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In shock wave/boundary layer interactions, two mechanisms have been recognized to
drive the low-frequency unsteadiness of the reflected shock: upstream boundary layer
forcing and downstream feedback. The current work presents a quantitative analysis of
the causal mechanisms underlying such flow unsteadiness. The analysis is based on a
large-eddy simulation database covering approximately 300 cycles of the low-frequency
shock fluctuations in a Mach 2 turbulent boundary layer. This time span enables the
accurate application of frequency-domain system identification methods targeting such
low frequencies. The evaluation of the spectrum in the interaction zone indicates that
the broadband low-frequency unsteadiness is predominantly two-dimensional and can be
isolated via spanwise averaging. Empirically derived transfer functions are computed using
the averaged flow field and indicate the occurrence of a feedback between the locations
downstream of the flow separation and the shock fluctuations. The results indicate that this
mechanism dominates over the upstream forcing of the interaction region. Accordingly,
the computed transfer functions are also used as an estimation tool to predict the shock
motion accurately; for the largest streamwise separation between input and output signals,
correlations above 0.6 are observed between predictions and raw data. Computation of
spectral proper orthogonal decomposition modes reveals the existence of upstream travel-
ing waves in the leading spectral mode at the main shock frequency; higher frequencies do
not exhibit this trend. Furthermore, the spectral modes obtained using selected flow regions
downstream of the shock enable the reconstruction of a significant portion of the energy
in the interaction zone. Finally, a linear stability analysis is conducted using the mean
turbulent flow, showing the existence of upstream traveling waves. Evaluation of a vortex
sheet model indicates that these upstream traveling modes are of acoustic nature. The
predicted modes from this local analysis present a compelling match against the spectral
modes, both in terms of the shape and phase speed of the fluctuations. The combined
analysis of the techniques indicates that downstream disturbances are the dominant cause
of shock oscillations in the present configuration, leading to shock motion by upstream
traveling acoustic modes.

DOI: 10.1103/PhysRevFluids.6.064609

I. INTRODUCTION

Interactions between shock waves and turbulent flows appear in multiple high-speed applications
including supersonic flight and combustion processes [1]. Specifically, in shock wave/boundary
layer interactions (SBLI), the imposed adverse pressure gradient over the wall induces flow
separation, which is associated with a reflected shock presenting highly unsteady low-frequency
fluctuations. This situation occurs in many practical configurations such as turbomachinery flows,
transonic buffeting, overexpanded rocket nozzles, and supersonic inlet isolators. Besides affecting
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the flow downstream of the interaction zone, these oscillations are responsible for large pressure
levels and severe structural loading. The source of these broadband shock fluctuations has been the
subject of extensive debate and comprehensive reviews over the past decades [2–7].

Two mechanisms are recognized to induce reflected shock unsteadiness: upstream boundary layer
forcing and downstream feedback [3]. Among numerous investigations [8–10], a strong correlation
between the upstream boundary layer streamwise velocity and shock motion was found in the
experiments of Ganapathisubramani et al. [11]. Three-dimensional measurements from Humble
et al. [12] demonstrated that low- and high-momentum streamwise-elongated zones convected
within the incoming boundary layer affect directly the reflected shock structure. On the other hand,
there is compelling evidence for the influence of the downstream separated flow on the shock
motion. The large-eddy simulations (LES) and linear stability analysis of Touber and Sandham [13]
suggested the existence of unstable modes and upstream traveling waves associated with a global
instability mechanism is responsible for the low-frequency shock oscillations. These oscillations
were found to be highly correlated to the reattachment pressure measurements performed by Dupont
et al. [14]. The direct numerical simulation (DNS) of Wu and Martin [15] also pointed to a strong
correlation where the shock motion lags behind the reattachment fluctuations. The mass-entrainment
model proposed by Piponniau et al. [16] scales the low-frequency content with the separated flow
region and highlights the importance of the downstream flow on selecting the shock unsteadiness.
It is worth noting that a low-frequency feedback from the reattachment region up to the vicinity of
the reflected shock was documented for transitional SBLI [17,18]. Although the flow features listed
above could suggest that a similar mechanism may also be at play for turbulent SBLI, this seems
not to have been demonstrated in the current literature.

The low-frequency unsteadiness and the associated mechanisms discussed above were observed
for impinging oblique shocks and compression ramp configurations, in both numerical and experi-
mental investigations. Equally important is the spatial organization of the low-frequency motion in
the vicinity of the reflected shock and separation bubble. The low-pass filtered velocity fields from
the simulations of Priebe and Martín [19] highlighted a strong quasi-two-dimensional behavior of
the reflected shock motion using spanwise averaging. The dynamic mode decomposition analysis
(DMD) conducted by Priebe et al. [20] shows that the shock unsteadiness was reproduced using
a number of low-frequency DMD modes. Their spatial imprint qualitatively agreed with the linear
unstable modes found by Touber and Sandham [13]. These modes exhibit streamwise-elongated
structures in the downstream separation bubble of the compression ramp. Similar streamwise
Görtler-like vortices were found in the DMD analysis from Pasquariello et al. [21] for a strong
impinging shock wave. The global stability analysis and dynamic modes computed over spanwise-
averaged velocity fields by Nichols et al. [22] shows a striking resemblance with the recirculation
bubble breathing during one cycle of the oscillation.

All mechanisms described above exist in the SBLI interaction. It is unclear, however, to what
extent each mechanism causes the low-frequency unsteadiness. Here, we present a causal analysis to
determine the influence of both the upstream and downstream flow on the unsteady shock behavior.
We exploit the LES database from Jiang et al. [23], where an impinging shock wave interacts with
a turbulent boundary layer at Mach number Ma∞ = 2 and Reθ � 5000. This database spans a time
domain an order of magnitude larger than the current existing DNS or LES simulations investigated
for this configuration [13,21,24], corresponding roughly to more than 300 low-frequency cycles.
This time span allows the application of system identification methods targeting specifically the
reflected shock frequency. First, we conduct a linear transfer function analysis to identify the link
between the shock motion and flow locations. This provides a quantitative evaluation of causality.
The analysis also accounts for a time-domain prediction determining how much of the shock
fluctuations can be recovered from single measurements. The technique, used in turbulent jets
[25] and boundary layers [26], leads to a linear estimator between an input and an output. Here,
if the shock fluctuations are taken as an output, consideration of inputs given by flow fluctuations
at various positions allows an assessment of a causal link to shock motion. If such a link exists,
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TABLE I. Flow parameters.

Ma∞ po To U∞ δ99 Reθ L W

2 40 500 Pa 295 K 510 ms−1 11 mm 4850 57 mm 33 mm

a causal convolution of the input with the obtained transfer function should lead to an accurate
reconstruction of low-frequency shock fluctuations.

To clarify the spatial structure of the low-frequency unsteadiness, we perform a spectral proper
orthogonal decomposition (SPOD) of the spanwise-averaged velocity fields in the interaction
zone [27,28]. Since it is derived in the frequency domain, SPOD is computed at the specific
shock frequency, isolating its motion. From these modes, an empirically calculated frequency
wave-number spectrum is also obtained, which highlights the occurrence of upstream traveling
fluctuations. Application of SPOD in subdomains, such as upstream or downstream regions, may
be used to evaluate how much spatial structures in these specific locations are coherent with shock
motion. Such an approach is thus complementary to the linear transfer functions, providing spatial
modes related to shock fluctuations. Moreover, SPOD modes are known to be related to optimal
response modes obtained from resolvent analysis [28,29]. If nonlinearities in the Navier-Stokes
system are modeled as white noise, SPOD modes become equivalent to the most amplified flow
responses in a linearized input-output formulation. Hence, it is appropriate to compare SPOD modes
to modes obtained with the linearized Navier-Stokes operator; although an exact correspondence
is not expected, since nonlinear terms are colored [30,31], dominant amplification mechanisms
may lead to clear similarities between SPOD and resolvent modes. Moreover, the analysis of the
linearized response provides the mechanisms that underpin the coherent motion. Here, the analysis
of the linearized operator will be carried out in a simplified manner, with a local stability analysis
conducted at stations with significant amplitudes of the leading SPOD mode. We anticipate that
a spatially growing, upstream traveling mode is obtained, thus providing a physical mechanism
explaining the influence of the recirculation region on the shock oscillations. The remainder of
the paper is organized as follows. In Sec. II, a description of the numerical database is provided,
accounting for the whole set of simulation and flow parameters. The key spectral features of
the shock motion are analyzed in Sec. III. The mathematical framework to compute the linear
transfer functions, causal analysis, and spectral decomposition is presented in Sec. IV. We report
the prediction and causality results in Sec. V, the spectral eigenvalues and modes in Sec. VI, and
the linear stability analysis in Sec. VII. Finally, the concluding remarks are presented in Sec. VIII.

II. NUMERICAL DATABASE

The current large-eddy simulation (LES) reproduces the shock wave/turbulent boundary layer
interaction investigated in the experiments of Schreyer et al. [32]. The full description of the
numerical simulation was presented by Jiang et al. [23], together with a thorough validation against
wind-tunnel measurements. Here, we provide a brief overview of the configuration and main flow
parameters.

The numerical setup mimics the experimental shock generated by a flow deflection of 8.5◦
impinging on a Ma∞ = 2 turbulent boundary layer with Reθ � 5000. The complete set of flow
parameters is listed in Table I. The incident shock corresponds to a pressure ratio of 1.58 with an
angle of approximately 38◦, as indicated in Fig. 1. All simulations were performed using the FLU3M
codes from ONERA, Office National d’Etudes et de Recherches Aérospatiales. The code relies on
a finite volume discretization in space and an implicit time integration, both being second-order
accurate. The space scheme is designed to minimize the numerical dissipation by adding the
dissipative part of the Roe scheme to a centered scheme in regions with strong compressibility/low
vorticity, as identified by means of Ducros’s sensor [33,34]. The time integration is performed
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FIG. 1. Mean Mach number in the streamwise (x) wall-normal (y) longitudinal plane at z = 0. The
turbulent boundary layer (TBL) thickness (δ99) is shown in the first region of the simulation, and the sonic
line is represented in the interaction zone.

with a maximum Courant–Friedrichs–Lewy number of 11, using seven subiterations to solve the
nonlinear system in order to ensure that residuals are reduced by at least 1.5 orders of magnitude.
The LES modeling is built from an implicit grid filtering coupled with an explicit subgrid modeling
through the selective mixed-scale model that was successfully used in previous studies of shock
wave/boundary layer interactions [35,36].

The wall is modeled as adiabatic. Nonreflective boundary conditions relying on characteristic
variation in space are set at the inflow, outflow, and upper boundaries, while periodicity is used
in the spanwise z direction. The incident shock is created by enforcing the pre- and postshock
states on the upper boundaries, following Garnier et al. [36]. A fully turbulent inflow condition is
obtained by adding stochastic velocity fluctuations to the mean profiles by means of a synthetic
eddy method (SEM) [37]. Temperature and density fluctuations are obtained from the velocity
fluctuations assuming strong Reynolds analogy and linearized ideal gas law with negligible pressure
fluctuations [38]. The space and timescales required by SEM are obtained from a pre-existing
LES of the same Ma∞ = 2 boundary layer without shock impingement that encompasses the
laminar-to-turbulent transition process [39]. Comparisons between the two LES demonstrate that
a relaxing length of about 10 boundary layer thicknesses δ99 is sufficient to achieve fully turbulent
canonical first- and second-order statistics from the inflow boundary condition.

The reference mesh was designed by setting the inflow location 16δ99 upstream of the shock
impingement location. The grid resolution and spanwise extent W of the computational domain
were increased with respect to previous studies [35]. The corresponding resolution in wall units were
�x+ = 28 (streamwise), �y+

min = 0.85 (wall-normal), and �z+ = 12 (spanwise) for W = 3δ99.
Two additional meshes were tested for a grid-convergence study: a refined one with resolution
increased by 40%, 20%, and 30% in the streamwise, wall-normal, and spanwise directions, re-
spectively, and an enlarged spanwise domain corresponding to W = 6δ99.

A key characteristic of the numerical database is that data is sampled from the reference mesh
over approximately 300 periods of the typical low-frequency unsteadiness, as will be discussed
later. It allows the computation of statistical and spectral quantities, and even conditional statistics
with a very low level of statistical uncertainty. Computations from the two additional meshes were
performed for 10 to 18 low-frequency cycles. These tests were long enough to achieve statistical
convergence for validation purposes.

A complete description with validation results from the experimental database and grid conver-
gence can be found in Jiang et al. [23]. All the computations and experiments have an interaction
length of L = 5.2δ99 and the mean velocity profiles upstream of and within the interaction region
agree very well. Downstream of the interaction region, the LES velocity fields relax toward a
canonical boundary layer profile slightly more slowly than in the experiments. This was explained
by the finite width of the experimental setup with side walls compared to the periodicity set in the
computations.
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FIG. 2. Streamwise evolution of the premultiplied and normalized spectrum of the wall pressure fluctua-
tions p (z = 0).

Second-order velocity statistics also show very good agreement between the three computations
and the particle image velocimetry measurements, with the exception of the streamwise fluctuations
in the incoming boundary layer and the initial stage of the mixing layer developing over the
separated region. In the latter, the LES underestimate the u′u′ level by 40% whatever the mesh used.
Comparisons between the streamwise velocity spectra obtained from the LES and the experiments
show that the underestimation originates solely in the low-frequency band f δ99/U∞ < 0.15. This
difference is assigned to the intrinsic inability of the present SEM method in generating large-scale
convective structures found in experiments [11]. These structures possibly originate in the nozzle
upstream of the flat surface or follow from a long development of the boundary layer, and neither of
them were simulated in the numerical setup. Although the impact of such discrepancies is not fully
understood, these are not expected to affect our resulting conclusions, given the otherwise good
agreement between LES and experiments for the spectral quantities of interest in multiple locations
over the wall.

III. SPECTRAL ANALYSIS OF THE SHOCK MOTION

A space-time spectral analysis is considered to identify the key features of the shock motion.
The variables are normalized by the interaction length scale L and the free-stream velocity U∞. The
dimensionless time is defined as t = t∗U∞/L, while the normalized frequency reads St = f L/U∞,
corresponding to the Strouhal number.

First, we assess the dominant frequency in the vicinity of the shock. The streamwise evolution
of the premultiplied spectrum of pressure fluctuations is shown in Fig. 2. The spectrum is defined
as Spp = 〈p̂p̂∗〉, where .̂ indicates the Fourier transform from time to frequency f and 〈.〉 defines
an ensemble averaging. In the upstream boundary layer (x < −0.25), the spectrum presents mainly
high-frequency content (St > 1) linked to the incoming turbulent eddies. However, in the vicinity
of the shock position (−0.2 < x < 0), a low-frequency broadband range emerges, and it is centered
approximately at St = 0.03. The large gap between these frequency scales was reported in previous
investigations [14,40]. As discussed later in the paper, a low-pass filter will be applied to the data to
isolate these shock oscillations.

To shed further light on the spatial structure of these oscillations, the frequency wave-number
diagrams are computed for the streamwise velocity fluctuations. Here, Suu(St, β ) = 〈 ˆ̂u ˆ̂u∗〉, where
the double hat indicates a double Fourier transform, from time to f and from z to the spanwise
normalized wavenumber β. Figure 3 presents the two-dimensional spectra in the near-wall region
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FIG. 3. Two-dimensional spectra at x = −0.35, 0.0, 0.2, and 1.4, respectively in panels (a) to (d).

at four streamwise locations x = −0.35, 0.0, 0.2, and 1.4. These locations correspond to the
upstream boundary layer, the approximate shock position, the recirculating bubble, and downstream
reattachment, respectively. Upstream of the shock, the flow is dominated by broadband turbulent
near-wall streaks. In the approximate shock position, the fluctuations are quasi-two-dimensional
(β = 0). As discussed above, this region is predominantly governed by low-frequency fluctuations,
which can therefore be isolated via spanwise averaging. This property will be considered and
analyzed in our flow predictions. The values of β increase in the recirculating flow region and
further downstream. The velocity fluctuations exhibit mostly a three-dimensional behavior, and the
characteristic frequencies are also higher in this region. The simultaneous increase of both St and
β are related to the development of shear-layer vortices and their breakup into 3D eddies. This
could be linked to the existence of Görtler-type structures developing along the boundary layer, as
observed in previous investigations [24,41].

IV. METHODS

A. Linear transfer function: single-input single-output analysis

A linear, frequency-domain system identification method is applied to relate an input signal
I (t ) to an output O(t ) separated in the streamwise/wall-normal plane. The supporting assumption
for the method is the existence of a linear function that maps the input to the output locations.
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A similar approach was applied to estimate velocity fluctuations in turbulent jets and boundary
layers [25,26]. Our goal is to identify the causal mechanisms behind the low-frequency shock
unsteadiness. The problem is formulated in the frequency domain, where an estimator may be
defined by minimizing, in a least squares sense, the coherence between the error of the estimation
and the input measurement. The resulting frequency response [42,43] reads

GIO( f ) = SIO( f )

SII ( f )
, (1)

where SII ( f ) and SIO( f ) are the auto and cross spectra of the input and output signals, respectively,
and GIO( f ) refers to the empirical transfer function computed in the frequency domain [42]. These
quantities were calculated from the expected values of Î ( f )Î∗( f ) and Î ( f )Ô∗( f ), obtained from
an ensemble averaging, via Welch’s method. The spectra were obtained using 230 blocks of 2000
elements, each with an overlap of 75%, which results in a frequency resolution of 0.015. Similar
results were obtained using up to 5000 elements in each block.

Equation (1) is referred to as the H1 estimator of the system, and it minimizes the error due
to measurement noise in the output [43]. Other formulations, such as the H2 or Hν estimators,
exhibit different performances in terms of sensor noise minimization. However, they are expected
to perform equally well for this type of estimation, which does not consider the presence of
measurement uncertainties and is based in simulation data. The H1 estimator presents the interesting
property of leading to a prediction error which is linearly uncorrelated with the input [43,44],
therefore resulting in the best linear prediction of the output signal.

Once the transfer function GIO( f ) is computed, its time-domain counterpart is recovered by
means of an inverse Fourier transform:

gIO(t ) =
∫ +∞

−∞
GIO( f )e−i2π f t df . (2)

The function gIO(t ) represents a linear convolution kernel, and therefore allows one to estimate
the output via the convolution with the input signal

O(t ) =
∫ ∞

−∞
gIO(τ )I (t − τ )dτ. (3)

The dummy variable τ was introduced for the calculation of the convolution.

B. Hillbert transform to evaluate causality

The convolution in Eq. (3) is taken between ±∞. However, for a causal prediction, this operation
should be limited from 0 to +∞, so that only past information is used to predict the output signal.
The convolution operation is usually limited to the causal part of the convolution kernel, which
permits an online prediction of the output. This type of approach is necessary for active closed-loop
applications, for example. Nevertheless, the full convolution operation may also be used for data
reconstruction, a feature which was explored in Ref. [26] for a turbulent boundary layer.

This implies that if gIO(t < 0) 	= 0, there is some reverse causality between input and output
signals. An evaluation of the convolution kernel in the time domain can therefore be used to
determine the causality relation between input and output positions. Such evaluations in the time
domain could be cumbersome and, in some cases, qualitative, particularly for positions which are
close to each other, where a feedback path usually occurs. To avoid this problem, the evaluation
of causality can be performed directly in the frequency domain by means of the Hilbert transform
[45]. This method has the advantage of testing several locations in a fast, computationally efficient
manner. The Hilbert transform is a linear operation that performs a convolution with the function
1/(π f ),

H (F ( f )) = 1

π

∫ +∞

−∞

F (	)

f − 	
d	. (4)
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Hilbert transforms are commonly used in signal processing for the design of causal filters, and the
idea was adopted in flow control applications to determine suitable positions for the active control of
shear layers [46]. A causal filter results when gIO(t � 0) = 0. This occurs in convectively unstable
flows, such as Tollmien-Schlichting or Kelvin-Helmholtz dominated shear flows, where upstream
measurements are taken to estimate downstream fluctuations. Computation of the Hilbert transform,
in this case, is made directly in the frequency domain by means of a convolution with the previously
calculated empirical transfer function.

The approach consists in exploring the following property of the transform: If the imaginary part
of the frequency response (interpreted here as a transfer function) of a linear system is equal to the
Hilbert transform of the real part, the system represents a causal, linear filter. Hence, knowledge of
the real part is sufficient to completely specify the system, with the imaginary part adding redundant
information [42].

Therefore, a quantitative evaluation of the causality of the transfer function GIO( f ) may be
obtained by computing the correlation between its imaginary part and the Hilbert transform of its
real part. This parameter is given by

P =
∫ ∞
−∞ H (Re[GIO( f )])Im[GIO( f )]df√∫ ∞

−∞ H (Re[GIO( f )])2df
√∫ ∞

−∞ Im[GIO( f )]2df
. (5)

Values of P close to unity indicate a causal behavior between input and output positions, with
a reverse causality occurring as P approaches zero. This parameter will be used in the following
section to evaluate the causality between two different locations.

C. Spectral proper orthogonal decomposition

To characterize the spatial features of the coherent motion at a given frequency, spectral proper
orthogonal decomposition is applied in the streamwise/wall-normal plane. As outlined in Sec. III,
the low-frequency shock dynamics can be considered mostly two-dimensional. Therefore, spanwise
averaging of the 14 streamwise/wall-normal planes available from the LES data set is considered
to isolate the β = 0 fluctuations. The effect of the spanwise averaging on the signal prediction
framework discussed above is reported in Sec. V (Fig. 4).

The objective is to extract spatially coherent fluctuations for a given frequency, in particular
the low-frequency shock oscillations and its relation to the recirculating flow region. The SPOD is
used here as an auxiliary tool to observe the causes of the shock unsteadiness and to visualize the
propagation of the fluctuations for a targeted frequency within the SBLI. SPOD was employed in a
number of studies [27,28,47–49].

The spectral decomposition is applied to the spanwise-averaged streamwise/wall-normal (u, v)
velocity fluctuations such that they are optimal modes to represent the turbulent kinetic energy. The
modes are defined from the solution of the following integral equation:∫

	

�(x, x′, f )W(x′)ψ j (x′, f )dx′ = λψi(x, f ). (6)

Here, x = (x, y), 	 is the spatial domain where the flow is defined and W is a weight of
appropriate dimension. ψi corresponds to an eigenfunction (ith SPOD mode) with corresponding
eigenvalue λ and �(x, x′, f ) is the two-point cross spectral density, which is defined from the Fourier
transform of the correlation tensor

�(x, x′, f ) =
∫ ∞

−∞
C(x, x′, τ )ei2π f τ dτ. (7)

The correlation tensor C is obtained by

C(x, x′, τ ) = E [q(x, t )q∗(x′, t + τ )], (8)

064609-8



CAUSALITY IN THE SHOCK WAVE/TURBULENT …

FIG. 4. Correlation between prediction and LES for pressure and streamwise velocity components. The
vertical dashed line presents the position of the input. Solid black lines correspond to the prediction performed
with the spanwise averaging and dash-dotted blue lines correspond to that without it.

with q = (u, v) being the velocity components, ∗ representing the conjugate transpose, and E [.]
supplying an expectation operator consisting of an ensemble time average, representing the expected
value of a given realization of the flow field.
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In this work, the method of snapshots is considered to compute the SPOD modes. The continuous
two-point cross spectral density [Eq. (7)] is replaced by an inner product,

�i j = 〈q̂i, q̂ j〉. (9)

where q̂i = [ui, vi]T , with the superscript T representing a transpose, denotes the ith realisation
of the velocity field (i.e., the ith short-time Fourier transform of the snapshot of the velocity field).
Such formulation is motivated by the use of Welch’s method in the computation of the cross-spectral
densities.

By using the snapshot method of Eq. (9), the infinite-dimensional integral eigenvalue problem
in (6) is reduced to an N × N matrix eigenvalue problem for every frequency fk , where N is the
number of blocks in Welch’s method. The eigenvalue problem can be shown to reduce to [28]

� fk ψ fk = ψ fk λ fk . (10)

The SPOD modes of the discrete problem can be constructed from the columns of ψ fk . For further
details regarding the snapshots method and the transformation of the integral equation to a matrix
eigenvalue problem, the reader is referred to the paper by Towne et al. [28] and the Appendix of
Sasaki et al. [48].

The elements in Eq. (9) were determined by means of the Welch’s method, with a triangular
window and 75% overlap of the segments. Each segment has 5000 points with a time discretization
of �t = 0.026. The total number of elements in the time signal considered is to be 342 900, which
results in 97 blocks for averaging. These parameters were observed to be adequate to resolve the flow
structures in the particularly low frequencies of interest. Different windows were also considered
and led to similar results.

V. TRANSFER FUNCTIONS IN THE INTERACTION ZONE

A. Prediction performance

We start by assessing the accuracy of the single-input single-output linear transfer functions in
predicting the velocity and pressure fluctuations in the averaged shock position. As introduced in
Fig. 2, the shock unsteadiness presents a frequency one order of magnitude lower than the turbulent
fluctuations. Therefore, in order to isolate the shock motion, the fluctuations were low-pass filtered
using a finite-impulse-response (FIR) filter with a cutoff frequency of St = 0.3 to avoid the influence
of higher frequency flow structures. The filter is applied prior to the calculation of the transfer
functions. A window size consisting of 2000 points, which corresponds to �t = 60 with an overlap
of 75%, was used in the Welch’s method for calculation of the power spectra. Similar results were
also obtained for window sizes consisting of 5000 points. To avoid spurious values of the transfer
function, frequencies where SIO( f ) is below a certain threshold are set to zero. This occurs for
frequencies higher than the cutoff filter.

Three input/output pairs were computed: pressure/pressure, velocity/pressure, and
velocity/velocity. Here, only the causal part of the convolution kernel was considered to compute
the prediction; i.e., gIO was forced to zero when t < 0. To quantitatively evaluate the prediction
performance, the normalized correlation between the estimation Oest(t ) and the LES data OLES(t )
was computed,

C =
∫ ∞
−∞ OLES(t )Oest(t )dt√∫ ∞

−∞ O2
LES(t )dt

√∫ ∞
−∞ O2

est(t )dt
, (11)

where OLES and Oest are the LES and the estimated data, respectively. The normalized correlation
in the previous equation varies between zero and one, where one indicates a perfect correlation
between predicted and LES signals.

Two input positions were considered separately, upstream and downstream of the shock. The
correlation was computed as a function of the output (prediction) streamwise position. Figure 4
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shows the resulting correlation between prediction and LES data, and the vertical line highlights
the input location. The prediction was performed with and without the spanwise averaging of the
input/output quantities.

As expected, the correlations decay as the distance between input and output positions increases;
for the cases where the same variable is used as the measurement and prediction, the correlations
depart from large values close to unity. When the input is upstream of the shock in Figs. 4(a), 4(c)
and 4(e), the correlation decays monotonically up to the mean shock location x = 0 and stabilizes
further downstream. On the other hand, in the case of an input downstream of the shock wave shown
in Figs. 4(b), 4(d) and 4(f), the correlation also decays as the output position is moved further away
from the input. However, close to the shock location, there is a swift increase in the correlation
values. It should also be observed that even though there is a large separation between input and
output, the correlation between prediction and input reaches values above 0.6.

The effect of the spanwise averaging is remarkable, leading to a significant increase in the
correlation of the predicted signals, in particular when the input position is taken downstream of the
shock motion. This is in accordance with the spectra of Fig. 3, which indicates a predominantly two-
dimensional nature of the streamwise velocity shock-related fluctuations. Hereafter, only spanwise
averaged data is considered.

Figure 5 presents a sample of the predicted streamwise velocity and pressure fluctuations at x = 0
with input at xin = 1.5. It is noticeable that, even though the amplitude of the LES signal is under-
estimated, both the phase and the low-frequency content of the signal (characteristic of the shock
motion) are well captured by this approach, in spite of the large streamwise separation between
input and output. The damped fluctuations are associated with the limited linear transfer function
estimation, as reported by Sasaki et al. [25]. Since the estimation error is linearly uncorrelated with
the input, the damping is assumed to be linked to nonlinear mechanisms. The corresponding shape
of the transfer function is depicted in Fig. 6.

B. Wall-normal behavior and causality of the transfer function predictions

To further investigate the prediction performance and to track the causal areas for the shock
fluctuations, the output position was fixed at x = 0, near the wall. Transfer functions were computed
considering a grid of positions along the streamwise and wall-normal directions as input signals.
As indicated above, we consider the spanwise averaged velocity fields low-pass filtered with the
cutoff frequency St = 0.3 prior to the computation of the transfer functions. The same window
size and overlap of the previous analysis were used for calculating the power spectra. The pressure
fluctuation was considered as the estimated variable, with the streamwise velocity fluctuations as
the input. Finally, the full convolution kernel including its noncausal counterpart was used here to
evaluate signal reconstruction.

Figure 7(a) presents the resulting correlations between the shock prediction and LES data for the
different inputs considered. High correlations appear in the near-shock region. This is expected due
to the coherent shock motion; such high correlations are due to an input related to shock oscillations
predicting the fluctuations at the shock foot. An interesting behavior occurs downstream of the
shock (x > 1.0), where correlations of the order of 0.8 start to occur, indicating that these can be
used to accurately estimate the shock motion. In the region 0.2 < x < 1.0, within the recirculation
bubble, the correlations drop to low values, a feature which can be assessed by the shape of the
SPOD modes presented in following section.

In order to determine the causal effects of the shock, Figs. 7(b) and 7(c) present two indices, the
P parameter, related to the causality between input and output positions, and the group velocity. The
latter can be estimated from the time delay observed in the empirically calculated transfer function
and the streamwise separation between input and output positions. As an example, consider the
time-domain transfer function computed using the streamwise velocity fluctuation at the positions
of xin = 1.5 and xout = 0, shown in Fig. 6. The streamwise separation is of −1.5, with a time delay
for the peak of the transfer function corresponding to approximately �t = 2, which results in an
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FIG. 5. Comparison between the time signals from LES and linear prediction, for pressure (a) and stream-
wise velocity (b) fluctuations. The predicted position corresponds to x = 0 (average position of the shock) and
the input is located at x = 1.5 downstream of the shock.

estimated group velocity of vg = −0.75, normalized with respect to the free-stream velocity U∞. As
the bulk of the transfer function is for positive time delays, the causality parameter P is calculated
as 0.9, indicating a nearly causal behavior. Regions where the the P parameter was between 0.3
and 0.7, or where the correlation C between estimation and prediction was below 0.3, were not
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FIG. 6. Transfer function of the streamwise velocity fluctuations computed at the positions of xin = 1.5 and
xout = 0.

considered in the computation of the group velocity and the value was set to vg = 0. This avoids
a nonphysical interpretation of this parameter near the vg = 0 line or where the transfer function
estimation is inaccurate.

When both the correlation C and P parameter in Figs. 7(a) and 7(b) are analyzed together,
we note that the only causal input locations (large P) that lead to high correlations with shock
motion (large C) surrounds the recirculation bubble and extends downstream of it. In particular,
the parameter P and the group velocity indicate causality between shock oscillations at x = 0 from
fluctuations near the reattachment point and downstream of the recirculation bubble. The computed
negative group velocity points to fluctuations that are propagating upstream from the input location.
In addition, the high correlation values indicate that fluctuations at downstream locations precede
shock oscillations and enable an accurate prediction of its motion. Fluctuations occurring upstream
of the shock present a positive group velocity and are not strongly correlated with its motion. These
results are in agreement with previous observations from Touber and Sandham [13], who observed a
negative phase speed in a similar configuration and related it to the existence of a global mode. The
observations from Dupont et al. [14] and Wu and Martin [15] also point to a strong correlation
between low-frequency fluctuations and the reattachment region. It is of interest to remark the
existence of a region upstream of the shock with positive group velocity and large values of P.
This region contributes to causing the shock motion, which is in accordance with the experiments
from Ganapathisubramani et al. [50]. However, due to the relatively low correlation levels presented
in Fig. 4(a), this region has a relatively lower contribution to the shock unsteadiness than the
downstream zone in our numerical data without the presence of superstructures in the boundary
layer. According to Figs. 4(a), 4(c) and 4(e), the upstream input locations are unable to accurately
predict downstream fluctuations, where the correlations rapidly decay in the streamwise direction.
Hence, upstream fluctuations do not have a significant role related to the larger scale separating and
reattaching flow unsteadiness.

VI. UPSTREAM TRAVELING WAVES IN THE FLOW

A. Shape and velocity of the SPOD modes

In order to better understand the spatial structure of the low-frequency oscillations, SPOD modes
of the spanwise averaged (u, v) velocity components were computed at St = 0.03 and St = 0.3.
The first Strouhal number corresponds to the low-frequency motion and is representative of shock
oscillations, whereas the second one is related to high-frequency boundary-layer and shear-layer
fluctuations mostly uncorrelated to the shock. Figure 8 depicts the resulting eigenvalues for these
two selected frequencies. The eigenvalues were ranked in descending order. In both cases, there is
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FIG. 7. Effect of the input position for prediction. Correlation values between predicted signal and LES
data for the pressure fluctuations (a), P parameter for computing the causal relationship (b) and estimated
group velocity (c). The solid line indicates the recirculation bubble and the dashed line indicates the boundary
layer thickness. The cross indicates the considered output position.
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FIG. 8. Resulting SPOD eigenvalues computed for St = 0.03 (blue circles) and St = 0.3 (black squares).

a clear dominance of the first mode with respect to the other spectral modes. It is also noticeable
that the low-frequency eigenvalues are higher over all the spectra. Hence, we consider only the first
mode in the following analysis.

Figure 9 presents the structure of the streamwise velocity fluctuations of the first SPOD mode
for the frequencies St = 0.03 and St = 0.3. The time evolution of the corresponding modes were
obtained by multiplying the spectral mode by ei2π f t . The resulting snapshots are reported in the
movies in the Supplemental Material [51] for the time behavior of the SPOD modes at these two
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FIG. 9. Snapshot of the first SPOD mode of the streamwise velocity component at St = 0.03 (a) and St =
0.3 (b). The arrows depict schematically the motion of the streamwise velocity fluctuations. The contours
correspond to the real part of the first SPOD mode. The time evolution of both modes is reported in the
Supplemental Material [51].
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FIG. 10. Empirical dispersion relations, computed from the first SPOD mode of the streamwise velocity
at y = 0.05 (a) and y = 0.15 (b). The logarithmic of the resulting power spectral density was taken. The solid
vertical lines indicate constant group velocities estimated from the data. The dashed line in panel (a) presents
the theoretical group velocity, computed from the linear stability analysis presented in Subsec. VI C.

frequencies. Interestingly, a wave propagating with negative phase velocity (from right to left) is
observed for St = 0.03, on a position near the wall. Such motion surrounds the recirculation bubble
toward the shock foot. At a higher wall-normal position (y ≈ 0.15), there is a wave generated on
the shock, propagating with positive group velocity (from left to right). The spatial footprint of
this upstream traveling motion corresponds well to the causal locations presented in Fig. 7(b). This
motion is schematized with the arrows in Fig. 9(a) and occurs for low-frequency modes in the
vicinity of St = 0.03. For St = 0.3, only a wave traveling with positive phase velocity appears.

To shed further light on the dynamics of the upstream and downstream traveling waves, an
empirical dispersion relation is calculated. This was obtained by computing the Fourier transform
of the first SPOD mode (u) in the streamwise direction as a function of frequency St. A similar
approach was employed to study acoustic resonances in turbulent jets [52]. The dispersion relation
was computed for two wall-normal positions: y = 0.05, close to the wall but surrounding the
recirculation bubble, and at y = 0.15. This procedure leads to the frequency wave-number power
spectral density diagram of Fig. 10.

The phase velocity of the fluctuations at a given (St, k) pair is given by vp = 2π f /k. Therefore,
waves with negative values of k propagate upstream. Since the group velocity reads vg = 2π∂ f /∂k,
we note that vg changes between the two considered wall-normal locations. For the low frequencies
(St < 0.1), there is a group of waves propagating upstream, with negative group velocity, and this
only occurs in the near-wall region. On the other hand, at higher frequencies, the disturbances
propagate with positive group velocity independently of the wall-normal position. The waves that
travel with negative group velocity contribute to the causality relation between downstream areas
and the shock motion, which was quantified by the correlations and the P parameter obtained from
the transfer functions.

B. Reconstruction of the shock motion via SPOD

In this section, we evaluate how much of the shock oscillations can be recovered from a limited
set of data, specifically selected from regions upstream or downstream of the approximate shock
position. To quantify this analysis, we define the ratio

|uSPODcut |2
|uSPODfull |2

=
∫
	

∑Nb
i=1(λcutiψcuti )

2dx∫
	

∑Nb
i=1(λfulliψfulli )2dx

, (12)
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FIG. 11. First SPOD mode for the streamwise velocity at St = 0.03 and selected flow regions for the
specific SPOD calculations. The portion of the energy at 	 which can be recovered in each case, in comparison
to that of the full field, is highlighted in the corresponding rectangles.

where 	 is a horizontal line close to the wall encompassing the shock foot location, and the
subscripts full and cut represent SPOD modes which were computed from the whole field and
from a limited part of it using the weighting matrix W, respectively. Equation (12) represents the
ratio between the energy of the streamwise velocity fluctuations from SPOD modes computed using
partial knowledge of the flow field and all the data available.

When the whole field is used in the computation, the weighting matrix W considers only the
numerical quadrature corresponding to the use of a non-Cartesian coordinate system. To select
specific flow regions, the numerical quadrature is multiplied by the matrix W1, where W1 = 1
for the selected region in the SPOD calculation, and W1 = 0 in the region excluded from the
calculation. Therefore, the SPOD modes are computed considering only a portion of the field. In
spite of this fact, the whole field can be reconstructed; areas which were not accounted in W1 but are
observed in the SPOD modes can be related to fluctuations within the selected region where W1 = 1.
This occurs due to the spatial coherence for the frequency where the SPOD mode is calculated. We
attempt to evaluate through SPOD in regions that exclude the shock itself but are coherent with the
shock motion. A similar approach was performed by Sano et al. [53] to reconstruct the acoustic field
scattered by an airfoil from knowledge of its near field fluctuations.

Figure 11 provides distinct areas under evaluation. The energy is integrated over 	, a straight
line in the first grid position above the wall along −0.05 < x < 0.05. This line is shown in the plot.
The spectral modes were calculated considering fluctuations within each of the rectangles limited by
the dashed lines. For each region, W1 = 1 inside the rectangles and 0 outside them. Two rectangles
are highlighted, indicating regions I and II, a rectangle downstream (black) and upstream (blue) of
the shock, respectively. In the following, these two regions are considered in detail. The amount of
energy that can be recovered is also shown in Fig. 11. It is clear that most of the energy of the shock
fluctuations is related to downstream fluctuations. When considering the upstream region only, less
than 1% of the energy is recovered.

The resulting eigenvalues of the SPOD modes at St = 0.03 are shown in Fig. 12 for regions I
and II. The eigenvalues obtained from region I are close to the full data spectra and approximately
three orders of magnitude higher than those computed from region II, upstream of the shock. The
corresponding SPOD modes for each of these cases (not shown here for brevity) recover the shock
motion, which is the most energetic structure for this frequency. Since the eigenvalues are related
to the energy of the fluctuations, the results indicate that upstream fluctuations are weakly related
to the shock motion. This agrees with the observations from Fig. 11. Therefore, the footprint of the
low-frequency shock unsteadiness is significantly more related to downstream fluctuations.
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FIG. 12. Eigenvalues of the SPOD calculation obtained from the full field and regions I/II at St = 0.03.

C. Linear stability analysis of the mean turbulent flow

1. Formulation of the problem

In this section, the stability properties of the mean turbulent flow are presented. Our goal is to
determine if the upstream traveling waves observed with the spectral mode decomposition can be
predicted from the hydrodynamic stability theory. The underlying idea is that the optimal response
of the flow, obtained with resolvent analysis, should be close to the leading SPOD mode if there
exists a strong amplification mechanism. Here, we provide an evaluation of the presence of such
a mechanism by studying the local linearized problem, considering a fixed streamwise location in
the downstream region of the flow separation. The locally-parallel spatial stability problem [54,55]
is evaluated such that the linearized compressible inviscid Navier–Stokes equations are cast in the
form of

L ˆ̂q(α,ω, y) = αF ˆ̂q(α, ω, y), (13)

where the fluctuations q = [u v T ρ]T = ˆ̂qe[i(αx−ωt )], where ˆ̂q = [ ˆ̂u ˆ̂v ˆ̂T ˆ̂ρ]T is a vector of flow
variables and the superscript T indicates a matrix transposition. The double hat indicates a double
Fourier transform (from x to α and from t to ω). It should also be noted that only two-dimensional
fluctuations (zero spanwise wave number) were considered, consistent with the previous analyses.
The operators L and F are detailed in the Appendix.

The generalized eigenvalue problem of Eq. (A1) is solved for a given value ω. The boundary
conditions considered are v̂ = 0 and dT̂ /dy = 0, at y = 0 and y = ∞. The equations are solved us-
ing the Chebyshev collocation method in the transverse direction [56], with the grid expanded from
the interval of [−1, 1] to [0, H], where H is sufficiently large, using an algebraic mapping. The
base flow consists of the turbulent mean at x = 0.4, which is about the middle of the recirculation
region. In this position, upstream-traveling waves are visible in the leading SPOD mode.

The mean flow for the streamwise velocity component is fitted using a function appropriate for
separated boundary layers [57],

U (y) =
[C1

4
U1(y) + C2

]
tanh

(
y + 1

δw

)
(14)
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FIG. 13. Eigenspectrum at St = 0.03 and comparison between linear stability theory (red) and the first
SPOD mode for the streamvise velocity (blue, green, black for k < 0, k > 0, no filter, respecitvely), for St =
0.03 and 0.06 at x = 0.4. The eigenspectrum was computed with two different discretizations, where N is the
number of Chebyshev polynomials, in order to evaluate convergence, and compared to the vortex sheet results.
The arrow highlights the unstable mode with negative phase velocity.

and

U1(y) =
[
1 + tanh

(y − y0

a

)][
1 + tanh

(y − y0

b

)]
, (15)

where C1, C2, a, b, and δw are found through a least-squares minimization for every streamwise
profile evaluated. The mean temperature and density profiles have a weaker effect on the results and
these are simply interpolated at the Chebyshev collocation points.

2. Linear stability results

A sample of the eigenspectrum computed via local linear stability theory (LST) for the Strouhal
number St = 0.03 at x = 0.4 is shown in Fig. 13(a). Similar results were also observed at higher
Strouhal numbers and multiple streamwise positions. The eigenspectrum shows a pair of discrete
modes with negative phase speed. An analysis using Briggs’ criterion, as detailed by Tam and Hu
[60], shows that these modes have negative generalized velocity, and thus travel in the upstream
direction. The discrete mode with Im(α) > 0, highlighted in the figure, is thus an unstable mode
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traveling upstream. Comparison of the eigenfunction against the first SPOD mode at the same
location x = 0.4 is depicted in Figs. 13(b) and 13(c) for St = 0.03 and 0.06.

As discussed in Subsec. VI A, the leading low-frequency SPOD mode presents disturbances
that propagate both downstream and upstream. In order to isolate the upstream and downstream
components, a spatial filter was applied to the SPOD mode. This was performed by applying a
a Fourier transform of the SPOD mode and retaining either the positive or negative values of k,
for downstream or upstream traveling waves, respectively. This procedure is similar to the one
employed in Ref. [58], and it is consistent with the negative phase speed of the LST mode. Although
this method does not allow an exact splitting of the field into downstream and upstream traveling
waves, since the lack of periodicity in x leads to errors in the Fourier transform, it nonetheless allows
a separate quantitative assessment of these waves from the data set. This is possible for flows that
develop slowly in x, such as jets [52,58].

For comparison purposes, the downstream/upstream components along with the full SPOD mode
are shown. It is clear that the upstream part of the SPOD mode presents a compelling agreement with
the LST prediction. The downstream and the full SPOD modes present a peak at regions farther from
the wall. The downstream propagating component also presents a much lower amplitude, indicating
that the upstream traveling wave contributes more to the total energy. The downstream traveling
disturbances in the SPOD mode differ significantly from the upstream traveling stability mode. The
group velocity of the unstable mode, computed using vg = dω

dαr
, where αr indicates the real part of

the spatial wave number, was observed to be vg = −0.45 at St = 0.03. This value was overlaid to
the empirical dispersion relation obtained from the SPOD modes presented in Fig. 10, resulting
in a close agreement. Thus, both the eigenfunction and the eigenvalue obtained from the stability
analysis match the leading SPOD mode.

The results indicate that the shock unsteadiness at the low-frequency range is related to upstream
propagating fluctuations developing downstream of the separation point. This provides a physical
mechanism for the influence of downstream regions on the shock motion, explaining the causal
predictions obtained with the transfer functions in Sec. V, in accordance with the upstream traveling
part of the dominant flow response obtained with the spectral mode decomposition. In what follows,
we examine further properties of the unstable mode obtained from the stability analysis.

3. Acoustic nature of the upstream traveling wave

We now explore the nature of the unstable upstream traveling mode. It is known that compress-
ibility effects lead to specific instability mechanisms that are absent from incompressible flows, as
seen in boundary layers [59] and jets [60]. A recent work has explored the acoustic nature of discrete
modes in jets, which are shown to behave similarly to acoustic duct modes [52]. The connection to
duct acoustics was further developed by Martini et al. [61], showing that the unstable supersonic
modes in jets found by Tam and Hu [60] are related to an acoustic mechanism, which renders
such duct-like modes unstable. Here we explore the connection to acoustic modes by using the
vortex-sheet model by Martini et al. [61].

The vortex sheet problem considers uniform flow above and below an infinitesimal vortex sheet,
leading to an analytical dispersion relationship. The present recirculation region may be simplified
as a vortex sheet such that

Ma(y < ys) = −0.0350, (16a)

Ma(y > ys) = 2.0, (16b)

where ys is taken as the position where the velocity changes sign at x = 0.4. Considering d p/dy =
0 at y = 0 is equivalent to taking even modes in the model by Martini et al. [61], and thus the
modes in the recirculation region are akin to even modes in compressible wakes. A solution for
inviscid infinitesimal disturbances to the vortex sheet leads to the dispersion relationship, neglecting
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FIG. 14. Computed phase speed (Uc) of the unstable LST mode, vortex sheet, and plane-wave acoustic
mode.

base-flow density variations

tanh(ξin) = −ξout

ξin

(
Uin − c

Uout − c

)2

, (17)

where

ξin,out =
√

α2[1 − (Uin,out − c)2] (18)

with Uin = Ma(y < ys)/Ma∞, Uout = Ma(y > ys)/Ma∞ and c = ω/α, which corresponds to the
phase speed of the corresponding vortex sheet mode, where the reference length is changed to ys.

As discussed in Martini et al. [61], a number of discrete modes in the vortex sheet problem
has acoustic nature and behaves similarly to duct modes. For a class of modes, the vortex sheet of
a wake behaves similarly to a hard wall, and such acoustic modes may be thought of as slightly
altered versions of duct modes. The analysis of the present upstream traveling unstable mode shows
that it is related to the plane-wave duct mode, with wave fronts constant in x traveling upstream.
Such acoustic modes can be obtained by finding the zeros of the dispersion relation, as outlined
in Ref. [61], using a seeking algorithm which is started with a plane-wave mode as an initial
guess. As shown in Fig. 13(a), the vortex-sheet result has an eigenvalue close to the solution of the
Rayleigh equation, which indicates that the unstable mode obtained in the previous section may be
approximated by the vortex-sheet model, as in the jet analysis by Towne et al. [52]. To demonstrate
the correspondence between both instability modes (considering the LES velocity profile or the
vortex sheet) and the plane-wave mode of duct acoustics, Fig. 14 shows the phase speed of the
modes compared to the one of a plane wave propagating upstream, which is, with the present choice
of nondimensional variables,

U = ure − c0, (19)

where ure is the peak velocity at the recirculation and c0 = 1/Ma∞ (the ambient sound speed non-
dimensionalized using the unperturbed velocity).

The results of Fig. 14 show a similar trend for the LST and vortex-sheet modes, showing that
the vortex sheet approximates the behavior of the mode at hand. Furthermore, as the frequency
increases, the phase speed approaches that of a plane wave, indicating that the upstream traveling
wave could be related to a plane-wave acoustic mode which becomes unstable by its interaction
with the sheared flow, as discussed by Martini et al. [61]. In the present linearized models, the
upstream traveling mode remains unstable for rather large Strouhal numbers. However, the inclusion
of viscosity could stabilize the mode at higher frequencies, and due to that reason it is not observed
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in the higher frequency SPOD modes. As we deal with a turbulent flow, an eddy viscosity model may
be appropriate [62–64]. Further work on this direction may help study why the upstream traveling
mode only appears clearly at low Strouhal numbers.

VII. CONCLUSIONS

The dominant mechanisms driving the reflected shock unsteadiness were isolated using sig-
nal analysis and spectral mode decomposition of the flow fluctuation fields. First, we computed
linear, single-input single-output transfer functions using pressure and streamwise velocity fluctu-
ations to predict the unsteady shock fluctuations in a range of frequencies corresponding to the
SBLI interaction determined via low-pass data filtering (St < 0.3). It was shown that locations
downstream of the shock can accurately predict its fluctuations. Correlations of up to 0.6 were
obtained between predicted and LES signals, even for the largest streamwise separation between
input and output signals. The correlation magnitude strongly depends on data spanwise averaging,
pointing to a predominantly 2D mechanism governing the shock unsteadiness.

Evaluation of the transfer functions in the frequency domain by means of a Hilbert transform
suggests a causal relationship between flow regions downstream of the shock and its motion. When
combined with the observed correlations, we conclude that the only causal inputs leading to high
correlations with the shock are the locations surrounding and downstream of the recirculation
bubble. In these regions, the fluctuations exhibit a negative phase velocity. These observations
provide further evidence of the mechanisms suggested in previous investigations [13,16]. Causality
was also detected between the upstream boundary layer and the shock motion, as reported by
Ganapathisubramani et al. [50], but with a much lower correlation when compared to downstream
locations. This is possibly related to the absence of large-scale structures within the boundary layer
in the current numerical database.

This evaluation was complemented by the computation of the spectral modes from the SPOD
analysis which pointed to the existence of an upstream traveling wave in the leading mode at
St = 0.03. The Fourier transform of the leading mode confirmed the negative group velocity for
frequencies up to St ≈ 0.1 in the near-wall region. On the other hand, the same mode presented
a positive group velocity at higher wall-normal positions. In addition, we demonstrated that a
significant portion of the energy of the shock motion can be recovered from a limited set of measure-
ments taken downstream of the shock. Comparison of the corresponding eigenvalues indicated that
the downstream region contributes more significantly to the shock unsteadiness than the upstream
region.

Finally, a linear stability analysis was performed using the mean turbulent flow. The LST
evaluation indicates the presence of an unstable upstream traveling mode. A close match was
observed between LST and the upstream traveling part of the SPOD mode both in terms of the
shape of the predicted fluctuations and their resulting phase speed. An analogy of these results with
a vortex sheet model indicated that such an unstable mode is of acoustic nature, corresponding to
an acoustic plane wave propagating upstream, which becomes unstable due to its interaction with
the shear layer. Such acoustic mode provides the mechanism by which downstream fluctuations
propagate upstream and lead to shock wave oscillations. The identification of such mechanisms
points to interesting directions, as the manipulation of the acoustic mode by wall treatment may
lead to attenuation of undesirable shock unsteadiness.
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APPENDIX: OPERATORS FOR THE LINEAR STABILITY ANALYSIS

We follow Ref. [55] for the spatial linear stability analysis. The compressible inviscid
Navier-Stokes equations are linearized over the mean flow, with the quantities decom-
posed into a mean plus time-dependent fluctuation. Application of the ansatz q(α, ω, y) =
[u(α,ω, y) v(α,ω, y) T (α,ω, y) ρ(α,ω, y)]T = q̂(α, ω, y)e[i(αx−ωt )] in the linearized equations,
with u(α,ω, y), v(α,ω, y), T (α,ω, y), and ρ(α,ω, y) being the fluctuating stream/wall-normal
velocities, temperature, and density, leads to a generalized eigenvalue problem,

L ˆ̂q(α,ω, y) = αF ˆ̂q(α, ω, y). (A1)

The operators L and F , for the compressible inviscid case of an ideal gas, are given as

L =

⎛
⎜⎜⎜⎜⎝

−iρω ρ ∂U
∂y 0 0

0 −iρω 1
γ Ma2

∞
∂ρ

∂y + 1
γ Ma2

∞
ρ ∂

∂y
1

γ Ma2
∞

∂T
∂y + 1

γ Ma2
∞

T ∂
∂y

0 ρ ∂T
∂y + (γ − 1) ∂

∂y −iωρ 0

0 ∂ρ

∂y + ρ ∂
∂y 0 −iω

⎞
⎟⎟⎟⎟⎠, (A2)

F =

⎛
⎜⎜⎝

−iρU 0 −i 1
γ Ma2

∞
ρ −i 1

γ Ma2
∞

T

0 −iρU 0 0
−i(γ − 1) 0 −iρU 0

−iρ 0 0 −iU

⎞
⎟⎟⎠, (A3)

where the overbar indicates mean quantities and γ = 1.4. Solution of Eq. (A1) is made by imposing
a given value of ω and computing the corresponding α (eigenvalue) and ˆ̂q (eigenmode). The results
of the linear stability code, written in primitive variables, have been compared to those of the method
used in Ref. [65], with similar results, which validates the current implementation.
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