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Path instability of a no-slip spheroidal bubble in isotropic turbulence
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Path instability of a millimetric spheroidal bubble in quiescent fluid and in isotropic
turbulence is investigated by direct numerical simulation. An immersed boundary method
along with a new formulation of the equation of bubble motion is utilized to impose the
no-slip condition on the surface of an air bubble in fixed shape with the equivalent diameter
of 1.0 ∼ 4.0 mm in contaminated water. The range of Galilei number defined as the ratio
of the gravitational force to the kinematic viscosity considered in this study is 100 ∼
800. In still fluid, as the bubble size grows, the frequency of the zigzagging motion of
the bubble increases while the range in the orientation angle variation of the bubble is
hardly affected. The effect of background turbulence on path instability of a rising bubble,
which typically shows zigzag pattern in still fluid, is investigated at three different Reynolds
numbers, Reλ, of 26, 45, and 73, or equivalently, for the ratio of fluid root-mean-square
velocity to the bubble rise velocity u′/VT ranging 0.030 ∼ 0.671. When a bubble rises in
isotropic turbulence, the terminal rise velocity of the bubble does not show a noticeable
difference. However, the pathways are significantly distorted by turbulence. Furthermore,
the magnitude of zigzagging frequency and the degree of obliquity of the bubble become
enhanced with Reλ. We also observed wakes behind the bubble to find that the rear tails
become weaker and tangled due to turbulence.
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I. INTRODUCTION

Bubble dynamics has been widely studied for many industrial applications ranging from water
purification process, fluidized bed reactors for promoting catalysts to be dissolved, prevention from
cavitational woes, reduction of bubbles attached to cladding conduits in atomic piles to name a few.
For successful applications of bubbles, the behavior of bubbles in various environments needs to be
properly understood. Especially, one of the representative features of a millimetric bubble is path
instability exhibiting distorted pathways such as zigzagging or helical motion as it rises in fluid. The
path instability mainly arises from asymmetric wake formation behind the bubble, shape oscillation,
and surfactant concentration on surface Magnaudet and Eames [1]. In fact, a variety of studies
have been carried out to investigate the path instability of a bubble using numerical simulations or
experiments. For example, Wu and Gharib [2] tracked a millimetric bubble in clean stagnant water.
They suggested the critical Reynolds number and the corresponding aspect ratio for a transition to
zigzagging and helical motions. Riboux et al. [3] also showed helical vestiges of a bubble with its
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rise velocity and provided a specific Reynolds number at which those helical motions started. Shew
et al. [4] identified the path transition from rectilinear through zigzagging, and up to helical motions
from bubble rise velocities, concluding that the rise velocity oscillates in the zigzagging regions and
becomes almost constant in the helical regions. A contribution to path instability by shape oscillation
was also addressed by Lunde and Perkins [5], who reported that the form of a bubble was changed
to a wobbly shape either elongated or contracted axially when the shape oscillation occurred due to
fluidic pressure surrounding the bubble.

Veldhuis et al. [6] carried out further investigation about how a bubble path was changed under
the shape variation, reporting that the bubble showed a smaller path oscillation frequency as it grew.
They also proposed an inversely proportional correlation between the bubble size and the wake
frequency of fluid proximate to the bubble. Surfactant concentration affects the surface tension of a
bubble, and thus its aspect ratio and rise velocity are distinct from those of a surfactant-free bubble.
Clift et al. [7] depicted an overall picture between the terminal velocity of a bubble and its size for
both clean and contaminated water. Tagawa et al. [8] conducted experiments to observe how the path
of a bubble was changed according to the surfactant concentration. They reported that a helical path
was transformed into a zigzagging path as the concentration was increased. Tagawa et al. [9] also
addressed that the drag coefficient was in decline during an increase in the surfactant concentration,
and they classified types of the bubble path according to the drag coefficient.

Numerical simulations have also been carried out to describe the dynamics of a bubble. Tripathi
et al. [10] classified bubble paths and shapes through Eötvös and Galilei numbers from which this
taxonomy was significant for better understandings of the physical traits. Mougin and Magnaudet
[11], Shew and Pinton [12] displayed a path transition of a clean bubble from zigzagging motions
to helical ones by solving generalized Kirchhoff equations Mougin and Magnaudet [13]. Cano-
Lozano et al. [14] described a series of changes of wake instability behind the realistic bubble
by applying the no-slip boundary condition on the surface. They observed that zigzagging paths
occur after distortion of wake symmetry appeared. Recently, Cano-Lozano et al. [15] investigated
more details of paths and wakes for various types of deformable bubbles in stagnant fluid. They
sorted path regimes of the bubble through utilizing the Eötvös and Galilei numbers similarly
to Tripathi et al. [10], which was also useful for understanding an overall view of the path
characteristics.

As discussed, the path instability has been investigated in many ways. Most researches, however,
are confined to bubbles in still fluid although in many real applications the background flow is
often turbulent. Recently, Mathai et al. [16] experimentally investigated dispersion of millimetric
air bubbles in homogeneous isotropic turbulence and attributed the early transition to diffusive
dispersion of bubbles to path instability. Kim et al. [17] measured pair dispersion of millimetric
air bubbles in Rayleigh–Benard convection in a cubic box and observed that the horizontal pair
dispersion is enhanced for large initial separations although convection tends to suppress path
instability. Several numerical simulations were performed considering dynamics of bubbles and
light particles in turbulence [18–23]. Still, how the background turbulence affects path instability
of a millimetric bubble is not fully understood. Therefore, we in this paper investigate how the
behavior of a bubble is modified by turbulence. For this purpose, we studied the behavior of a
single bubble of the millimetric size in isotropic turbulence using direct numerical simulation. To
reflect more realistic circumstances of the bubble, we considered an oblate spheroidal air bubble
with size ranging 1.0 ∼ 4.0 mm. It is assumed that the bubble has a fixed shape and is put in fully
contaminated water. Due to the high concentration of surfactants, the no-slip boundary condition is
satisfied on its surface [7,9,24].

The organization in our paper follows. In Sec. II, numerical procedures are introduced to solve
the equations of motion of a single bubble by adopting an immersed boundary method. In Sec. III,
we analyze bubble paths and statistics related to zigzag patterns in still fluid. In Sec. IV, we discuss
the similar statistics of the bubble in three kinds of isotropic turbulence at Reλ = 26, 45, and 73.
Finally, in Sec. V, an overall summary of the current study is provided.
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II. METHODOLOGY TO DESCRIBE THE MOTION OF A SPHEROIDAL BUBBLE

To describe dynamics of a spheroidal bubble in fluid through direct numerical simulation, we
utilize an immersed boundary method (IBM) to efficiently handle the interaction between a bubble
and the background flows. In this section, we introduce a numerical methodology to implement IBM
based on a direct forcing scheme. A new form of the equations of motion of a bubble was derived
using an explicit formula for the moment of inertia matrix for a spheroidal bubble and was solved
through the application of a virtual mass term added on both sides of the governing equation, which
is used for obviating singularity caused by extremely low mass of a bubble. Details are provided in
the following subsections.

A. Governing equations for a single bubble in fluid

For the simulation of background turbulent flow, we solve three-dimensional Navier–Stokes
equations and continuity equation:

∂u
∂t

+ (u · ∇)u = − 1

ρ f
∇P + ν∇2u + f b + f L, (1)

∇ · u = 0, (2)

where u, ρ f , P, ν, f b, f L denote the fluid velocity, density of fluid, modified pressure, kinematic
viscosity, back reaction force of a bubble onto fluid, and large-scale forcing maintaining turbulence,
respectively. Equations (1) and (2) were solved using a pseudo-spectral method in a rectangular
parallelepiped domain of size Lh × Lh × Lv where Lh and Lv denote the horizontal and vertical
extents of the domain, respectively. Periodicity was assumed in all three directions and Lv/Lh

was chosen to be 16 to accommodate a rising single bubble, minimizing the effect of periodicity
assumption. f L can be obtained from the stochastic differential equation (SDE) which satisfies the
Langevin equation with a time scale T and standard deviation σ [25]:

dU (t ) = −U (t )

T
dt +

(
2σ 2

T

)1/2

dW, (3)

where U and W denote the Uhlenbeck-Ornstein stochastic process, and the Wiener process,
respectively. dW is chosen from Gaussian distribution with zero mean and variance dt . Then, a
three-dimensional complex vector in Fourier space b̂(k) can be constructed using six independent
Uhlenbeck-Ornstein processes:

b̂ =
⎛
⎝U1

U2

U3

⎞
⎠ + i

⎛
⎝U4

U5

U6

⎞
⎠. (4)

Note that b̂ is nonzero in the range 0 < |k| � k f where k and k f denote the wavenumber vector
and maximum forcing wavenumber, respectively. Finally, we can derive f̂ L in Fourier space, which
ensures the divergence-free condition,

f̂ L = b̂ − k(k · b̂)/(k · k). (5)

Detailed algorithm including the forcing scheme for f L is provided in Jung et al. [26] and the same
code has been used for various studies of particle-laden turbulence [27–32].

In our study, we did not consider the dynamic effect of surface tension on the surface of the
bubble. Instead, the effect of surface tension is implemented into the fixed spheroidal shape of the
bubble. The motion of a bubble without shape variation can be solved through equations of linear
and angular motions [33,34]. Especially, we adopt the no-slip boundary condition on the bubble
surface due to the assumption of the fully contaminated bubble, which is illustrated in more detail
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in the next subsection. The equations for the translational and angular motions of a bubble with
bubble domain � follow

ρbVb
dvc

dt
= −ρ f

∫
�

FdV + ρ f
d

dt

∫
�

udV + (ρb − ρ f )Vbg, (6)

d (Ibωc)

dt
= −ρ f

∫
�

(X l − xc) × F(X l )dV + ρ f
d

dt

[ ∫
�

(x − xc) × u(x)dV

]
, (7)

where ρb, Vb, vc, F, g in Eq. (6) represent the density of the bubble, the bubble volume, ve-
locity vector of the bubble at its center, IBM force exerted onto the bubble surface by fluid,
and gravitational acceleration vector, respectively. Ib, ωc, Xl , xc, x in Eq. (7) are the moment of
inertia matrix of a spheroidal bubble, angular velocity of the bubble at its center, the position
of the Lagrangian points on the bubble surface for IBM implementation, displacement vector of
the bubble center, and Eulerian points in the bubble domain, respectively. However, since the
density ratio πb(= ρb/ρ f ) is much smaller than 1, a direct numerical implementation of Eqs. (6)
and (7) causes a singular problem. To resolve this, we employed a virtual mass force to both
equations [35],(

1 + Cv

πb

)
ρbVb

dvc

dt
= −ρ f

∫
�

FdV + ρ f
d

dt

∫
�

udV + (ρb − ρ f )Vbg + Cvρ f Vb
dvc

dt
, (8)

(
1 + Cv

πb

)
d (Ibωc)

dt
= −ρ f

∫
�

(X l−xc) × F(X l )dV +ρ f
d

dt

[ ∫
�

(x−xc) × u(x)dV

]
+Cv

πb

d (Ibωc)

dt
,

(9)

where Cv is an arbitrary coefficient which is chosen to be 0.5 in the present study.
It is noted that Ib(t ) for a spheroid as given below evolves with the bubble’s orien-

tation unit vector p(t ), which is defined in the direction along the symmetry axis of a
spheroid,

Ib = 2ρbVbr2
b pp

5
+ ρbVb

(
r2

a + r2
b

)
(I − pp)

5
, (10)

where ra is the radius of a spheroid along the symmetry axis, rb is the radius in the direction normal
to the symmetry axis, with ra < rb indicating an oblate spheroid used in this study. I is the identity
matrix. The orientation vector p(t ) of the bubble evolves in time by

d p
dt

= ωc × p, (11)

indicating that |p(t )| = 1 is always maintained. Ardekani et al. [36] introduced an iterative algorithm
to solve Eq. (7) to handle time-varying Ib(t ). However, by noticing that the inverse of Ib can be
explicitly obtained [37,38],

I−1
b = 5pp

2ρbVbr2
b

+ 5(I − pp)

ρbVb
(
r2

a + r2
b

) , (12)

we reformulated Eq. (9),(
1 + Cv

πb

)
d (Ibωc)

dt
=

(
1 + Cv

πb

)(
Ib

dωc

dt
+ dIb

dt
ωc

)
= T , (13)

where T is the right-hand side of Eq. (9), from which

dωc

dt
= −I−1

b

dIb

dt
ωc + 1

1 + Cv/πb
I−1
b T . (14)
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Using Eqs. (10), (11), and (12), we finally derived

dωc

dt
= − r2

b − r2
a

r2
b + r2

a

(ωc · p)ωc × p + 1

1 + Cv/πb
I−1
b

×
(

− ρ f

∫
�

(X l − xc) × F(X l )dV + ρ f
d

dt

[ ∫
�

(x − xc) × u(x)dV

]
+ Cv

πb

d (Ibωc)

dt

)
.

(15)

For the IBM implementation, the surface coordinates of a spheroidal bubble were searched using
the rotational matrix between the absolute frame and bubble fixed frame x′,

x − xc = Rx′, (16)

where on the surface of the bubble, x′ satisfies

x′2

r2
a

+ y′2 + z′2

r2
b

= 1. (17)

The rotational matrix R is constructed by

R = (i1 : i2 : i3)(i′1 : i′2 : i′3)t , (18)

where i1, i2, i3 are the unit directional vectors in the absolute frame, while i′1, i′2, i′3 are the unit
directional vectors in the bubble fixed frame, which can be constructed from p(t ) by TRIAD (Three-
axis attitude determination) method [39],

i′1 = p, i′2 = p × q
|p × q| , i′3 = i′1 × i′2, (19)

where q is an arbitrary vector.

B. Immersed boundary method

To impose the no-slip boundary condition on the surface of the bubble in contaminated water,
we adopted an immersed boundary method which is an efficient method for the simulation of a
moving object in fluid without an introduction of body-fitted coordinates. Uhlmann [40], Kempe
and Fröhlich [41] introduced the IBM based on a direct forcing scheme, which can impose a
desired velocity on the object surface and the back reaction force from its surface exerts explicitly to
proximate Eulerian grids. Tschisgale et al. [42] proposed a semi-implicit scheme to release stability
thresholds, producing good agreement for a heavy and light particle compared to previous IBM
results. Tavanashad and Subramaniam [43] simulated the motion of a single spherical bubble in
still fluid with the direct forcing and virtual mass forces, which showed well-fitted drag coefficients
compared to other simulations and experiments.

On the other hand, many sorts of turbulence modification by finite-sized particles have been
studied using various forms of IBM. Yeo et al. [44] investigated impact of particles on isotropic
turbulence, reporting an enhancement of small scales of turbulence at high wavenumbers regardless
of the density of particles. Tanaka and Teramoto [33] investigated modulation of shear turbulence
by finite-sized heavy particles through IBM, proving that the presence of particle led to kinetic
energy enhancement. Jang [38], Jang and Lee [45,46] developed an IBM which can be applied to
nonuniform grids and observed impacts of an increase in the number of finite-sized particles on
stratified turbulence, which enhanced internal gravity waves in channel center region and vortex
structures became weaker in the near-wall regions. Derksen [47] confirmed using an IBM that the
aggregation size of spherical particles was dependent on particle-particle interactions and intensity
of turbulence. Fornari et al. [48] reported a significantly reduced settling velocity of slightly heavy
spherical particles under isotropic turbulence when compared to that in still fluid. Tanaka [34,49]
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(a) (b)

FIG. 1. Distribution of Lagrangian points for (a) a sphere (χ = 1) with Nl = 1588, (b) an oblate spheroid
(χ = 2) with Nl = 2976. The points are allocated on each cell along the surface in horizotnal x, y axes and
vertical z axis.

accounted for spherical sediments and bubbles in shear turbulence, and described how the turbulence
was modified by particles and bubbles.

In our study, we adopted an IBM based on the direct forcing scheme. The sequence to apply
the IBM is as follows. First, we place the Lagrangian points (X l ) on the surface of the bubble (see
Fig. 1, for example) under the principle that one Lagrangian point is allocated to one Eulerian grid
cell. Detailed algorithm for the distribution of the Lagrangian points can be found in Jang [38], Jang
and Lee [45]. The velocity information at the Lagrangian point is extracted from the nearby Eulerian
information as follows:

U l (X l ) =
∑
x⊂�

u(x)w(X l − x), (20)

where w(X l − x) is the interpolation weight. Then, the immersed boundary force F(X l ) at the
Lagrangian point X l is computed by

F(X l ) = Ud (X l ) − U l (X l )


t
, (21)

where Ud (X l ) is the desired velocity at the Lagrangian point determined by the motion of the
bubble, Ud (X l ) = vc + ωc × (X l − xc). Finally, the forcing at the nearby Eulerian grid points f b
of Eq. (1) is obtained by

f b(x) =
Nl∑

l=1

F(X l )w
′(X l − x), (22)

where w′(X l − x) is the distribution weights. The interpolation weights w(X l − x) and distribution
weights w′(X l − x) are determined by the conservation of force and moment [50],

∑
x⊂�

f b(x)
Vh =
Nl∑

l=1

F(X l )
Vl , (23)

∑
x⊂�

(x − xc) × f b(x)
Vh =
Nl∑

l=1

(X l − xc) × F(X l )
Vl , (24)
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TABLE I. Cases for a single bubble rising in quiescent fluid conducted in our simulation. The range of
the parameters correspond to a fully contaminated bubble considered in Ref. [7]. The range of Ga and χ

are chosen for the real sizes of an air bubble ranging from 1.0 ∼ 4.0 mm. h is the numerical grid size. The
zigzagging amplitude A from its dominant horizontal view, minimal and maximal inclination degrees, θmin,
θmax in the dominant horizontal axis are measured.

Case de(mm) Ga χ de/h de/Lh Nl Reb Cd Str A/de θmin θmax

S − 1.0 1.0 99.0 1.03 18.7 0.097 1645 ± 5 107 1.14 0 0 5◦ 5◦

S − 1.5 1.5 182.0 1.06 19.1 0.099 1712 ± 6 218 ± 1 0.94 0.094 0.22 1◦ 19◦

S − 2.0 2.0 280.1 1.10 26.1 0.136 3205 ± 8 309 ± 13 1.08 0.114 0.84 −19◦ 30◦

S − 2.5 2.5 391.5 1.14 30.0 0.156 4250 ± 12 407 ± 29 1.19 0.130 0.88 −24◦ 35◦

S − 3.0 3.0 514.6 1.18 37.5 0.195 6665 ± 15 512 ± 44 1.34 0.143 0.87 −30◦ 37◦

S − 3.5 3.5 648.5 1.22 38.4 0.218 6985 ± 19 624 ± 57 1.47 0.153 0.83 −30◦ 37◦

S − 4.0 4.0 792.5 1.28 43.3 0.225 8880 ± 25 756 ± 66 1.59 0.168 0.78 −30◦ 37◦

where 
Vl and 
Vh are volume allocated to each Lagrangian point and the Eulerian cell volume.
From Eqs. (23) and (24), the following relation between the weight functions w and w′ hold

w(X l − x)
Vl = w′(X l − x)
Vh. (25)

For the choice of interpolation function, Roma et al. [51] implemented the dirac delta function and
verified no difference in accuracy compared to other choices. In our study, the four-points Lagrange
interpolation function was utilized.

III. ZIGZAGGING MOTIONS OF A SPHEROIDAL BUBBLE IN STILL FLUID

It is well known that the motions of a fully contaminated bubble show zigzagging patterns when
it rises in still fluid [1,8]. Before an investigation on how the motion of a bubble is modified by
turbulence, we study the motion of a bubble in still fluid with a focus on the behavior of a bubble of
various sizes with a purpose of validation of our numerical method. The nondimensional parameters
involved in the bubble motion are introduced as follows:

Ga =
(|πb − 1|gd3

e

)1/2

ν
, χ = rb

ra
, (26)

where Ga, χ , and de denote Galilei number, bubble aspect ratio, equivalent diameter of a bubble
defined by de = 2(rar2

b )1/3, respectively. In our simulations, we put πb = 10−3 to consider an
infinitesimal mass of the bubble. To discuss dynamics of the bubble, we introduce

Reb = VT de

ν
, Str = f de

VT
, (27)

where Reb, Str , VT and f indicate bubble Reynolds number, Strouhal number, its averaged rise
velocity, and path oscillation frequency, respectively. As many studies have shown, the averaged
χ can be determined by Eötvös number Eo = ρbgd2

e /σ where σ is surface tension coefficient of
the bubble [7,52]. Aoyama et al. [54] also established χ by a combination of Eo and Reb, which
showed good agreement in their experiments. Therefore, in our study we adopted the values of χ for
different sizes of the bubble. Table I lists seven simulation cases for the bubble diameters ranging
from 1.0 ∼ 4.0 mm with an interval of 0.5 mm. The viscosity of the fluid is ν = 0.01 cm2/s, and
g = 981 cm/s2 in real units. To conduct efficient simulations of a single bubble rising, a periodic
rectangular parallelepiped domain with Lv/Lh = 16 is utilized. The corresponding grid numbers
are 128 and 2048 for the horizontal and vertical directions, respectively. Nineteen to 43 grids are
allocated to an equivalent diameter of a bubble depending of the size as shown in Table I, which
seems to be sufficient for resolving the bubble shape. The horizontal extent of the simulation domain
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(a) (b)(b)

FIG. 2. Comparison against measurement data of (a) the averaged bubble Reynolds number Reb in still
fluid and isotropic turbulence and (b) drag coefficient and Strouhal number. The Reynolds number is compared
with experiments conducted in still fluid for the range of the bubble sizes considered in Tomiyama et al. [52].
The drag coefficient Cd is compared with measurement data by Magnaudet and Eames [1] and the Strouhal
number Str is compared with an estimated fit given by Tagawa et al. [8], Tsuge and Hibino [53].

is 5 to 10 times the equivalent diameter, which is large enough to minimize the effect of periodicity
assumption. The number of Lagrangian points Nl depending on the size and the aspect ratio χ is
gradually increased due to the size growth of ra and rb. In addition to long vertical domain, we
applied a tilted gravity by β toward x axis and γ toward y axis so that the gravitational acceleration
vector is g = g(− sin β cos γ ,− sin γ ,− cos β cos γ ) for all simulations to minimize the effect of
periodicity. β = 0.4 rad, γ = −0.1 rad for 1 ∼ 3 mm bubbles and β = 0.3 rad, γ = −0.1 rad for
3.5, 4 mm bubbles. Then, all the results are presented in the new coordinate system, X , Y , Z , where
gravity acts in the negative Z direction.

Figure 2 provides the bubble Reynolds number Reb, drag coefficient Cd , and Strouhal number
Str compared with available measurement data. In the prediction of Reb in Fig. 2(a), overall
agreement with the measured data by Tomiyama et al. [52] is good although our simulation tends
to underpredict the Reynolds number when the bubble size is over 3.0 mm. These errors for large
bubbles are probably caused by the fact that the shape of a large bubble is not exactly of spheroid.
The upper surface of a large bubble is less convex that the lower surface, breaking the symmetry
[52]. Nevertheless, the errors are within 7% for above cases as compared to the lower bound of
measurement in the experiments. We also observed that when bubbles are put in three sorts of
isotropic turbulence, Reλ ∼ 26, 45, and 73, the rise velocities for all bubbles do not show any
noticeable difference as compared with the bubble in still fluid. The drag coefficient shown in
Fig. 2(b) is defined by

Cd ≡ 4

3

deg

V 2
T

, (28)

which is derived by balancing the buoyancy and drag forces [8]. Comparison against measurement
by Magnaudet and Eames [1] is excellent. The comparison with the drag coefficient for a hard
sphere (dotted line) indicates that the drag coefficient of a bubble starts to deviate from that of a
hard sphere as the bubble Reynolds number exceeds around 100 when the path instability sets in.
For the cases with path instability, we also compared Str with an experimental estimate by Refs.
[8,53] through Cd in contaminated water as given by

Str = 0.100C0.734
d . (29)
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(a) de = 1 mm (b) de = 2 mm (c) de = 3 mm (d) de = 4 mm

FIG. 3. Trajectories and horizontal projections of the spheroidal bubble in still fluid for (a) S − 1.0, (b) S −
2.0, (c) S − 3.0, (d) S − 4.0. The solid line and the dashed line in the lower panel represent X/de and Y/de,
respectively. A rectilinear motion is observed for S − 1.0, and a zigzagging motion can be observed for bubbles
larger than 1 mm.

It clearly indicates that although Str does not show sensitive dependence on the Reynolds number
or size, Str is well fitted by Eq. (29). These good agreements against experimental data confirms
that our approach adopting an immersed boundary method to represent the bubble motion as well
as utilizing a periodic domain in solving the flow around a single bubble is quite valid.

The trajectories of four different sizes of the bubble with their horizontal projections are pre-
sented in Fig. 3, in which each axis is normalized by each bubble’s equivalent diameter de. When
the bubble size is 1.0 mm, as shown in Figs. 3(a) and 3(e), the bubble rises along the rectilinear path
without yielding to path instability. Given that all the trajectories are presented in the coordinates
(X,Y, Z ) where gravity acts in the negative Z direction, all the bubbles are rising in a slightly
oblique manner by roughly 5 degrees. This symmetry-breaking behavior of an obliquely rising
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(a)(a)

(c) (d)

(b)

(c)

(a)(a) (b)

(c) (d)

FIG. 4. Statistical results with respect to the bubble’s locomotion in still fluid (a) bubble Reynolds number
Reb, (b) two-point autocorrelations of the horizontal velocity ρb, (c) conversion frequency spectra ϕ from the
autocorrelations, (d) variation of angle θ along its dominant horizontal direction.

bubble seems to be natural as it was observed in experiments as well [55–57]. As its size becomes
greater than 1.0 mm, the bubble shows zigzagging patterns. It has been reported that the critical
Reynolds number for the zigzagging patterns in tap or contaminated water is around 202 [1,8,58],
which is consistent with our observation that the path instability first occurs for 1.5 mm bubble at
Reb = 218. We present the horizontal amplitude of the zigzagging motion in the dominant direction
in Table I, indicating that the bubble vacillates over 0.8 ∼ 0.9de for most cases except the case
for de = 1.5 mm. It is also noticeable that the oscillation plane of the bubble motion is consistently
maintained for the bubbles of 2 mm and 3 mm, while the plane becomes twisted as the 4 mm bubble
rises.

Various quantities characterizing the zigzagging motion of the bubble are presented in Fig. 4.
Figure 4(a) shows instantaneous bubble Reynolds numbers estimated from the rising velocity of the
bubble for various sizes, indicating that the rising velocity also oscillates when the bubble shows
zigzagging motion. The fluctuations in the bubble Reynolds number are maintained within 5% as
the bubble size increases as listed in Table I. Figures 4(b) and 4(c) represent the autocorrelation of
the bubble’s horizontal velocity ρ(t ) and the corresponding frequency spectra ϕ, which are defined
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(a) (b) (c) (d) 

FIG. 5. Instantaneous vorticity contours ωy around the rising bubble in still fluid for the four cases: (a) S −
1.0, (b) S − 2.0, (c) S − 3.0, (d) S − 4.0.

by

ρ(t ) = 1

2

( 〈vx(t0)vx(t0 + t )〉
〈vx(t0)2〉 + 〈vy(t0)vy(t0 + t )〉

〈vy(t0)2〉
)

, ϕ( f ) =
∫ ∞

0
ρ(t ) cos( f t )dt, (30)

where vx and vy are the horizontal components of the bubble velocity, respectively. It can be seen
from Fig. 4(b) that once the zigzagging motion of the bubble sets in, almost the sinusoidal horizontal
motion of the bubble is clear. It is observed that the autocorrelation of bubbles over 2.0 mm oscillate
more frequently as the bubble size grows. Figure 4(c) offers converted frequency regimes based on
the autocorrelations in Fig. 4(b), which does not show sharp dominant frequency due to the limited
time range of the autocorrelations. The dominant frequency, normalized by (g/de)1/2, increases with
the bubble size. Strouhal number Str in Table I, the frequency normalized by de/VT , also displays
the similar tendency with the bubble size. Figure 4(d) presents the angular variation of the bubble’s
orientation measured from the horizontal component of the bubble’s angular velocity, ωh. Due to
the oblique rising motion of 1 mm bubble, the amplitude of the angular variation maintains constant
at 5◦, and the angle ranges from −30◦ to 37◦ as the size grows. In fact, a bubble usually ascends
with a little inclination from vertical axis while oscillating perpendicularly to the inclined direction
[56].

Figure 5 illustrates the contours of vorticity component ωy, which is almost orthogonal to the
oscillation plane, for the four sizes of the rising bubble. While the symmetric structure of the wake
behind 1.0 mm bubble is observed, asymmetric pairs of vortices are found in the wake of bubbles
greater than 1 mm due to the zigzagging motion. The wakes are ruffled and further enhanced as
the size of the bubble becomes larger. Three-dimensional structure of the wakes is provided in
Fig. 6, which shows isosurfaces of enstrophy �En (= ω2

x + ω2
y + ω2

z ) and the vertical component
of vorticity ωz for 2.0 mm and 3.0 mm bubbles. Wakes behind the bubbles moving in the zigzag
pattern are composed of bilaterally symmetric tails. Especially, the tails are alternately switched
after the horizontal direction of the bubble’s motion is changed as shown in Figs. 6(b) and 6(d).
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(a) de = 2 mm (b) de = 2 mm (c) de = 3 mm (d) de = 3 mm

FIG. 6. Three-dimensional enstrophy structures at �En and isovorticity ωz surfaces around the rising bubble
in still fluid for two cases: (a) S − 2.0 (�En = 1600), (b) S − 2.0 (ωz = ±15), (c) S − 3.0 (�En = 1600),
(d) S − 3.0 (ωz = ±15). Values of red and blue colors for ωz have the value of +15 and −15, respectively.

IV. BEHAVIOR OF A SPHEROIDAL BUBBLE IN ISOTROPIC TURBULENCE

In bubble-laden turbulence, the interaction between bubbles and turbulence shows quite diverse
behavior depending on the relative size of a bubble to the flow length scale. When the bubble size
is smaller than the Kolmogorov length scale, the point-bubble approximation has been adopted in
most numerical investigations [32,59–62], where the motion of a bubble is passively determined
by turbulent fields and the back reaction by the bubbles to turbulence is in many cases negligibly
small [63]. However, for a millimetric size bubble, the mutual interaction between the bubble and
turbulence needs to be fully considered given that the Kolmogorov length scale is a few hundred
microns even in very weak turbulence. In this section, the dynamic behaviors of a spheroidal
bubble of various sizes are analyzed in isotropic turbulence of various strengths. The settings of
the simulation domain, the sizes of the bubble and the resolutions are the same as those for a
single bubble in still fluid in the previous section. Considered range of strength of the background
turbulence is Reλ = 26, 45, and 73 and κmη = 9.89, 3.78, and 2.58, respectively, where κm is the
maximum wavenumber and η is the Kolmogorov length scale. Table II lists considered cases with
the bubble sizes and the Kolmogorov scales in real units. Although only three different turbulent
fields were considered for each size of bubble, the turbulence parameters in real units are all slightly
different for the same Reλ since the size of a bubble relative to the domain length was differently
selected for efficient simulation.

Table III lists 16 cases considered in the investigation of the effect of the background turbulence
onto the behavior of a bubble including the case in still fluid. For each size of the bubble, the
results for three different strengths of turbulence are compared against the case in still fluid. The
Kolmogorov length scale ranges between 1/4th and 1/40th of the bubble size while the Taylor
micro-scale varies from twice to one half the bubble size. In case of bubbles over 2 mm, the small
difference of u′/VT at the same size and turbulent fluctuation does not cause any noticeable change
in the rise velocity in still fluid and considered turbulence. A noticeable effect of turbulence is
found for 1 mm bubble, which showed the rectilinear motion in still fluid; turbulence induces the
path instability as confirmed in the trajectory shown in Figs. 7(a) due to relatively large value of
u′/VT than other bubbles. Figure 7 displays trajectory of the bubbles of four sizes and its horizontal
projection in three different turbulences compared against the case in still fluid. When the bubble
size is 1 mm, the strength of turbulence at Reλ = 26 seems so marginal that it induces the path
instability while turbulence at Reλ = 45, 73 are strong enough for passive displacement of the
bubble by turbulence to dominate the path instability. Actually, we can observe a slight decrease
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TABLE II. Cases considered in this study. For real unit conversion, we use ν = 0.01 cm2/s for water, g =
981 cm/s2. de, ε, η, τη and vη are the bubble size, the Kolmogorov length scale, the Kolmogorov time scale
and the Kolmogorov velocity scale in real units, respectively, which are dependent on the size [44,49]. Due to
a restriction of domain sizes, we estimated this by employing the same de in Table I, which is not proportional
for the bubble size in computer units, so the estimation of real turbulence is different for each case.

Case Reλ de (cm) ε (cm2/s3) η (cm) τη (s) vη (cm/s)

T 1 − 1.0 26 0.1 2.331 0.0255 0.0655 0.3907
T 2 − 1.0 45 106.3 0.0098 0.0097 1.015
T 3 − 1.0 73 472.6 0.0068 0.0046 1.474
T 1 − 2.0 26 0.2 0.5487 0.0367 0.1350 0.2722
T 2 − 2.0 45 25.00 0.0141 0.0200 0.7071
T 3 − 2.0 73 110.8 0.0097 0.0095 1.026
T 1 − 3.0 26 0.3 0.4672 0.0382 0.1463 0.2614
T 2 − 3.0 45 21.43 0.0147 0.0216 0.6804
T 3 − 3.0 73 94.26 0.0101 0.0103 0.9853
T 1 − 4.0 26 0.4 0.2600 0.0443 0.1961 0.2258
T 2 − 4.0 45 11.89 0.0170 0.0290 0.5872
T 3 − 4.0 73 52.51 0.0117 0.0138 0.8512

in Reb in Table III as the turbulence strength increases. It is conjectured that this is contributed from
two mechanisms. One is the turbulent fluctuation which triggers the enhancement of the vorticity
production on the bubble surface, resulting in pronounced path instability. The other is isotropic
turbulent eddies mainly driving the bubble in random direction, reducing the bubble rise velocity.
Similar behavior is found for 2 mm bubble while for the bubbles of size 3 and 4 mm, the trajectories

TABLE III. Statistical quantities characterizing the behavior of bubbles in turbulence. The parameters
related with bubbles such as Ga and χ are the same as those in Table I for cases in still fluid. vh(=
(vx,rms + vy,rms)/2) is the averaged horizontal r.m.s. velocity of the bubble. The bubble sizes are compared
against the Kolmogorov length scale η and the Taylor microscale λ. Reb is the averaged bubble Reynolds
number after the bubble reaches statistically stationary state in turbulent flows. The obliquity angle for bubbles
in still fluid is different from the range of the angle in the maximum oscillation plane listed in Table I.

Case Ga χ η/de λ/de u′/VT vh/VT Reb Str α

S − 1.0 99.0 1.03 − − 0 0.004 107 0 0◦

T 1 − 1.0 0.257 2.369 0.096 0.160 104 0.091 20◦

T 2 − 1.0 0.098 1.312 0.357 0.436 98 0.114 57◦

T 3 − 1.0 0.067 1.141 0.671 0.691 96 0.125 104◦

S − 2.0 280.1 1.10 − − 0 0.113 309 0.114 35◦

T 1 − 2.0 0.184 1.700 0.045 0.194 314 0.116 42◦

T 2 − 2.0 0.070 0.942 0.166 0.289 293 0.121 63◦

T 3 − 2.0 0.048 0.819 0.300 0.342 299 0.130 88◦

S − 3.0 514.6 1.18 − − 0 0.142 512 0.143 48◦

T 1 − 3.0 0.128 1.180 0.039 0.255 510 0.145 52◦

T 2 − 3.0 0.049 0.654 0.140 0.280 503 0.150 66◦

T 3 − 3.0 0.033 0.568 0.252 0.315 512 0.155 68◦

S − 4.0 792.5 1.28 − − 0 0.178 756 0.168 49◦

T 1 − 4.0 0.111 1.025 0.030 0.230 763 0.170 57◦

T 2 − 4.0 0.042 0.567 0.107 0.256 748 0.176 66◦

T 3 − 4.0 0.029 0.494 0.198 0.273 751 0.180 69◦
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(a) de = 1 mm (b) de = 2 mm (c) de = 3 mm (d) de = 4 mm

FIG. 7. Trajectories and the horizontal projections of the spheroidal bubble in three kinds of isotropic
turbulence at Reλ = 26 (red line), 45 (blue line), 73 (black line) compared with cases in still fluid (dashed line)
for (a) 1.0 mm bubble, (b) 2.0 mm, (c) 3.0 mm, (d) 4.0 mm, respectively. The lines in lower panel represent
Y/de.

of the bubble undergoing the path instability are less modified by turbulence. From the investigation
of u′/VT , it can be conjectured that when this ratio is below 0.15, the path instability is hardly
influenced by turbulence.

In Fig. 8, we describe the variation of the bubble Reynolds number, the temporal autocorrelation
of bubble’s horizontal velocity, the corresponding frequency spectra, and the obliquity angle in the
horizontal plane for all cases. The variation of instant bubble Reynolds number shown in Fig. 8(a)
shows that although the average bubble Reynolds number, or equivalently the average rise velocity
of the bubble, is hardly affected by turbulence as confirmed in Table III, the fluctuations for small
bubble (2 mm) increase with the strength of turbulence since small bubbles can be more easily
manipulated by turbulence. However, it is noticeable that the average bubble Reynolds number for

073603-14



PATH INSTABILITY OF A NO-SLIP SPHEROIDAL …

(a) (b)

(c) (d)

FIG. 8. Statistics of motions for 2.0 mm, 4.0 mm bubbles in turbulence Reλ = 26, 45, 73. (a) bubble
Reynolds number Reb, (b) two-point autocorrelations of the horizontal velocity ρ, (c) the frequency spectra
ϕ from the autocorrelations, (d) temporal fluctuation of obliquity angle θx about the X direction.

1 mm bubble slightly decreases with the strength of turbulence as shown in Table III. It suggests
that the wild zigzagging motion of 1 mm bubble induced by turbulence is responsible for the slight
retardation of bubble rising.

The autocorrelation of the bubble’s horizontal velocity in turbulence provided in Fig. 8(b) clearly
shows decaying behavior compared with those for bubbles in still fluid shown in Fig. 4(b), with
this behavior more pronounced for the small bubble (2 mm), for which the path instability is more
disrupted by turbulence. The comparison also indicates that turbulence increases the oscillation
frequency of the path instability. The corresponding spectrum in Fig. 8(c) confirms this. Between
2 mm bubble and 4 mm bubble, the oscillation frequency normalized by d−1/2

e increases with the
size as shown in Figs. 8(b) and 8(c).

The averaged obliquity angle α listed in Table III is defined as follows:

α ≡ [(θx,max − θx,min) + (θy,max − θy,min)]/2, (31)

where θx,max, θx,min, θy,max, and θy,min are the largest and smallest angles of the horizontal plane of
the bubble estimated by the integral of the corresponding horizontal component of the bubble’s
angular velocity, ωc,x and ωc,y. Obviously, turbulence increases the obliquity angle, particularly
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(c) (d)

(a) (b)(a)

(c) (d)

FIG. 9. Various tatistics of bubble locomotion in dissipation ε (a) zigzagging frequency f in real unit,
(b) Strouhal number Str in Reλ, (c) normalized horizontal velocity vh/VT , (d) averaged obliquity angle α.

more pronouncing for 1mm bubble. Figure 8(d) shows fluctuations of obliquity angle θx of two
bubbles 2.0 mm, 4.0 mm for the period of 10 � t (g/de)1/2 � 40 after the initial transient behavior
vanishes. 2.0 mm bubble in the strongest turbulence oscillates around −40◦, which seems odd.
However, since 2 mm bubble’s aspect ratio ξ = 1.10, proximately spherical, nonspherical shape
does not play a role in strong turbulence. Similar behavior was observed for 1 mm bubble (figures
not shown). In other cases, the bubble oscillates while maintaining the orientation of spheroid. For
the same size of the bubble, the oscillation increases with turbulence strength as shown for 4 mm
bubble in Fig. 8(d).

Figure 9 graphically summarizes the effect of turbulence in terms of zigzagging frequency,
Strouhal number with Reλ, normalized horizontal velocity by the rise velocity, the averaged obliq-
uity angle as a function of turbulence dissipation ε in real units. Note that for comparison against
the case in still fluid, the values of those quantities in still fluid are plotted at ε = 10−3 cm2/s3 in
the log-scale axis. The oscillation frequency in real units increases with the strength of turbulence
for all sizes of bubble with 1 mm bubble showing the most rapid increase [Fig. 9(a)], whereas the
nondimensional frequency Str shows much less sensitivity with Reλ [Fig. 9(b)]. For the similar
strength of turbulence, the frequency in real units decreases with the size of bubble while Str
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(a) (b)(a)(a) (b)

FIG. 10. The horizontal mean-squared dispersion H (t ) in time for (a) 1.0 mm, 2.0 mm bubbles,
(b) 3.0 mm, 4.0 mm bubbles. H (t ) shows a ballistic increase ∼t2 at an early stage and then diffusive ∼t later.
The normalized Lagrangian integral time scale in each turbulence for each bubble size, TL (g/de)1/2 are 60.5
for T 1 − 1.0, 7.2 for T 2 − 1.0, 3.3 for T 3 − 1.0, 88.0 for T 1 − 2.0, 10.5 for T 2 − 2.0, 4.8 for T 3 − 2.0,
78.0 for T 1 − 3.0, 9.3 for T 2 − 3.0, 4.2 for T 3 − 3.0, 90.5 for T 1 − 4.0, 10.8 for T 2 − 4.0, 4.9 for T 3 − 4.0,
respectively.

increases with the size. The horizontal velocity relative to the rise velocity presented in Fig. 9(c)
increases slightly with the strength of turbulence except for 1 mm bubble the motion of which is
most sensitively affected by turbulence due to its small size. The obliquity angle shown in Fig. 9(d)
exhibits similar behavior to the horizontal velocity of the bubble in Fig. 9(c). It clearly demonstrates
that the small-size bubbles (1 or 2 mm) are easily manipulated by turbulence.

In Fig. 10, we investigate the horizontal bubble dispersion represented by

H (t ) = 〈[xc(t − t0) − xc(t0)]2〉 + 〈[yc(t − t0) − yc(t0)]2〉
2d2

e

, (32)

where xc(t ), yc(t ) are horizontal positions of the bubble after the elapsed time t − t0 from the
reference instance t0. For statistical average, the average over all the available reference instances
of a single bubble was carried out. 1 mm bubble in still fluid [case S − 1.0 in In Fig. 10(a)]
displays ballistic behavior all the way since the bubble shows oblique rectilinear motion as shown
in Fig. 3. As turbulence induces the path instability, dispersion shows typical behavior of transition
from ballistic to diffusive dispersion around t (g/de)1/2 ∼ 10. For bubbles 2 mm or larger, the path
instability in still fluid or weak turbulence causes oscillatory behavior in dispersion in diffusion
stage while strong turbulence tends to suppress this oscillation, which was also reported in Ref. [16]
through experiments. While the bubble’s motion is predominantly affected by the path instability,
the overall level of dispersion is lower than that in strong turbulence. Similar pattern was observed
in the behavior of micro-bubbles in stratified turbulence [62]. As the bubble size becomes larger,
the dispersion normalized by the size of the bubble tends to approach universal behavior as shown
in Fig. 10(b).

Finally, Fig. 11 provides instantaneous vorticity contours ωy for all cases in turbulence in
Table III. Meandering distribution of the wake vortices induced by turbulence can be observed
for 1.0 mm bubble at the lowest Reλ. In this weak turbulence, the vortices generated by the bubble’s
motion are much stronger than the background vorticity, whereas they are comparable to each other
for the cases in strong turbulence. In very strong turbulence, the wake vortices are indistinguishable
although the path of the bubble is slightly discernible for large size bubbles.
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de = 1 mm de = 2 mm de = 3 mm de = 4 mm

Re
λ
 = 26

Re
λ
 = 45

Re
λ
 = 73

ωyτη

ωyτη

ωyτη

14.7

8.8

2.9

-2.9

-8.8

-14.7

2.2

1.3

0.4

-0.4

-1.3

-2.2

1.0

0.6

0.2

-0.2

-0.6

-1.0

FIG. 11. Instantaneous vorticity contours ωy of flow around a bubble for 4 sizes in three sorts of isotropic
turbulence.

V. CONCLUSION

We numerically investigated path instability of a millimeter-scale air bubble in quiescent fluid
and three different strengths of isotropic turbulence. To simulate the interaction between a fully
contaminated bubble ranging 1.0 ∼ 4.0 mm in size and the background turbulence, an immersed
boundary method was adopted to impose the no-slip boundary condition on the bubble surface. In
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solving the governing equations for a bubble, the singularity problem induced by the diminishing
density ratio was avoided by adding the virtual mass force to the equation of motion. Considered
range of the Galilean number is 100 to 800.

We first described the behavior of a bubble in quiescent fluid. 1.0 mm bubble showed a rectilinear
path and the zigzag pattern caused by the path instability was observed for 2.0 mm or larger
bubble. To characterize the zigzag motion of a bubble, two-point correlations of bubble’s horizontal
velocity and the oscillation angle of the bubble’s orientation were investigated. The nondimensional
frequency of the oscillation, Str slightly increases with the size of the bubble, which is similar
to the result in Ref. [64] in that quicker vortex shedding is triggered by turbulence, exhibiting
good agreement with the known empirical formula. The angle variation of the bubble’s orientation
increases with the bubble size, approaching ±30◦. In addition, we observed that wakes behind
bubbles were formed as tails switched alternately after zigzagging occurred.

Then, we investigated the path instability of a bubble in isotropic turbulence with Reλ ∼ 26, 45,
and 73. Due to a relatively large value of u′/VT , 1 mm bubble revealed pronounced path instability
with slightly decreased rise velocity according to an increase in Reλ. However, the small range
of u′/VT at the same size and the turbulent fluctuation did not cause the significant difference of
bubble rise velocity over 2 mm bubble. The zigzagging frequency and averaged obliquity of the
bubble increased with the enhancement of turbulence. We also observed that wakes behind the
bubble became shorter and tangled at high Reλ.

Finally, our study is confined to a fully contaminated bubble with fixed shape, on the surface of
which the no-slip condition is satisfied. Therefore, more diverse features of a rising bubble such as
helical pathways were not observed, which is a typical pattern found for a bubble in pure water.
Although the immersed boundary method is effective in describing motions of finite-size particles,
the more advancement is still required to handle the more complicated interface conditions. For
instance, Schwarz et al. [65] tried to utilize an immersed boundary method to observe an impact of
flows on bubble shapes. Kempe et al. [66] imposed the free-slip boundary condition on a spheroidal
particle fixated to center in a domain. With these methods or more advanced algorithm, it could be
possible to investigate various features of a millimetric bubble in various conditions in future.

ACKNOWLEDGMENT

This research was supported by Samsung Science & Technology Foundation (Grant No.
SSTFBA1702-03).

[1] J. Magnaudet and I. Eames, The motion of high-Reynolds-number bubbles in inhomogeneous flows,
Annu. Rev. Fluid Mech. 32, 659 (2000).

[2] M. Wu and M. Gharib, Experimental studies on the shape and path of small air bubbles rising in clean
water, Phys. Fluids 14, L49 (2002).

[3] G. Riboux, F. Risso, and D. Legendre, Experimental characterization of the agitation generated by bubbles
rising at high Reynolds number, J. Fluid Mech. 643, 509 (2010).

[4] W. Shew, S. Poncet, and J.-F. Pinton, Path instability and wake of a rising bubble, arXiv:hal-00013378v1
(2005).

[5] K. Lunde and R. J. Perkins, Shape oscillations of rising bubbles, Appl. Sci. Res. 58, 387 (1997).
[6] C. Veldhuis, A. Biesheuvel, and L. Van Wijngaarden, Shape oscillations on bubbles rising in clean and in

tap water, Phys. Fluids 20, 040705 (2008).
[7] R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles (Dover Publications, New York,

2005).
[8] Y. Tagawa, S. Takagi, and Y. Matsumoto, Surfactant effect on path instability of a rising bubble, J. Fluid

Mech. 738, 124 (2014).

073603-19

https://doi.org/10.1146/annurev.fluid.32.1.659
https://doi.org/10.1063/1.1485767
https://doi.org/10.1017/S0022112009992084
https://hal.archives-ouvertes.fr/hal-00013378v1/document
https://doi.org/10.1023/A:1000864525753
https://doi.org/10.1063/1.2911042
https://doi.org/10.1017/jfm.2013.571


GIHUN SHIM, JONGSU KIM, AND CHANGHOON LEE

[9] Y. Tagawa, T. Ogasawara, S. Takagi, and Y. Matsumoto, Surfactant effects on single bubble motion and
bubbly flow structure, in The 6th International Symposium on Multiphase Flow, Heat Mass Transfer and
Energy Conversion, edited by L. Guo, D. D. Joseph, Y. Matsumoto, Y. Sommerfeld, and Y. Wang, AIP
Conf. Proc. No. 1207 (AIP, New York, 2010), p. 43.

[10] M. K. Tripathi, K. C. Sahu, and R. Govindarajan, Dynamics of an initially spherical bubble rising in
quiescent liquid, Nat. Commun. 6, 1 (2015).

[11] G. Mougin and J. Magnaudet, Path Instability of a Rising Bubble, Phys. Rev. Lett. 88, 014502 (2001).
[12] W. L. Shew and J. F. Pinton, Dynamical Model of Bubble Path Instability, Phys. Rev. Lett. 97, 144508

(2006).
[13] G. Mougin and J. Magnaudet, The generalized Kirchhoff equations and their application to the interaction

between a rigid body and an arbitrary time-dependent viscous flow, Int. J. Multiphase Flow 28, 1837
(2003).

[14] J. C. Cano-Lozano, P. Bohorquez, and C. Martínez-Bazán, Wake instability of a fixed axisymmetric
bubble of realistic shape, Int. J. Multiphase Flow 51, 11 (2013).

[15] J. C. Cano-Lozano, C. Martínez-Bazán, J. Magnaudet, and J. Tchoufag, Paths and wakes of deformable
nearly spheroidal rising bubbles close to the transition to path instability, Phys. Rev. Fluids 1, 053604
(2016).

[16] V. Mathai, S. G. Huisman, C. Sun, D. Lohse, and M. Bourgoin, Dispersion of Air Bubbles in Isotropic
Turbulence, Phys. Rev. Lett. 121, 054501 (2018).

[17] J. T. Kim, J. Nam, S. Shen, C. Lee, and L. P. Chamorro, On the dynamics of air bubbles in Rayleigh-
Bénard convection, J. Fluid Mech. 891, A7 (2020).

[18] J. Lu and G. Tryggvason, Dynamics of nearly spherical bubbles in a turbulent channel upflow, J. Fluid
Mech. 732, 166 (2013).

[19] V. Mathai, V. N. Prakash, J. Brons, C. Sun, and D. Lohse, Wake-Driven Dynamics of Finite-Sized Buoyant
Spheres in Turbulence, Phys. Rev. Lett. 115, 124501 (2015).

[20] B. E. Calzavarini, R. Volk, and M. Bourgoin, Acceleration statistics of finite-sized particles in turbulent
flow: The role of Faxeén forces, J. Fluid Mech. 630, 179 (2009).

[21] A. Loisy and A. Naso, Interaction between a large buoyant bubble and turbulence, Phys. Rev. Fluids 2,
014606 (2017).

[22] V. Mathai, D. Lohse, and C. Sun, Bubbly and buoyant particle laden turbulent flows, Annu. Rev. Condens.
Matter Phys. 11, 529 (2020).

[23] A. D. Cluzeau, G. Bois, A. Toutant, A. D. Cluzeau, G. Bois, and A. T. Analysis, Analysis and modelling
of Reynolds stresses in turbulent bubbly up-flows from direct numerical simulations, J. Fluid Mech. 866,
132 (2020).

[24] S. Takagi and Y. Matsumoto, Surfactant effects on bubble motion and bubbly flows, Annu. Rev. Fluid
Mech. 43, 615 (2011).

[25] V. Eswaran and S. B. Pope, An examination of forcing in direct numerical simulations of turbulence,
Comput. Fluids 16, 257 (1988).

[26] J. Jung, K. Yeo, and C. Lee, Intermittency of acceleration in isotropic turbulence, Phys. Rev. E 77, 016307
(2008).

[27] Y. Choi, B.-G. Kim, and C. Lee, Alignment of velocity and vorticity and the intermittent distribution of
helicity in isotropic turbulence, Phys. Rev. E 80, 017301 (2009).

[28] A. H. Abdelsamie and C. Lee, Decaying versus stationary turbulence in particle-laden isotropic turbu-
lence: Turbulence modulation mechanism, Phys. Fluids 24, 015106 (2012).

[29] A. H. Abdelsamie and C. Lee, Decaying versus stationary turbulence in particle-laden isotropic turbu-
lence: Heavy particle statistics modifications, Phys. Fluids 25, 033303 (2013).

[30] Y. Park and C. Lee, Gravity-driven clustering of inertial particles in turbulence, Phys. Rev. E 89,
061004(R) (2014).

[31] I. Fouxon, Y. Park, R. Harduf, and C. Lee, Inhomogeneous distribution of water droplets in cloud
turbulence, Phys. Rev. E 92, 033001 (2015).

[32] I. Fouxon, G. Shim, S. Lee, and C. Lee, Multifractality of fine bubbles in turbulence due to lift, Phys. Rev.
Fluids 3, 124305 (2018).

073603-20

https://doi.org/10.1038/ncomms7268
https://doi.org/10.1103/PhysRevLett.88.014502
https://doi.org/10.1103/PhysRevLett.97.144508
https://doi.org/10.1016/S0301-9322(02)00078-2
https://doi.org/10.1016/j.ijmultiphaseflow.2012.11.005
https://doi.org/10.1103/PhysRevFluids.1.053604
https://doi.org/10.1103/PhysRevLett.121.054501
https://doi.org/10.1017/jfm.2020.148
https://doi.org/10.1017/jfm.2013.397
https://doi.org/10.1103/PhysRevLett.115.124501
https://doi.org/10.1017/S0022112009006880
https://doi.org/10.1103/PhysRevFluids.2.014606
https://doi.org/10.1146/annurev-conmatphys-031119-050637
https://doi.org/10.1017/jfm.2019.100
https://doi.org/10.1146/annurev-fluid-122109-160756
https://doi.org/10.1016/0045-7930(88)90013-8
https://doi.org/10.1103/PhysRevE.77.016307
https://doi.org/10.1103/PhysRevE.80.017301
https://doi.org/10.1063/1.3678332
https://doi.org/10.1063/1.4795333
https://doi.org/10.1103/PhysRevE.89.061004
https://doi.org/10.1103/PhysRevE.92.033001
https://doi.org/10.1103/PhysRevFluids.3.124305


PATH INSTABILITY OF A NO-SLIP SPHEROIDAL …

[33] M. Tanaka and D. Teramoto, Modulation of homogeneous shear turbulence laden with finite-size particles,
J. Turbul. 16, 979 (2015).

[34] M. Tanaka, Effect of gravity on the development of homogeneous shear turbulence laden with finite-size
particles, J. Turbul. 18, 1144 (2017).

[35] S. Schwarz, T. Kempe, and J. Fröhlich, A temporal discretization scheme to compute the motion of light
particles in viscous flows by an immersed boundary method, J. Comput. Phys. 281, 591 (2015).

[36] M. N. Ardekani, P. Costa, W. P. Breugem, and L. Brandt, Numerical study of the sedimentation of
spheroidal particles, Int. J. Multiphase Flow 87, 16 (2016).

[37] H. Lee, I. Fouxon, and C. Lee, Behavior of sedimenting ellipsoidal particles in isotropic turbulence
(unpublished).

[38] J. Jang, Numerical study of finite-size particle laden turbulent channel flows, Ph.D. thesis, Yonsei
University, 2019.

[39] M. D. Shuster and S. D. Oh, Three-axis attitude determination from vector observations, J. Guid. Control
Dynam. 4, 70 (1981).

[40] M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows,
J. Comput. Phys. 209, 448 (2005).

[41] T. Kempe and J. Fröhlich, An improved immersed boundary method with direct forcing for the simulation
of particle laden flows, J. Comput. Phys. 231, 3663 (2012).

[42] S. Tschisgale, T. Kempe, and J. Fröhlich, A noniterative immersed boundary method for spherical
particles of arbitrary density ratio, J. Comput. Phys. 339, 432 (2017).

[43] V. Tavanashad and S. Subramaniam, Fully resolved simulation of dense suspensions of freely evolving
buoyant particles using an improved immersed boundary method, Int. J. Multiphase Flow 132, 103396
(2020).

[44] K. Yeo, S. Dong, E. Climent, and M. R. Maxey, Modulation of homogeneous turbulence seeded with
finite size bubbles or particles, Int. J. Multiphase Flow 36, 221 (2010).

[45] J. Jang and C. Lee, An immersed boundary method for nonuniform grids, J. Comput. Phys. 341, 1 (2017).
[46] J. Jang and C. Lee, Modification of turbulence and stratification of stably stratified turbulent channel flows

by finite-size particles, Phys. Rev. Fluids 3, 124309 (2018).
[47] J. J. Derksen, Direct numerical simulations of aggregation of monosized spherical particles in homoge-

neous isotropic turbulence, AIChE J. 58, 2589 (2012).
[48] W. Fornari, F. Picano, and L. Brandt, Sedimentation of finite-size spheres in quiescent and turbulent

environments, J. Fluid Mech. 788, 640 (2016).
[49] M. Tanaka, Motion of spherical bubbles in homogeneous shear turbulence, Fluid Dynam. Res. 51, 035505

(2019).
[50] C. S. Peskin, Numerica: The immersed boundary method, Acta Numerica 11, 479 (2002).
[51] A. M. Roma, C. S. Peskin, and M. J. Berger, An adaptive version of the immersed boundary method, J.

Comput. Phys. 153, 509 (1999).
[52] A. Tomiyama, G. P. Celata, S. Hosokawa, and S. Yoshida, Terminal velocity of single bubbles in surface

tension force dominant regime, Int. J. Multiphase Flow 28, 1497 (2002).
[53] H. Tsuge and S. Hibino, The onset conditions of oscillatory motion of single gas bubbles rising in various

liquids, J. Chem. Eng. Jpn. 10, 66 (1977).
[54] S. Aoyama, K. Hayashi, S. Hosokawa, and A. Tomiyama, Shapes of single bubbles in infinite stagnant

liquids contaminated with surfactant, Exp. Therm. Fluid Sci. 96, 460 (2018).
[55] E. Alméras, V. Mathai, D. Lohse, and C. Sun, Experimental investigation of the turbulence induced by a

bubble swarm rising within incident turbulence, J. Fluid Mech. 825, 1091 (2017).
[56] E. Kelley and M. Wu, Path Instabilities of Rising Air Bubbles in a Hele-Shaw Cell, Phys. Rev. Lett. 79,

1265 (1997).
[57] M. Wu and M. Gharib, Path instabilities of air bubbles rising in clean water, arXiv:patt-sol/9804002.
[58] R. Bel Fdhila and P. C. Duineveld, The effect of surfactant on the rise of a spherical bubble at high

Reynolds and Peclet numbers, Phys. Fluids 8, 310 (1996).
[59] I. M. Mazzitelli, D. Lohse, and F. Toschi, On the relevance of the lift force in bubbly turbulence, J. Fluid

Mech. 488, 283 (2003).

073603-21

https://doi.org/10.1080/14685248.2015.1050105
https://doi.org/10.1080/14685248.2017.1363393
https://doi.org/10.1016/j.jcp.2014.10.039
https://doi.org/10.1016/j.ijmultiphaseflow.2016.08.005
https://doi.org/10.2514/3.19717
https://doi.org/10.1016/j.jcp.2005.03.017
https://doi.org/10.1016/j.jcp.2012.01.021
https://doi.org/10.1016/j.jcp.2017.03.026
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103396
https://doi.org/10.1016/j.ijmultiphaseflow.2009.11.001
https://doi.org/10.1016/j.jcp.2017.04.014
https://doi.org/10.1103/PhysRevFluids.3.124309
https://doi.org/10.1002/aic.12761
https://doi.org/10.1017/jfm.2015.698
https://doi.org/10.1088/1873-7005/ab1572
https://doi.org/10.1017/S0962492902000077
https://doi.org/10.1006/jcph.1999.6293
https://doi.org/10.1016/S0301-9322(02)00032-0
https://doi.org/10.1252/jcej.10.66
https://doi.org/10.1016/j.expthermflusci.2018.03.015
https://doi.org/10.1017/jfm.2017.410
https://doi.org/10.1103/PhysRevLett.79.1265
http://arxiv.org/abs/arXiv:patt-sol/9804002
https://doi.org/10.1063/1.868787
https://doi.org/10.1017/S0022112003004877


GIHUN SHIM, JONGSU KIM, AND CHANGHOON LEE

[60] I. M. Mazzitelli, D. Lohse, and F. Toschi, The effect of microbubbles on developed turbulence, Phys.
Fluids 15, L5 (2003).

[61] I. M. Mazzitelli and D. Lohse, Lagrangian statistics for fluid particles and bubbles in turbulence, New J.
Phys. 6, 203 (2004).

[62] G. Shim, H. Park, S. Lee, and C. Lee, Behavior of microbubbles in homogeneous stratified turbulence,
Phys. Rev. Fluids 5, 074302 (2020).

[63] H. Shim and C. Lee, Two-way interaction between isotropic turbulence and dispersed bubbles, J. Mech.
Sci. Technol. 35, 1527 (2021).

[64] A. A. Naso, The interaction between a solid particle and a turbulent flow, New J. Phys. 12, 033040 (2010).
[65] S. Schwarz, T. Kempe, and J. Fröhlich, An immersed boundary method for the simulation of bubbles with

varying shape, J. Comput. Phys. 315, 124 (2016).
[66] T. Kempe, M. Lennartz, S. Schwarz, and J. Fröhlich, Imposing the free-slip condition with a continuous

forcing immersed boundary method, J. Comput. Phys. 282, 183 (2015).

073603-22

https://doi.org/10.1063/1.1528619
https://doi.org/10.1088/1367-2630/6/1/203
https://doi.org/10.1103/PhysRevFluids.5.074302
https://doi.org/10.1007/s12206-021-0317-6
https://doi.org/10.1088/1367-2630/12/3/033040
https://doi.org/10.1016/j.jcp.2016.01.033
https://doi.org/10.1016/j.jcp.2014.11.015

