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Linear global stability of a downward flow of liquid metal in a vertical duct
under strong wall heating and transverse magnetic field
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The linear global stability of a downward flow of liquid metal in a vertical duct under
strong wall heating and a transverse magnetic field is examined numerically. The two-
dimensional steady-state magnetohydrodynamic (MHD) mixed convection with an upward
reverse flow is first computed by the finite-element method. Then linear global stability
equations of the MHD mixed convection are derived and solved by the spatial discretization
of the Taylor-Hood finite element and an implicitly restarted Arnoldi algorithm for the
resulted generalized eigenvalue problem. Elevator and oscillatory unstable modes are
revealed through the eigenspetrum computation of linear global stability equations. The
elevator mode is found to be always unstable and independent of the basic flow profile,
though a large magnetic field may suppress its growth rate. The unstable oscillatory mode
is directly related to the basic upward reverse flow and first occurs at the specific flow
structure which has an upward reverse flow near the heating wall and a downward flow
near the opposite wall. The critical curves of the Grashof number with respect to the
Hartmann number for the three-dimensional oscillatory mode are plotted and reveal that
larger Hartmann numbers have larger critical Grashof numbers. Energy budget analyses are
also performed and show that the shear Kelvin-Helmholtz instability due to the existence
of an inflection point is the key instability mechanism of the three-dimensional oscillatory
mode. The appearance of the unstable oscillatory mode may be regarded as an alternative
physical explanation of the high-amplitude, low-frequency pulsations of temperature in the
experiments and related numerical simulations.
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I. INTRODUCTION

Liquid metal flows in ducts and manifolds under a large heat flux and strong magnetic field
are closely relevant to the design of liquid metal blankets of magnetic-confinement nuclear fusion
reactors (tokamak or stellarator). Liquid metal blankets can provide three key functions with heat
exchangers, radiation shields, and tritium breeders at the same time and are believed to be the
most promising candidates for future fusion reactors [1–5]. Magnetohydrodynamics (MHD) [6] in
liquid metal duct flows involves the study of the motion and evolution of electrically conducting
fluids in the presence of magnetic fields. Conventionally without considering the thermal effect, the
action of a magnetic field on a flow of an electrically conducting fluid can profoundly change flow
behavior and produce a rich variety of phenomena [7–9] which have attracted extensive scientific
interest. On the one hand, the magnetic field can lead to a change of the laminar-turbulent transition
mechanism [10,11] in MHD flows. The magnetic field usually tends to suppress the production of
turbulence and make the transition from laminar flow to turbulence occur at a much higher Reynolds
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number [12]. The laminar-turbulent transition in MHD duct, pipe, and channel flows has been
reviewed comprehensively by Zikanov et al. [13], with important experimental and computational
results. On the other hand, many specific spatial structures such as shear layers [14], inflexion
points [15], and jets [16] may appear in MHD flows due to the action of the magnetic field and
can produce instabilities of the free shear flow type. For instance, the sidewall jets appearing in
the MHD duct flow with perfectly or thin conducting rectangular walls [17–19] may produce
linear instability under a strong transverse magnetic field. Then the critical Reynolds number
of jet-induced instability appears to be significantly lower than the Reynolds numbers at which
turbulence is observed in experiments [20] or direct numerical simulations [21].

In various design concepts of liquid blankets, the heat flux effect is an unavoidable consideration
and may give rise to thermal convection instabilities which make magnetohydrodynamics more
complicated. The thermal convection mechanism leads to the development of large-scale coherent
structures which have been demonstrated in experiments by Genin et al. [22] and Belyaev et al. [23]
for liquid metal flows in a heated horizontal tube under a transverse horizontal magnetic field. It was
found that temperature fluctuations disappeared at moderately strong magnetic fields but reappeared
at stronger magnetic fields in the form of anomalous high-amplitude, low-frequency temperature
fluctuations. Thus hydrodynamic instabilities are supposed to play a key role in the appearance of
these coherent structures and are verified by direct numerical simulations [24,25] and recent linear
global stability analyses [26]. High-amplitude, low-frequency pulsations of temperature in the form
of isolated bursts or quasiregular fluctuations have also been observed in experiments [27–31] on
a downward flow in a vertical round pipe and rectangular duct with one wall heated and an im-
posed strong magnetic field. These temperature pulsations are also explained by the hydrodynamic
instabilities due to the appearance of reversed flow and then the existence of the inflection point of
the streamwise velocity near the heated wall in numerical simulations [31,32]. The high-amplitude,
low-frequency fluctuations of velocity and temperature that appear in horizontal or vertical duct
flows with strong heat flux and magnetic field effects are called magnetoconvective fluctuations
[33] and have been reviewed recently by Zikanov et al. [34].

As for stabilities of the mixed thermal convections in the horizontal or vertical duct with
one wall heated and a strong transverse magnetic field, the quasi-two-dimensional (Q2D) model
proposed by Sommeria and Moreau [35] is usually adopted through describing the flow variables,
such as velocity and temperature, integrated wall to wall in the magnetic field direction. Based
on purely two-dimensional governing equations of the Q2D model, Smolentsev et al. [36] first
studied instabilities and transitions in MHD duct flows with a symmetric “M-shaped” velocity
profile by imposing an external flow-opposing force. Various instability modes and transition
scenarios have been revealed by varying this external force and position of the inflection point.
Vetcha et al. [37] considered the upward flows in a vertical rectangular duct subject to volumetric
heating and a strong transverse magnetic field. Both bulk instability associated with the inflection
point and sidewall boundary layer instability are predicted by their linear stability analysis. Vo
et al. [38] investigated the linear stability of horizontal Poiseuille-Rayleigh-Bénard flows subjected
to a transverse magnetic field and a vertical temperature gradient. Liu and Zikanov [39] further
investigated the elevator convection mode for the vertical downward flow through the Q2D model.
Zikanov and Listratov [40] performed numerical simulations of the downward flow of a liquid
metal in a vertical pipe and attributed the high-amplitude fluctuations of temperature to the growth
and quasiperiodic breakdown of the pairs of ascending and descending jets related to the elevator
modes. Using the Q2D model, Zhang and Zikanov [32] numerically investigated the stabilities of
the downward flow in a vertical duct with one heated and three thermally insulated walls under
a strong transverse magnetic field. The downward flow is found to be steady state or oscillating
depending on the strengths of the heating and magnetic field.

The Q2D model is originally proposed in the limit of a high interaction parameter (Ha2/Re � 1)
and Hartmann number (Ha � 1). Thus it is not suitable for study of the hydrodynamic stabilities of
MHD duct flows in full physical parameter space, especially to detect the instability boundary when
the unstable threshold occurs at a much lower interaction parameter and Hartmann number. Even at

073502-2



LINEAR GLOBAL STABILITY OF A DOWNWARD FLOW OF …

FIG. 1. Flow configuration for liquid metal flowing downward in a vertical duct under one-wall heating
and a transverse magnetic field.

a high Hartmann number, for the mixed convection in a horizontal duct with an imposed transverse
horizontal magnetic field, the applicability of the Q2D model is not a priori certain due to the
numerical discovery of a large-scale coherent structure [25] which has significant flow and variations
of temperature along the magnetic field lines in the high-Grashof regime. Furthermore, the full linear
stability analysis of horizontal mixed MHD convection has revealed that the instability thresholds of
steady solutions with symmetrical or asymmetrical rolls occur at a much lower Hartmann number
and Grashof number [26]. This clearly shows that the Q2D model is not appropriate for research
on the occurrence process or mechanism of stabilities of the mixed thermal MHD convections
in the horizontal duct. It should also be realized that linear stabilities of a downward flow of
liquid metal in a vertical duct under strong wall heating and a transverse magnetic field should
be performed through the original governing equations without using the Q2D model. In this paper,
full linear stability analyses without the Q2D approximation for such downward mixed convection
flows are accomplished successfully. First, the two-dimensional steady-state flow with an upward
reverse flow is computed by the finite-element method. Then three-dimensional linear stability
equations of MHD mixed convection are derived and discretized spatially by the Taylor-Hood
finite element. The resulting generalized eigenvalue problem is solved by an implicitly restarted
Arnoldi algorithm with the shift-and-invert strategy. The obtained eigenvalues and corresponding
eigenfunctions are directly used for the accurate determination of the linear stability boundary
and the destabilization mechanism of the MHD mixed convection through energy budget analyses.
Through the above linear stability computations and analyses, two unstable modes, i.e., the elevator
mode and oscillatory mode, are revealed, and their destabilization characteristics are described in
detail.

II. PHYSICAL MODEL AND GOVERNING EQUATIONS

A downward flow of liquid metal in a vertical duct is subjected to one-sidewall heating with heat
flux intensity q and an external constant transverse magnetic field B0(= B0ex ), as shown in Fig. 1.
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The liquid metal is assumed to be an incompressible, electrically conducting Newtonian viscous
fluid and homogeneous with regard to its physical properties such as a constant kinematic viscosity
ν, thermal conductivity κ , and electric conductivity σ . There exist two main approximations usually
used in numerical and theoretical research on the mixed convection in pipe and duct flows with
strong magnetic fields [34]. One is the Oberbeck-Boussinesq approximation for the representation
of buoyancy force, i.e., the density of fluid metal is assumed to vary linearly with the temperature
in the buoyancy force term,

Fb = (ρ − ρ0)g, ρ = ρ0[1 − β(T − T0)]. (1)

Here, ρ is the fluid mass density, T is the fluid temperature, β is the thermal expansion coefficient,
g is the gravity acceleration in the negative z direction, and the subscript 0 is denoted as a reference
value.

Another approximation is the quasistatic model, which has been proven to be accurate enough
when the magnetic Reynolds and Prandtl numbers are both small [7,9]. In most laboratory exper-
iments, the magnetic Reynolds number is relatively small and the induced magnetic field is much
weaker than the imposed field. Then the quasistatic model assumes that the induced magnetic field
can be neglected and the magnetic field remains almost undisturbed in the expressions of Ohm’s
law and the Lorentz force, which are formulated as follows:

j = σ (−∇φ + v × B0), (2)

Fl = j × B0. (3)

Here, φ is the electrostatic potential, and j is the induced electric current density. The current density
can be considered to be solenoidal by neglecting displacement currents and assuming the fluid to be
electrically neutral, i.e.,

∇ · j = 0. (4)

Then by substituting Ohm’s law into the above solenoidal relation, a Poisson equation for the
electrostatic potential is obtained as follows:

∇2φ = ∇ · (v × B0). (5)

Considering both the buoyancy force and the Lorentz force with the above two approximations,
the governing equations for the liquid metal duct flow can be described by the Navier-Stokes system

ρ0

[
∂v

∂t
+ v · ∇v

]
= −∇p + ρ0ν∇2v + Fb + Fl , (6)

∇ · v = 0. (7)

By neglecting the Joule and viscous dissipations as well as other sources of volumetric energy
release like nuclear radiation and chemical reactions, the convection diffusion equation derived from
the energy balance can be formulated with the temperature T of the form

∂T

∂t
+ v · ∇T = χ∇2T . (8)

Here, χ = κ/ρcp is the thermal diffusivity, cp is the specific heat capacity, and κ the thermal
conductivity.

The boundary conditions on the heating sidewall include a nonslip condition for the velocity and
a constant heat flux for the temperature, i.e.,

−κ
∂T

∂y
= q, (9)
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and the boundary conditions for the other three sidewalls are nonslip and thermal insulated, i.e.,

∂T

∂n
= 0. (10)

The dimensional governing equations can be further nondimensionalized by using the duct half-
width d as the length scale, the mean streamwise velocity Um as the velocity scale, qd/κ as the
temperature scale, B0 as the scale of the magnetic field strength, and dBUm as the scale of the
electric potential. Then the dimensionless governing equations can be written as

∂v

∂t
+ v · ∇v = −∇p + 1

Re
∇2v + fb + fl , (11)

∇ · v = 0, (12)

∂T

∂t
+ v · ∇T = 1

Pe
∇2T . (13)

The boundary conditions at the duct walls are the no-slip conditions for velocity,

v = 0 at x = ±1, y = ±1, (14)

and perfect electric insulation,

∂φ

∂n
= 0, (15)

and temperature conditions of constant heat flux at the heating wall and thermal insulation at the
other three sidewalls,

∂T

∂n
= −1 at y = −1, (16)

∂T

∂n
= 0 at y = 1, (17)

∂T

∂n
= 0 at x = ±1. (18)

The buoyancy and Lorentz forces are dimensionalized as

fb = Gr

Re2 T ez and fl = Ha2

Re
j × ex, (19)

where the dimensionless parameters including the Reynolds number, Prandtl number, Péclet num-
ber, Grashof number, and Hartmann number are defined as

Re = Umd

ν
, Pr = ν

χ
Pe = Umd

χ
= Re · Pr, (20)

Gr = gβqd4

ν2κ
, Ha = B0d

(
σ

ρ0ν

)1/2

. (21)

The temperature field can be further decomposed as the sum of the mean mixed temperature and
the resulting temperature deviation:

T (x, t ) = Tm(z) + θ (x, t ). (22)

The mean temperature Tm is assumed to be a linear function of the streamwise coordinate z which
makes the overall energy balance between the wall heat flux and the heat transport by the streamwise
mean velocity. Then its streamwise gradient is given by

dTm

dz
= − P

A · Pe
, (23)
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where P = 2 is the perimeter of the heated portion of the wall and A = 4 is the cross-sectional area
of the square duct. Thus the temperature governing equation is written as

∂θ

∂t
+ v · ∇θ = 1

Pe
∇2θ − w

dTm

dz
. (24)

The pressure can also be decomposed into three parts as follows:

p = p̃(z) + p̌(z) + p(x, t ). (25)

The first time-independent part is a quadratic parabolic function of z which balances the buoyancy
force from the mean temperature, i.e.,

d p̃

dz
= Gr

Re2 Tm. (26)

The second part is a linear function of z which is used to drive the duct flow. The third part is the
time-dependent pressure deviation, thus the momentum equation is reduced to

∂v

∂t
+ v · ∇v = −∇p − ∇ p̌ + 1

Re
∇2v + Gr

Re2 θez + Ha2

Re
j × ex. (27)

In the steady-state solutions it is assumed that the velocity, pressure deviation, temperature
deviation, and electrostatic potential are independent of the time and streamwise coordinate, as
follows:

vb = V (x, y) = (
−→
U (x, y),W (x, y)), (28)

p = P(x, y), θ = �(x, y), φ = �(x, y). (29)

Here,
−→
U = (U,V ) is the cross-sectional velocity, and W is the streamwise velocity. Thus the two-

dimensional steady governing systems for the steady flow state are obtained as follows:

(
−→
U · ∇s)W = −d p̌/dz + Gr

Re2 � + 1

Re
∇2

s W + Ha2

Re
Fz, (30)

(
−→
U · ∇s)

−→
U = −∇sP + 1

Re
∇2

s
−→
U + Ha2

Re
−→
f , (31)

(
−→
U · ∇s)� = 1

Pe
∇2

s � − W
dTm

dz
, (32)

∇s · −→
U = 0, (33)

−→
F = (−∇� + vb × ex ) × ex, (34)

∇2� = ∇ · (vb × ex ). (35)

Here, ∇s = (∂x, ∂y),
−→
F = (

−→
f , Fz ), and

−→
f = (Fx, Fy). If the cross-sectional velocity

−→
U is set to 0,

the governing equations for the steady-state solutions can be simplified as

−d p̌/dz + Gr

Re2 � + 1

Re
∇2

s W + Ha2

Re
Fz = 0, (36)

1

Pe
∇2

s � − W
dTm

dz
= 0, (37)

∇2
s � = ∇ · (vb × ex ). (38)

The corresponding boundary conditions on the walls are the no-slip condition for the velocity,

vb = 0 at x = ±1, y = ±1, (39)
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a fixed heat flux on the heating wall and temperature conditions on the thermal insulated sidewalls,

∂�

∂y
= −1 at y = −1, (40)

∂�

∂n
= 0 at y = 1, (41)

∂�

∂n
= 0 at x = ±1, (42)

and a zero current flux due to electrically insulating walls,

∂�

∂n
= 0 at x = ±1, y = ±1. (43)

III. LINEAR GLOBAL STABILITY ANALYSIS

A. Numerical computation of steady mixed convection

In order to study linear global stabilities of the liquid metal mixed convection in a vertical
duct, it is necessary to compute the two-dimensional steady-state solutions of the governing
equations. When nonzero cross-sectional velocity is considered, the full nonlinear system of the
two-dimensional governing equations, (30)–(35), can be used and solved numerically by the Newton
iteration method [26]. When the cross-sectional velocity is 0, then the linear governing equations,
(36)–(38), should be used. Obviously the solution of the linear governing equations must be a
particular solution of the nonlinear governing equations, which may have other multiple solutions
with nonzero cross-sectional velocity. It is very difficult to find the steady-state solutions with
nonzero cross-sectional velocity, which require a good initial guess by the Newton iteration. Under
various groups of dimensionless parameters considered in this paper, it is found that the Newton
iteration always converges to the steady-state solution with zero cross-sectional velocity. Thus linear
governing equations are directly used to obtain the steady-state solution for further linear stability
analysis.

The steady-state solution with linear governing equations can be solved numerically by the finite-
element method. A partial differential equation solver, FreeFem++ [41], with high level integration
for nonlinear multiphysics systems is adopted for computation of the steady-state solutions. It is
noted that in MHD duct flows the thickness of the Hartmann and Shercliff boundary layers scales
as Ha−1 and Ha−1/2. Thus for larger Hartmann numbers, the mesh triangulations should produce a
large number of dense finite elements near the four boundary walls. Such mesh triangulations are
not easily realized by the FreeFem++ built-in mesh generator and can be finished manually. First, a
two-dimensional nonuniform orthogonal rectangular mesh can be easily generated with Chebyshev
Gauss-Lobatto collocation nodes along each coordinate direction. Then by connecting the diagonal
nodes of each mesh, the rectangular mesh can be easily transformed into a triangular mesh. Kosloff-
Tal-Ezer transformation is further used on the Chebyshev collocation nodes and makes the mesh
nodes much closer to the boundary walls. The coordinate position for each mesh node by Kosloff-
Tal-Ezer transformation is formulated as

xi = sin−1(−α0 · cos(π i/Nx ))

sin−1 α0
, i = 0, . . . , Nx,

y j = sin−1(−α0 · cos(π j/Ny))

sin−1 α0
, j = 0, . . . , Ny,

where the parameter α0 is a positive parameter which can control the stretching of the mesh
nodes. Through computation of the most unstable eigenvalue of linear stability equations, mesh
convergence has been verified by the increase in the collocation points in both coordinate directions.
It is found that the mesh with Nx = Ny = 100 has at least three to five collocation points in the
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FIG. 2. Field distributions of (a, c) the streamwise velocity W and (b, d) the temperature � along the cross
section for the steady state of the downward mixed convection flow in a vertical duct at Re = 5000, Ha = 200,
Gr = 2×106, and Pr = 0.0321. Solid and dashed lines in (a) and (b) represent positive and negative values,
respectively.

Hartmann and Shercliff boundary layers, the most unstable eigenvalue can retain sufficient accuracy
and is used henceforth for the calculations throughout the article.

Because the mean streamwise velocity is adopted as the velocity scale, it should be noted that the
uniform streamwise pressure gradient d p̌/dz should be adjusted to make the average streamwise
velocity negative due to the downward flow, i.e.,

1

A

∫
A

W dA = −1. (44)

Obviously, a simple bisection process can be used to satisfy relation (44). In actual liquid metal
blankets, the LiPb eutectic alloy at a temperature of around 570 K has Prandtl number Pr = 0.0321,
while the Reynolds number may vary greatly depending on the design. In this work, several fixed
Reynolds numbers are considered, Re = 2000, 5000, and 8000, and the Grashof number and the
Hartmann number are investigated in the range 104 � Gr � 108 and 10 � Ha � 400.

The steady state of the downward mixed convection flow is first computed for the field dis-
tributions of streamwise velocity W and temperature � along the cross section with Re = 5000,
Ha = 200, Gr = 2×106, and Pr = 0.0321, shown in Fig. 2. It is clearly shown that the distributions
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FIG. 3. Field distributions of the streamwise velocity W and temperature � along the middle line x = 0 of
the cross section for the steady state of the downward mixed convection flow in a vertical duct with different
Hartmann numbers at Re = 5000, Gr = 2×106, and Pr = 0.0321.

of the streamwise velocity and temperature field are nearly one-dimensional, i.e., W ≈ W (y) and
� ≈ �(y). It is also shown in Figs. 2(a) and 2(c) that there exists a reversed flow near the heating
wall, which may cause Kelvin-Helmholtz (KH) instability due to the appearance of an inflection
point for the streamwise velocity profile. Also, a thin boundary layer appears at the opposite wall
and may produce boundary layer instability. As for the temperature distribution, it is seen that the
temperature decreases with an increase in the distance away from the heating wall.

It is necessary to further investigate the profile variation of the streamwise velocity and tempera-
ture field under different dimensionless parameters. As shown in Fig. 3, when the Hartmann number
decreases from Ha = 100 to Ha = 70, the amplitudes of both upward (or reversed) and downward
flows increase, and the profile of the streamwise velocity becomes more symmetrical. Thus the
inflection point also moves close to the center of the duct, and the variation of the temperature
field becomes larger. When the Hartmann number decreases further, to Ha = 50, the upward (or
reversed) flow near the heating wall becomes a downward flow, and also the downward flow near
the opposite wall becomes an upward reverse flow. Obviously, there is a transition point Hat where
the structure of the basic flow field changes suddenly. It should be noted that near the transition
point the downward and upward flows become two strong jets with high amplitudes and opposite
directions when the mechanism of KH instability must work there. Then it is very important to
determine the transition point in the parameter region. Transition curves with different Reynolds
numbers are plotted in Fig. 4, which is used to distinguish two different flow structures in the Ha-Gr
parameter region. It is easily seen that the Hartmann number Hat on the transition curve becomes
larger with an increase in the Grashof number. The transition curves for Re = 2000 and Re = 8000
are accidentally close to each other for large Grashof numbers. The region above the transition
curve is labeled “up/down,” which means that the flow structure in this region exhibits an upward
reverse flow near the heating wall and a downward flow near the opposite wall. Conversely, the
region labeled “down/up” represents that the upward reverse flow is not near the heating wall but
near the opposite wall. It is also found that the transition curves would end at Ha = 0 with a finite
Grashof number below which the basic flow is always the up/down structure for any Hartmann
number. Furthermore, the KH instability obviously occurs at the dimensionless parameters near the
transition curve, thus the critical curve of linear stability due to the KH instability mechanism cannot
cross over the transition curve and must be fully located within one of two separate regions. In the
following sections, a linear global stability analysis is performed and will determine in which region
the critical curve of the KH instability type is fully located.
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FIG. 4. Transition curves Gr-Hat by which the parameter region is divided into two parts and two different
flow structures are distinguished with different Reynolds number where Pr = 0.0321.

B. Linear global stability equations

In order to study the asymptotic behavior over time of generic low-amplitude perturbations of
(V ′, P′,�′,�′) imposed on steady mixed convection, these perturbations can be expanded as normal
modes in the streamwise direction as

(V ′, P′,�′,�′) = (v̂, p̂, θ̂ , φ̂) exp(ikz + λt ), (45)

where k is the wave number in the streamwise direction, and λ = λr + iλi is the corresponding
complex growth rate. By substituting the expressions of the disturbed flow field V + V ′, P +
P′, � + �′, and � + �′ into the governing system, the full global linear stability equations are
obtained as follows:

λû + (
−→
U · ∇s + ikW )û + (

−→̂
u · ∇s)U = −∂ p̂

∂x
+ 1

Re

(∇2
s − k2

)
û, (46)

λv̂ + (
−→
U · ∇s + ikW )v̂ + (

−→̂
u · ∇s)V = −∂ p̂

∂y
+ 1

Re

(∇2
s − k2

)
v̂ + Ha2

Re
(−ikφ̂ − v̂), (47)

λŵ + (
−→
U · ∇s + ikW )ŵ + (

−→̂
u · ∇s)W = −ik p̂ + 1

Re

(∇2
s − k2

)
ŵ + Gr

Re2 θ̂ + Ha2

Re

(
∂φ̂

∂y
− ŵ

)
,

(48)

λθ̂ + (
−→
U · ∇s + ikW )θ̂ + (

−→̂
u · ∇s)� = 1

Pe

(∇2
s − k2)θ̂ − ŵ

dTm

dz
, (49)

∂ û

∂x
+ ∂ v̂

∂y
+ ikŵ = 0, (50)

(∇2
s − k2

)
φ̂ −

(
∂ŵ

∂y
− ikv̂

)
= 0. (51)

Here, v̂ = (
−→̂
u , ŵ) = (û, v̂, ŵ). And the boundary conditions are given by

v̂ = ∂θ̂

∂n
= ∂φ̂

∂n
= 0 at y = ±1 or x = ±1. (52)
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The spatial discretization of the Taylor-Hood finite element can be used for the global linear
stability equations. After the spatial discretization of the linear stability equations, a generalized
eigenvalue problem has to be solved in the matrix form as

Aq̂ = λBq̂, (53)

where q̂ = (v̂, p̂, θ̂ , φ̂) is the eigenvector collecting the velocity components, pressure, temperature,
and electrostatic potential on each degree of freedom of the discrete problem, and A and B are large
sparse complex matrices.

In order to facilitate the extraction of the desired eigenvalues for unstable modes, spectral
transformations should be introduced into the generalized eigenvalue problem. Theofilis [42] has
reviewed a lot of spectral transformations commonly utilized in global instability analysis of fluid
flows. Most commonly used is the shift-and-invert strategy, which transforms the generalized
eigenvalue problem into a standard eigenvalue problem as follows:

(A − μB)−1Bq̂ = (λ − μ)−1q̂. (54)

The shift matrix can be solved by UMFPACK or the MUMPS sparse LU solver and the stan-
dard eigenvalue problem solved with an implicitly restarted Arnoldi algorithm as provided in
the ARPACK software library [43]. Thus, the largest eigenvalues of the transformed matrix now
correspond to those eigenvalues of the original generalized eigenvalue equation which are the closest
to the shift value μ.

C. Elevator unstable mode

Elevator modes driven by a vertical temperature gradient are in fact two-dimensional instability
modes with k = 0, as well as û = v̂ = 0. Then the two-dimensional stability equations for the
elevator modes are represented as

λŵ = 1

Re
∇2

s ŵ + Gr

Re2 θ̂ + Ha2

Re

(
∂φ̂

∂y
− ŵ

)
, (55)

λθ̂ = 1

Pe
∇2

s θ̂ − ŵ
dTm

dz
, (56)

∇2
s φ̂ − ∂ŵ

∂y
= 0. (57)

Obviously, elevator modes have nothing to do with the basic flow field structure but can change
the field structure greatly. Through the eigenvalue computation of the two-dimensional stability
equations, only one unstable branch of elevator modes is found and its exponential growth rate λr

as a function of the Grashof number Gr is plotted with different Hartmann numbers at Re = 5000
and Pr = 0.0321, as shown in Fig. 5. In this figure, it is easily seen that with an increase in the
Grashof number the growth rate of the unstable elevator mode increases continuously. Meanwhile,
at the same Grashof number a larger Hartmann number has a lower growth rate, thus the magnetic
field has a stabilization effect on the unstable elevator mode. It also seems that when the Grashof
number approaches 0, i.e., Gr → 0, the growth rate approaches close to 0 for all Hartmann numbers.
Moreover, the growth rate of the unstable elevator mode is always positive and never found to fall
below 0 for the whole dimensionless parameters considered in this paper. The two-dimensional
unstable elevator mode is revealed to be stationary due to the zero angular frequency (λi = 0),
which is not shown here.

The spatial structure of the unstable elevator mode with respect to the streamwise velocity ŵ and
temperature θ̂ in the cross section is shown in Fig. 6. Due to the independence of the unstable
elevator mode in the basic flow profile, both the streamwise velocity ŵ and temperature θ̂ are
symmetrical with respect to the axes x = 0 and y = 0. Thus the growth of the unstable elevator
mode may symmetrically and locally change the up/down or down/up flow structure greatly and,
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FIG. 5. The growth rate of the most unstable elevator mode as a function of the Grashof number Gr with
different Hartmann numbers at Re = 5000 and Pr = 0.0321.

also, may evolve into jets with a significant amplitude. Furthermore, secondary instabilities may
appear during the evolution of the unstable elevator mode. Early studies mainly took the elevator
mode as the main physical mechanism for experimental and numerical simulation results. However,
it is shown in the next section that there exists a three-dimensional oscillatory (or traveling) mode
which also can be a physical unstable mechanism for these results.

D. Three-dimensional oscillatory instability

Three-dimensional instabilities occur at a nonzero wave number along with a zero or nonzero
angular frequency (stationary or oscillatory instability). For a downward MHD mixed convection
flow in the vertical duct, a three-dimensional oscillatory unstable mode is found and its linear
growth rate and angular frequency as a function of the wave number are plotted in Fig. 7 for
different Hartmann numbers with Re = 5000, Gr = 2×106, and Pr = 0.0321. It is clearly shown
that the most unstable growth rate and its corresponding wave number decrease with an increase
in the Hartmann number. This demonstrates that a stronger magnetic field has a much stronger
stabilization effect, especially for short-wave perturbation, thus a large enough Hartmann number

FIG. 6. The spatial structure of the unstable elevator mode with respect to the streamwise velocity ŵ and
temperature θ̂ in the cross section at Re = 5000, Ha = 200, Gr = 2×106, and Pr = 0.0321.
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FIG. 7. The linear growth rate λr and angular frequency λi of the three-dimensional oscillatory unstable
mode as a function of the wave number k for different Hartmann numbers at Re = 5000, Gr = 2×106, and
Pr = 0.0321.

can make the oscillatory mode stable. The angular frequency is always positive and increases with
the wave number for the unstable region. A positive angular frequency means that the traveling
wave of the oscillatory mode propagates downward in the vertical duct.

To study the critical stability boundary of the three-dimensional oscillatory mode, it is necessary
to plot the critical curves for both the Grashof number Grc and the wave number as a function of the
Hartmann number for different Reynolds numbers, as shown in Fig. 8. From the critical curves of
Grc-Ha, it is easily seen that with an increase in the Hartmann number the critical Grashof number
increases more slowly for a small Hartmann number, then after Ha = 120 it increases more rapidly
and shows linear growth. With a further increase in the Hartmann number, it seems that the critical
value of Grc/(Ha Re) approaches a constant finite value around 4.5, which can be compared to the
threshold value of around 4 given by the numerical simulations of Zhang and Zikanov [32]. It is also
found that at the same Hartmann number, a higher Reynolds number has a larger critical Grashof

FIG. 8. (a) The critical Grashof number Grc and (b) the critical wave number kc as a function of the
Hartmann number for the three-dimensional oscillatory mode of the MHD mixed convection flow for different
Reynolds numbers with Pr = 0.0321. Here, thick lines represent critical curves, and thin blue lines transition
curves in Fig. 4.
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number. The transition curves for the structure change of basic flow are also plotted and located
above the corresponding critical curves. Obviously, the critical curves are located in the up/down
region and this shows that the first instability of the oscillatory mode occurs at the basic MHD
mixed convection with an upward reverse flow near the heating wall and a downward flow near the
opposite wall. It is also noted that for a larger Reynolds number the critical curve of the Grashof
number is much closer to the transition curve of the basic flow structure.

Returning to the critical wave number kc shown in Fig. 8(b), we can see that for small Hartmann
numbers there exists an oscillatory change in the critical wave number, such as from a small value
(≈0.3) at Ha = 10 quickly to a large value (≈0.58) at Ha = 18. The oscillatory change stops near
Ha = 130, and then the critical wave number begins to decrease slowly. It is interesting to see that
the critical wave numbers of Re = 5000 and Re = 8000 are very close at the same large Hartmann
number. This implicitly indicates that for a strong magnetic field and larger basic average streamwise
velocity the perturbations at the critical point have almost the same wavelength.

The spatial structures of three-dimensional oscillatory modes can be further given at a fixed time
from the eigenvectors at the critical point (λr = 0). If the discretized eigenvector is denoted X =
Xr + iXi, the perturbation at wave number k and angular frequency λi is obtained by Re(Xei(kz+λit ) ),
where Re denotes the real part. The spatial structure of the three-dimensional oscillatory mode in the
midplane section x = 0 of the vertical duct is plotted in Fig. 9 for the perturbations of the transverse
velocity in the y direction, the streamwise velocity in the z direction, the vorticity component in the x
direction, and the temperature at a critical point of kc = 0.4358, Gr = 3 530 593.55 with Re = 5000,
Ha = 200, and Pr = 0.0321. It is easily seen that the perturbations with a high amplitude are
concentrated mainly in three regions. From the spatial distributions of the vorticity component in
the x direction and the temperature, one region is located near the inflection point of the streamwise
velocity profile W (0, y), i.e., ∂2W (0, yi )/∂y2 = 0 with yi ≈ −0.25 for the critical parameters con-
sidered here. The perturbations near the inflection point may be attributed to the mechanism of KH
instability. From spatial distributions of the streamwise velocity in the z direction and the vorticity
component in the x direction, the other two regions with large perturbations are situated close to
the heating wall and its opposite wall. The spatial perturbation distribution within these regions also
may produce the boundary layer instability. The existence of the KH instability and boundary layer
instability is further validated by energy budget analyses in the following subsection.

E. Energy budget analyses

In order to gain deep physical insight into the destabilization mechanism in the oscillatory
unstable mode, it is necessary to perform energy budget analyses at the critical thresholds. First,
the linear stability equations, (46)–(48), are multiplied by the complex conjugate of the velocity
perturbation v̂∗ and then integrated in the cross section A. After some simplifications, an equation
giving the rate of change of the fluctuating kinetic energy can be derived. At the critical threshold
[Re(λ) = 0] for any unstable mode, kinetic energy budgets can be further obtained as

Esu + Esv + Esw + Eb + Em + Ed = 0, (58)

where Esu, Esv, and Esw are the productions of fluctuating kinetic energy by shear of the basic flow,
Eb is the production of fluctuating kinetic energy by buoyancy, Em is the dissipation of fluctuating
kinetic energy by magnetic forces, and Ed is the viscous dissipation of fluctuating kinetic energy.
They are defined as follows:

Esu = −Re

(∫
A

[
û
∂U

∂x
û∗ + v̂

∂U

∂y
û∗

]
dxdy

)
, (59)

Esv = −Re

(∫
A

[
û
∂V

∂x
v̂∗ + v̂

∂V

∂y
v̂∗

]
dxdy

)
, (60)
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FIG. 9. Spatial structure of the three-dimensional oscillatory mode in the midplane section x = 0 of the
vertical duct for the perturbations of the transverse velocity in the y direction (top row), the streamwise
velocity in the z direction (second row), the vorticity component in the x direction (third row), and the
temperature (bottom row) at a critical point of kc = 0.4358, Gr = 3 530 593.55 with Re = 5000, Ha = 200,
and Pr = 0.0321.
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TABLE I. Kinetic energy budgets by the streamwise shear of the basic flow E ′
sw, buoyancy E ′

b, and magnetic
forces E ′

m at the critical point of the three-dimensional oscillatory unstable mode for different Reynolds
numbers and Hartmann numbers with Pr = 0.0321.

Re Ha Grc kc E ′
sw E ′

b E ′
m

50 219949.01 0.626 1.2053 −0.0082 −0.1971
100 620747.06 0.499 1.1641 0.0634 −0.2275

2000
200 1622045.47 0.448 1.1129 0.1465 −0.2593
300 2617396.99 0.428 1.0811 0.2132 −0.2942

50 491881.52 0.536 1.1503 0.0117 −0.1620
100 1118677.51 0.534 1.1932 −0.0026 −0.1905

5000
200 3530593.55 0.436 1.1110 0.0931 −0.2040
300 5901688.88 0.413 1.0952 0.1341 −0.2292

50 768284.31 0.475 1.1340 0.0167 −0.1506
100 1584341.48 0.523 1.1830 −0.0124 −0.1705

8000
200 5189962.83 0.433 1.1079 0.0730 −0.1808
250 7030357.09 0.419 1.1047 0.0856 −0.1902

Esw = −Re

(∫
A

[
û
∂W

∂x
ŵ∗ + v̂

∂W

∂y
ŵ∗

]
dxdy

)
, (61)

Eb = Re

(∫
A

Gr

Re2 θ̂ŵ∗ dxdy

)
, (62)

Em = Re

(∫
A

Ha2

Re
[(−∇φ̂ + v̂ × ex ) × ex]v̂∗ dxdy

)
, (63)

Ed = −Re

(∫
A

1

Re

∂ v̂i

∂x j

∂ v̂∗
i

∂x j
dxdy

)
. (64)

Due to the zero cross-sectional velocity (U = V = 0) for the basic flow, the production of fluctu-
ating kinetic energy from the cross-sectional shear of the basic flow is 0, i.e., Esu = 0 and Esv = 0.
All other terms can be further normalized by the viscous dissipation of fluctuating kinetic energy
Ed , then a normalized kinetic energy budget equation is written as

E ′
sw + E ′

b + E ′
m = 1, (65)

where E ′
sw = Esw/|Ed |, E ′

b = Eb/|Ed |, and E ′
m = Em/|Ed |.

The kinetic energy budgets by shear of the basic flow, buoyancy, and magnetic forces at the crit-
ical points of the three-dimensional oscillatory unstable mode are presented for different Reynolds
numbers and Hartmann numbers in Table I. It is easily seen that in all cases the production of
fluctuating kinetic energy by the streamwise shear of the basic flow Esw is the dominant destabilizing
term, which is comparable to the stabilizing viscous dissipation term. The magnetic term Em is
always negative and has an obvious stabilization effect on the flow system. When the magnetic field
is not very strong such as Ha = 50 or 100, it is found that the buoyancy term Eb has only a minor
impact on the production of fluctuating kinetic energy. However, with an increase in the magnetic
field such as Ha = 200 or 300, the buoyancy term Eb becomes comparable to the magnetic term Em

and has a more and more obvious destabilization effect.
Now the three-dimensional oscillatory unstable mode can be attributed to the shear instability

mechanism due to the dominant destabilizing term by the streamwise shear of the basic flow for the
production of fluctuating kinetic energy. However, both KH instability and boundary layer instability
belong to shear instabilities, thus it is not clear which one will play a leading role. To this end, we
can look into the integral terms in the integral formulas, (63) and (64), which represent the local
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FIG. 10. Spatial distribution of the local streamwise shear of the basic flow E ′
sw and local buoyancy

E ′
b at a critical point of the three-dimensional oscillatory unstable mode with Re = 5000, Ha = 200,

Grc = 3 530 593.55, kc = 0.436, and Pr = 0.0321.

production of fluctuating kinetic energy due to the local streamwise shear of the basic flow and
local buoyancy, respectively. The spatial distribution of the local streamwise shear of the basic flow
and local buoyancy is plotted in Fig. 10 at the critical point of Re = 5000 and Ha = 200. It is
clearly seen that the local streamwise shear of the basic flow is positive around the inflection line
yi ≈ −0.25 but is negative near the two opposite walls perpendicular to the direction of the heat
flux. It is also found that the positive local buoyancy is distributed around the same inflection line.
This means that there exists only the KH instability without the boundary layer instability for the
parameters considered here. Thus the three-dimensional oscillatory unstable mode originates in the
KH instability mechanism due to the existence of an inflection point.

F. Remark on the elevator mode and oscillatory mode

Unstable elevator and oscillatory modes have been found for the downward flow of liquid metal
in a vertical duct under strong wall heating and a transverse magnetic field. There exists a critical
curve for the oscillatory mode, while the elevator mode is found to be always unstable. Thus we
are concerned with the growth strength of the elevator mode when the oscillation mode becomes
unstable. We put the critical curve Ha-Grc of the oscillatory mode and contour lines of the linear
growth rate of the elevator mode together, as shown in Fig. 11. It is clearly shown that when the
oscillation mode becomes unstable for Ha < 100, the elevator mode has a growth rate between
0.001 and 0.005. When 100 < Ha < 300 the growth rate of the elevator mode is between 0.005 and
0.01, while for Ha > 300 the growth rate of the elevator mode is larger than 0.01. Thus with an
increase in the Hartmann number along the critical curve of the oscillatory mode, the elevator mode
becomes much more unstable. So the elevator mode will always play an important role whether or
not an unstable oscillatory mode exists.

IV. CONCLUSION

Unstable elevator and oscillatory modes are revealed through linear global stability analysis of
the downward flow of liquid metal in a vertical duct under strong wall heating and a transverse
magnetic field. The elevator mode is found to be always unstable, while the oscillatory mode
becomes unstable above a critical curve of Ha-Grc for different Reynolds numbers under a specific
flow structure which exhibits an upward reverse flow near the heating wall and a downward flow near
the opposite wall. Below the critical Grashof number of the unstable oscillatory mode, the unstable
elevator mode plays a major role through its first growth to a significant amplitude, and then the flow
field may experience secondary instabilities and break down into three-dimensional fluctuations.
Such an evolution process induced by the elevator mode has been used [39] to explain the high-
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FIG. 11. Critical curve Ha-Grc of the oscillatory mode (thick solid line) and contour lines of the linear
growth rate of the elevator mode (thin red lines), where Re = 5000 and Pr = 0.0321.

amplitude, low-frequency pulsations of temperature in the form of isolated bursts or quasiregular
fluctuations in direct numerical simulations [31,40] and experiments [29,30]. However, above the
critical Grashof number, as a new discovery of the destabilization mechanism, the three-dimensional
unstable oscillatory mode will play an important role together with the elevator mode. If initial
perturbations are small, perturbations of both the elevator and the oscillatory mode will increase at
the same time. When the perturbations are large enough, a nonlinear effect should be considered.
Thus a weak nonlinear analysis of the two unstable modes is worthy of further study and used for a
new explanation of high-amplitude low-frequency pulsations.

Energy budget analyses of the three-dimensional oscillatory mode were further carried out at
the critical thresholds of different Reynolds numbers and Hartmann numbers and revealed that the
streamwise shear of the basic flow is the the dominant destabilizing term for the production of
fluctuating kinetic energy. The buoyancy term has a notable destabilization effect only for large
Hartmann numbers, while the magnetic term always has an obvious stabilization effect for any
magnetic field intensity. Meanwhile, it is verified that the shear KH instability due to the existence
of an inflection point is the key instability mechanism of the three-dimensional oscillatory mode.
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