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Vortex-induced vibration in a cylinder with an azimuthal degree of freedom
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We present a numerical study on the motion of a rigid cylinder promoted by its interac-
tion with an incoming flow when the cylinder is restricted to move along the arc of a circle
and thus has only one degree of freedom. The analysis also includes the description of the
flow around the cylinder, which is influenced by the motion of the cylinder. The Reynolds
number, based on the diameter of the cylinder and the far-away incoming flow velocity,
is 180. It is considered that the diameter of the circle is three times the diameter of the
cylinder and that the ratio of the cylinder to fluid densities is 1.6. The mass and momentum
conservation equations in two dimensions are solved in a Cartesian grid, and the presence
and motion of the cylinder are resolved using the immersed boundary method. The motion
of the cylinder and the flow are two-way coupled in the sense that the aerodynamic forces
that drive the displacement of the cylinder result from the fluid-solid interaction, and in
turn, the flow around the cylinder is modified by its motion. We analyze the initial transient
dynamics and long-time behavior for two different cases. The present results illustrate that
the motion of the cylinder and the torque are quasiperiodic with cycles composed of three
oscillations with different amplitudes. The stagnation point and the boundary layers are
displaced periodically around the rim of the cylinder according to the incoming direction of
its relative velocity with respect to the fluid. The upper and lower separation points undergo
similar periodic angular displacements. This effect is superposed to the alternating vortex
shedding mechanism that occurs in fixed cylinders. Two rows of alternating vortices similar
to von Karman vortex street are formed downstream of the cylinder, but their centers are
farther apart from the symmetry line than those generated in the wake of a fixed cylinder;
this effect is closely related to the coupling between the oscillatory motion of the cylinder
and the vortex shedding process. The pressure field and the instantaneous streamlines are
also presented and related to the dynamical features of the cylinder motion. It is found
that the pressure is the dominant effect on the dynamics of the cylinder and its magnitude
and the direction of the total force on the cylinder is related to the motion of the cylinder
and the genesis and emission of vortices.

DOI: 10.1103/PhysRevFluids.6.064701

I. INTRODUCTION

Vortex-induced vibrations on cylinders with freedom of motion have been the subject of intense
scrutiny due to their importance in practical applications like pivoted rods and cantilevers as well
as in affording a geometrically simple system to test fundamental concepts like the forces arising
in fluid-structure interactions. In the present study, we aim to contribute to this field by numerically

*drdol@ier.unam.mx
†saul.piedra@cidesi.edu.mx
‡erm@ier.unam.mx

2469-990X/2021/6(6)/064701(24) 064701-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.064701&domain=pdf&date_stamp=2021-06-01
https://doi.org/10.1103/PhysRevFluids.6.064701


DOMÍNGUEZ, PIEDRA, AND RAMOS

analyzing the interaction of an incoming uniform flow and a tethered cylinder that is free to move
in the azimuthal direction along an arc of a circle. We focus on the description of the motion of the
cylinder and the wake structure when the Reynolds number based on the diameter of the cylinder is
180, and the ratio of the diameter of the circle to the diameter of the cylinder is 3. The acceleration
of gravity is not included in the analysis. This represents a real physical situation in which the
acceleration of gravity is aligned with the axis of symmetry of the cylinder.

The properties of the wakes that form behind fixed cylinders are intimately related to the
boundary layer around the cylinder and the forces exerted on it. Still, obviously these forces do
not show in the dynamics as a fixed cylinder has effectively infinite inertia. In contrast, when the
cylinder is free to move, its dynamics is complex because there is a two-way coupling between
the forces generated by the flow around the cylinder and the motion of the cylinder itself that in
turn perturbs the incoming flow. The number of conceivable fluid-cylinder arrangements is very
large, and a general study would be practically impossible. Then, a selection of specific cases is
inevitable, as can be verified from the information available in the literature. Books and reviews that
have addressed specific configurations of cylinder-flow systems are, for instance, Refs. [1–4].

One of the best-documented cases is that of the vortex-induced vibrations (VIV) of elastically
mounted cylinders allowed to move only in the transverse direction to the incoming flow. Ex-
perimentally, the cylinder is fixed on a frame such that springs provide restoring forces and set
a natural frequency of oscillation. Informative reports on this case are Refs. [4–6]. At low mass
ratio (mass of the oscillating structure/displaced mass) and low damping, three modes of vortex
shedding have been reported with single or pairs of vortices shed each oscillation of the cylinder.
At first sight, the case just referred to is similar to the situation we analyze in the present study.
We will indeed point out some analogies in Sec. IV B 4, but there are fundamental differences.
The most important one is that in the elastically mounted cylinder, there is an externally imposed
natural frequency and, as it will be described in the following sections, in the present case, the
restoring force is afforded by the flow itself. Out of the set of cylinders moving with externally
imposed frequencies, a configuration relevant for the present study is the flow past cylinders with
forced harmonic oscillations in cross flow. Several authors have looked into the problem considering
specific conditions. A two-dimensional flow with Re = 500 and a forcing frequency range between
0.75 and 1.05 times the Strouhal frequency of the fixed cylinder was studied by Blackburn and
Henderson [7]. They found quasiperiodic behavior for the lift coefficient as a function of time
at the lower end of the explored frequencies; for larger frequencies the lift coefficient displays
weakly chaotic dynamics and fixed single frequencies. Quasi-periodic dynamics was also reported
by Meneghini and Bearman [8] for Re = 200 and forcing frequencies smaller than 0.7. It must be
noted that the main difference of the configuration just commented and the case presented here,
is that when the cylinder is forced, the frequencies and phases of the oscillatory motion can be
arbitrarily imposed, while in the present study they are selected by the dynamics of the system.

A similar physical situation to that described in the previous paragraph and close to the one
analyzed here is the flow-cylinder interaction when the rigid body is constrained to move in an
arc of a circle. Devices based on pivoted cylinders VIV’s have recently been proposed to extract
energy from rivers and ocean currents. In these systems, the load is modeled with torsional or linear
springs, which results in the inclusion of a natural oscillation frequency in the system. The amplitude
of the vibration of these devices was numerically calculated by Sung et al. [9] who considered
cylinders with circular and elliptic cross-sections and Reynolds number 500. They report that the
largest amplitudes of the vibrations were obtained when the pivot is in the wake (downstream of
the cylinder) and that the root-mean-square (RMS) angular velocity is an inverse function of the
ratio of arm length to cylinder diameter. The experimental study on pivoted cylinders reported by
Arionfard et al. [10] focus on the efficiency to extract energy from a constant flow with Reynolds
numbers in the range from 2.9×103 to 2.2×104 where the three-dimensional effects are important
[11]. The geometries used include arm lengths to cylinder diameters in the range 0.5 to 3.2, and
the load is simulated with linear springs. They report that maximum efficiency conditions depend
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on the springs’ stiffness and the arm length, and the incoming velocity. The important effect of the
added mass in a semisubmerged pivoted cylinder is described in Ref. [12].

Another configuration studied in the literature that presents similar conditions to those analyzed
in the present report is the motion of cylinders in a cross-stream with a fixed lower end. Points along
the pivoted cylinder axis describe ellipses of amplitude that depend on the distance to the fixed point.
In most arrangements, the restoring force is provided by springs in the mount [13,14], but in other
cases, the restoring force arises from the elasticity of the cylinder, and no external natural frequency
is imposed [15,16]. Under some specific conditions, the pivoted cylinder describes sections of a
circle, in coincidence with our case. Still, in general, its motion has two degrees of freedom, in
contrast to the single degree of freedom considered in the present analysis. Thus, no direct analogy
applies.

Although the fluid-pivoted cylinder has been looked into from different viewpoints due to its
importance in renewable energy and other applications, it is clear that a more detailed understanding
of the interplay of several effects is still far from complete. In the present report, we describe a
tethered cylinder’s motion to give information somewhat in detail on the angular displacement,
forces, and torques under specific conditions. As described in more detail in the following sections,
we chose to analyze a geometry similar to that used in the devices that extract energy from marine
currents, e.g., an arm length (ratio of the diameter of the circle to the diameter of the cylinder)
smaller than 3.5. We use a Reynolds number that is small for practical applications (Re = 180), but
one for which three-dimensional effects are not important. It must also be observed that given that
the energy harvesting systems described in the literature incorporate an external restoring force, our
study is the simplest, zero load case.

The phenomena described in the following sections are much better appreciated by examining the
actual time evolution of the motion shown in the movies that can be found this article’s Supplemental
Material [17].

II. PHYSICAL AND GEOMETRICAL MODEL

We consider a long cylinder exposed to a uniform flow of a viscous fluid moving with a constant
velocity perpendicular to the cylinder axis. We assume that the cylinder moves due to the interaction
of the fluid and the rigid body, but the motion is constrained to a circle with a prescribed radius. This
effectively restricts the system to move with only one (azimuthal) degree of freedom. Neglecting the
end effects, the motion can be considered two-dimensional, as long as the Reynolds number based
on the diameter of the cylinder is lower than about 190, where three-dimensional effects appear in
its wake [11,18]. A sketch of the physical situation considered is given in Fig. 1 together with the
Cartesian axis of coordinates used in the analysis.

The relevant parameters that determine the dynamics of the cylinder and the motion of the fluid
are the diameter of the cylinder (d), and the diameter of the circle (D), the magnitude of the free
stream velocity of the flow (U ), the kinematic viscosity of the fluid (ν), and the densities of the
fluid (ρ f ) and the cylinder (ρs). The fluid-solid interaction is made through the forces (F ) that the
cylinder and the fluid exert on each other and the torque (T ). The analysis is more conveniently
done in terms of the following nondimensional variables:

x∗, y∗ = x/d, y/d, t∗ = tU/d, u∗, v∗ = u/U, v/U, p∗ = p/ρ f U
2,

F ∗ = F/ρ f U
2d2 and T ∗ = T/ρ f U

2d3, (1)

where u and v are the velocity components in the x and y directions, respectively. Three nondi-
mensional parameters can be defined, namely, the Reynolds number (Re = Ud/ν), the ratio of the
diameter of the cylinder to the diameter of the circle (d/D), and the density ratio (m∗ = ρs/ρ f ).

Most of the dynamical analysis of the cylinder and surrounding flow in the following sections
will be made in terms of the streamwise and transverse forces, Fx and Fy, respectively. Still, in
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FIG. 1. Sketch of the physical situation analyzed. The cylinder diameter is d , and the diameter of the circle
where the cylinder moves is D = 3 d . The incoming flow moves from left to right, and upstream of the cylinder,
the fluid has a uniform velocity U.

aerodynamics, the forces on a body are conveniently decomposed in drag and lift depending on
whether they are parallel or perpendicular to the relative motion of the body and the fluid. For the
sake of completeness, we give the expressions for drag and lift. Figure 2(a) shows the incoming
flow velocity (U) and the tangential velocity of the cylinder (θ̇D/2) at a position of the cylinder
when θ and θ̇ are positive. The vector sum of the two velocities is denoted by û and indicates the
instantaneous direction of the incoming flow as described from a frame of reference attached to the
cylinder. The angle θ∗ is defined by

θ∗ = arccos
û · U
|û||U| . (2)

The direction of the force that results from the flow-cylinder interaction F̂ varies as a function of
the position of the cylinder, as will be discussed at length in the following sections, but it is only
the projection of the resultant force on the tangential direction that produces torque. The component
of the force in the radial direction has no effect on the dynamics because it is assumed that the
cylinder is at a fixed distance from the center. The tangential force can be projected in the local
streamwise and transverse directions, i.e., along the direction of the resultant velocity û which we
call FD and along the direction perpendicular to it, FL. This identifies the drag and lift forces. From

FIG. 2. (a) Definition of the relative velocity of the cylinder (û) for a given azimuthal position (θ ) and
angular velocity (θ̇ ) and the angle between the relative velocity and the direction of the incoming flow (θ∗).
(b) Definition of the tangential force (F̂) and the drag and lift forces, FD and FL, respectively.
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the geometry of the system explained in Fig. 2, it can be observed that the following equality holds:

−ρπ
1

9

(
D

2

)3

θ̈ = FL cos(θ∗ − θ ) − FD sin(θ∗ − θ ), (3)

where the forces in the previous equation are defined per unit length of the cylinder.
The lift and drag forces in terms of the streamwise (Fx) and transverse (Fy) forces, as defined by

the incoming flow U are

FL = Fy cos θ∗ − Fx sin θ∗

cos(2θ∗ − θ )
and FD = −Fy sin(θ∗ − θ ) + Fx cos(θ∗ − θ )

cos(2θ∗ − θ )
. (4)

III. MATHEMATICAL MODEL AND NUMERICAL IMPLEMENTATION

The mathematical model is based on the immersed boundary method presented in Ref. [19], see
also Ref. [20]. Considering a fluid in which one or more solids can be immersed, when a regular
grid is used to discretize the domain, some control volumes will be in the fluid or solid regions, and
others, partially in the fluid and partially in the solid. To identify cells inside and outside the solid,
we define an indicator field using the Heaviside step function as follows:

I (x) =
{

1 inside the fluid,
0 inside the solid. (5)

The indicator field is constructed based on the fact that the solid-fluid interface marks the jump
on the indicator function and this jump becomes in a sharp gradient on the Cartesian grid. The
gradient of the indicator field in a discrete form can be expressed as

∇Ii j =
∑

l

�Iωl
i jnl

�Ll

h2
, (6)

where nl and �Ll are, respectively, the normal vector and the length of element l , and h is the
spatial discretization interval in the regular grid. The symbol ωl

i j is the discrete form of the Dirac
delta function and is the weight of grid point i j for the element l of the interface. In the present
study, the weighting function developed by Peskin [21] has been used to compute the gradient of
the indicator field. Once the grid gradient of the indicator field has been constructed, the field can
be recovered by taking the numerical divergence of the grid indicator field gradient. In symbols,

∇2I = ∇ · ∇Ii j . (7)

The left-hand side of Eq. (7) is approximated by standard central differences, and solving
the resulting Poisson equation with the appropriate boundary conditions yields the indicator field
everywhere. After the indicator field has been calculated, it is possible to find the velocity in any
cell of the computational domain with the expression

u∗(x) = I (x)u∗
f (x) + [1 − I (x)]u∗

s (x), (8)

where u∗
f is the velocity in the fluid region, and u∗

s is the velocity of the solid. From the mathematical
perspective, since the indicator field is represented as a Heaviside function, a no-slip boundary
condition at the solid surface is imposed. However, the numerical implementation of the discrete
form of the step function creates a transition zone where the indicator function takes values from
zero inside the solid to one outside of it. Then, in a strict sense, the no-slip boundary condition
at the interface depends on the shape and thickness of such transition zone. This is a well-known
behavior of the immersed boundary and fictitious domain methods, and many approximations have
been developed to improve the accuracy of the solutions, in this work, the strategy presented in
Ref. [19] was used to reduce the effect of the transition zone.
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The velocity in the fluid is dictated by the mass and momentum conservation equations for
incompressible flows:

∇ · u∗
f = 0, (9)

∂u∗
f

∂t∗ + ∇ · u∗
f u∗

f = −∇p∗ + 1

Re
∇2u∗

f , (10)

where p∗ is pressure. The motion of the cylinder is modeled by the Euler equations [22]. In general,
for an arbitrary motion of a solid body immersed in a fluid, both Newton and Euler equations must
be solved to calculate the velocity of the solid body but, in the two-dimensional case described in
Fig. 1, those equations are simplified by using the constraint that the motion is limited to a circle.
Then, the translational velocity of the cylinder (u∗

sc) can be found as [23]

u∗
sc = D

2
θ̇ (cos θ, sin θ ). (11)

With this simplification, only one differential equation for the angular velocity is required to
calculate the total velocity of the cylinder as follows:

(m∗ + m∗
a )

d θ̇

dt
= T ∗, (12)

where m∗
a is the added mass of the cylinder. Observe that in this case, the added mass in terms of the

scaled variables is m∗
a = 1. In this two-dimensional case, the torque is a pseudo-vector with only one

component in the direction perpendicular to the motion plane. Once the velocities of the centroid
are known, the velocity field inside the body is computed by

u∗
s = u∗

sc + r∗ × θ̇ k̂, (13)

where the r∗ is a position vector, i.e., the distance to any point inside the solid from the center
of rotation of the cylinder, and k̂ is a unit vector perpendicular to the motion plane. The coupling
between the equations in the fluid and the solid regions is the hydrodynamic force (F∗) and torque
(T ∗) acting over the solid. The hydrodynamic force and torque are found integrating the stress tensor
over the rigid body-fluid boundary S [24]:

F∗ =
∫

S

{
−p∗I + 1

Re
[∇u∗

f + (∇u∗
f )ᵀ]

}
· n̂dS, (14)

and

T ∗ =
∫

S
r∗ ×

{
−p∗I + 1

Re
[∇u∗

f + (∇u∗
f )ᵀ]

}
· n̂dS, (15)

where I is the identity tensor and n̂ is the unit vector perpendicular to S. The symbol (·)ᵀ indicates
the transpose of the tensor. As it is usually done, the two-dimensional model can be understood as a
three-dimensional model with the force and the torque interpreted as per unit length in the direction
normal to the motion plane.

The computational domain consists of a rectangle with free slip boundary conditions at the upper
and bottom walls, inlet flow on the left, and outflow on the right wall. The size of the computational
domain is 24×12 cylinder diameters, and it was discretized with a regular grid of 768×384 control
volumes in the x and y directions, respectively. The fixed time step �t∗ = 0.0002 for all simulations.
A study on the mesh fineness, domain size, and time step is presented in the Appendix.

The model described in the previous section was implemented according to the following steps.
First, Navier-Stokes equations are solved using the standard finite-volume method and, the solid
body is treated as a fictitious fluid with high viscosity. The hydrodynamic force and torque are
integrated through Eqs. (14) and (15) and used in the Euler equation to compute the translational
and angular velocity of the solid body. Once the centroid velocity of the solid body is computed,
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the velocity of any point in the solid region is calculated by Eq. (13). Finally, the whole domain’s
velocity is corrected using Eq. (8).

Two initial conditions have been considered in the analysis. We chose these conditions because
they are relevant in the context of real, experimental observations.

Case I:

u∗ = 0, u∗
cs = 0, and θ = θ̇ = 0. (16)

The cylinder is free to move as the flow starts developing. Note that in contrast to the velocities, there
is no time derivative for θ in the equations. However, an initial condition for the indicator function
I [Eq. (5)] must be provided to specify the position of the cylinder at the onset of the simulation.
Also, the following technical comment is in order: When running the simulation program, it was
found that the cylinder position should be fixed for the initial time steps (<10 t∗) to prevent the run
from crashing due to the large initial gradients. This, however, does not have a noticeable impact on
the dynamics of the system because of the small size of the time interval and the minimal velocities
acquired by the cylinder in this time interval.

Case II:

u∗ = u∗
vK , u∗

cs = 0, and θ = θ̇ = 0. (17)

In this case, the cylinder position is fixed, and its velocity is zero. The initial flow velocity u∗
vK is

the velocity field that corresponds to the flow around and the wake of a fixed cylinder (von Karman
vortex street). In the simulation, this condition is implemented in the following way. Initially, the
cylinder is constrained to remain at its initial position long enough for the wake to develop. Then,
the restriction is removed at t∗ = t∗

r , and the cylinder is free to move according to the interaction
forces.

IV. RESULTS

In the present study, we keep the ratio D/d = 3 and consider that the Reynolds number based on
the cylinder’s diameter is 180. The density ratio, m∗ = 1.6.

Before presenting the dynamics of the system under analysis, it is useful to briefly comment on
the time-dependent evolution of the wake of a fixed cylinder. At Re = 180, vortices are formed as
the flow starts flowing around the cylinder, and an alternating force in the transversal direction is
exerted on the cylinder. Initially, this oscillatory force grows linearly with time. Still, at a certain
stage (∼50 t∗), the transversal force on the fixed cylinder grows very fast for a short period (∼ 25 t∗)
before reducing its amplitude to attain the constant amplitude characteristic of the fully developed
von Karman vortex street.

A. Dynamics of the cylinder

1. Azimuthal position and velocity

Figure 3 shows the position of the center of the cylinder as a function of time for initial conditions
corresponding to Cases I and II. The last columns display in more detail the initial and long-term
behavior.

In the first example, shown in Fig. 3(a) (upper row), the cylinder is free to move in the azimuthal
position as dictated by the forces generated by the flow around it; this corresponds to the initial con-
ditions of Case I [Eq. (16)]. At early times t∗ < 50, the cylinder remains practically motionless and
then oscillates with a small amplitude around the position θ = 0. Subsequently, the cylinder keeps
oscillating with high frequency, but its average position displays few large excursions to eventually
settle around the approximate position θ = 0 after 600 time units. In the long-time dynamics, the
cylinder oscillates with an approximate maximum amplitude of 0.48 radians (± 28.3◦) and with a
dominant frequency of 0.13 1/t∗ (see upper panel of Fig. 4). The motion is not strictly periodic, but
we can identify an approximate repeating cycle composed of three oscillations. See the time interval
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FIG. 3. Position of the center of the cylinder (θ , black trace) and nondimensional torque (T ∗, red trace) as
functions of nondimensional time (t∗) for different initial conditions. (a) Case I; (b) Case II, t∗

r = 100 t∗. The
two last columns contain amplifications of the initial and long-term behavior, respectively.

4130 < t∗ < 4150 of the plot on the right upper row of Fig. 3. This oscillation will be described
in greater detail below. The traces in Fig. 3 indicate that the azimuthal position and the torque
are always out of phase. Observe that a positive (negative) torque promotes a counterclockwise
(clockwise) motion.

In Case II, shown in Fig. 3(b), the cylinder is fixed for 100 time units (t∗
r = 100 t∗), long enough

for the von Karman vortex street to develop around a fixed cylinder, then, the constraint is relaxed,
and the cylinder is free to move along the azimuthal coordinate. The cylinder oscillates as in the
first case, and its time average position wanders around θ = 0. Eventually, after a transient of
approximately the same duration as the first case, the cylinder motion settles in a complex oscillation
with high frequency and an average azimuthal position θ close to zero. The long-term behavior is
found to be similar but not identical in the two cases analyzed. Inspection of the last column of

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10-5

10-4

10-3

10-2

10-1

FIG. 4. Fourier spectrum of the angular position, Hθ , black line; torque, HT ∗ , red line. The initial conditions
used correspond to Case I.
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FIG. 5. Total (F ∗), streamwise (F ∗
x ), and transverse (F ∗

y ) forces and torque (T ∗) on the cylinder as functions
of time.

Fig. 3 (see also the upper panel of Fig. 9), the swings with larger amplitude in the azimuthal position
correspond to smaller torques and vice-versa.

The Fourier spectrum of the angular position for Case I is shown in Fig. 4. We considered
only t∗ > 800 to disregard the initial transient influence in calculating the Fourier transform. The
Fourier analysis was made for Case II with two restraint times (t∗

r = 50, 100), and it was found
that in all runs, the frequency f ∗

θ3 = 0.13 1/t∗ is dominant with major components with frequencies
f ∗
θ1 = f ∗

θ3/3, f ∗
θ2 = 2 f ∗

θ3/3, and f ∗
θ4 = 4 f ∗

θ3/3.
The time evolution of the velocity of the cylinder is directly calculated from its position, and as

expected, it is found that its extreme values (|θ̇M |) and zeros are located at θ = 0 and at the extreme
values of the azimuthal displacement, respectively. The maximum ratio of the induced velocity to
the incoming flow velocity is ∼D|θ̇M |/2U ∼ 0.25, and the resultant direction of the incoming flow
as defined from the axis of coordinates fixed on the cylinder is |θ∗| < 0.25 (14◦), see Fig. 2.

2. Force and torque

The force and torque on the cylinder can be calculated using Eqs. (14) and (15), respectively.
Figure 3 shows the magnitude of the nondimensional torque as a function of time for the two initial
conditions considered. As previously noted, the torque and angular position are always out of phase,
indicating that the two signals’ dominant frequencies are the same. This is corroborated in Fig. 4
where the torque for Case I frequency spectrum is presented. The Fourier spectrum shows that
the dominant frequency of the torque oscillation is equal to that of the angular displacement, i.e.,
f ∗
T ∗ = 0.13 1/t∗ with major components 2 f ∗

T ∗/3, 4 f ∗
T ∗/3, and 5 f ∗

T ∗/3. It is important to remark that
the torque spectrum is richer than that of the position for high frequencies. This last feature is
consistent with the presence of a complex maximum that appears every three swings as it is more
clearly observed at t∗ = 4100, 4123, . . . in Fig. 5. Although sharing dominant frequencies with the
azimuthal position, the torque has Fourier modes with smaller amplitude in the low frequencies and
larger amplitude in the high frequencies range. In Fig. 3 it is also observed that the torque oscillates
approximately around zero for all times, with the swings less symmetric during the transient. As
expected, the torque oscillation amplitude is larger when the cylinder is fixed and reduces when
the cylinder is released at t∗ = 100, as it is illustrated in the central panel of Fig. 3(b). It is also
found the cylinder oscillations with larger amplitude correspond to torque oscillations with smaller
amplitude.

To describe the force on the cylinder, it is convenient to use its projections in the streamwise (F ∗
x )

and transverse (F ∗
y ) directions and its magnitude (F ∗ =

√
F ∗

x
2 + F ∗

y
2). Figure 5 shows these variables

and the torque on the cylinder as functions of time for Case I. The total and streamwise forces are
practically indistinguishable and are always positive. The Fourier analysis of this signal indicates
that the dominant modes have frequencies f ∗

F ∗ = 0.043 1/t∗ (= f ∗
θ1) and the cluster 2 f ∗

F ∗ , 3 f ∗
F ∗ , 4 f ∗

F ∗ ,
5 f ∗

F ∗ , and 7 f ∗
F ∗ which have comparable amplitudes. The transverse force is much smaller, oscillates

around zero, and has a richer content of high-frequency Fourier components.
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FIG. 6. Vibration analysis. Upper panel, azimuthal position of the cylinder θ (thin gray line) and its periodic
reconstruction 	 (thick blue line), Eq. (18). Lower panel, individual waves in Eq. (18).

3. Vibration analysis

The long-term azimuthal position of the cylinder displayed in the upper right column of Fig. 3
(Case I) is a quasiperiodic signal with a cycle composed of three oscillations, one of them with
a slightly larger amplitude than the other two. The cycle spans approximately 23 nondimensional
time units. The signal can be closely represented with four Fourier components with frequencies
that correspond to the dominating frequencies displayed in Fig. 4.

Figure 6 shows the relative influence of each of the four dominant frequencies in the Fourier
spectra of Fig. 4(a). The upper panel shows the actual position of the cylinder (black line) and the
reconstructed periodic function defined by

	 =
4∑

n=1

	n, (18)

where

	1 = 0.04 sin(2π f ∗
θ1t∗), 	2 = −0.08 sin(2π f ∗

θ2t∗),

	3 = 0.16 sin(2π f ∗
θ3t∗), 	4 = 0.06 sin(2π f ∗

θ4t∗).

The frequencies f ∗
θ1 = 0.043, f ∗

θ2 = 0.087, f ∗
θ3 = 0.13, f ∗

θ4 = 0.173, are the dominant Fourier
components of the azimuthal position. Although the higher frequencies are integral factors of the
smallest, the most energetic frequency corresponds to f ∗

θ3. As described in more detail below, the
frequency with the largest coefficient corresponds to the vortices’ emission. It is also interesting
to observe that all components have zero relative phase except for the component with frequency
2 f ∗

θ3/3 whose relative phase is π . The lower panel of Fig. 6 displays the individual waves of Eq. (18).
It must be noticed that the periodical reconstruction under predicts the largest negative oscillation

amplitude of θ and also that it lags behind; this last effect is barely noticeable in the last swing of
θ in the upper panel of Fig. 6. The differences are due to the Fourier components present in the
original signal and absent in the reconstruction.
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FIG. 7. Upper figures: Three-dimensional attractor in space θn, θn+n0 , θn+2n0 with delay time no = 1/ f ∗
θ3 for

Case I. Lower figures: Poincare maps for Cases I and II. The black thick lines in the upper figures and the black
dots in the lower figures represent the simplified expression given in Eq. (18).

It was previously commented that the cylinder’s azimuthal position as a function of time is
quasiperiodic, i.e., it is a time series that is apparently periodic but does not exactly repeat itself.
To illustrate the small differences found, we plot the attractor in a 3D embedding phase space using
the inverse of the dominant frequency no = 1/ f ∗

θ3 as the delay interval. The upper row of Fig. 7
shows the attractor from two viewpoints to better appreciate its structure. The three oscillations that
compose a cycle are clearly displayed. In the lower row of the same figure, we show the Poincaré
maps of the attractor obtained for a horizontal and two mutually perpendicular vertical planes that
contain the point (0,0,0). The structure of the attractor is filiform with branches bifurcating from a
common point, as can be seen from the blue and red clusters of points in the lower panels of Fig. 7
that correspond to Cases I and II in Figs. 3(a) and 3(b), respectively. As can be appreciated, the
structure of the attractor is the same for the two cases.

The closed black line is 	, the simplified representation of the cylinder’s azimuthal position. The
black dots in the lower row constitute the Poincaré map of 	 and are isolated points as it corresponds
to a closed loop in phase space.

B. Flow around and downstream the cylinder

1. Velocity at downstream point

A complementary analysis of the evolution of the cylinder position can be made in terms of the
downstream velocity. The upper panel of Fig. 8 shows the streamwise u∗ and transverse v∗ velocity
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FIG. 8. Upper panel: Velocity components u∗ and v∗ of the fluid for Case I at a position 4.5 diameters
downstream from the center of the cylinder and θ = 0 as functions of time. Lower panel: Fourier spectra of u∗

and v∗ signals.

components as functions of time at a point four and a half diameters downstream of the center
of the cylinder at position θ = 0. Data in Secs. IV B and IV C correspond to Case I for long times
after the transient has died out. The oscillation of the transverse velocity is symmetric with respect to
θ = 0 and is composed of cycles of three increasingly amplitude swings. In contrast, the streamwise
velocity’s oscillation is not symmetric with respect to zero, displaying dominant-negative values.
The amplitude of the v∗ oscillation is smaller and more complex than the transverse counterpart.
We found that the velocity traces for Case II described in Fig. 3 display the same behavior and are
not shown.

The Fourier spectra of u∗ and v∗ are plotted in the lower panel of Fig. 8. Both signals dominant
modes are the same, but the frequency of the highest peak of u∗ is one-third of its counterpart
of v∗. Also, note that the highest peak of v∗ is present in the spectrum of u∗ albeit with smaller
energy content. Observe that all frequencies are multiples of the cylinder’s azimuthal position lowest
frequency ( f ∗

θ1 = 0.043).
As can be observed from the lower panel of Fig. 8, the dominant frequencies of u∗ and v∗ are

f ∗
u∗ = fud

U
= 0.0435 and f ∗

v∗ = fvd

U
= Stv∗ = 0.13.

In the last expression, we emphasize that the transverse velocity frequency is usually identified
with the Strouhal number Stv∗ . The ratio of the Strouhal oscillation frequency (Stv∗ ) to the fixed
cylinder Strouhal frequency1 is 0.13/0.19 = 0.68. It is interesting to observe that the occurrence of
quasiperiodic motion for this range of frequencies is consistent with the results obtained for forced
cross flow oscillating cylinders for Re = 200 [8] and 500 [7] who report quasiperiodic or beating
dynamics for forcing frequencies smaller than 0.77 times the Strouhal number of the fixed cylinder.

2. Vorticity field

A general picture of the vorticity field around the cylinder and vortex shedding in one cycle of
the cylinder’s oscillation for Case I and times t∗ > 600 is shown in Fig. 9. The vorticity distribution
near the cylinder is more complex than that of a fixed cylinder, and the array of vortices in the wake
are less regular than those in a fixed cylinder. More detailed descriptions of the vorticity distribution
features around the cylinder and in the wake are given in Secs. IV B 3 and IV B 4, respectively.

1The nondimensional frequency of the transverse velocity of a fixed cylinder, for Re = 180 is St ≈ 0.19 [25].
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FIG. 9. Upper panel, angular position, and torque as functions of time. Lower panel, snapshots of vorticity
field. The times at which the vorticity fields were obtained are indicated in the upper panel.

The angular position and the cylinder’s torque as functions of time are given in the upper
panel of the figure. The black dots indicate the time when the snapshots of the vorticity field are
illustrated. As explained previously, the cycle is composed of one large swing followed by two
smaller amplitude oscillations.

To simplify the near wake dynamics description, it is useful to recall the spatial distribution
of the dynamic structures leading to vortex shedding from a fixed cylinder shown in Fig. 10. The
geometrical and physical properties of the vorticity in the near wake of a fixed cylinder are explained
in detail in Ref. [7] for a specific Reynolds number. Here we focus only on the features that will
help describe the near wake of a tethered cylinder.
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FIG. 10. Vorticity field in the surrounding area of the fixed cylinder. Upper panel: velocity components and
torque as functions of time. Lower panel: vorticity fields at times indicated in the upper panel.

The wake of a fixed cylinder in cross flow starts with the production of vorticity at the surface
of the cylinder in response to wall-tangential components of pressure gradient. Vorticity diffuses
away from the cylinder and concentrates in the two shear layers above and below the stagnation
point. These regions with high vorticity of opposite signs grow fed by circulation from their shear
layers as they move backward along the cylinder’s surface. At the separation point, further supply
of circulation is cut off by the entrainment of counter-rotating vorticity supplied by a short-lived,
small pocket of vorticity formed near the cylinder’s rear side. The main flow past the cylinder then
sweeps the vorticity, and for Reynolds numbers 180, the vorticity tongues are strong enough in the
near wake to draw the opposite shear layer across the symmetry line. As a consequence, vortices
are shed and convected downstream. The flow’s characteristic spatial magnitude is the cylinder’s
diameter, and the vortical structures in the wake display this scale.

3. Near wake

The mechanism of vortex formation and shedding is similar to that occurring in the fixed cylinder
case, namely, the generation of vorticity in the boundary layer at the surface of the cylinder and its
detachment due to adverse pressure gradient, but, in the present case, the azimuthal displacement
modifies the relative motion between the cylinder and the incoming flow. The detail of the vorticity
field near the cylinder is shown in Fig. 11. As described previously, the stagnation point in the
cylinder moving with one azimuthal degree of freedom is not always at the same spot but moves
along the rim of the cylinder, with the largest displacement occurring when the cylinder is at
position θ = 0 and has the largest azimuthal velocity. Near the cylinder’s surface, the formation
of the high-vorticity region near the stagnation point is symmetric and similar to that of the fixed
cylinder. However, the separation region and the structure of the high vorticity region farther away
from the cylinder is distinctly different from that of the fixed cylinder. The high vorticity regions
have complex structures that pulsate, expanding and contracting synchronously with the cylinder
oscillation motion. In its largest extension, the region comprises two tongue-like structures with
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FIG. 11. Vorticity field in the surrounding area of the cylinder for 955 < t∗ < 995. For reference, see
Figs. 3(a) and 9.

high vorticity separated by a zone with no vorticity or low-intensity vorticity of opposite sign. In its
smallest extension, the two tongues merge, and the low vorticity zone practically disappears. Re-
markably, the structure described is not swept away by the external flow but remains approximately
at the same position during the whole cycle. Another major feature of the vorticity distribution is
that the intense vorticity zone is far larger than in the fixed cylinder. This is an obvious consequence
of the cylinder’s azimuthal motion, where a characteristic magnitude is not the diameter of the
cylinder but the diameter plus its displacement. In the particular case under analysis, this magnitude
amounts to approximately 2d . Although the picture varies slightly for each of the three oscillations
that compose one cycle (see Fig. 11), the vorticity distributions are similar. A pocket of intense
vorticity is formed near the stagnation point at the lee side of the cylinder in a similar fashion to
the fixed cylinder, but its intensity and extension are larger due to the azimuthal motion of the
cylinder. Specifically, the pocket merges with the (oversized) vorticity tongues when the cylinder
is at its extreme positions, and this combination produces an efficient cutoff mechanism for vortex
shedding.
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FIG. 12. Accumulated vorticity (
∗
ᵀ) as defined in Eq. (19) in a 0.1d width ring around the cylinder as a

function of time. The azimuthal position of the cylinder and the torque are also shown for reference.

The swing with the maximum torque difference occurring between b3 and b1 in Fig. 11,
coincides with the smallest azimuthal displacement. This swing also has the shortest time interval.
Correspondingly, the swing with the smallest torque difference (a3-a1) coincides with the largest
azimuthal displacement difference and has the longest time interval.

The dynamics of the cylinder and the vorticity generated in its vicinity can be linked as follows.
As described previously, the cylinder motion cycle is composed of three oscillations or swings in the
azimuthal position. The total vorticity accumulation (
∗

ᵀ) in the immediate vicinity of the cylinder
can be evaluated by integrating the vorticity field in a ring around the cylinder, i.e.,


∗
ᵀ =

∫
A |∇ × u f |dA

A
, (19)

where A is the area of a small ring around the cylinder.2

In Fig. 12, it can be observed that 
∗
ᵀ is an oscillatory function of time with a fast frequency

equal to 2 f ∗
θ3 indicating that two vortices are generated in each swing of the cylinder. Also, from

the figure, it can be appreciated that local maximums of 
∗
ᵀ happen at the start of deceleration,

near zero-velocity points, and minimums take place after the end of the accelerating phase. The
trace of 
∗

ᵀ also evolves with a low frequency f ∗
θ3/3 = f ∗

θ1 and the absolute maximums of vorticity
accumulation near the cylinder are attained around the maximums of the torque (just after point
b2 in Fig. 12). The absolute minimums of vorticity accumulation coincide with the smallest torque
maximum. See traces just past point a3 in Fig. 12.

Although not shown explicitly in the figure, it is found that the (absolute) velocity (θ̇) in the
interval a1-a3 is smaller than in the interval b1-b3. The opposite is true for the vorticity accumulation.
The phenomena described here and in the following subsections are much better appreciated by
looking at the actual time evolution given in the Supplemental Material [17].

4. Far wake

Before describing the distribution of vortices in the far wake, it must be observed that the vector
sum of the azimuthal motion of the pendulum and the main horizontal flow results in local relative
velocity oblique to the incoming flow. Consequently, the vortices are shed at an angle with respect to
the horizontal line, and their centers are separated up to 1.5d from the horizontal line. This contrasts
with the typical distance of 0.5d that is observed in the case of the fixed cylinder.

2Several ring widths in the range 0.1d < w < 0.2d were examined. All cases essentially give the same
information; the case with the smoothest signal was chosen.
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FIG. 13. Trajectories of the vortices. The black line represents the trajectory of the first negative vortex
that corresponds to the positive displacement of θ in the large swing (see point a1 of top panel in Fig. 11 and
Supplemental Material [17]). The red line corresponds to the trajectory of the next vortex (first positive). The
blue, yellow, green, and cyan lines represent, respectively, the third to sixth vortices. The empty black dots
labeled with capital V ′s denote the position of the center of the vortices at t∗ = 980 (see panel i Fig. 9). The
cylinder’s central and extreme positions are indicated by black and gray large circles on the left of the figure.

A superposition of the trajectories of the centers of the vortices in the wake of the moving
cylinder is shown in Fig. 13 for a time interval slightly longer than one cycle of the cylinder motion.
The center of a vortex is identified by the local maximum in the vorticity distribution. The vortex
trajectory that is closer to the cylinder in Fig. 9(a) is the black line. This negative vorticity structure
is labeled V 1. The subsequent vortices are labeled V 2, V 3, etc., and their trajectories are coded
according to the colors listed in the figure caption. Two pairs of trajectories (1st and 6th, black and
cyan lines, and 4th and 5th, yellow and green lines) are approximately symmetric with respect to the
horizontal line θ = 0. To give a picture of the vortices’ centers relative positions at a fixed time, we
superpose empty black dots on the respective trajectories. Positions V 5p and V 6p indicate vortices
were shed at the previous cycle.

As can be observed, the distance between V 1, V 6p, and V 5p is relatively small, and the vortices
interact with each other as it is apparent from the subsequent vorticity fields shown in panels j to
l in Fig. 9 where V 6p is sucked by vortices V 1 and V 2. This effect is consistent with the upward
bend of the trajectory of V 6p (cyan trace).

The (negative) vortex that is generated at the oscillation with the largest torque contains
maximum vorticity (V 5), and it is followed by the oscillation of the longest duration (maximum
wavelength) and maximum amplitude of cylinder displacement. The following vortex (V 1) has
a slightly smaller vorticity and merges with the previous and next vortices. This is suggested in
Figs. 9(b) and 9(c) and is clearly seen in the movie of the Supplemental Material [17].

As a general property of the wake, it has been found that the extension of the vortices is related to
the azimuthal displacement of the cylinder, while the intensity of the vorticity contained in a vortex
is related to the torque, or equivalently, to the acceleration of the cylinder.

C. Pressure field and instantaneous streamlines

The dominant terms in the calculation of the forces and torque on the cylinder, Eqs. (14) and
(15), respectively, are those containing the pressure. Thus, an alternative analysis of the cylinder’s
dynamics and the surrounding flow can be made in terms of the pressure field. Figure 14 shows the
pressure field around the cylinder for the selected points indicated in the upper panel of the figure;
note that the times coincide with those of Fig. 11.

The pressure field’s most salient features include the pressure maximum, whose position on the
cylinder’s periphery is determined by the relative motion of the cylinder and the incoming flow and
therefore has a cyclic displacement. The maximum pressure point corresponds to the stagnation
point, which defines the boundary layer’s symmetry referred to in the discussion Fig. 11. The
pressure field downstream of the cylinder is closely related to vorticity generation in the boundary
layer and the cyclical shedding of vortices. At position a1, the pressure gradient generated by the
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FIG. 14. Snapshots of pressure field. The cylinder’s angular position and times where the fields were
obtained are indicated in the upper panel.

diametrically opposed high and low-pressure points is almost horizontal, and the torque is at a local
(negative) maximum. Zero torque coincides with no azimuthal displacement at position a2 and a
relatively small pressure difference across the diameter that includes the stagnation point results in
a relatively small torque maximum as illustrated in a3.

The pressure field corresponding to the time interval where the cylinder has a positive velocity
(θ̇ > 0) is shown in panels b1 to b3. At b1, the cylinder is at its lowest position, and the torque reaches
its overall maximum, the maximum pressure point is at the leading position of the cylinder because
the azimuthal velocity is zero and the relative velocity runs along the x direction. In contrast, the
low-pressure region is oblique, generating a large torque. The pressure field at b2 is the reflection of
that observed at a2 because of the opposite direction of the cylinder’s angular velocities. Also, the
pressure intensity is larger in b2.

The topology of the instantaneous streamlines has been used to describe the flow around the
cylinder and to determine the evolution of vortex emission in fixed cylinders; see, for instance,
Ref. [26]. This technique is also useful to analyze the present flow. Given that the flow is two-
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FIG. 15. Instantaneous streamlines near (t∗ = 980) when the cylinder is at a maximum displacement. Point
i in the upper panel. The decimal numbers in the labels are nondimensional time units.

dimensional, only two kinds of critical points, saddles and centers, also termed hyperbolic and
elliptic points, respectively.3 At the times of maximum (upper or lower) azimuthal displacements
of the cylinder, it is observed that viscous saddles are formed alternatively at the (upper or lower)
separation points. Shortly after, they are swept away to become inviscid saddles that determine the
positions of the separatrices. Centers are generated simultaneously with saddles and are located
closer to the horizontal symmetry line. It is found that the dynamics of the critical points are very
fast, moving a distance of one cylinder diameter in less than a one-time unit. A specific example
of these events is given in Fig. 15. In this figure, the instantaneous streamlines at times just before
and closely after the cylinder is at its maximum displacement are shown (point i in the figure’s
upper panel). At t∗ = 980, the saddle point that was just generated in the boundary layer is located
at approximately (x = 4.80, y = 0.92). The corresponding center (elliptic point) is at (x = 5.00,
y = 0.40). After 0.8 time units the two critical points have moved to (x = 5.21, y = 1.18) and
(x = 5.16, y = 0.62), respectively. Note that at time t∗ = 980, the center shed when the cylinder

3A critical point is where the slope of a streamline is indeterminate.
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was at the previous lowermost position is located at (x = 6.307, y = −0.453) while its saddle point
is out of the visualization area.

V. DISCUSSION AND CONCLUSIONS

The vibration of a cylinder exposed to a constant velocity flow in the absence of gravity has been
analyzed using a numerical solution of the mass and momentum conservation equations coupled
with the Euler equation. The immersed boundary method was implemented to account for the solid-
fluid interactions.

The cylinder motion and the flow around it are two-way coupled. The cylinder vibrates driven
by the forces generated by the fluid-solid interaction and, in turn, the incoming flow is perturbed by
the presence and motion of the cylinder. The forces acting on the cylinder are asymmetric due to the
alternating emission vortices resulting in an oscillatory motion.

The azimuthal position of the cylinder depends on the initial conditions, mostly in the transient
region but also in the long-term dynamics. At long times, the cylinder exhibits a periodic motion
with a cycle composed of three oscillations with slightly different amplitude and frequency. The
harmonic content of the signal indicates that the dominant frequency corresponds to individual
oscillations. Other relevant frequencies are related by factors of 1/3. An interesting property of the
results is that even after many cycles, the angular positions as functions of time are not identical
in each cycle. The small variations between cycles have a definite structure in the phase space.
This phenomenon has been labeled as quasiperiodic. Additionally, we observe that the torque on
the cylinder is synchronous but out of phase with respect to the azimuthal position. The relative
velocity periodically changes the location of the stagnation point, the boundary layer separation
angles and, the vortices emission frequency. A related feature was observed in the forced oscillating
cylinder. Blackburn and Henderson [7] found that the lift and drag coefficients in the quasiperiodic
mode the dominant frequencies are commensurable.

In the nomenclature proposed by Williamson and Roshko [27], we found that single (S) vortices
are emitted to form the von Karman-like wake, although in the present case, the wake is wider
than that of the fixed cylinder. This feature is attributed to the fact that the relative velocity vector
points at an angle with respect to the streamwise direction. In contrast to the fixed cylinder wake
generated with a Reynolds number of 180, there is a strong interaction between the vortices in the
wake, continuously altering its structure as the vortices are swept downstream.

It is interesting to describe the vorticity generation in the flow. Vorticity is produced at the rigid
body-fluid boundary by the cross product of unit vector normal to the cylinder’s surface, and the
sum of the tangential pressure gradients and the acceleration of the rigid body [28]. In the flow
under analysis, the two effects are at work. Tangential pressure gradients occur because of the flow
modifications due to the obstacle’s geometry; this effect is also present in a fixed cylinder. The
vorticity generation due to this effect is similar to that occurring in the two cases. Also, given that
the cylinder is in cyclic motion due to the rigid body-fluid interaction, a periodic acceleration and
vorticity generation due to this effect are present. The amplitude of the oscillation along the circle
of diameter D is small, and to simplify the discussion, we will consider that it occurs only in the ±y
direction. The maximum absolute value of the acceleration takes place at the maxima of positive
and negative displacements, and it is zero at position y = 0. The cross product of the acceleration
and the unit vector perpendicular to the surface of the cylinder (and consequently the generation
of vorticity due to acceleration) are maxima at the diametrically opposed points in the horizontal
direction, i.e., the forward and rear points and zero at the upper- and lower-most points on the
cylinder. The vorticity generated by acceleration is of opposite signs in the right and left sides of
the cylinder, and it switches signs when the cylinder changes the direction of motion. The vorticity
patch generated at the rear point is always of opposite sign to the vorticity in the region towards
which it is moving. Once the vorticity is generated, it diffuses away from the boundary, interacts
with the background vorticity, and is advected by the main flow.
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Given that the cylinder is constrained to move around a circle, that the forces arising by the
interaction have a large component in the streamwise direction, and that the torque is out of phase
with the position, one would be tempted to interpret the motion as a gravitational pendulum, with
the drag force playing the role of gravity. Moreover, the description of the pressure field around the
cylinder suggests that the motion of the cylinder may be interpreted as that of a pendulum, where
the restoring force is mostly generated by the pressure difference between the front and back halves
of the cylinder. The buildup of positive pressure on the front of the cylinder is caused by the slowing
down of the flow that changes kinetic energy into pressure. The negative pressure on the backside
of the cylinder is produced by the shadowing of the flow by the presence of the cylinder. However,
there are important differences that prevent us from considering a harmonic oscillator as a simplified
model. The main differences are the following. On the one hand, the (time-dependent) transverse
force also contributes to the torque, and thus to the restoring force depends on the cylinder’s position.
On the other hand, as shown in Fig. 5, the streamwise force is not constant as it is in a gravitational
pendulum. Despite the previous comments, it is interesting to note some dynamical features of the
cylinder’s motion can be captured with a harmonic oscillator model with a time-dependent restoring
force. This model is equivalent to a variable-length pendulum or a damped pendulum with a sliding
mass. An appropriate choice of parameters reproduces the cycle composed of three quasiperiodic
dynamics as reported by [29]. These models incorporate the fact that the system has two response
times: The hydrodynamic time associated with the surrounding fluid’s motion and the inertia time
associated with the motion of the cylinder related to the solid to fluid densities. The development of
simple models for the system reported is the subject of an ongoing research project.

As commented previously, the acceleration of gravity has not been included in the analysis. This
represents the physical situation of vertical cylinders proposed in the literature for devices to extract
marine energy where the acceleration of gravity is aligned with the axis of symmetry of the cylinder
or for vertical axis wind turbines. Other configurations are possible where the force of gravity plays
a role, like horizontal or inclined cylinders. Although beyond the scope of the present analysis, this
effect may be incorporated in our model.

The present study has been restricted to fixed values of the parameters (Re = 180, m∗ = 1.6,
D/d = 3). A natural question is: What are the corresponding features of the fluid-solid interactions
for different parameters’ values? As it is well known, three-dimensional effects appear in the wake
of a cylinder for Reynolds numbers larger than about 190. Thus, this can be considered the upper
limit for a two-dimensional analysis. Also, m∗ > 1.6 would yield a smaller effect of the fluid’s
motion on the cylinder, but for m∗ < 1.6, the interaction will be more intense and the analysis of the
dynamics more challenging. Considering a larger radii ratio would make the computational effort
considerably larger for equivalent precision. However, it would render the calculation more useful
for applications related to vertical axis wind turbines.
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APPENDIX: NUMERICAL CONVERGENCE AND VALIDATION

To solve the mass and momentum conservation equations coupled with the Euler equation subject
to the constraint that the cylinder moves with one azimuthal degree of freedom, we developed a
code based on the finite volume method to discretize the conservation equations coupled with the
immersed boundary method presented in Ref. [19].
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TABLE I. Mesh sensitivity analysis. Fixed cylinder.

Mesh size St CD

384×192 0.151 1.256
768×384 0.185 1.132

1,536×768 0.198 1.177
Experimental 0.19 [32] 1.29[33]

Shiels [30] 1.29
Henderson [31] 1.35

The mesh sensitivity analysis and the numerical code validation are made considering the flow
around a fixed cylinder. To the best of our knowledge, no experimental or numerical results for the
case under scrutiny have been published. We concentrate on the case Re= 180, which is the value
considered in the present investigation, and also because, for these physical conditions, detailed
experimental and numerical results are available. A two-dimensional analysis is expected to be
valid for this case because three-dimensional effects in the flow for Re < 190 are negligible [11].
Table I compares the wake oscillation frequency (Strouhal number St) and the drag coefficient
(CD) for different Cartesian 2D meshes with experimental values from the literature. Unfortunately,
experimental uncertainty is not available. In these calculations, a domain with sides of 24d×12d is
used. Table I also includes results from numerical calculations based on the viscous-vortex method
[30] and on spectral element methods [31], that are reported in the literature.

The mesh refinement analysis indicates that the mesh 768×384 correctly predicts the Strouhal
number and underestimates the drag coefficient obtained in experiments. Further refinement yields
results closer to experimental observations. Still, as explained in the text, the transients are very
long, most of the time requiring up to 4000 nondimensional time units which typically correspond
to three months in wall clock time. For this reason, we concluded that the 768×384 mesh, which
corresponds to 32×32 volumes in the d2 area, is the best trade-off between total computational time
and accuracy.

A domain size analysis was performed to find a proper computational domain that minimizes
the boundaries’ effect over the results on the flow around the cylinder. In Table II, the Strouhal
number (St) and the RMS torque (T ∗

RMS) are given for three different computational domains.
It can be observed that with the 24d×12d and 30d×16d , very similar results were obtained,
but the computational time for the larger domain is three times that required for the 24d×12d .
Unfortunately, no experimental observations are available to compare with. Again, due to the
computational cost, the domain of 24d×12d was selected to carry out all the simulations presented
in this work. Additionally, temporal resolution tests were made, reducing the time step. Using
δt = 8, 4, 2, and 1×10−4 nondimensional units, the Strouhal number obtained was St = 0.172,
0.158, 0.129 and 0.131, respectively. This indicates that δt = 2×10−4 is the best choice for time
step and CPU time.

TABLE II. Domain size analysis. Cylinder with azimuthal degree of freedom.

Dom. size St T ∗
RMS

16d×8d 0.160 0.291
24d×12d 0.129 0.245
30d×16d 0.123 0.227
32d×16d 0.120 0.225
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