMC, ASTAR, for her valuable discussion.

[1] C. Ellington, Wing mechanics and take-off preparation of thrips (thysanoptera), J. Exp. Biol. 85, 129
(1980).

074101-23

https://doi.org/10.1242/jeb.85.1.129


TANG, XIE, YU, LI, AND YU

[2] C. Cummins, M. Seale, A. Macente, D. Certini, E. Mastropaolo, I. M. Viola, and N. Nakayama, A
separated vortex ring underlies the flight of the dandelion, Nature (London) 562, 414 (2018).

[3] J. H. Masliyah and M. Polikar, Terminal velocity of porous spheres, Can. J. Chem. Eng. 58, 299 (1980).
[4] P. Yu, T. S. Lee, Y. Zeng, and H. T. Low, Fluid dynamics and oxygen transport in a micro-bioreactor with

a tissue engineering scaffold, Int. J. Heat Mass Transf. 52, 316 (2009).
[5] P. D. Noymer, L. R. Glicksman, and A. Devendran, Drag on a permeable cylinder in steady flow at

moderate Reynolds numbers, Chem. Eng. Sci. 53, 2859 (1998).
[6] S. Bhattacharyya, S. Dhinakaran, and A. Khalili, Fluid motion around and through a porous cylinder,

Chem. Eng. Sci. 61, 4451 (2006).
[7] P. Yu, Y. Zeng, T. S. Lee, X. B. Chen, and H. T. Low, Steady flow around and through a permeable circular

cylinder, Comput. Fluids 42, 1 (2011).
[8] P. Yu, Y. Zeng, T. Lee, H. Bai, and H. Low, Wake structure for flow past and through a porous square

cylinder, Int. J. Heat Fluid Flow 31, 141 (2010).
[9] M. S. Valipour, S. Rashidi, M. Bovand, and R. Masoodi, Numerical modeling of flow around and through

a porous cylinder with diamond cross section, Eur. J. Mech. B/Fluids 46, 74 (2014).
[10] T. Tang, P. Yu, S. Yu, X. Shan, and H. Chen, Connection between pore-scale and macroscopic flow

characteristics of recirculating wake behind a porous cylinder, Phys. Fluids 32, 083606 (2020).
[11] P. G. Ledda, L. Siconolfi, F. Viola, F. Gallaire, and S. Camarri, Suppression of von Kármán vortex streets

past porous rectangular cylinders, Phys. Rev. Fluids 3, 103901 (2018).
[12] G. Neale, N. Epstein, and W. Nader, Creeping flow relative to permeable spheres, Chem. Eng. Sci. 28,

1865 (1973).
[13] K. Nandakumar and J. H. Masliyah, Laminar flow past a permeable sphere, Can. J. Chem. Eng. 60, 202

(1982).
[14] P. Yu, Y. Zeng, T. S. Lee, X. B. Chen, and H. T. Low, Numerical simulation on steady flow around and

through a porous sphere, Int. J. Heat Fluid Flow 36, 142 (2012).
[15] T. Zlatanovski, Axisymmetric creeping flow past a porous prolate spheroidal particle using the Brinkman

model, Q. J. Mech. Appl. Math. 52, 111 (1999).
[16] P. Vainshtein, M. Shapiro, and C. Gutfinger, Creeping flow past and within a permeable spheroid, Int. J.

Multiphase Flow 28, 1945 (2002).
[17] P. K. Yadav and S. Deo, Stokes flow past a porous spheroid embedded in another porous medium,

Meccanica 47, 1499 (2012).
[18] E. Barta and D. Weihs, Creeping flow around a finite row of slender bodies in close proximity, J. Fluid

Mech. 551, 1 (2006).
[19] T. Uchida, Y. Taniyama, Y. Fukatani, M. Nakano, Z. Bai, T. Yoshida, and M. Inui, A new wind turbine

CFD modeling method based on a porous disk approach for practical wind farm design, Energies 13, 3197
(2020).

[20] M. Liu, C. Xie, M. Yao, and J. Yang, Study on the near wake of a honeycomb disk, Exp. Therm. Fluid
Sci. 81, 33 (2017).

[21] C. Cummins, I. M. Viola, E. Mastropaolo, and N. Nakayama, The effect of permeability on the flow past
permeable disks at low Reynolds numbers, Phys. Fluids 29, 097103 (2017).

[22] P. G. Ledda, L. Siconolfi, F. Viola, S. Camarri, and F. Gallaire, Flow dynamics of a dandelion pappus: A
linear stability approach, Phys. Rev. Fluids 4, 071901(R) (2019).

[23] D. Fabre, F. Auguste, and J. Magnaudet, Bifurcations and symmetry breaking in the wake of axisymmetric
bodies, Phys. Fluids 20, 051702 (2008).

[24] R. Natarajan and A. Acrivos, The instability of the steady flow past spheres and disks, J. Fluid Mech. 254,
323 (1993).

[25] F. W. Roos and W. W. Willmarth, Some experimental results on sphere and disk drag, AIAA J. 9, 285
(1971).

[26] P. Meliga, J.-M. Chomaz, and D. Sipp, Global mode interaction and pattern selection in the wake of a
disk: A weakly nonlinear expansion, J. Fluid Mech. 633, 159 (2009).

[27] S. Gao, L. Tao, X. Tian, and J. Yang, Flow around an inclined circular disk, J. Fluid Mech. 851, 687
(2018).

074101-24

https://doi.org/10.1038/s41586-018-0604-2
https://doi.org/10.1002/cjce.5450580303
https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.021
https://doi.org/10.1016/S0009-2509(98)00117-1
https://doi.org/10.1016/j.ces.2006.02.012
https://doi.org/10.1016/j.compfluid.2010.09.040
https://doi.org/10.1016/j.ijheatfluidflow.2009.12.009
https://doi.org/10.1016/j.euromechflu.2013.12.007
https://doi.org/10.1063/5.0019262
https://doi.org/10.1103/PhysRevFluids.3.103901
https://doi.org/10.1016/0009-2509(73)85070-5
https://doi.org/10.1002/cjce.5450600202
https://doi.org/10.1016/j.ijheatfluidflow.2012.03.002
https://doi.org/10.1093/qjmam/52.1.111
https://doi.org/10.1016/S0301-9322(02)00106-4
https://doi.org/10.1007/s11012-011-9533-y
https://doi.org/10.1017/S0022112005008268
https://doi.org/10.3390/en13123197
https://doi.org/10.1016/j.expthermflusci.2016.10.004
https://doi.org/10.1063/1.5001342
https://doi.org/10.1103/PhysRevFluids.4.071901
https://doi.org/10.1063/1.2909609
https://doi.org/10.1017/S0022112093002150
https://doi.org/10.2514/3.6164
https://doi.org/10.1017/S0022112009007290
https://doi.org/10.1017/jfm.2018.526


EFFECT OF ASPECT RATIO ON FLOW THROUGH AND …

[28] A. Shenoy and C. Kleinstreuer, Flow over a thin circular disk at low to moderate Reynolds numbers,
J. Fluid Mech. 605, 253 (2008).

[29] F. Auguste, D. Fabre, and J. Magnaudet, Bifurcations in the wake of a thick circular disk, Theor. Comput.
Fluid Dyn. 24, 305 (2010).

[30] M. Chrust, G. Bouchet, and J. Dusek, Parametric study of the transition in the wake of oblate spheroids
and flat cylinders, J. Fluid Mech. 665, 199 (2010).

[31] P. C. Fernandes, F. Risso, P. Ern, and J. Magnaudet, Oscillatory motion and wake instability of freely
rising axisymmetric bodies, J. Fluid Mech. 573, 479 (2007).

[32] W. W. Willmarth, N. E. Hawk, and R. L. Harvey, Steady and unsteady motions and wakes of freely falling
disks, Phys. Fluids 7, 197 (1964).

[33] K. Vafai and C. L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int. J.
Heat Mass Transf. 24, 195 (1981).

[34] S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy’s law, Transp. Porous Media 1, 3
(1986).

[35] S. Whitaker, The Forchheimer equation: A theoretical development, Transp. Porous Media 25, 27 (1996).
[36] J. A. Ochoa-Tapia and S. Whitaker, Momentum transfer at the boundary between a porous medium and a

homogeneous fluidi. theoretical development, Int. J. Heat Mass Transf. 38, 2635 (1995).
[37] P. Nithiarasu, K. N. Seetharamu, and T. Sundararajan, Natural convective heat transfer in a fluid saturated

variable porosity medium, Int. J. Heat Mass Transf. 40, 3955 (1997).
[38] J. Alberto, Momentum jump condition at the boundary between a porous medium and a homogeneous

fluid: Inertial effects, J. Porous Media 1, 3 (1998).
[39] A. Nicolle and I. Eames, Numerical study of flow through and around a circular array of cylinders,

J. Fluid Mech. 679, 1 (2011).
[40] P. K. Kundu and I. M. Cohen, Fluid Mechanics, 4th ed. (Elsevier, Burlington, MA, 2008).
[41] J. P. Van Doormaal and G. D. Raithby, Enhancements of the simple method for predicting incompressible

fluid flows, Numer. Heat Transfer 7, 147 (1984).
[42] C. Rhie and W. L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge

separation, AIAA J. 21, 1525 (1983).
[43] P. Yu, T. S. Lee, Y. Zeng, and H. T. Low, A numerical method for flows in porous and homogenous fluid

domains coupled at the interface by stress jump, Int. J. Numer. Methods Fluids 53, 1755 (2007).
[44] A. Sohankar, C. Norberg, and L. Davidson, Low-Reynolds-number flow around a square cylinder at

incidence: Study of blockage, onset of vortex shedding and outlet boundary condition, Int. J. Numer.
Methods Fluids 26, 39 (1998).

[45] C. Cummins, I. M. Viola, E. Mastropaolo, and N. Nakayama, Erratum: The effect of permeability on the
flow past permeable disks at low Reynolds numbers, Phys. Fluids 32, 119901 (2020).

[46] T. Tang, P. Yu, X. Shan, and H. Chen, The formation mechanism of recirculating wake for steady flow
through and around arrays of cylinders, Phys. Fluids 31, 043607 (2019).

[47] T. Tang, P. Yu, X. Shan, H. Chen, and J. Su, Investigation of drag properties for flow through and around
square arrays of cylinders at low Reynolds numbers, Chem. Eng. Sci. 199, 285 (2019).

[48] Z. G. Feng and E. E. Michaelides, Motion of a permeable sphere at finite but small Reynolds numbers,
Phys. Fluids 10, 1375 (1998).

074101-25

https://doi.org/10.1017/S0022112008001626
https://doi.org/10.1007/s00162-009-0144-3
https://doi.org/10.1017/S0022112010004878
https://doi.org/10.1017/S0022112006003685
https://doi.org/10.1063/1.1711133
https://doi.org/10.1016/0017-9310(81)90027-2
https://doi.org/10.1007/BF01036523
https://doi.org/10.1007/BF00141261
https://doi.org/10.1016/0017-9310(94)00346-W
https://doi.org/10.1016/S0017-9310(97)00008-2
https://doi.org/10.1017/jfm.2011.77
https://doi.org/10.1080/01495728408961817
https://doi.org/10.2514/3.8284
https://doi.org/10.1002/fld.1383
https://doi.org/10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P
https://doi.org/10.1063/5.0029189
https://doi.org/10.1063/1.5090817
https://doi.org/10.1016/j.ces.2019.01.017
https://doi.org/10.1063/1.869662

