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The dynamics of a neutrally buoyant, eccentric compound drop, suspended in a
Poiseuille flow, in the presence of an external temperature gradient have been analyzed
here. Assuming the energy and momentum transport to be diffusion-dominated, we derive
approximate analytical solutions for the temperature and the velocity fields and subse-
quently deduce the deformation using asymptotic analysis in bispherical coordinates. We
establish that depending on the direction, the presence of an imposed temperature gradient
may speed up or slow down the drops. The temperature gradient has a stronger influence
on the velocity of the inner drop at different eccentricities, which in turn alters the relative
velocity between the drops. As a result, it is possible to achieve equilibrium configurations,
where both the drops move with the same velocity. Two such equilibrium configurations
exist for temperature gradients beyond a critical limit, one of which is stable. It is revealed
that the imposed temperature gradient always increases the deformation as compared to an
isothermal flow. Depending on the position of the inner core with respect to the outer drop
center and the direction of the applied temperature gradient, the shape of the inner drop
may change from prolate to oblate (or vice versa), as it travels within the outer drop. The
deformation in the inner drop increases with eccentricity, while the outer drop sees very
little deformation even for relatively large capillary numbers.

DOI: 10.1103/PhysRevFluids.6.073602

I. INTRODUCTION

Compound drops or double emulsions are characterized as a single drop or multiple drops
completely or partially engulfed by another drop of an immiscible fluid, itself suspended in a third
immiscible continuous medium. These entities have been the subject of numerous studies over past
decades, owing to their far-ranging applications in microfluidics [1,2], the food industry [3,4], the
pharmaceutical industry [5,6], and biomedicine [7,8], as well as in separation processes [9]. As a
result of such diverse applications, various aspects of the dynamics of compound drops have been
extensively investigated [10], which include a wide spectrum of imposed background conditions,
such as settling under gravity and uniform flow [11–13], deformation and breakup of compound
drops in extensional and shear flows [14–17], and the impact of compound drops onto solid or
liquid surfaces [18,19], to underline a few.

A review of the related literature further reveals that droplet motion and migration in parabolic
and especially in Poiseuille flows has been another area of in-depth research [20–23], mainly
attributable to the prevalence of such flows across various platforms [24–27]. While various aspects
of motion of single drops in Poiseuille flows, with and without external effects such as electric fields
[28,29], imposed temperature gradients [30,31], the presence of surface impurities [32,33], etc.,
have been extensively explored, thorough analyses of the motion of compound drops in Poiseuille
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flows are rather scarce and limited largely to a handful of studies [34–37]. The reason may be
attributed to the fact that in Poiseuille flows, the inner and the outer drops tend to move with different
velocities, giving rise to increasing eccentricity, which is mathematically extremely inconvenient to
handle. As a result, many of the existing studies on compound drops [14,38–40] focus on concentric
configurations.

It has long been established that a drop’s velocity and hence its trajectory can be finely tuned, by
manipulating the interfacial tension [41], using Marangoni effects. In this regard, thermocapillary
effects play an important role in droplet-based microfluidics [42–46], as evident from a wealth of
insightful studies [45–48]. Such effects have also been demonstrated to be useful in microgravity
experiments on droplets [49,50], especially where the density difference between the dispersed and
the continuous phases are negligible. As such, thermocapillary migrations of double emulsions
have been investigated in a handful of previous studies [38,51–54], exploring the effect of an
imposed temperature gradient on migration and deformation of partially or fully engulfed compound
drops, in otherwise quiescent fluids. For instance, Morton et al. [52] were among the first ones to
analyze how an externally applied temperature gradient alters the settling of a compound drop in an
unbounded medium. This was followed by studies such as thermocapillary migration of concentric
compound drops in the presence of surface impurities [38], among many others [53,54]. These
studies generally reveal that under the influence of a thermal gradient, the compound drop tends
to migrate toward the higher temperature and when the drops are concentric, the inner drop moves
faster than the outer drop.

In the case of completely engulfed compound drops, equilibrium of the core (i.e., the innermost
phase), which amounts to no relative motion between the inner and the outer drops’ centers
of mass, becomes especially critical when the core is used for transport of sensitive materials
[4,55]. It has been previously shown [12] that by carefully choosing the density of different
phases, the inner core of a settling compound drop in an otherwise quiescent surrounding medium
can be stabilized. These stable equilibrium configurations lie upstream and downstream of the
outer drop’s center. Later, Gouz and Sadhal [56] established that stable configurations also ex-
isted for compound drops, settling in the presence of externally imposed electric fields. Other
external fields, such as imposed temperature gradients, have also been shown to be effective in
generating such equilibrium configurations in settling compound drops [52]. A close review of
the literature, however, reveals that a comprehensive theoretical analysis addressing the effects
of an imposed temperature gradient on the movement and deformation of compound drops in
Poiseuille flows still remains an open question. Such a scenario can be an effective way of
transporting double emulsions, with a strong possibility of a stabilized inner core, critical for many
applications.

With the above motivation in mind, here we analyze the motion and deformation of an axisym-
metric neutrally buoyant compound drop, suspended in a Poiseuille flow, subject to an externally
imposed temperature gradient. We consider eccentric configurations, wherein the possibilities of the
inner drop center residing upstream and downstream of the outer drop center are explored separately.
A bispherical coordinate system [57,58] is used to mathematically represent both the drop surfaces.
Assuming the interfacial deformations to remain small, we employ asymptotic analysis to deduce
the solutions for the flow variables. Our analysis reveals that the drop velocities may both increase
and decrease depending on the direction and magnitude of the imposed temperature gradient, while
its influence diminishes with increasing eccentricity. We further establish that the deformation of
both the drops generally increases with the imposed temperature gradient, while it also strongly
depends on fluid properties as well as other geometrical factors. Finally, we demonstrate that below
a critical temperature gradient, two possible “equilibrium” eccentric configurations of the compound
drop may be realized, one of which is stable. We establish that this constitutes an example of
saddle-node bifurcation, a characteristic prevalent in many nonlinear systems [59]. We extensively
validate our results for droplet velocities and deformations by comparing them with studies from
the literature [30,60], as well as with the closed-form analytical solutions derived for concentric
compound drops.
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FIG. 1. Schematic of a neutrally buoyant eccentric compound drop in a Poiseuille flow (u′
∞), with an

imposed temperature gradient (G′). A cylindrical coordinate system (ρ ′, ϕ, z′
c) and a spherical coordinate

system (r′, θ, ϕ) are attached to the outer drop’s center of mass. The two drops in general move with different
velocities given by U′

2 and U′
3 for the outer and inner drop, respectively.

The rest of the paper is arranged as follows. In Sec. II, we lay out the details of the physical
system under consideration, followed by Sec. III, where the governing equations and boundary
conditions are discussed. In Sec. IV, asymptotic solutions for axisymmetric compound drops in
bispherical coordinates have been outlined. In Sec. V, the detailed results of droplet motion and
deformation are presented, and finally, we conclude in Sec. VI.

II. THE PHYSICAL PARADIGM

The system under consideration is depicted in Fig. 1. It consists of a double emulsion (e.g.,
oil-in-water-in-oil emulsion) suspended along the axis of a Poiseuille flow and subject to an imposed
far-field temperature gradient of the form T ′

∞ = T ′
0 + G′z′, G′ being the temperature gradient. Note

that the dimensional variables (i.e., variables with units) here are represented with a “prime” symbol
(such as z′). The outermost, intermediate, and the innermost phases are denoted by 1 (suspending
medium), 2 (outer drop), and 3 (inner drop), respectively, and any property of the jth phase is
denoted with a subscript j. Radii of the inner and the outer drops are R′

I and R′
O, respectively.

The interface between the ith and the jth phase is denoted as Si j and the corresponding unit
outward normal is defined as n̂i j = ∇′F ′

i j/|∇′F ′
i j |, where F ′

i j represents the equation of interface.
The viscosity and the thermal conductivity of the ith phase are μi and ki, respectively. The surface
tension at the interface is denoted by γ ′

i j . All fluid properties are assumed to be constant, except the

surface tension, which varies linearly with the local temperature as [61] γ ′
i j = γ

′(0)
i j − βi j (T ′

i j − T ′
0 ),

where γ
′(0)
i j is the surface tension at reference temperature (T ′

0 ) and βi j is the coefficient of variation
of the surface tension with temperature.

An inertial cylindrical coordinate system (ρ ′, z′
c, ϕ), moving with the outer drop’s center of mass,

may be set up as shown in the figure, with the z′
c axis coinciding with the axis of the imposed flow.
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A spherical coordinate system (r′, θ, ϕ) with the origin attached to the outer drop center is also
shown in Fig. 1, with z′ = r′ cos θ and ρ ′ = r′ sin θ . The imposed far-field velocity is given by
u′

∞ = Uc(1 − ρ ′2/R′2)îz, where Uc is the axial velocity. In a Poiseuille flow, generally the outer and
the inner drops move with different velocities (here, U′

2 and U′
3, respectively) [34–36] and thus in

general the configuration of the drop will be eccentric, as shown in Fig. 1.
Before delving deep into the detailed mathematical formulation, it is in order to outline the key

assumptions undertaken in the present study. First and foremost, the transport of momentum and
energy are assumed to be diffusion-dominated, which entails [30,61] a low Péclet number (Pe =
UcR′

O/α1 � 1; α1 is the thermal diffusivity of the suspending medium) and low Reynolds number
[Re = ρ1R′

OUc/μ1 � O(1)]. Second, although the eccentric configuration in Fig. 1 is inherently
unsteady owing to the different velocities of the droplets, on account of viscosity-dominated motion,
we shall assume the flow field to be quasisteady. We emphasize that this assumption has been widely
used in the literature related to droplet motion [12,52,57]. Third, we shall only explore the limit of
small capillary numbers [14,30] [Ca = μ1Uc/γ

′(0)
12 � O(1)], which allows us to write asymptotic

expansions in Ca [34] and indicates that the drops remain approximately spherical, as is generally
true in viscosity-dominated flows. Finally, the drops are assumed to be neutrally buoyant; i.e., the
effects of gravity and cross-migration are ignored.

III. THE GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

A. The general mathematical formulation

For diffusion-dominated energy transport, neglecting viscous dissipation, the governing equa-
tions for the temperature field at steady state in the ith fluid (i = 1, 2, 3) are given by [30,43,61]

∇′2T ′
i = 0. (1)

The temperature in fluid 1 (T ′
1 ) is subject to the following far-field condition (see Fig. 1): T ′

1 =
T ′

∞ = T ′
0 + G′z′ as |r′| → ∞ and T ′

3 has to be bounded inside the inner drop, when r′ < R′
I . The

temperature and the heat flux must be continuous at the interfaces. On the interface Si j , these
conditions may be expressed as [30,61]

[T ′
i ]Si j = [T ′

j ]Si j and [q′
i · n̂i j]Si j = [q′

j · n̂i j]Si j , (2)

where the heat flux is defined as q′
i = −ki∇′T ′

i , based on Fourier’s law of heat conduction [61],
and [�]Si j denotes any quantity � evaluated on the interface Si j . For quasisteady and viscosity-
dominated flows, the Stokes flow and the continuity equations for the ith fluid (i = 1, 2, 3) are given
as [61]

μi∇′2u′
i = ∇′ p′

i, ∇′ · u′
i = 0. (3)

These are subject to the following far-field condition [30] (in a reference frame moving with the

outer drop’s center of mass): u′
1 = Uc(1 − ρ ′2/R′2)îz − U ′

2 îz as |r′| → ∞ and u′
3 and p′

3 have to be
bounded inside the inner drop, when r′ < R′

I . The boundary conditions on the interface Si j are given
by the following [34,61]:

[u′
i · (I − n̂i j n̂i j )]Si j = [u′

j · (I − n̂i j n̂i j )]Si j , (4a)

[u′
i · n̂i j]Si j = [u′

j · n̂i j]Si j = (U′
3 − U′

2) · n̂23 δi2 δ j3, (4b)

[(τ ′
i − τ ′

j ) · n̂i j]Si j = γ ′
i j (∇′ · n̂i j )n̂i j − ∇′(i j)

s γ ′
i j . (4c)

In Eqs. (4a)–(4c), δi j represents the Kronecker delta, τ ′
i is the stress tensor in the ith fluid (i =

1, 2, 3), defined as τ ′
i = −p′

iI + μi[∇′u′
i + (∇′u′

i )
T ], and ∇′(i j)

s is the surface gradient operator on
the interface, given by ∇′(i j)

s = ∇′ − n̂i j (n̂i j · ∇′). We reiterate that in all of the above equations, u′
i

is the velocity field in the ith fluid with respect to the outer drop’s center of mass. Further recall that
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the surface tension at the interface is related to the local temperature (T ′
i j) as γ ′

i j = γ
′(0)
i j − βi j (T ′

i j −
T ′

0 ). Finally, note that U′
2 = U ′

2 îz and U′
3 = U ′

3 îz (the outer and inner drop velocities) are a priori
unknown, and have to be computed as part of the solution.

The above equations may be nondimensionalized by using the following characteristic scales:
length, lc = R′

O; velocity, uc = Uc; pressure and stresses, pc = τc = μiUc/R′
O; surface tension, γc =

γ
′(0)
12 ; and finally characteristic heat flux, qc = G′k1. The dimensionless version of any variable, say

�′ (such as u′, p′, etc.) is expressed as � = �′/�c, where �c is the characteristic scale of the
variable under consideration. The temperature field is nondimensionalized as follows: T = (T ′ −
T ′

0 )/G′R′
O. Note that all dimensionless variables are expressed without the “prime.” The following

dimensionless ratios may then be defined, based on the fluid properties: RI = R′
I/R′

O, λi = μi/μ1,
κi = ki/k1, β = β23/β12, and γ = γ

′(0)
23 /γ

′(0)
12 . Enforcing the above scheme results in the following

dimensionless governing equations for the ith fluid:

∇2Ti = 0, (5a)

∇2ui = ∇pi, ∇ · ui = 0. (5b)

The dimensionless boundary conditions on the interface Si j take the following form:

Ti = Tj, and κi∇Ti · n̂i j = κ j∇Tj · n̂i j, (6a)

ui · (I − n̂i j n̂i j ) = u j · (I − n̂i j n̂i j ), (6b)

ui · n̂i j = u j · n̂i j = (U3 − U2) · n̂23δi2δ j3, (6c)

[λiτ i − λ jτ j] · n̂i j = 1

Ca

[
γi j (∇ · n̂i j )n̂i j − ∇(i j)

s γi j
]
. (6d)

The dimensionless far-field conditions become u1 = [1 − (r2 sin2 θ/R2) − U2] îz and T1 ∼ z as
|r| → ∞, and finally the boundedness condition in the inner drop reads |u3| < ∞ and |p3| < ∞,
when r < RI . In Eq. (6d), Ca is the capillary number, defined as [61] Ca = μ1Uc/γ

′(0)
12 . The

dimensionless surface tension on the interface Si j may be written as follows:

γ12 = 1 − Ca Ma T12 and γ23 = γ − β Ca Ma T23. (7)

In Eq. (7), the Marangoni number, defined as [30,32,61] Ma = β12G′R′
O/μ1Uc, dictates the ratio of

the induced Marangoni stresses to the viscous stresses [61]. We later show that Ma plays a key role
in altering the drop velocities in the presence of an imposed temperature gradient.

B. Asymptotic analysis for approximately spherical drops

In the limit of low capillary number [Ca � O(1)], the drops remain nearly spherical, experienc-
ing very little deformation. This allows us to expand any variable � (such as u and p) in a regular
asymptotic series in Ca, as follows [34]:

� = �(0) + Ca �(1) + O(Ca2). (8)

Now, for the special case of concentric drops, the equations for the interface Si j , in terms of Ca,
may be written using the spherical coordinates as follows [34]: F12 = r − [1 + Ca f (conc)

12 (θ ) + · · · ]
and F23 = r − [RI + Ca f (conc)

23 (θ ) + · · · ]. The unit outward normals to these interfaces therefore
become [up to O(Ca)] n̂i j = îr − Ca∇s f (conc)

i j (θ ). In the case of eccentric configurations as shown
in Fig. 2, a bispherical coordinate system (ξ, η, ϕ) [58] is required to simultaneously define the
surfaces of both the drops. In this case, the equations for surfaces Si j are defined as follows [34]:
F12 = ξ − [±ξ1 + Ca f12(η) + · · · ] and F23 = ξ − [±ξ2 + Ca f23(η) + · · · ], where ξi is the location
of the ith interface; see Sec. IV for more details. The surface normal at interface Si j in this coordinate
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FIG. 2. Schematic representation of the bispherical coordinates (ξ, η, ϕ) to describe an eccentric compound
drop. There are two possible configurations: (a) the “upstream configuration” (ξ > 0) and (b) the “downstream
configuration” (ξ < 0). The outer and the inner drop surfaces are located at ±ξ1 and ±ξ2, respectively. The
reference cylindrical coordinates (ρ, ϕ, zc), as discussed in Sec. II (see Fig. 1), have also been shown.

system has the following form: n̂i j = îξ − Ca∇s fi j (η). In the above expressions for the shape of the
interface, fi j denotes the O(Ca) deviation from a spherical surface.

In what follows, we shall only consider the leading-order terms (i.e., �(0)’s) for the flow variables
(u, p, T, etc.) and determine the O(Ca) deformation from there. We shall a posteriori verify that the
deviation from the basic spherical shape remains quite small, even when Ca is relatively large (e.g.,
Ca ∼ 0.2), which enables us to justify considering only the leading-order terms in our analysis.
We reiterate that one of the focal points of the analysis will be to investigate, in detail, the effect of
eccentricity on the leading-order dynamics and deformation of the drops in the given circumstances;
so far, this has not been extensively addressed in the literature. From now on, unless otherwise
mentioned, the “(0)” superscript from all the leading-order variables will be dropped for ease of
representation and any variable such as u, n̂i j , etc., will indicate leading-order terms in the expansion
(8). Finally, we note that although our analysis will mainly revolve around eccentric drops, it is
possible to write closed-form analytical solutions for the relevant quantities (such as u, p, f (conc)

i j ,

etc.) in the special case of concentric compound drops using spherical coordinates, as discussed
in Sec. II. A brief summary of this special case has been included in Sec. S1 of the Supplemental
Material [62].

IV. ANALYSIS FOR ECCENTRIC COMPOUND DROPS

A. The basic geometry

There are two possible eccentric configurations, as shown in Fig. 2. Panel (a) depicts the
“upstream configuration,” where the inner drop’s center of mass lies behind the outer drop center
(�z < 0). Panel (b) shows the “downstream configuration,” where the inner drop’s center of mass
lies ahead of the outer drop center (�z > 0). Depending on the configuration, the origin of the
bispherical coordinate system is either located behind or ahead of the outer drop. The interfaces
of outer and inner drops are expressed in bispherical coordinates as ξ = ±ξ1 and ξ = ±ξ2, re-
spectively, for upstream (ξ > 0) and downstream (ξ < 0) configurations. In Fig. 2(a), θ1 and θ2,
respectively, represent the polar angles of points lying on the outer and inner drops, measured from
the positive z axis. The bispherical and cylindrical coordinates are related as follows [57,58]:

ρ = c
√

1 − ζ 2

cosh ξ − ζ
, zc = c sinh ξ

cosh ξ − ζ
, ϕ = ϕ. (9)
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In Eq. (9), ζ = cos η and c is a positive constant defined as [58] c = sinh |ξ1| = RI sinh |ξ2|. In
Fig. 2, the distances of the drop centers from the origin may be written as [58] hO = ± cosh ξ1 and
hI = ±RI cosh ξ2 for upstream (+) and downstream (−) configurations. The eccentricity is defined
as the distance between the two drop centers and may be written as e = |�z| = |hI − hO|. The
coordinates of the drop interfaces may be chosen once the inner drop radius and the eccentricity are
known, by using the following relation [34]:

ξ1 = cosh−1

(
1 + e2 − R2

I

2e

)
, ξ2 = cosh−1

(
1 − e2 − R2

I

2eRI

)
. (10)

As the two drops move with different velocities in general, the eccentricity [e(t )] will evolve with
time, as discussed later in Sec. IV D 2. Therefore, because of the quasisteady nature of the flow,
the entire bispherical coordinate system changes with time and the description given above applies
only to the configuration at a given time instant. As a result, the flow variables computed using
the coordinates described in Eq. (10) will have an implicit time dependence because e(t ) and
thereby ξ1 and ξ2 depend on time. It is important to note in this context that the initial value of
eccentricity [e(t = 0)] is expected to strongly depend on the particular generating mechanism to
form the drops. However, as we show subsequently, our analysis remains valid for almost any value
of initial eccentricity, provided the other assumptions, as stated in Sec. II, are satisfied; also see
Sec. IV D 2 for further details.

B. Evaluation of the temperature field

The temperature in each phase evolves without any explicit dependence on the flow field and is
governed by Eq. (5a), subject to (6a). Following the analysis by Sadhal [63], the problem of finding
the temperature field may be reformulated by defining a scalar function χ , related to the heat flux
as follows (for the ith fluid):

qi = −κi∇Ti = κi∇ ×
(χi

ρ
îφ
)
. (11)

As a result, the governing equation for temperature [see Eq. (5a)] is trivially satisfied. In bi-
spherical coordinates, the gradient operator (∇) takes the form [58] ∇ = îη h1 ∂/∂η + îξ h2 ∂/∂ξ +
îφ h3 ∂/∂ϕ, where h1, h2, h3 are the metric coefficients, given by [58] h1 = h2 = (cosh ξ − ζ )/c
and h3 = (cosh ξ − ζ )/(c

√
1 − ζ 2). The governing equation for χ may be deduced by noting that

∇ × qi = 0, which yields ∇ × ∇ × (χi/ρ) îφ = 0. This may be further simplified to E2χi = 0,
where E2 in bispherical coordinates is given by [64]

E2 ≡ (cosh ξ − ζ )

c2

[
∂

∂ξ

{
(cosh ξ − ζ )

∂

∂ξ

}
+ (1 − ζ 2)

∂

∂ζ

{
(cosh ξ − ζ )

∂

∂ζ

}]
. (12)

The general solution for χ may be expressed as [65]

χ = (cosh ξ − ζ )−
1
2

∞∑
n=0

[
an cosh

(
n + 1

2

)
ξ + bn sinh

(
n + 1

2

)
ξ

]
C

− 1
2

n+1(ζ ), (13)

where C
− 1

2
n (x) is the Gegenbauer polynomial of degree −1/2 and order n. It may be verified that the

leading-order far-field condition for temperature becomes [52] χ1 → ρ2/2, as ξ, η → 0, while the
boundedness condition simply indicates |χ3| < ∞, when ξ → ±∞. Considering these conditions,
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the following forms of χi are chosen for the ith fluid [52]:

χ1 = ρ2

2
+ (cosh ξ − ζ )−

1
2

∞∑
n=0

an sinh

(
n + 1

2

)
ξ C

− 1
2

n+1(ζ ), (14a)

χ2 = (cosh ξ − ζ )−
1
2

∞∑
n=0

(
cn e(n+ 1

2 ) (ξ−ξ2 ) + dn e−(n+ 1
2 ) (ξ−ξ2 )

)
C

− 1
2

n+1(ζ ), (14b)

χ3 = (cosh ξ − ζ )−
1
2

∞∑
n=0

en e∓(n+ 1
2 )(ξ−ξ2 )C

− 1
2

n+1(ζ ). (14c)

In Eq. (14c), wherever the ± or the ∓ sign appears, it is implied that the upper sign (i.e., + when
± appears) applies to the upstream configuration and the lower sign (i.e., − when ± appears)
applies to the downstream configuration. This same convention has also been followed for the
rest of the paper, unless otherwise mentioned. The required boundary conditions for χ on the drop
interfaces may be derived from (6a); on the interface Si j (at ξ = ±ξ1 or ±ξ2), they take the following
form [52]: ∂χi/∂ξ = ∂χ j/∂ξ and κiχi = κ jχ j . These conditions can be transformed into a linear
system of algebraic equations for the coefficients, by using recurrence relations and orthogonality
property of the Gegenbauer polynomials, along with a few well-known identities, as described in
Appendix A 1. The resulting algebraic equations have to be solved numerically to determine the four
unknown coefficients (an, cn, dn, en for each n) in Eqs. (14). These equations have been included in
Appendix A 2 a. It is observed that the (n − 1)th, nth, and the (n + 1)th modes in the aforesaid
equations are coupled and hence this system of equations has to be truncated after a certain number
of terms (say, N), in order to compute the solutions. It is further noted that the suitable choice of N
for accurate solutions strongly depends on the eccentricity [52]. Further details on the values of N
have been included in Appendix A 2 a. This completes the solution for the temperature field. For
the purpose of future calculations, it is important to note how temperature gradients are related to χ

and its derivatives; these relations may be summarized as

q(i)
ξ = −κi

(cosh ξ − cos η)

c

∂Ti

∂ξ
= κi

(cosh ξ − cos η)2

c2 sin η

∂χi

∂η
, (15a)

q(i)
η = −κi

(cosh ξ − cos η)

c

∂Ti

∂η
= −κi

(cosh ξ − cos η)2

c2 sin η

∂χi

∂ξ
. (15b)

C. Evaluation of the flow field

The leading-order governing equations for the flow are given by (5b). Because of the axisym-
metric nature of the flow, we can make use of the Stokes stream function (�), which allows us to
write the equations of motion for the ith fluid in the form [58] E4�i = 0. The general solution for
�, in bispherical coordinates, may be expressed for the ith fluid as [64]

�i = (cosh ξ − ζ )−3/2
∞∑

n=0

W (i)
n (ξ )C

− 1
2

n+1(ζ ). (16)

In Eq. (16), W (i)
n has the following form [34]: W (i)

n = A(i)
n e(n− 1

2 ) ξ + B(i)
n e(n+ 3

2 ) ξ + C(i)
n e−(n− 1

2 ) ξ +
D(i)

n e−(n+ 3
2 ) ξ . The velocity components (uξ and uη) in the bispherical coordinates are related to the

stream function � as follows [34]:

u(i)
ξ = (cosh ξ − ζ )2

c2 sin η

∂�i

∂η
and u(i)

η = − (cosh ξ − ζ )2

c2 sin η

∂�i

∂ξ
. (17)

Using Eq. (17), the far-field condition in the outermost fluid (phase 1) may now be recast as �1 =
−(1 − U2)ρ2/2 + ρ4/4R2, as ξ → 0. Using Eq. (9), along with some well-known identities (see
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Appendix A 1), it may be shown that when ξ → 0, �1 may be written in the following form [34]:

�1 = (cosh ξ − ζ )−3/2
∞∑

n=0

(
c̃ne∓(n− 1

2 )ξ + d̃ne∓(n+ 3
2 )ξ )C

− 1
2

n+1(ζ ), (18)

where the constants c̃n and d̃n have the following expressions [34]:

c̃n = − n(n + 1)c2

√
2(2n − 1)

[
(1 − U2) + 2c2

3R2
(n − 1)(n − 2)

]
, (19a)

d̃n = n(n + 1)c2

√
2(2n + 3)

[
(1 − U2) + 2c2

3R2
(n + 2)(n + 3)

]
. (19b)

The boundedness condition in the inner core becomes |�3| < ∞, as ξ → ±∞. In view of this and
the far-field conditions, as expressed in Eq. (18), we may choose appropriate forms for W (i)

n for the
ith phase (i = 1, 2, 3) as follows [34]:

W (1)
n = Ane±(n− 1

2 )ξ + Bne±(n+ 3
2 )ξ + c̃ne∓(n− 1

2 )ξ + d̃ne∓(n+ 3
2 )ξ , (20a)

W (2)
n = Ene±(n− 1

2 )ξ + Fne±(n+ 3
2 )ξ + Gne∓(n− 1

2 )ξ + Hne∓(n+ 3
2 )ξ , (20b)

W (3)
n = Ĉne∓(n− 1

2 )ξ + D̂ne∓(n+ 3
2 )ξ . (20c)

The stream function in (16) with the W (i)
n ’s given in Eqs. (20) may be completely determined using

the boundary conditions on the two interfaces, as mentioned in (6b)–(6d). On the outer drop surface
(i.e., ξ = ±ξ1), these conditions become [34] u(1)

η = u(2)
η ; u(1)

ξ = u(2)
ξ = 0; and τ

(1)
ξη − λ2τ

(2)
ξη =

∓Ma h1 ∂T1/∂η. On the inner drop surface (ξ = ±ξ2), the boundary conditions take the form
u(2)

η = u(3)
η ; u(2)

ξ = u(3)
ξ = (U3 − U2) · îξ ; and λ2τ

(2)
ξη − λ3τ

(3)
ξη = ∓βMa h1 ∂T3/∂η.

The boundary conditions mentioned above essentially stem from the continuity of tangential
velocity, the kinematic condition, and tangential stress balance, respectively. The tangential stress
balance condition at the interface Si j uses Eq. (7) and also involves the surface gradient operator,
which in bispherical coordinates reads ∇s = îη h1 ∂/∂η + îφ h3 ∂/∂ϕ. Implementation of the bound-
ary conditions also requires knowledge of the shear stress component τξη, which in the ith fluid can
be expressed as [66] τ

(i)
ξη = h2 [∂u(i)

η /∂ξ − h1 u(i)
ξ ∂ (1/h2)/∂η] + h1 [∂u(i)

ξ /∂η − h2 u(i)
η ∂ (1/h1)/∂ξ ].

This expression can be further simplified by using Eqs. (16), (17), along with the identities
mentioned in Appendix A 1, and the simplified form has been included in Appendix A 2 b; see
Eq. (A7) therein.

The eight unknown coefficients, An, Bn, En, Fn, Gn, Hn, Ĉn, and D̂n in Eqs. (20), may be com-
puted from the eight boundary conditions (four conditions on each interface) mentioned above. To
this end, expressions for the velocity and stress components as given in Eqs. (17)–(20), (A7), and
∂Ti j/∂η from Eq. (15b), along with the orthogonality properties of the Gegenbauer polynomials,
may be used to deduce a system of eight linear algebraic equations for each mode n. These equations
have been included in Appendix A 2 c and have to be solved numerically to compute the unknown
coefficients.

D. Evaluation of instantaneous droplet velocities and the eccentricity

1. The droplet velocity estimations

As mentioned earlier, the drop velocities (U2 and U3) are not known a priori and hence have to
be computed as part of the solution. This may be done by simply equating the net force on each
of the drops to zero [34]. To this end, it is helpful to note that the coefficients An, Bn, En, . . .,
etc., linearly depend on U2 and U3. For instance, one may write An = Y (1)

1 (�, e(t ); n) +
Y (1)

2 (�, e(t ); n)U2 + Y (1)
3 (�, e(t ); n)U3, where � = [λ2, λ3, Ma, RI , κ2, κ3, R] is the parameter ma-

trix, which also includes fluid properties. Other coefficients may also be written in similar forms (see
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Appendix A 2 c). Noting that the characteristic force is Fc = μiUcR′
O, the net force (dimensionless)

acting on each drop may be expressed as [12,34,57]

Fouter = 4
√

2π

c

∞∑
n=0

(An + Bn) = 0, Finner = 4
√

2π

c

∞∑
n=0

(En + Fn) = 0. (21)

Upon inserting the linear relations between the coefficients An, Bn, En, . . . and U2 and U3, Eq. (21)
would yield a pair of independent linear algebraic equations for the two variables U2 and U3, which
may be solved to determine the drop velocities.

2. Evolution of the eccentricity

It may be shown [34] (as we discuss in Sec. V) that the two drops generally do not move with the
same velocity in a Poiseuille flow, which implies that the eccentricity (distance between the drop
centers) slowly changes with time, leading to an implicit time dependence of the entire flow field.
This implicit unsteady nature of the flow is captured in both the interface coordinates (i.e., ξ1 and ξ2),
as well as the drop velocities (U2 and U3), since all of them depend explicitly on e(t ) or, equivalently,
on �z(t ). The droplet positions with respect to each other vary as �z(t ) = hI (t ) − hO(t ) (see Fig. 2).
Differentiating on both sides, we get [34]

d�z(t )

dt
= U3(�z(t ),�) − U2(�z(t ),�). (22)

From (22), the eccentricity may be determined by using the relation e(t ) = |�z(t )|. Equation
(22) may be solved, subject to a given initial condition, representing an initial configuration, to
determine how |�z(t )| and hence the eccentricity changes with time. Once e(t ) is known, the drop
velocities may be determined using Eq. (21). Equation (22) is nonlinear in nature and this has strong
implications on how the eccentricity evolves, as we show later. Because of slow temporal evolution
(quasisteady assumption), this equation may be solved using an explicit time-marching scheme.

E. Evaluation of droplet deformation

The O(Ca) deformations ( f12 and f23) can be obtained from the leading-order normal stress
balance equations, as mentioned in Eq. (6d). On the interface Si j (i.e., ξ = ±ξ1 or ±ξ2), this
condition may be expressed as [67]

λi pi − λ j p j + λ jτ
( j)
ξξ − λiτ

(i)
ξξ = ∓ γi j

Ca
(∇ · n̂i j ). (23)

For the purpose of evaluating the normal stresses, it is important to note that the divergence of an
axisymmetric vector V, in bispherical coordinates, reads [58] ∇ · V = h1h2h3 [∂ (Vη/(h2h3)/∂η +
∂ (Vξ /h1h3)/∂ξ ]. Therefore, taking divergence of surface normals and using the equations for surface
tension (γi j) as given in (7), Eq. (23) for the outer drop interface S12 (i.e., ξ = ±ξ1) becomes [68]

± 1

c

[
(cosh ξ − ζ )3 d

dζ

{
1 − ζ 2

(cosh ξ − ζ )2

df12

dζ

}
+ 2

Ca
sinh ξ + 2 f12 cosh ξ − 2MaT12 sinh ξ

]

= λ2 p2 − p1 + τ
(1)
ξξ − λ2 τ

(2)
ξξ . (24)

Similarly, the normal stress balance on the inner drop surface S23 (ξ = ±ξ2) reads [68]

± 1

c

[
γ (cosh ξ − ζ )3 d

dζ

{
1 − ζ 2

(cosh ξ − ζ )2

df23

dζ

}
+ 2γ

Ca
sinh ξ + 2γ f23 cosh ξ − 2MaβT23 sinh ξ

]

= λ3 p3 − λ2 p2 + λ2 τ
(2)
ξξ − λ3 τ

(3)
ξξ . (25)
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An equation for the pressure in the ith fluid (pi) may be derived in terms of the stream function �i,
using the momentum equations (5b), as follows [67,68]:

∂ pi

∂ξ
= − (cosh ξ − ζ )

c

∂ (E2�i )

∂ζ
,

∂ pi

∂ζ
= (cosh ξ − ζ )

c(1 − ζ 2)

∂ (E2�i )

∂ξ
. (26)

Using Eq. (16) for �i, one may evaluate E2�i for the ith fluid [68], which has been included in
Appendix A 3 a. Because of the imposed background flow, the pressure far away from the drop is
not uniform, but rather will vary linearly with distance. Therefore, the total pressure may be written
as the sum of a nonzero background pressure (p(b)), present everywhere, and a disturbance (p(d )

i )
caused by the presence of the drop, as follows: pi = p(b) + p(d )

i . Note that d p(b)/dzc = −4/R2, from
which p(b) may be expressed in bispherical coordinates using Eq. (9), along with the identities given
in Appendix A 1, and takes the following form:

p(b) = ∓F
√

(cosh ξ − ζ )

c3

∞∑
n=0

(2n + 1)e∓(n+ 1
2 )ξ Pn(ζ ) + 4hO

R2
+ Cb. (27)

In Eq. (27), Pn(ζ ) is the Legendre polynomial of degree 1 and order n, Cb is a constant yet to
be determined, and F = 4c4

√
2/R2. Now, the momentum equations (5b) dictate that the pressure

is harmonic (i.e., ∇2 pi = 0) [68]. Since the background pressure trivially satisfies the Laplace
equation, it follows that the disturbance pressure (p(d )

i ) in the ith fluid will also satisfy ∇2 p(d )
i = 0.

The general solution for the disturbance pressure in the ith fluid is therefore given by [68]

p(d )
i =

√
(cosh ξ − ζ )

c3

∞∑
n=0

[
α(i)

n e±(n+ 1
2 )ξ + β (i)

n e∓(n+ 1
2 )ξ ]Pn(ζ ) + �i. (28)

In Eq. (28), the �i’s are constants, yet to be determined. One may further note from Eq. (28) that
α(3)

n = 0, because p3 has to be bounded in the inner drop. From Eqs. (27) and (28), the total pressure
for the ith fluid (i = 1, 2, 3) can be written as

pi =
√

(cosh ξ − ζ )

c3

∞∑
n=0

[
α(i)

n e±(n+ 1
2 )ξ + [

β (i)
n ∓ (2n + 1)F

]
e∓(n+ 1

2 )ξ ]Pn(ζ ) + 4hO

R2
+ �i. (29)

In Eq. (29), the constant Cb from Eq. (27) has been absorbed in �i. The coefficients α(i)
n , β (i)

n ,

etc., may be uniquely determined using the condition that the disturbance pressure must vanish far
away from the compound drop. The detailed expressions for these coefficients along with an outline
of how to evaluate them have been included in Appendix A 3 b. The final piece of the puzzle in
Eq. (23) is the normal viscous stress components in the ith fluid (τ (i)

ξξ , i = 1, 2, 3), which may be

written as [58,67] τ
(i)
ξξ = 2h2 [∂u(i)

ξ /∂ξ + h1 u(i)
η ∂ (1/h2)/∂η]. Detailed expressions for the normal

stresses have been included in Appendix A 3 c.
From Eqs. (24) and (25), we observe that the interfacial temperature (Ti j) is also required in

the normal stress balance. The temperature on both the interfaces may be evaluated by numerically
integrating ∂Ti j/∂η from Eqs. (15). However, to determine the temperature uniquely, we need to
specify its value at least at one point in the domain, preferably lying on either of the drop surfaces. To
this end, as discussed in Sec. II, we enforce that on the outer drop surface, at z = 0 (in the spherical
coordinates attached to the drop center; this is same as zc = hO), i.e., at θ1 = π/2 and ξ = ±ξ1 (or
r = 1), T1 = T2 = T12 = 0. Essentially, this means that the point on the interface which is on the
same vertical line as the outer drop center has T = 0. This is sufficient to determine temperatures
uniquely at all positions on both the interfaces by numerically integrating (15). Finally, substituting
Eqs. (29) and (A16) in the normal stress balance Eqs. (24) and (25) and after a bit of tedious algebra
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we deduce the following equations for the deformation ( fi j) on the interface Si j (ξ = ±ξ1 or ±ξ2):

d2 fi j

dζ 2
+ 2(1 − ζ cosh ξ )

(1 − ζ 2)(cosh ξ − ζ )

dfi j

dζ
+ 2 cosh ξ

(1 − ζ 2)(cosh ξ − ζ )
fi j = Gi j (ζ ) + Ĝi j (ζ ) �i j, (30)

where the appropriate value of ξ has to be used, depending on the interface under consideration.
In Eq. (30), �12 = λ2�2 − �1 ∓ 2 sinh ξ1/(c Ca) and �23 = λ3�3 − λ2�2 ∓ 2γ sinh ξ2/(c Ca)
are unknown constants and have to be determined as part of the solution. Expressions for the
quantities Gi j (ζ ) and Ĝi j (ζ ) have been included in Appendix A 3 d. The ODE in Eq. (30) has
the following linearly independent, complementary solutions [67,68]: f (c)

i j = (1 − ζ cosh ξ ) and

f̂ (c)
i j = {sinh2 ξ/ cosh ξ + (1/2)(1 − ζ cosh ξ ) ln[(1 + ζ )/(1 − ζ )]}. The complete solution for the

deformation on the i jth interface [ f12(ζ ) and f23(ζ )] then reads

f12(ζ ) = C12 f (c)
12 (ζ ) + Ĉ12 f̂ (c)

12 (ζ ) + I12(ζ ) + �12Î12(ζ ), (31)

f23(ζ ) = C23 f (c)
23 (ζ ) + Ĉ23 f̂ (c)

23 (ζ ) + I23(ζ ) + �23Î23(ζ ). (32)

In Eqs. (31) and (32), Ci j , Ĉi j are unknown constants and Ii j (ζ ), Îi j (ζ ) are the particular integrals,
given by [69]

Ii j (ζ ) = − f (c)
i j (ζ )

∫ ζ

−1

Gi j (x) f̂ (c)
i j (x)

Wi j (x)
dx + f̂ (c)

i j (ζ )
∫ ζ

−1

Gi j (x) f (c)
i j (x)

Wi j (x)
dx, (33a)

Îi j (ζ ) = − f (c)
i j (ζ )

∫ ζ

−1

Ĝi j (x) f̂ (c)
i j (x)

Wi j (x)
dx + f̂ (c)

i j (ζ )
∫ ζ

−1

Ĝi j (x) f (c)
i j (x)

Wi j (x)
dx. (33b)

In Eqs. (33), Wi j (x) = (cosh ξ − x)2/(1 − x2), is the Wronskian of f (c)
i j (ζ ) and f̂ (c)

i j (ζ ), evaluated
on the interface Si j . Based on physical considerations, we may assert that fi j remains bounded
at η = 0 and may be assigned the finite value, say fi j (η = 0) = �i j , where �i j is a constant.
Now, in the solutions for the droplet deformation [see Eqs. (31) and (32)], there are four un-
known constants, namely Ci j, Ĉi j,�i j , and �i j . These may be determined using the following
four conditions [67], applicable on both the interfaces (ξ = ±ξ1 and ±ξ2): (i) dfi j/dη shall remain
bounded at η = 0 and π ; (ii) the volume of both the drops will be conserved, which yields [67,68]∫ 1
−1{ fi j (ζ )/(cosh ξ − ζ )3} dζ = 0; (iii) the center of mass of both the drops will be unchanged,

leading to [67,68]
∫ 1
−1{ fi j (ζ )/(cosh ξ − ζ )4} dζ = 0. This completes the evaluation of the interfa-

cial deformations.

V. RESULTS AND DISCUSSION

The main aim of our analysis is to bring out the effects of the externally imposed temperature
gradient on the dynamics and deformation of the drops and in particular characterize the influence
of eccentricity on the aforesaid factors. The effect of the external temperature gradient is best
summarized by the following factors: (i) the Marangoni number (Ma = β12G′R′

O/μ1Uc), which
dictates the extent of Marangoni stresses; (ii) the thermal conductivity ratios, κ2 and κ3 (recall
that κi = ki/k1), which dictate the temperature distribution in the three phases, and finally, (iii)
the eccentricity of the configuration [�z(t ) or e(t )], which alters the temperature and the flow field,
by changing the geometry. Therefore, in this section, we shall explore how the three indicators
mentioned above influence the dynamics and deformation of the compound drop system.

At this stage, it is important to explore the probable range of values of various parameters, which
play key roles in the present analysis. To this end, we consider the example of an oil-in-water-in-oil
(O-W-O) double emulsion, with castor oil as the suspending medium as well as the inner core
(fluids 1 and 3). We note the following properties of castor oil [70]: viscosity, μ1 ∼ 0.853 Pa s;
thermal conductivity, k1 ∼ 4.73 W m−1 K−1; thermal diffusivity, α1 ∼ O(10−5) m2 s−1; and the
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surface tension of a castor oil–water interface is [71] γ
′(0)
12 ∼ 0.012 N m−1. Then, for droplet sizes to

the tune of R′
O ∼ 10−3 m and characteristic velocity in the range [72,73] Uc ∼ O(10−5) − O(10−3)

m/s, we deduce that the capillary number of the system lies in the range Ca ∼ O(10−3) to O(10−1),
which justifies the asymptotic expansion in Ca, on account of small deformation. On the other hand,
owing to a lack of extensive studies on the measurement of β12 for castor oil–water interface, we
may refer to some of the other existing studies on water [74] and assume β12 ∼ O(10−4) to O(10−3)
N/m K. Then, for G′ ∼ 50 K/m, one may deduce that Ma ∼ O(10−3) to O(1). Similar ranges of
Ma values have also been used previously in the literature [21,23]. At the same time, the above set
of properties yields Re ∼ O(10−5) to O(10−3) and Pe ∼ O(10−3) to O(10−1), as mentioned earlier
in Sec. II.

The rest of this section is arranged as follows. First, in Sec. V A, we validate our analysis by com-
paring its predictions with some of the earlier studies in the literature, as well as with other known
results. This is followed by Sec. V B, where we probe into the variations in the droplet velocities as
a function of the above indicators. In Sec. V C, a stability analysis (not the classical normal mode
analysis though) of the inner drop is performed, in continuation with the preceding section. Finally,
in Sec. V D, we shed light on how the drops deform and how the various factors control this. For
the rest of the paper, we have chosen the surface tension ratio as [75] γ = 1 and β = 1.

A. Validation

We validate our semianalytical solutions in two separate ways. First, it is possible to write closed-
form exact solutions for the droplet velocities and the deformation in the leading-order of Ca, when
the drops are in concentric configuration. These solutions have been included in Sec. S1 of the
Supplemental Material [62]. Therefore, the results for the small eccentricity limit (e � 1) may be
directly compared with those of concentric compound drops, to assess the former’s accuracy. The
outer and inner droplet velocities (U2 and U3) for a concentric configuration are given in Eqs. (S2)
and (S3) of the Supplemental Material [62], while the corresponding deformations may be obtained
from Eq. (S6) therein. These closed-form solutions may in turn be compared in appropriate limiting
cases to the work of Mandal et al. [34] and Borhan et al. [38]. These comparisons have been included
in Sec. S1 of the Supplemental Material [62].

Second, although thermocapillary effects on eccentric compound drops in Poiseuille flows have
not been addressed before, several studies on the migration of single drops [23,30,43,49,76] in
the presence of imposed temperature gradients have been carried out. The single-drop limit in our
analysis may be realized by enforcing RI � 1 and those results will be compared with the work
of Das et al. [30], who analyzed the motion of a single surfactant-laden droplet in nonisothermal
Poiseuille flow, in the limit of weak interfacial convection (Pes � 1), and reported that the leading-
order droplet velocity is independent of the surfactants. We shall further compare the deformation in
the single-drop limit (RI � 1) with the results of Hetsroni and Haber [60], who analyzed the motion
of a drop suspended in a Poiseuille flow, at a distance b from the flow centerline. Their solutions for
the deformation may be compared with ours by enforcing b = 0, and the two results match exactly
as outlined in Eq. (S6) in Sec. S1 of the Supplemental Material [62].

Figures 3(a) and 3(b) show the comparison between the results obtained using an eccentric drop
configuration with those of concentric drops, in the limit of small eccentricity (e = 0.001), for three
different choices of the inner core radius, RI = 0.2, 0.4, and 0.8, while values of other relevant
parameters have been mentioned in the caption. Panels (a) and (b) showcase the outer and the inner
drop velocities, respectively. We observe that the analysis using bispherical coordinates for low
eccentricity match exactly with those of concentric drops, for all the cases reported in the figures.
Further notice that here the imposed temperature gradients aid the movement of both the drops,
as they speed up upon increasing Ma. However, the inner core size seems to influence the drop
velocities in the opposite way. The inner drop velocity decreases with its size [see panel (b)], while
at the same time, the outer drop velocity increases. Such variations may be best understood from
Eqs. (S2) and (S3) of the Supplemental Material [62], which underline that the influence of RI on
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(a) (b) (c)

FIG. 3. (a) Comparison of outer drop velocity (U2) vs Ma for eccentric drops (present study, denoted by
lines) with e = 0.001 and concentric drops (circle), for different choices of inner drop size, RI = 0.2, 0.5, and
0.8. (b) Comparison of inner drop velocity (U3) vs Ma under the same scenario. Other relevant parameters in
(a) and (b) are R = 5, λ2 = 0.2, λ3 = 1, κ2 = 3, κ3 = 1. (c) Comparison of U2 vs Ma in the limit of single drop
with RI = 0.001 and e = 0.001, with the results of the work of Das et al. [30], for different choices of λ2 = 0,
0.2, and 1, whereas R = 5, κ2 = 3.

U2 and U3 strongly depends on the imposed temperature gradient as well as the coefficient B̄1, and
given the present set of parameters, increasing RI increases the outer drop’s velocity and decreases
the inner drop’s velocity.

Figure 3(c) compares the limiting case of a single drop (RI � 1) as obtained from our analysis
to those of Das et al. [30], for three choices of λ2 = 0, 0.2, and 1. Note that the exact leading-order
solutions in the limit of a single drop have been included in Eq. (S4) in Sec. S1 of the Supplemental
Material [62]. When plotting the results from the analysis for eccentric drops, we have enforced
e = 0.001, although this value is immaterial as long as RI is sufficiently small. First note that the
two sets of plots exhibit exact match. Second, as expected, the velocity of the drop decreases as its
viscosity is increased.

A detailed account of the comparisons of droplet deformation for validation purposes has been
included in Sec. S2 of the Supplemental Material [62].

B. Dynamics of the drops

In this section we investigate the effect of temperature field on the motion of eccentric compound
drops in Poiseuille flow. We begin by analyzing the effect of Marangoni number (Ma) on the drops’
velocities, computed from Eqs. (21). Notice that Ma can be finely tuned by varying the imposed
temperature gradient G′, where G′ > 0 indicates temperature increasing in the positive z direction
and G′ < 0 implies the opposite (see Fig. 1).

Figures 4(a) and 4(b) depict the variation in the normalized outer and inner droplet velocities
Uj/Uj,Ma=0 for j = 2, 3 as a function of Ma, for different eccentricities: e = 0.001, 0.1, 0.6, 0.78,
while other relevant parameters are mentioned in the caption. Noting that Uj,Ma=0 underlines the
velocity in an isothermal flow, the ratio Uj/Uj,Ma=0 would thus shed light on the direct influence
of thermocapillarity on the drop velocities. It is noted that in both upstream and downstream
configurations, the same drop velocities are observed when eccentricity (e = |�z|) is unaltered. The
two panels clearly demonstrate that both the drops speed up when Ma > 0 (temperature increasing
along z) and slow down when Ma < 0 (when temperature decreases along z), relative to isothermal
flows. When Ma > 0, the temperature toward the rear end of the drops is smaller, which causes the
surface tension in that part of the interface to be comparatively larger. This pulls the surrounding
outer fluid (e.g., fluid 1 for interface S12) toward the rear end of the interface and as a result
the drop itself speeds up. Exactly opposite effect takes place when Ma < 0, slowing down the
overall motion of the drops. The effect of eccentricity on the relative velocities is however more
intriguing and depends on the direction of the applied temperature gradient. Notice that for Ma < 0,
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FIG. 4. Variation of normalized velocity (a) for outer drop (U2/U2,Ma=0) and (b) inner drop (U3/U3,Ma=0), as
a function of Ma for different eccentricities e = 0.78, 0.6, 0.1, and 0.001 (concentric configuration). (c) Plot of
U2 vs e and (d) U3 vs e, for various choices of Ma = 0, ±0.5, and ±1. Other relevant parameters are RI = 0.2,
R = 5, λ2 = 0.2, λ3 = 1, κ2 = 3, κ3 = 1.

a more eccentric configuration (i.e., larger e) results in an increase in drop velocities relative to an
isothermal flow. The reverse is true when Ma > 0.

To understand the aforementioned variation in velocity with e, we may refer to Figs. 4(c) and
4(d), where the drop velocities [U2 in panel (c) and U3 in panel (d)] have been plotted as a function
of e, for Ma = 0 (isothermal flow), ±0.5, and ±1, while values of other relevant parameters have
been mentioned in the caption. Notice the twofold effect of eccentricity, when a temperature
gradient is externally imposed. When Ma = 0 (isothermal flow), the drop velocities show very
little variation with eccentricity, at least for the parameters chosen here. However, if the drops are
exposed to positive temperature gradients, their velocities decrease with increasing eccentricity. On
the other hand, when negative temperature gradients are imposed, their velocities increase with
e. This underscores the profound effect an externally imposed temperature field can have on the
drop velocities. The reason for such intriguing variation in the velocities may be attributed to how
the interfacial tension varies in the presence of a temperature gradient. It may be shown (as we
discuss in the next figure) that for Ma > 0, temperature gradients become smaller as the eccentricity
increases. This means that the boost the drops receive from the resulting variations in surface tension
also diminishes, which leads to a decrease in their velocities. The opposite happens when Ma < 0,
which results in an increase in the drop velocities. Overall, we observe that both eccentricity and the
temperature gradient (Ma) have more pronounced effects on the velocity of the inner core, which
may vary by as much as 40%, even when Ma ∼ O(1).

The velocity variations shown in Fig. 4 may be better understood by looking into how the surface
tension varies on the two surfaces, which in turn would also reflect the temperature variations along
the interfaces. This has been shown in Fig. 5, where we plot γ12 vs θ1 in panels (a) and (c) and
γ23 vs θ2 in panels (b) and (d), when the drops are in the upstream configuration (see Fig. 2).
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(a) (b)

(c) (d)

FIG. 5. Variations in γi j with θ1 and θ2 (as appropriate), for the upstream configuration: (a) across outer
drop interface (γ12) and (b) inner drop interface (γ23), for different eccentricities, e = 0 (concentric configu-
ration), 0.1, 0.6, and 0.78 and Ma = 1; (c) across outer drop interface (γ12) and (d) inner drop interface (γ23),
for different Ma = 0, ±0.5, and ±1 values with e = 0.78. Other relevant parameters are RI = 0.2, R = 5,
λ2 = 0.2, λ3 = 1, κ2 = 3, κ3 = 1, and Ca = 0.1.

In panels (a) and (b), variations in surface tension have been depicted for different eccentricities
[e = 0 (concentric), 0.1, 0.6, and 0.78] when Ma = 1, while in panels (c) and (d), the effect of
varying Ma at a fixed eccentricity (e = 0.78) has been illustrated. As expected, when Ma > 0, the
surface tension decreases at both the interfaces, as we move from the rear of the drops (θ1 = θ2 = π )
to its front (θ1 = θ2 = 0), which is the main cause behind the thermocapillary motion. The effect of
eccentricity is far more pronounced for the inner core, as evident from panels (a) and (b), while for
the outer drop the effect of e only becomes prominent at the rear end, close to θ1 = π . This is simply
the effect of the inner drop, which in an upstream configuration with e = 0.78 resides very close to
the outer interface (S12), thus changing the temperature there. Notice from panel (b) that the overall
surface tension at the inner interface (S23) increases, as the configuration becomes strongly eccentric
from being concentric. The reason may again be attributed to the upstream configuration, because
of which the average temperature of the inner drop decreases as e increases, which ultimately leads
to an increase in γ23. Finally, panels (c) and (d) demonstrate the effect of imposed temperature
gradient on the surface tension along the interface, wherein it may be observed that the nature of
variation in γi j flips, when the direction of the external gradient is reversed, as indicated by Ma < 0.
It is important to realize here that although the magnitudes of the gradients in γi j remain the same
regardless of the configuration, absolute value of the surface tension changes, depending on whether
the inner core is in the upstream or downstream configuration. As a result, it is expected that the drop
velocities will not change, since they only depend on |�z| = e, but the deformation of especially
the inner drop will be different, as the configuration changes from upstream to downstream. We
elaborate more on this in Sec. V D.
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FIG. 6. Plot of U2 vs κ3 (inner drop’s thermal conductivity) in panel (a) and of U3 vs κ3 in panel (b) for
various κ2 (outer drop conductivity) = 0, 1, 3, 1000. Other relevant parameters are RI = 0.2, R = 5, λ2 = 0.2,
λ3 = 1, e = 0.78, Ma = 1.

We have noted that the Marangoni stresses and hence the temperature field strongly influence
the droplet velocities [through Eqs. (7)]. Noting that the interfacial temperatures are expected to be
governed by the thermal conductivity ratios (κ2, κ3), it is worth looking into their effects on the drop
velocities. Figure 6 demonstrates the variations in the outer drop velocity (U2) in panel (a) and the
inner drop velocity U3 in panel (b), as a function of κ3 (thermal conductivity of the inner core), for
different conductivity values of the outer drop, κ2 = 0, 1, 3, 1000. It may be observed that both U2

and U3 are almost insensitive to κ3, albeit U3 decreases slightly, as κ3 increases. The temperature
field is a weak function of κ3, which explains why the drop velocities are essentially independent of
the inner core conductivity and hence the choice of κ3 does not have a major influence on U2 and U3.
The outer drop’s conductivity (κ2), on the other hand, has a far stronger effect on the drop velocities.
One expects that for larger κ2, the outer drop (fluid 2) is more thermally conducting, which will
naturally diminish any temperature variations across the interface and hence will make the surface
tension across the outer interface almost uniform. This will reduce the Marangoni stresses, which
for Ma > 0 are responsible for speeding up the drops. Therefore, it is anticipated that the drop
velocities should reduce with κ2, when Ma > 0. This is exactly what we observe in both the panels
under consideration, wherein the slowest movement occurs for the largest κ2 (= 1000) value.

C. Equilibrium and stability of the inner drop

It is evident from Figs. 3 and 4 that in a Poiseuille flow, in the absence of imposed temperature
gradients (i.e., Ma = 0), the inner drop always moves faster than the outer drop, which leads to an
ever increasing eccentricity and rules out the possibility of an equilibrium concentric configuration
[35,36]. However, an external temperature gradient enables us to finely tune the drop velocities
and especially influence the velocity of the inner drop. This poses two important questions: (i)
Using an imposed temperature gradient, is it possible to achieve an equilibrium configuration in the
compound drop, where both the drops move with the same velocity? (ii) If so, how “stable” would
such an equilibrium be? These are the two questions we try to answer in this subsection. We reiterate
that the “stability” here does not refer to a classical normal mode analysis.

The best way to investigate whether an equilibrium configuration (for any eccentricity) exists is
to evaluate the relative velocity between the drops’ center of masses: U2 − U3. This is what we do in
Fig. 7(a), where the relative velocity as a function of Ma has been plotted for different eccentricities.
An equilibrium configuration would imply U2 − U3 = 0; i.e., the drops will move with the same
velocity. First, it is to be noted that for Ma > 0, U3 > U2 always and thus only Ma < 0 will be
considered here. Notice that for small magnitudes of Ma, U2 − U3 < 0, for almost all values of
e, indicating that the inner drop moves faster relative to the outer one, the difference being the
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(a)

(b)

(c)

FIG. 7. (a) Variation in relative drop velocity (U2 − U3) with Ma for different eccentricities. (b) Phase plot
of �ż vs �z [from Eq. (22)] for different Ma values; see legend. (c) Evolution of eccentricity e(t ) with time
(t), computed from Eq. (22), subject to the initial condition, e(t = 0) = 0, for various choices of Ma = −0.1,
−0.07, and −0.03. Other relevant parameters are RI = 0.2, R = 5, λ2 = 0.2, λ3 = 1, κ2 = 3, and κ3 = 1.

largest for a concentric configuration. However, as |Ma| is increased (recall that Ma < 0 here, i.e.,
T decreases with z), we observe that U2 − U3 becomes positive, for all values of e (eccentricity).
This shift in sign inevitably signals the existence of a certain Ma∗ for each e, for which U2 = U3.
It is further observed that this |Ma∗| (the magnitude) required to achieve the equilibrium increases
as the eccentricity decreases and hence the largest |Ma∗| occurs for the concentric configuration,
amounting to Ma∗ ≈ −0.1168. This also indicates that for Ma < −0.1168 and Ma > 0, there are no
possible equilibrium configurations, while it is possible to have an equilibrium configuration at any
eccentricity below a maximum limit, depending on the size of the inner core, by carefully choosing
the imposed temperature gradient, such that −0.1168 < Ma < 0. We would like to emphasize that
the above mentioned range of Ma, which may lead to a possible equilibrium, strongly depends
on the size of the inner core. Notice that since RI = 0.2 here, the maximum possible eccentricity
the inner drop can achieve is e = 0.8. At this stage, it is important to realize that both U2 and
U3 are the same irrespective of whether the drops are in downstream or upstream configurations,
which is dictated by the sign of �z. Since there are two possible choices of �z (see Fig. 2) for
each e, it follows from Fig. 7(a) that there will be one equilibrium position corresponding to each
downstream and upstream configuration, having the same magnitude of �z. Interestingly, the curve
corresponding to e = 0 shows that an equilibrium concentric position is theoretically possible at a
“critical” Marangoni number. This brings us to the second question posed at the beginning of this
section, i.e., how to determine the stability of the equilibrium configurations arising herein.

The aforementioned stability may be assessed from a phase plot of �z, based on Eq. (22), where
the nature of the fixed points [59] can be insightful. The phase plot, i.e., �ż vs �z for different Ma
values (all negative), has been depicted in Fig. 7(b). There are several remarkable features to be
noted from this figure. The equilibrium points corresponding to U2 − U3 = 0 would translate into
fixed points on this graph [59], where �ż = 0. Simply put, the equilibrium (or fixed) points are
where the curves of �ż intersect the horizontal axis (�z). First, note the symmetry in all the �ż
curves, which prevails because the drop velocities do not depend on the sign of �z. Second, we
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observe that there are no fixed points when Ma = −0.15; this is in agreement with panel (a), which
established that beyond Ma = −0.1168, an equilibrium configuration is not possible. Interestingly,
when Ma = Mac = −0.1168, the �ż curve just touches the horizontal axis at �z = 0. This signals
the inception of the first possible equilibrium configuration, where the drops are concentric. The
stability of this equilibrium point would depend on the slope d (�ż)/d (�z) evaluated at �z = 0. If
d (�ż)/d (�z) > 0, the fixed point is unstable; otherwise if d (�ż)/d (�z) < 0, the fixed point would
be stable [59]. However, because of symmetry, it is obvious that {d (�ż)/d (�z)}�z=0 = 0 and hence
the above arguments (which are based on linear analysis) do not directly apply. However, notice
that �ż < 0 ∀ �z �= 0 when Ma = Mac = −0.1168, indicating that �ż does not change sign at
�z = 0 and hence the fixed point at �z = 0 is unstable to disturbances toward �z < 0. We may thus
conclude that although it is theoretically possible to have an equilibrium concentric configuration
for Ma = Mac, this will almost certainly be unstable and thus unachievable in practice.

Third, when Ma > Mac, there are always two fixed points (as discussed earlier), one for
�z < 0, corresponding to the upstream configuration, and another for �z > 0, corresponding to
the downstream configuration. Judging from the slope of the curves at these two fixed points, we
immediately conclude that the downstream equilibrium configurations are stable and the upstream
ones are unstable. Further note that it is possible to achieve a stable equilibrium configuration at
any eccentricity by appropriately tuning Ma, which is otherwise not possible in isothermal flows.
As |Ma| decreases, the equilibrium position becomes increasingly eccentric, until a lower bound of
|Ma| is reached, for which the fixed point is located at �z > 1 and hence is physically not possible.
This lower bound of Ma strongly depends on the size of the inner drop.

Mathematically, Eq. (22) may be expanded in a Taylor series around �z = 0 and reads
d (�z)/dt = −C0(Mac − Ma) − C2(�z)2 + O(�z4), where C0 and C2 are positive constants that
depend on � and the coefficient of �z must be zero, on account of symmetry of the curves in
panel (b). It is worth noting here that in the context of nonlinear dynamics [59], saddle-node
bifurcation is defined as the process of creating a pair of equilibrium points (or fixed points), one
of them stable and the other one unstable, when a system parameter (here, Ma) is varied beyond
a critical value (here, Ma > Mac). When the said parameter is below the critical limit (i.e., when
Ma < Mac), no equilibrium points exist. Based on the above definition, it becomes evident that
the two equilibrium configurations here are created through a prototypical saddle-node bifurcation,
when Ma = Mac = −0.1168. Interestingly, although a handful of previous studies [12,52,56] have
also noted the presence of multiple possible equilibrium configurations, mainly for movement in
quiescent fluids, it seems that this simple fact that the fixed points come about through a saddle-node
bifurcation has never been reported.

Physically, the existence of stable fixed points implies that from any given initial position, the
inner drop will eventually migrate toward the designated point and afterward both the drops will
move with the same velocity. This migration has been demonstrated in Fig. 7(c), where the temporal
evolution of e(t ) has been plotted, subject to an initial eccentricity: e(t = 0) = 0, for three different
choices of Ma = −0.1, −0.07, and −0.03, having stable fixed points at e = 0.38, 0.6, and 0.78
respectively. Motion of the inner drop toward the respective equilibrium configuration becomes
clear from this figure, by observing that e becomes stagnant after a sufficiently long time. Further
note that irrespective of Ma and the exact value of final e, the inner drop takes almost the same
amount of time to reach its equilibrium position.

D. Deformation characteristics of the drops

The deformations given in the Eqs. (31) and (32) may be used to compute the shapes of the
deformed outer and inner drops. The extent of this deformation can be quantified using the aspect
ratio (AR), defined as [67]

ARO = 2ρ (O)
max

H (O)
v

for outer drop; ARI = 2ρ (I )
max

H (I )
v

for inner drop. (34)
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(c) (d)

FIG. 8. Variation of ARO in panel (a) and of ARI in panel (b) as a function of �z, for Ma = 0, ±1, and
±2 and RI = 0.2. (c) Plot of ARO vs Ma and (d) ARI vs Ma, for different inner drop sizes: RI = 0.2, 0.3, and
0.5, at the extreme respective eccentricities, �z = 0.78, 0.68, and 0.48. Other relevant parameters are R = 5,
λ2 = 0.2, λ3 = 1, κ2 = 3, κ3 = 1, Ca = 0.4.

In Eq. (34), 2ρmax is the maximum width of a drop and Hv is the length of the drop along the
centerline (i.e., ρ = 0, in Fig. 2). Therefore, the above equations essentially indicate whether the
drop is stretched (AR < 1) or squashed (AR > 1) along the zc axis. One can get further insight
into the drop deformation by investigating the variations in the normal stresses across the interface,
which mainly cause it to deform in the first place; see Eq. (23). At interface Si j , this stress difference
may be defined as [67]

�T (i j)
ξξ = λi pi − λ j p j + λ jτ

( j)
ξξ − λiτ

(i)
ξξ . (35)

It may be inferred that �T (12)
ξξ quantifies the difference between the stresses exerted by fluids 1

(outermost fluid) and 2 (outer drop), at the interface S12. �T (23)
ξξ may also be interpreted in the

same way. The magnitude of �T (i j)
ξξ governs the interfacial curvature. For the interface to remain

spherical, �T (i j)
ξξ has to be uniform along the interface.

Figures 8(a) and 8(b) exhibit how the aspect ratio (AR) varies for the outer and the inner drops,
when the eccentricity (�z) of the inner core is varied, for different choices of Ma = 0, ±1, and ±2,
while the inner drop radius has been chosen as RI = 0.2. Figures 8(c) and 8(d), on the other hand,
demonstrate the variations in AR’s of the two drops as a function of Ma, for different sizes of the
inner drop, RI = 0.2, 0.3, and 0.5. For every choice of RI , the inner drops are located close to their
respective extreme positions, given by �z = 0.78, 0.68, and 0.48 respectively. All other relevant
parameters are mentioned in the caption.

From panels (a) and (b) we observe that the deformations in both the drops attain maximum
values, when the configuration is extremely eccentric, regardless of Ma. The deformation is ex-
tremely small for the outer drop, even when Ca = 0.4, which reaffirms our earlier assumption of
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FIG. 9. Curvature of the outer drop (∇ · n̂12) in (a) and the inner drop (∇ · n̂23) in (b) vs the respective
polar angles θ1 and θ2, for various positions of the inner drop, �z = −0.23, −0.43, −0.63, −0.73, and −0.78.
Constant curvatures are represented by solid blue lines. Other relevant parameters are RI = 0.2, R = 5, λ2 =
0.2, λ3 = 1, κ2 = 3, κ3 = 1, Ca = 0.4, Ma = 1.

approximately spherical drops; also see Sec. S2 in the Supplemental Material [62]. For the inner
drop as well, the shape does not deviate more than 10% from a sphere, which is in line with the
asymptotic analysis carried out in Sec. IV. Notice that the deformation depends on whether the drops
are in upstream or downstream configuration, as stated in relation to Fig. 5. Since the surface tension
itself changes depending on the type of configuration, the interfaces deform accordingly. Notice that
for both the drops, the deformation characteristics in the two configurations are essentially mirror
images of each other. That is, if for a given eccentricity, the outer drop is stretched along the axis
in, say, the upstream configuration, then it will be squashed axially for the same eccentricity in the
downstream configuration. Although the deformation of the outer drop is extremely small, it still
shows a fascinating nonmonotonic variation, depending on the position of the inner drop. Starting
with concentric configuration with ARO ≈ 1 and Ma = 1 > 0, when the inner core moves forward
[�z > 0; see the black curves in Fig. 8(a)] relative to the outer drop center, it naturally tends to exert
an axial force on the outer drop, which stretches the same along the z axis and results in ARO < 1
for small values of eccentricity (e < 0.23). However, as e increases, U3 decreases [see Fig. 4(d)]
when Ma > 0 and hence the extent of deformation of the outer drop reduces, resulting in ARO

going back up again. For an intermediate range of eccentricity (0.43 < e < 0.73) the axial force on
the outer drop diminishes because the inner core slows down, which reverses the deformation trend
as the drop is now squashed axially (ARO > 1). Finally, for very large eccentricities (e > 0.73), the
presence of the inner core very close to the outer interface changes the stress distribution there
along with the local temperature, which alters the surface tension. This again pushes the outer
interface axially forward and hence results in ARO < 1 and axial stretching of the outer drop.
When Ma < 0 or �z < 0, the effects mentioned above are reversed and hence the deformation
characteristics would follow the opposite pattern, as is clear from Fig. 8(a).

The deformation of the inner core [see Fig. 8(b)] is however monotonic in nature as it contin-
uously increases with increasing eccentricity, regardless of Ma. When Ma > 0, the shape of the
inner drop changes from prolate to oblate as it travels from an upstream toward a downstream
configuration. The reverse is true when Ma < 0. The reason may be understood as follows. When
Ma = 1 > 0 and the inner drop is at an extreme upstream location (e = 0.78), there will be a large
jump in the normal stresses across its interface, especially at its rear end (θ2 = π ); also see Fig. 9(b).
This would result in larger curvature changes which extends the drop along the axial direction,
leading to ARI < 1. As the drop travels toward the center of the outer drop (e or |�z| decreasing),
its velocity increases, while the normal stress jump across its interface becomes less pronounced
leading to a decrease in the extent of deformation and thus ARI inches towards 1. The opposite trend
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is observed in the downstream configuration, when �z > 0, simply because the effects mentioned
above are reversed. Panels (a) and (b) further reveal that a larger imposed temperature gradient,
characterized by a larger Ma, increases the deformation in both the drops. On the other hand, in
an isothermal flow (Ma = 0), neither drop shows appreciable deformation, even when the capillary
number is as large as 0.4.

Panels 8(c) and 8(d) delineate the effect of inner drop size on the deformation in a down-
stream configuration with near-maximum eccentricities. For instance, when RI = 0.5, the maximum
possible value of e is 0.5 and accordingly the curve representing RI = 0.5 has been plotted for
e = 0.48. The change of shape from prolate (AR < 1) to oblate (AR > 1) upon changing Ma is
in exact agreement with panels 8(a) and 8(b). However, we observe that the minimum deformation
(AR = 1) does not occur at Ma = 0 for either drops. Rather, the outer drop witnesses minimum
deformation when Ma = −0.08 and for the inner drop this value is Ma = −0.1. We reiterate that
AR = 1 means that the drops remain spherical. Essentially, at the Ma values mentioned above,
the Marangoni stresses counteract the stress jump caused by the imposed background flow, as a
result of which the deformation vanishes. Further note that an increase in the inner drop size always
leads to larger deformation in both the drops. This is simply because a larger inner drop (especially
one which is more viscous) would exert larger viscous stresses, which will naturally increase the
deformation.

The nature of the deformations can be better understood by exploring the variation of interfacial
curvature, which is governed by the normal stress difference across the interface, as mentioned in
Eq. (35). In fact, the curvature and the stress jump across the interface are related as ∇ · n̂i j =
Ca�T (i j)

ξξ /γi j . This quantity has been plotted in Figs. 9(a) and 9(b) for both the drops [in panel (a)
for the outer drop and panel (b) for the inner drop], as a function of the respective polar angles
θ1 and θ2, for different inner drop positions, given by �z = −0.23,−0.43,−0.63,−0.73,−0.78
(upstream configuration). Notice that the first four of these are the locations where ARO either
changes sign or goes through a local maxima/minima [see Fig. 8(a)]. The straight blue lines in both
panels indicate the stress jump required to maintain a uniform curvature, i.e., a spherical surface.
When the stress jump is lower than this limit, the curvature is smaller, indicating that the drop
surface becomes flatter. Note that in both the drops the maximum deviation in the stress jump (as
compared to a spherical interface) occurs at the rear end (θ = π ), i.e., where the drop interfaces
are closest to each other. As the inner drop approaches the outer interface, it squeezes out the fluid
residing between the two surfaces, which leads to a large stress jump across both the interfaces.
Further notice that the deviations from the uniform state (blue lines) has opposite signs for the two
drops, signaling that they witness opposite kinds of deformation and is in perfect agreement with
the previous figure. From panel (a), we observe that apart from the rear end (θ1 = π ), the stress
jump across the outer interface barely changes with eccentricity, which explains why deformation
of the outer drop also changes so little with �z.

Panel 9(b) on the other hand demonstrates that the normal stress jump across the inner drop
surface deviates more from its base value (the blue line), as the eccentricity increases. As a result, its
deformation increases with eccentricity. Observe that the inner drop experiences a positive curvature
change at both the ends (θ2 = 0 and π ), which indicates that the drop should be axially elongated
for the particular choice of Ma = 1 and hence ARI < 1. This is again in exact agreement with the
previous figure; see Fig. 8(b).

We end this section by visually exploring the drop shapes at different eccentricities, as shown in
Figs. 10(a) and 10(b). Here we demonstrate how the shape of the inner drop changes as it travels
within the outer drop (solid red line), whose center has been held fixed. In panel (a), we have chosen
Ma = 1 > 0 and in panel (b) Ma = −1 < 0 has been taken. Since the outer drop barely deforms,
its shape change is imperceptible and has not been represented here. On the other hand, to make
the deformation of the inner drop legible, we have deliberately chosen Ca = 0.6, which, strictly
speaking might be outside the range of validity of a leading-order analysis. As discussed earlier,
when Ma > 0, the inner drop moves faster than the outer drop (see Fig. 7) and starting at �z < 0,
its shape slowly changes from prolate to oblate throughout the course of its motion; see panel (a).
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FIG. 10. Shape of the inner drop as it travels within the outer drop for Ma = 1 in (a) and Ma = −1 in (b).
The solid red line represents the undeformed outer drop and the direction of relative movement has been shown
with an arrow in each panel. Other relevant parameters are RI = 0.2, R = 5, λ2 = 0.2, λ3 = 1, κ2 = 3, κ3 = 1,
Ca = 0.6.

When Ma = −1, the outer drop moves faster and if the inner drop starts at a downstream position
(�z > 0) with a prolate shape, it will slowly become oblate, as it eventually trails the outer drop’s
center of mass.

VI. CONCLUSION

The effects of an externally imposed temperature gradient on the motion of a neutrally buoyant
compound drop, suspended along the axis of a Poiseuille flow, have been analyzed here, wherein the
surface tension varies linearly with temperature. In an effort to account for the naturally occurring
eccentricity in such systems, bispherical coordinates are used to derive approximate semianalytical
solutions, in the limit of small deformation [Ca � O(1)], employing asymptotic analysis. We also
derive closed-form analytical solutions for the special case of concentric drops. We assume both
energy and momentum transport to be diffusion-dominated and quasisteady, requiring that Pe �
O(1) and Re � O(1). The resulting velocity and temperature fields are subsequently used to derive
a closed-form expression for the leading-order [O(Ca)] deformation in both the drops. The analytical
framework, especially for the deformations in eccentric compound drops, has hitherto not been
reported in the literature. We have extensively validated our results for both droplet velocities and
deformations in bispherical coordinates, by comparing them with previously reported studies in the
literature as well as other known closed-form solutions.

A number of important conclusions can be drawn from our analysis. We establish that the
velocities of both the drops may be either increased or decreased, depending on the magnitude and
the direction of the imposed temperature gradient. Interestingly, the drop velocities do not depend
on whether the inner core lies behind or ahead of the outer drop’s center, while they are largely
independent of the thermal properties of the inner core. The relative velocities of the two drops’
centers of mass can also be finely tuned by imposing a temperature gradient. When Ma > 0, the
inner drop always moves faster than the outer drop, while the opposite trend may be observed when
Ma < 0. In fact, we demonstrate that by applying a temperature gradient below a critical threshold,
it is possible to achieve a pair of equilibrium configurations at almost any eccentricity, where both
the drops move at the same velocity. We further show that the upstream equilibrium configuration is
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always unstable, while the downstream one is stable. Overall, the variations in the geometry (read,
eccentricity) and the temperature gradient have a greater influence on the dynamics of the inner core.

Our analysis further demonstrates that the presence of external temperature gradients leads to
larger deformations as compared to an isothermal flow and it strongly depends on Ma, size of the
inner drop, its eccentricity, as well as the configuration (upstream or downstream). The deformation
in the outer drop is negligibly small, while that of the inner drop strongly depends on the direction
of the imposed temperature gradient and its position with respect to the outer drop’s center of mass.
For instance, we illustrate that for Ma = −1, when the inner core moves slower compared to the
outer drop, its shape may change from being prolate to oblate as the configuration changes from
downstream to upstream.

The framework developed here can also be used to study the motion of compound drops as well
as drops or particles residing close to solid surfaces, with potential applications in biomedicine and
separation processes.
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APPENDIX: COMPLETE EQUATIONS FOR ECCENTRIC DROPS
IN BISPHERICAL COORDINATES

1. Some useful identities

The following identities have been used to simplify and derive several equations in bispherical
coordinates. Note that we have followed the sign convention for the upstream and downstream
configurations as mentioned in Sec. IV.

1 − ζ 2

(cosh ξ − ζ )3/2
=

∞∑
n=0

2
√

2n(n + 1) e∓(n+ 1
2 ) ξ C

− 1
2

n+1(ζ ), (A1)

1 − ζ 2

(cosh ξ − ζ )1/2
=

∞∑
n=0

n(n + 1)√
2

[
e∓(n− 1

2 )ξ

n − 1
2

− e∓(n+ 3
2 )ξ

n + 3
2

]
C

− 1
2

n+1(ζ ), (A2)

(1 − ζ 2)2

(cosh ξ − ζ )5/2
=

∞∑
n=0

4
√

2n(n + 1)

3

[
(n + 2)(n + 3)

(2n + 3)
e∓(n+ 3

2 )ξ

− (n − 1)(n − 2)

(2n − 1)
e∓(n− 1

2 )ξ

]
C

− 1
2

n+1(ζ ), (A3)

sinh ξ

(cosh ξ − ζ )3/2
= ±

∞∑
n=0

√
2(2n + 1) e∓(n+ 1

2 ) ξ Pn(ζ ). (A4)

2. Linear system of algebraic equations for temperature and flow field

a. Algebraic equations for the temperature field

After substituting the expressions for χi from Eqs. (14) into the boundary conditions for tem-
perature as given in Sec. IV B, the same may be simplified to derive linear algebraic equations
for the unknown coefficients, an, bn, . . ., etc., using the orthogonality property of the Gegenbauer
polynomials. This orthogonality condition is given by [61]

∫ 1

−1

C
− 1

2
n+1(x)C

− 1
2

k+1(x)

1 − x2
dx = 2δnk

n(n + 1)(2n + 1)
. (A5)
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Since there are four unknown constants (an, cn, dn, en), for every n, we get a set of 4N linear
equations, given here (for 0 � n � N):

[−an−1 L4n + cn−1 L5n − dn−1 L6n] (n + 1) + an N1n − cn N2n + dn N3n

+[−an+1 L7n + cn+1 L8n − dn+1 L9n] n = 4SnP1n sinh ξ1, (A6a)

−[cn−1 − dn−1 ± en−1] (n + 1)+cn N4n−dn N5n ± en N5n − [cn+1 − dn+1 ± en+1] n = 0, (A6b)

−an L1n + cn κ2L2n + dn κ2L3n = SnP1n, (A6c)

cn κ2 + dn κ2 − en κ3 = 0, (A6d)

where

L1n = sinh

(
n + 1

2

)
ξ1; L2n = e(n+ 1

2 ) (ξ1−ξ2 ); L3n = e−(n+ 1
2 ) (ξ1−ξ2 );

L4n = cosh

(
n − 1

2

)
ξ1; L5n = e(n− 1

2 ) (ξ1−ξ2 ); L6n = e−(n− 1
2 ) (ξ1−ξ2 );

L7n = cosh

(
n + 3

2

)
ξ1; L8n = e(n+ 3

2 ) (ξ1−ξ2 ); L9n = e−(n+ 3
2 ) (ξ1−ξ2 );

P1n = e∓(n+ 1
2 )ξ1 ; Sn =

√
2n(n + 1)c2;

N1n = (2n + 1) cosh ξ1 cosh

(
n + 1

2

)
ξ1 − sinh ξ1L1n;

N2n = [cosh ξ1(2n + 1) − sinh ξ1]L2n; N3n = [cosh ξ1(2n + 1) + sinh ξ1]L3n;

N4n = cosh ξ2(2n + 1) − sinh ξ2; N5n = cosh ξ2(2n + 1) + sinh ξ2.

Note that in Eqs. (A6), the equation for the nth mode has coefficients from the (n + 1)th mode
and thus we have to truncate the series after a certain number of terms (say, N), to compute the
coefficients numerically. We observed that the series in Eqs. (14) are indeed convergent, although
the truncation limit N for accurate solutions strongly depends on the value of eccentricity e. For
example, when RI = 0.2 and 0.001 � e < 0.6, N = 30 is sufficient. However, for 0.6 � e � 0.78
one has to take N = 120, to minimize truncation errors.

b. Shear stress in bispherical coordinates

The simplified shear stress (τξη), upon using Eqs. (16), (17) along with the identities in Appendix
A 1, may be written as

τ
(i)
ξη = − (cosh ξ − ζ )

3
2

c3
√

1 − ζ 2

[ ∞∑
n=0

d2W (i)
n

dξ 2
C

− 1
2

n+1 + δ j2δk3

4
√

2
(U3 − U2)c2

∞∑
n=0

n(n + 1)
{
(2n − 1)e∓(n− 1

2 ) ξ

−(2n + 3)e∓(n+ 3
2 ) ξ
}
C

− 1
2

n+1(ζ )

]
. (A7)

c. Algebraic equations for the flow field

The boundary conditions for velocity components in bispherical coordinates, as given in
Sec. IV C, may be simplified to deduce a linear system of equations for the eight unknown constants
(An, Bn, En, Fn, Gn, Hn, Ĉn, D̂n), for every n. These linear algebraic equations for the “upstream
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configuration” (ξ > 0) are as follows:

AnMn + BnM̂n = R̂1n

( KnQn

(2n − 1)
− K̂nQ̂n

(2n + 3)

)
− U2R̂1n

( Qn

(2n − 1)
− Q̂n

(2n + 3)

)
, (A8a)

EnMn + FnM̂n + GnQn + HnQ̂n = 0, (A8b)

(2n − 1){(An − En)Mn + GnQn} + (2n + 3){(Bn − Fn)M̂n + HnQ̂n}
= −R̂1n

(
KnQn − K̂nQ̂n

)+ U2 R̂1n(Qn − Q̂n), (A8c)

(2n − 1)2{(An − λ2En)Mn − λ2GnQn} + (2n + 3)2{(Bn − λ2Fn)M̂n − λ2HnQ̂n}

=
(
R̂2nJn − R̂3n

N∑
k=0

JkUn,k + R̂1n{(2n − 1)KnQn − (2n + 3)K̂nQ̂n}
)

−U2R̂1n{(2n − 1)Qn − (2n + 3)Q̂n}, (A8d)

EnMn + FnM̂n + GnQn + HnQ̂n = (U2 − U3)R̂1n

( Qn

(2n − 1)
− Q̂n

(2n + 3)

)
, (A8e)

ĈnQn + D̂nQ̂n = U2(R̂1n)

( Qn

(2n − 1)
− Q̂n

(2n + 3)

)
+ U3R̂1n

( Qn

(2n − 1)
− Q̂n

(2n + 3)

)
, (A8f)

(2n − 1){EnMn + (−Gn + Ĉn)Qn} + (2n + 3){FnM̂n + (−Hn + D̂n)Q̂n} = 0, (A8g)

(2n − 1)2{λ2EnMn + (λ2Gn − λ3Ĉn)Qn} + (2n + 3)2{λ2FnM̂n + (λ2Hn − λ3D̂n)Q̂n}

= β

(
R̂2nĴn − R̂3n

N∑
k=0

Ĵk Un,k

)
+ U2(λ2 − λ3)R̂1n{(2n − 1)Qn − (2n + 3)Q̂n}

−U3(λ2 − λ3)R̂1n{(2n − 1)Qn − (2n + 3)Q̂n}. (A8h)

Note that Eqs. (A8a)–(A8d) are evaluated at ξ = ξ1 and Eqs. (A8e)–(A8h) are evaluated at ξ = ξ2.
Following notations have been used in Eqs. (A8):

Mn = e(n− 1
2 ) ξ , M̂n = e(n+ 3

2 ) ξ , Qn = e−(n− 1
2 ) ξ , Q̂n = e−(n+ 3

2 ) ξ ,

R̂1n = n(n + 1)c2/
√

2, R̂2n = 2Ma c (2n + 1), R̂3n = Ma c sinh ξ n(n + 1)(2n + 1),

Kn =
(

1 + 2c2

3R2
(n − 1)(n − 2)

)
, K̂n =

(
1 + 2c2

3R2
(n + 2)(n + 3)

)
,

Jn = (
cn e(n+ 1

2 ) (ξ1−ξ2 ) + dn e−(n+ 1
2 ) (ξ1−ξ2 )

)
, Ĵn = cn − dn,

Un,k (ξ ) =
∫ 1

−1

C
− 1

2
n+1(x)C

− 1
2

k+1(x)

(cosh ξ − x)(1 − x2)
dx.

Notice that the summation terms on the right-hand sides of Eqs. (A8d) and (A8h) are evaluated from
the temperature field and thus can be truncated at the same N , as discussed earlier. Interestingly, in
Eqs. (A8), unlike the temperature field, for every n, only the coefficients corresponding to that
particular mode appear and hence these sets of equations may be solved exactly. For simplicity, we
choose the number of modes for the flow field the same as N . In addition, recall that to compute the
deformations (see Sec. IV E), one again has to truncate the series after a certain number of terms.

From the above equations, we can see that just like An in Sec. IV D 1, all other coefficients may
also be written as a linear combination of U2 and U3. For completeness, we show two examples
here, while the rest of the coefficients follow the same pattern:

Bn = Y (2)
1 (�, e(t ); n) + Y (2)

2 (�, e(t ); n)U2 + Y (2)
3 (�, e(t ); n)U3,

Cn = Y (3)
1 (�, e(t ); n) + Y (3)

2 (�, e(t ); n)U2 + Y (3)
3 (�, e(t ); n)U3, etc.

073602-26



THERMOCAPILLARY EFFECTS ON ECCENTRIC COMPOUND …

A similar system of linear algebraic equations to those in Eq. (A8) may also be deduced for the
“downstream configuration” (ξ < 0), by choosing the correct signs of ξ . We do not mention them
here explicitly to avoid repetition.

3. Complete relations for evaluating the deformation

a. Form of E2�

The expression for E2�i may be evaluated from the following:

E2�i =
√

(cosh ξ − ζ )

c2

∞∑
n=0

⎡
⎣C

− 1
2

n+1(ζ )

{
d2W (i)

n

dξ 2
− 2 sinh ξ

(cosh ξ − ζ )

dW (i)
n

dξ

+3(cosh ξ + 3ζ )

4(cosh ξ − ζ )
W (i)

n

}
+ (1 − ζ 2)W (i)

n

⎧⎨
⎩d2C

− 1
2

n+1

dζ 2
+ 2

(cosh ξ − ζ )

dC
− 1

2
n+1

dζ

⎫⎬
⎭
⎤
⎦. (A9)

Using the expressions for W (i)
n given in (20) and the recurrence relations for the Gegenbauer

polynomials, the above equation may be simplified for the ith fluid as follows [67,68]:

E2�1 = 1

c2
√

(cosh ξ − ζ )

∞∑
n=0

[
ān e±(n+ 1

2 ) ξ + c̄n e∓(n+ 1
2 ) ξ
]
C

− 1
2

n+1(ζ ), (A10)

E2�2 = 1

c2
√

(cosh ξ − ζ )

∞∑
n=0

[
ēn e±(n+ 1

2 ) ξ + ḡn e∓(n+ 1
2 ) ξ
]
C

− 1
2

n+1(ζ ), (A11)

E2�3 = 1

c2
√

(cosh ξ − ζ )

∞∑
n=0

ĉn e∓(n+ 1
2 ) ξC

− 1
2

n+1(ζ ), (A12)

where
ān = −(2n − 1)An + (2n + 3)Bn + 2nAn+1 − 2(n + 1)Bn−1,

c̄n = −(2n − 1)c̃n + (2n + 3)d̃n + 2nc̃n+1 − 2(n + 1)d̃n−1,

ēn = −(2n − 1)En + (2n + 3)Fn + 2nEn+1 − 2(n + 1)Fn−1,

ḡn = −(2n − 1)Gn + (2n + 3)Hn + 2nGn+1 − 2(n + 1)Hn−1,

ĉn = −(2n − 1)Ĉn + (2n + 3)D̂n + 2nĈn+1 − 2(n + 1)D̂n−1.

b. The coefficients in the expressions for pressure

Substituting (29) for pi and (A10) for E2�i in Eqs. (26), we can deduce the relations between the
two sets of coefficients, namely α(i)

n , β (i)
n and ān, c̄n, . . ., etc. These relations are given by [67,68]

α(1)
n = α

(1)
0 ±

[
n−1∑
m=1

ām

m(m+ 1)
+ ān

n

]
, β (1)

n = β
(1)
0 ±(2n+ 1)F ∓

[
n−1∑
m=1

c̄m

m(m+ 1)
+ c̄n

n

]
, (A13a)

α(2)
n = α

(2)
0 ±

[
n−1∑
m=1

ēm

m(m + 1)
+ ēn

n

]
, β (2)

n = β
(2)
0 ± (2n + 1)F ∓

[
n−1∑
m=1

ḡm

m(m + 1)
+ ḡn

n

]
,

(A13b)

β (3)
n = β

(3)
0 ± (2n + 1)F ∓

[
n−1∑
m=1

ĉm

m(m + 1)
+ ĉn

n

]
. (A13c)
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In Eqs. (A13), α
(i)
0 , β

(i)
0 , . . . may be computed from the fact that the disturbance pressure (p(d )

i ), as
given in Eq. (28), should vanish far away from the compound drop, i.e., as ξ → 0. This condition
yields [67,68]

α
(1)
0 = ∓ lim

n→∞

[
n−1∑
m=1

ām

m(m + 1)
+ ān

n

]
and β

(1)
0 = ∓F , (A14)

α
(2)
0 = ∓ lim

n→∞

[
n−1∑
m=1

ēm

m(m + 1)
+ ēn

n

]
and β

(2)
0 = β

(3)
0 = ∓F . (A15)

c. Normal stress in bispherical coordinates

The expression for τξξ may be simplified by using Eqs. (16), (17), along with the recursion
relations and identities for the Gegenbauer and Legendre polynomials (see Appendix A 1). In the
ith fluid (i = 1, 2, 3), this expression reads

τ
(i)
ξξ =

√
(cosh ξ − ζ )

c3

[ ∞∑
n=0

(
2 cosh ξ

dW (i)
n

dξ
+ sinh ξ W (i)

n

)
Pn(ζ ) −

∞∑
n=1

dW (i)
n−1

dξ
Pn(ζ )

−
∞∑

n=0

dW (i)
n+1

dξ
Pn(ζ ) − 3δi2δ j3

2
√

2
(U3 − U2)c2

∞∑
n=0

n(n + 1)
{∓ e∓(n− 1

2 )ξ ± e∓(n+ 3
2 )ξ}C− 1

2
n+1(ζ )

]
.

(A16)

d. Expressions for Gi j (ζ) and Ĝi j (ζ)

The expressions for Gi j (ζ ) and Ĝi j (ζ ), appearing in Eq. (30), are as follows:

Ĝ12(ζ ) = ±c

(1 − ζ 2)(cosh ξ1 − ζ )
, Ĝ23(ζ ) = ±c

γ (1 − ζ 2)(cosh ξ2 − ζ )
, Gi j (ζ ) = Hi j Ĝi j (ζ ),

where

Hi j = ±2βi jMa sinh ξ Ti j

c
+ 4hO

R2
(λ j − λi ) +

√
(cosh ξ − ζ )

c3

[ ∞∑
n=0

{
2 cosh ξ

(
λi

dW (i)
n

dξ

− λ j
dW ( j)

n

dξ

)
+ sinh ξ

(
λiW

(i)
n − λ jW

( j)
n

)}
Pn(ζ ) −

∞∑
n=1

(
λi

dW (i)
n−1

dξ
− λ j

dW ( j)
n−1

dξ

)
Pn(ζ )

−
∞∑

n=0

(
λi

dW (i)
n+1

dξ
− λ j

dW ( j)
n+1

dξ

)
Pn(ζ ) − 3δi2δ j3

2
√

2
(λ2 − λ3)(U3 − U2)c2

∞∑
n=0

n(n + 1)

× {∓ e∓(n− 1
2 ) ξ ± e∓(n+ 3

2 ) ξ
}
C

− 1
2

n+1 +
∞∑

n=0

{(
λ jα

( j)
n − λiα

(i)
n

)
e±(n+ 1

2 ) ξ

+ (
λ jβ

( j)
n − λiβ

(i)
n

)
e∓(n+ 1

2 ) ξ ± (λi − λ j )F (2n + 1) e∓(n+ 1
2 ) ξ
}
Pn(ζ )

]
Si j

. (A17)

Note that in Eq. (A17), Hi j is evaluated on the surface Si j and the following notations are considered:
λ1 = 1, β12 = 1, and β23 = β.
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