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Some carnivorous mammals (e.g., cats and dogs) lap water with their tongues to drink
water at high frequencies. Such a fast moving tongue creates a liquid column out of a
bath which is bitten by the mouth for drinking. Presumably, the animals bite just before
the pinch-off time of the water column to maximize the water intake. Otherwise, the
water column falls back to the bath before being bitten. Such a pinch-off phenomenon
in the liquid column can be described as the acceleration-induced (i.e., unsteady) inertia
balances with the capillary force. The classical Rayleigh-Plateau instability explains the
competition of the steady inertia with the capillarity, but not with the acceleration-induced
inertia. In this study, we modify the Rayleigh-Plateau instability in the presence of the fluid
acceleration, and show that the most unstable wavenumber and growth rate increase with
acceleration. The pinch-off time is theoretically predicted as the −1/3 power of the Bond
number (i.e, a ratio of the acceleration-induced inertia to capillarity). Finally, measured
pinch-off times from previous physical experiments and dog and cat jaw-closing times are
shown to be in good agreement with our theoretical pinch-off time. Therefore, our study
shows that animals presumably modulate their lapping and jaw-closing time to bite down
on the water column before the pinch-off to maximize the water intake.

DOI: 10.1103/PhysRevFluids.6.073102

I. INTRODUCTION

Mammals are composed of 50–70% water in the body [1,2]. The water content needs to be
internally circulated, discharged by urination [3], and externally supplied by drinking water [4–6].
Most mammals drink water using a suction mechanism. For example, humans drink or suck water
by lowering pressure in the mouth, which is possible by sealing the mouth from the atmosphere.
However, most carnivorous mammals cannot lower the pressure in the mouth for drinking due to
having an incomplete cheek. Instead, these animals develop a lapping mechanism as the tongue
moves in and out of the water. While the tongue is pulled up, a water column is created due to the
high inertia force and wettable tongue surface. As the water column is formed between the tongue
and the free surface, it becomes unstable and breaks into two or several pieces (i.e., pinch-off).
Before the pinch-off, animals need to bite down on the portion of the column for drinking. By doing
so, the animals can drink some amount of water even though the remaining water column falls back
to the bath. Presumably, animals regulate the lapping frequency and biting time to maximize the
water intake from a physics point of view. The pinch-off dynamics of a liquid column has been
observed not only when cats and dogs lap water [4,5] but also when aquatic animals jump out of
water [7,8]. However, the underlying fluid mechanics in the pinch-off dynamics with tonguelike
motion has been understudied.

The Rayleigh-Plateau instability is one of the canonical examples in hydrodynamic stability
[9,10] which describes how a liquid column breaks into a series of small droplets (e.g., a water
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stream from a faucet). The pinch-off dynamics has been extensively studied in the cases of a
liquid bridge [11,12], a flowing jet [9,13,14], and a water-exiting object [7,8]. We summarize
the theoretical pinch-off time into three different cases. At extremely low speeds (i.e., quasistatic
regimes), the pinch-off time can be predicted when the length of the liquid column becomes its
capillary length [i.e., (γ /ρg)1/2, where γ is the surface tension, ρ is the fluid density, and g is the
gravitational constant] [15]. The capillary length indicates the maximum length of the liquid column
under gravity, which is typically on the order of a few millimeters. Next, at a constant speed of the
column separation, the liquid column pinches off at a time of (V/L)(V/

√
gL)2/3, where V is the

separation or jet speed and L is the characteristic length (i.e., typically a column diameter) [16].
The term inside the 2/3 power is called the Froude number, a ratio of inertia to gravitational force.
This shows that the pinch-off time is determined by the time when the steady inertia balances with
gravity. Finally, when the liquid column is stretched or flowing with acceleration, the pinch-off time
is predicted as (L/a)−1/2, where a is the acceleration of a liquid column [5,17–19]. To derive this
theoretical pinch-off time, one of the main assumptions is a constant wavenumber determined by
the column size. However, the −1/2 power does not provide a great fit for experiments, and needs
to be revisited.

In this study, we will investigate the pinch-off time of a liquid column with linear accelera-
tion. The linear acceleration was observed in most animal lapping behaviors [see Fig. 1(d)]. The
acceleration-induced Rayleigh-Plateau instability is rationalized using the governing equations for
one-dimensional (1D) or two-dimensional (2D) liquid columns. By linearizing the governing equa-
tions with proper boundary conditions, dispersion relations are obtained to find the most unstable
mode. Then, the most unstable growth rate and wavenumber are used to predict the pinch-off time
without using the assumption of constant wavenumber that is previously used. Finally, we compare
our theoretical pinch-off time with previously reported experimental data (i.e., a sphere or a cylinder
moving out of a liquid bath, and dog and cat lapping videos).

II. RESULTS

We present two different methods to solve for a dispersion relation and predict the pinch-off
time when an object creates a liquid column out of a bath with acceleration. Similar calculations
without acceleration can be found in fluid mechanics books such as Chap. 1.5 in Ref. [20]. Such
a water-exit phenomenon with acceleration is similar to a water column in animal lapping and in
jumping behaviors as shown in Figs. 1(a) and 1(b). In particular, the pinch-off phenomenon would
play an important role in an animal’s lapping as a liquid column becomes unstable due to inertia
and surface tension.

A. 2D column

When an axisymmetric water column is formed above the free surface by a water-exiting object
at a high speed [see Fig. 1(c)], we presume (1) negligible viscous effect and (2) no azimuthal
dependence. Then, the Euler equations in cylindrical coordinates can be written as

ρ

(
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)
= −∂ p

∂r
, (1)

ρ

(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)
= −∂ p

∂z
− ρg, (2)

1

r

∂ (ru)

∂r
+ ∂w

∂z
= 0, (3)

where ρ is the fluid density, u is the radial velocity of the fluid, w is the axial velocity, p is the
pressure, and g is the gravitational constant. We expand the variables as a base state and a perturbed
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FIG. 1. (a) Photos show the formation of a water column while a dog drinks (image credit to J. Jocha, S.
Gart, and S. Jung). (b) Water columns are formed while a killer whale jumps out of the water (image credit to
S. Jung). (c) Schematic of a liquid column underneath an object exiting the liquid surface. (d) Averaged tongue
velocity of two dogs (27 kg and 9 kg in Ref. [5]) and one cat (7 kg in Ref. [4]). Time zero is when the tongue
starts to move out of a liquid bath. A linear increase in the velocity of the dog’s tongue indicates a constant
acceleration (2g–4g) during the withdrawal phase, whereas a cat drinking exhibits nonuniform acceleration as
the tongue accelerates in the beginning and then decelerates in the end.

state as

u = 0 + δu(r, z, t ),w = at + δw(r, z, t ),

R = R0 − δR(z, t ), p = patm − ρgz − γ /R2
0 + δp(r, z, t ), (4)

where a is the acceleration of the object, R is the column radius, R0 is the initial column radius,
patm is the atmospheric pressure, and γ is the surface tension. The base state of the radial velocity is
assumed to be zero, whereas the base state of the axial velocity is to be “at” as the body is moving
out of water at constant acceleration, a. Then, the linearized Euler equations become

ρ

(
∂

∂t
+ at

∂

∂z

)
δu = − ∂

∂r
δp, (5)

ρ

(
∂

∂t
+ at

∂

∂z

)
δw = − ∂

∂z
δp, (6)(

∂

∂r
+ 1

r

)
δu + ∂

∂z
δw = 0. (7)
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First, we take a z derivative on Eq. (5) and an r derivative on Eq. (6). Then, we subtract one equation
from the other to get rid of the δp dependence as(

∂

∂t
+ at

∂

∂z

)
∂

∂z
δu =

(
∂

∂t
+ at

∂

∂z

)
∂

∂r
δw (8)

→ ∂

∂z
δu = ∂

∂r
δw. (9)

This linearized relation between δu and δw is used in Eq. (7) after taking an r derivative. Then, the
continuity equation becomes [

∂

∂r

(
∂

∂r
+ 1

r

)
+ ∂2

∂z2

]
δu = 0. (10)

This equation has solutions, the so-called modified Bessel functions of the first or second kind. To
have a finite value at r = 0, only the first kind is valid as

δu(r, z, t ) = CI1(kr) exp(ikz − iωt ), (11)

where C is an unknown constant, I1 is the modified Bessel function of the first kind, k is the
wavenumber, and ω is the frequency. The imaginary part of the frequency, Im[ω], is also called
the “growth rate,” which corresponds to the growth rate of variables over time. The real part of ω

corresponds to the oscillatory behavior in time [21,22]. Similarly, the imaginary part of k affects the
magnitude of variables along z as a spatial growth rate.

To further solve these equations, two boundary conditions on the column surface (at r = R) are
used:

(1) The first one is the kinematic boundary condition on the radial velocity as u|r=R =
Dr/Dt |r=R = ∂R/∂t + w∂R/∂z, where D/Dt is the material derivative. The first order of the
kinematic boundary condition reduces to

δu|r=R =
(

∂

∂t
+ at

∂

∂z

)
δR. (12)

(2) The second boundary condition is the Young-Laplace equation as p − patm = γ∇ · n̂ =
γ (1/R1 + 1/R2), where γ is the surface tension, and R1 and R2 are the radii of curvatures. The first
curvature can be chosen to be the inverse of its own column radius [1/R1 ≡ 1/R = 1/(R0 − δR) =
1/R0 + δR/R2

0 + O(δR2)]. Then, the second curvature can be chosen to be orthogonal to the
first one, which becomes 1/R2 ≡ (∂2R/∂z2)/[1 + |∂R/∂z|2]3/2. Under the small slope assumption
(i.e., |∂R/∂z| � 1), the second curvature can be approximated as ∂2R/∂z2. Finally, the first-order
Young-Laplace equation becomes

δp = γ

(
1

R2
0

+ ∂2

∂z2

)
δR. (13)

Employing the above two boundary conditions and taking a derivative of (∂/∂t + at∂/∂z) on
Eq. (5), one gets

ρ

(
∂

∂t
+ at

∂

∂z

)2

δu|r=R = −γ
∂

∂r

(
1

R2
0

+ ∂2

∂z2

)
δu|r=R. (14)

Then, with the normal mode assumption [δu|r=R = CI1(kR) exp(ikz − iωt )], the dispersion rela-
tion is obtained as

(ω − atk)2 = iak − γ

ρR3
0

(kR0)(1 − (kR0)2)
I1(kR0)

I0(kR0)
. (15)

From the above equation, we can find the most unstable mode with the highest growth rate, k(ω =
max(ω)). The higher growth rate means that the corresponding wavenumber develops rapidly,
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thereby appearing in experiments in the first place. Subsequently, the pinch-off happens at that
wavenumber. Here, the first term in Eq. (15), iak, on the right-hand side is due to the fact that “at”
is in front of ∂/∂z on the left-hand side of Eq. (14). When you take the material derivative twice in
Eq. (14), this term appears [see (∂/∂t + at∂/∂z)2 = ∂2/∂t2 + a∂/∂z + 2at∂2/∂z∂t + (at )2∂2/∂z2].
The modified Bessel functions on the last term can be approximated as Iα (z) ∼ (�(α + 1))−1(z/2)α .
With this approximation [i.e., I1(kR0)/I0(kR0) ∼ kR0/2], the above dispersion relation is further
simplified to an equation, which is the same as in Eq. (24) for a 1D column in the next section.

B. 1D column

We can simplify the Navier-Stokes equations of a liquid column into 1D equations of the vertical
velocity, w(t, z), and the column radius, R(t, z), only. This equation has been widely used in
previous studies [18,23–25]. The governing equations are

ρ

(
∂w

∂t
+ w

∂w

∂z

)
= −∂ p

∂z
− ρg, (16)

∂R

∂t
= −w

∂R

∂z
− R

2

∂w

∂z
, (17)

where ρ is the fluid density, p is the pressure, g is a gravitational constant, and R is the column radius.
To linearize the above equation, we decompose the axial velocity, radius, and column pressure into
a zero-order base state and a first-order perturbation as

w = at + δw(z, t ), R = R0 − δR(z, t ), p = p0 + δp(z, t ). (18)

Similar to the pressure calculation in Sec. II A, the first-order pressure term from the Young-Laplace
equation becomes

δp = γ

(
1

R2
0

+ ∂2

∂z2

)
δR. (19)

Then, the first order of the governing equations becomes

ρ

(
∂

∂t
+ at

∂

∂z

)
δw = −γ

(
1

R2
0

∂

∂z
+ ∂3

∂z3

)
δR, (20)

(
∂

∂t
+ at

∂

∂z

)
δR = R0

2

∂

∂z
δw. (21)

By taking a z derivative on Eq. (20), one gets

ρ

(
∂

∂t
+ at

∂

∂z

)
∂

∂z
δw = −γ

(
1

R2
0

∂2

∂z2
+ ∂4

∂z4

)
δR. (22)

Then, it is plugged into Eq. (21) as(
∂

∂t
+ at

∂

∂z

)2

δR = −R0γ

2ρ

(
1

R2
0

∂2

∂z2
+ ∂4

∂z4

)
δR. (23)

It is worth noting that the square of the material derivative on the left-hand side should be
performed carefully as mentioned in Sec. II A. Assuming the normal mode δR = C exp(ikz − iωt )
and multiplying R4

0, one gets the dispersion relation as

(ω − atk)2 = iak − γ

2ρR3
0

[(kR0)2 − (kR0)4]. (24)

In the limit of small acceleration as a → 0, we recover the dispersion relation for the classical
Rayleigh-Plateau instability.
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FIG. 2. (a) Dispersion relation of the classical Rayleigh-Plateau instability with γ = 0.072 N/m, ρ =
1000 kg/m3, and R0 = 10−2 m. The growth rate is maximized at (kR0)∗ = 0.708 regardless of fluid properties.
(b) Dispersion relation of the modified Rayleigh-Plateau instability with acceleration. Here, both the growth
rate and nondimensional wavenumber of the most unstable mode increase with acceleration.

C. Pinch-off time

In this section, let us consider the dispersion relation of the 1D column instead of the 2D
column. The main reason is that we can obtain a simple analytical solution of the pinch-off time
without Bessel functions. Also, we need one more simplification to calculate the pinch-off time; the
convective frequency, ω − atk, on the left-hand side of the dispersion relation represents the growth
rate of a mode in the convected or moving frame while the fluid is stretched [25,26]. To obtain the
theoretical pinch-off time from the growth rate and the wavenumber, we do not have to consider the
convective frequency as it is. Instead, we will use ω in lieu of ω − atk for convenience from now
on. Hence, the dispersion relation of Eq. (24) can be rewritten as

ω2 = i
a

R0
kR0 − γ

2ρR3
0

[(kR0)2 − (kR0)4]. (25)

On the right-hand side, the first term is the effect of acceleration and the second term shows the
classical Rayleigh-Plateau instability. The classical Rayleigh-Plateau instability predicts that the
most unstable mode is constant as (kR0)∗ 	 0.708 [see Fig. 2(a)]. However, when we consider
the effect of acceleration (i.e., the first term), numerical computation shows that the most unstable
mode increases with acceleration [see Fig. 2(b)].

The local maxima (i.e., the most unstable mode) occurs when

0 = ∂ω2

∂ (kR0)
= i

a

R0
− γ

ρR3
0

[(kR0) − 2(kR0)3] (26)

→ i
a

R0

ρR3
0

γ
= (kR0) − 2(kR0)3. (27)

This cubic equation for kR0 produces three solutions for the most unstable nondimensional
wavenumber, (kR0)∗. Two out of three solutions are complex conjugate pairs. When we evaluate
the absolute value of the imaginary part of the three solutions, these two conjugate solutions are
identical. Therefore, Fig. 3(a) shows only two lines: one solution in the red line and two conjugate
pairs in the blue line. In the limit of large kR0 → ∞, the first term on the right-hand side of
Eq. (27) can be negligible compared to the second term. Therefore, we can find the most unstable
wavenumber (kR0)∗ as

(kR0)∗ = (−i)1/3

(
ρR3

0

2γ

a

R0

)1/3

= i

2
Bo1/3, (28)
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FIG. 3. Fluid properties are γ = 0.072 N/m, ρ = 1000 kg/m3, and R0 = 10−2 m. (a) Imaginary part
of the most unstable nondimensional wavenumbers (Im[(kR0)∗]) scales as the 1/3 power of acceleration:
Im[(kR0)∗] ∝ a1/3. Three solutions are obtained from Eq. (27), one red line and two blue lines. (b) The most
unstable growth rate (Im[ω∗]) scales as the 2/3 power of acceleration: Im[(ω)∗] ∝ a2/3.

where the Bond number is defined as Bo = ρa(2R0)2/γ . It is worth noting that the typical Bond
number is defined with a gravitational constant, g, instead of a. However, we redefine the Bond
number with the object’s acceleration, a, to characterize the effect of acceleration against capillarity.
The above relation shows that the most unstable nondimensional wavenumber (kR0)∗ scales as the
1/3 power of the Bond number or the 1/3 power of the acceleration. This 1/3 power of acceleration
is confirmed in the limit of high acceleration as shown in Fig. 3(a).

Finally, the most unstable growth rate, ω∗, can be obtained by plugging kR0 = (kR0)∗ =
(i/2) Bo1/3 in Eq. (25) as

ω∗2 = − a

R0

Bo1/3

2
+ γ

2ρR3
0

[
Bo2/3

4
+ Bo4/3

16

]

=
[
− a

R0
+ γ

2ρR3
0

(
ρaR2

0

2γ
+

(
ρaR2

0

2γ

)1/3
)](

ρaR2
0

2γ

)1/3

=
[
−3

4

a

R0
+ γ

2ρR3
0

(
ρaR2

0

2γ

)1/3
](

ρaR2
0

2γ

)1/3

. (29)

In the limit of high Bond numbers (i.e., Bo � 1), the most unstable growth rate scales as

ω∗2 ∼ a4/3 → Im[ω∗] ∼ a2/3. (30)

This 2/3 power of acceleration is confirmed in Fig. 3(b).
To calculate the theoretical pinch-off time, we consider both the most unstable wavenumber

and growth rate. The imaginary components of both wavenumber and frequency will contribute
to changing the magnitude of variables. In some literature, the imaginary part of the wavenum-
ber is called a spatial growth rate and the imaginary part of the frequency a temporal growth
rate [26,27]. Likewise, both imaginary parts will describe spatial and temporal growth rates in
the column radius or other variables. For the column radius, R = R0 − C exp(ikz − iωt ) = R0 −
C exp(−Im[(k)∗z] + Im[ω∗]t ) exp(iRe[(k)∗z] − iRe[ω∗]t ). At a characteristic distance z = 2R0, the
characteristic timescale is proportional to Im[2(kR0)∗]/Im[ω∗]. Then, we assume the theoretical
pinch-off time as

tpinch-off 	 Im[2(kR0)∗]

Im[ω∗]
=

(
16

3 3
√

2

)1/2(
ρR5

0

γ

)1/6

a−1/3. (31)
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FIG. 4. (a) Dimensionless pinch-off time (t̃pinch-off) versus the acceleration-based Bond number [Bo =
ρa(2R0)2/γ ]. The purple line is from our present theory, t̃pinch-off = 2/

√
3 Bo−1/3, whereas the yellow line

indicates the previous theory, t̃pinch-off = √
8π/9 Bo−1/2. It shows that our new theoretical pinch-off time works

quite well with both physical experiments and dog and cat lapping. (b) Jaw-closing timescale normalized by
our predicted pinch-off time versus animal weight. As shown here, most animals close their jaws before the
pinch-off time (tjaw-closing < tpinch-off).

The nondimensional pinch-off time is given as

t̃pinch-off = 2√
3

Bo−1/3. (32)

Here, the pinch-off time is normalized by the capillary time defined as
√

ρ(2R0)3/γ . As a remark,
our theoretical pinch-off time is different from the previous prediction (t̃pinch−off = √

8π/9 Bo−1/2)
in Ref. [18].

D. Comparison with experiments

In this section, we will validate our theoretical pinch-off time with physical experiments and
biological measurements. Two data sets are from physical experiments performed using ethanol or
water by pulling up either a cylinder [5] or a sphere [18]. Biological data are from animal lapping
behaviors: 1 cat [4] and 19 dogs [5].

Figure 4(a) shows the nondimensional pinch-off time versus the Bond number. This nondi-
mensional pinch-off time is measured as the experimental pinch-off time divided by the capillary
time. Blue circles and squares indicate experimental [5,18] and numerical [18] studies, respectively.
Light blue symbols are from experiments with water and dark blue ones are from experiments with
ethanol. For dogs and a cat, there are two different pinch-off timescales measured: jaw-closing time
and lapping time. The jaw-closing time is defined as a time difference between when the tongue
exits from the water surface and when the animal closes its jaw. The lapping time is measured as
half of the inverse of the lapping frequency. These two types of time were measured from recorded
videos of dogs or cat lappings. In the previous study [5], dogs lap fresh water; however, we have
not measured the fluid properties on site, but assume that fresh water has ρ = 1000 kg/m3 and
γ = 0.072 N/m. In the study of cats [4], a cat laps milk mixed with a little tuna juice. We also have
not measured the fluid properties either, but assume that milk has ρ = 1030 kg/m3 and γ = 0.052
N/m based on reported milk properties [28,29]. Additionally, we do not have many cat data due to
the lack of video footage from other angles to measure both the tongue radius and kinematics. In
Fig. 4(a), light purple symbols are the jaw-closing time, while dark purple symbols are the lapping
time. Higher variations at high Bond numbers (Bo 	 102–103) cannot tell which power exponent
works better. However, our new theory of the −1/3 power (purple line) works quite well with
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experimental data over a wide range of Bo, compared to the previous theory of the −1/2 power
(yellow line). For biological data, they follow the −1/3 power of the Bond number quite well.
However, the cat data deviate a bit from the trend. We explain the possible error for the cat in the
next paragraph.

Figure 4(b) shows the jaw-closing time normalized by the theoretical pinch-off time versus
animal weight. The theoretical pinch-off time in Eq. (31) is calculated based on the acceleration
and radius of the tongue measured in dog and cat experiments. We find that most normalized jaw-
closing times (tjaw-closing/tpinch-off) are less than 1, which indicates that animals close their jaws just
before the column pinch-off. However, there are two data points above 1: one is the 9-kg dog and
the other is the 7-kg cat. There is no special feature on the 9-kg dog, but this dog exhibits a wide
range of jaw-closing times (see the large error bar in the plot). For the cat, the jaw-closing time
is also larger than the theoretical pinch-off time. There are two complications in cat drinking. As
reported in the previous study [4], the cat’s tongue accelerates first and then decelerates a bit near the
end of the lapping period. Hence, the acceleration of cat drinking is not constant over time, which
is quite different from dog drinking with constant acceleration. Our theory based on the constant
acceleration might not be able to explain the cat lapping. In addition, we did not have video footage
from multiple cameras to accurately measure the tongue kinematics and radius in contact with a
liquid bath. As future work, more data in cat drinking are needed to statistically confirm the outlier
of our prediction.

III. CONCLUSION

In this present study, we showed how the theoretical pinch-off time changes with the acceleration
of an object exiting a liquid bath. We performed the stability analysis of both 1D and 2D Euler equa-
tions for the liquid column, and ended up with a similar dispersion relation. Then, the pinch-off time
was determined by the most unstable wavenumber and growth rate without a constant wavenumber
assumption. The theoretical pinch-off time follows the −1/3 power of the Bond number, which is
in good agreement with the experimental data. Moreover, this result possibly predicts the lapping
frequency of dogs and cats, which indicates that animals modulate their lapping and jaw-closing
times to catch the water column before the pinch-off to maximize the water intake. This study of the
pinch-off time with accelerating objects can be useful to understand and characterize the pinch-off
process in industrial processes like inkjet printers, coating processes [30], and more.
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