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In this paper we present a novel hydrodynamic experiment using liquid 4He. Lagrangian
trajectories are obtained using two-dimensional particle tracking on hollow glass micro-
spheres in a cryogenic liquid helium turbulent flow. The flow is forced inertially by a
canonical oscillating grid, both below and above the superfluid transition. This allows for
a direct comparison of the Lagrangian statistics in the normal (He I) and superfluid (He
II) phases. The high temporal resolution allows us to resolve the velocity fluctuations at
integral and inertial scales and, most importantly, assess the noise contribution. The careful
analysis of velocity fluctuations, acceleration fluctuations, and pair dispersion, allows us
to extract estimates of the energy-injection rate at large scale, the energy flux cascading
through inertial scales, and the dissipation rate at small scale, and therefore build the
energy budget in both the normal and superfluid phases. We find that, within experimental
uncertainty, the statistical features of turbulence and the energy budget in superfluid
helium is indistinguishable from those of normal helium, highlighting the importance of
conducting experiments in both He I and He II to draw meaningful conclusions, because
deviations from the theoretical predictions may arise from noise contributions or deviation
from the homogeneous and isotropic approximations.

DOI: 10.1103/PhysRevFluids.6.064604

I. INTRODUCTION

Liquid helium experiments offer a unique way to investigate developed turbulence in laboratory-
scale facilities. Liquid helium, in its normal state (He I), has indeed a very low kinematic viscosity
ν. In addition, one of the most striking features of liquid helium is the superfluid state (He II), where
the kinematic viscosity eventually vanishes below a critical temperature Tλ ≈ 2.17 K.

While He I follows a classical Navier-Stokes equation dynamics for a viscous newtonian fluid, He
II is usually described as a mixture of a normal (viscous) and a superfluid (inviscid) components with
a relative fraction depending on the temperature (the lower the temperature, the higher the superfluid
fraction). A consequence of the inviscid nature of the superfluid component is that turbulent eddies
cannot have arbitrary circulation: only vortices carrying a single quantum κ of circulation may
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exist, the so-called quantum vortices [1]. Those vortices act as defects where the excitations from
the normal component may scatter. This mechanism produces a transfer of momentum between the
two components of He II, leading to a mechanical coupling called mutual friction.

At finite temperature and in absence of a temperature gradient, it is believed that this mutual
friction locks the velocity fields of the two components at scales larger than the typical intervortex
distance δ. This explains the lack of observed difference in energy spectra on the large scale [2,3].
At scales comparable to δ, it is predicted that mutual friction is not strong enough to lock the two
components together, so a different behavior compared with classical turbulence is predicted [4].
The intervortex distance is expected to be of the same order of magnitude as the dissipative scale
in the normal component, which may be very small in laboratory experiments (typically ranging
between one and several tens of micrometers).

Since Eulerian sensors are difficult to use in He II and do not even exist on scales of less than a
tenth of a millimeter, the use of visualization to probe the flow has been explored in the past decades
[5,6] as a promising approach to access quantitative multiscale diagnosis of quantum turbulence.

H2-D2 ice particles and hollow grass spheres have initially been used to assess the flow field
in counter-flow experiments [7–10]. Those reveal that Lagrangian statistics at small scales appear
to behave differently from those of the conventional fluid [11,12]. Nevertheless, due to the nature
of the counter-flow itself (which has no counterpart in classical fluid), and also to the small level
of turbulence involved in this situation, no clear conclusion has emerged yet regarding possible
intrinsic differences in the dynamics of super- and normal-fluid turbulence when driven in similar
conditions.

More recently, particle tracking velocimetry (PTV) has also been used to measure statistical
properties of inertially driven flows. Svancara and La Mantia [13] used H2-D2 ice particles to look
at velocity and acceleration probability density functions in an oscillating grid experiment. They
found that the velocity and acceleration distributions were comparable to that observed in standard
fluids, as already observed in Eulerian framework for scales larger than δ. Tang et al. [14] studied
the velocity structure functions scalings in a towed-grid experiment, in He II only. They conclude,
among other things, that they observe a larger intermittency than in classical fluids on the basis of
comparison with theoretical models.

It remains unclear at the moment which component the Lagrangian particles actually trace in
He II (see, e.g., Ref. [15]). One goal of the present study is to proceed to different estimates of
energy across scales in order to explore possible deviations from classical behavior, which may
indicate any specificity of superfluid behavior (due either to a preferential sampling of the tracer
to one component or the other, or to the existence of different channels for energy to flow and
dissipate across scales). To this end, we have estimated the energy rates at different scales, always
assuming fundamental laws as they are known for classical fluid turbulence, seeking scale by scale
for significant differences between measurements carried in He I and He II. This direct comparison
is the most reliable way to highlight features peculiar to He II.

To achieve this, we designed a new experimental facility devoted to particle tracking and particle
trapping measurements in Oscillating Grid Turbulence [16] (OGT). The main difference with
Svancara and La Mantia [13] is that we chose to follow the design rules of a canonical oscillating
grid experiments, e.g., grid solidity below 40% and at least 3 × 3 meshes with a half mesh at
each end [17–19]. Thereby our experiment offers the possibility of calibrating and validating our
measurements in He I against classical reference data. Compared with grid-generated turbulence in
wind tunnels, OGT has the advantage to produce a flow with almost no mean flow and hence is better
suited to particle tracking experiments with fixed cameras. Towed grid experiments, which are now
common tools to investigate inertially driven turbulence [14,20,21], produce nearly homogeneous
isotropic turbulence (HIT hereafter) that decays (nonstationary) in time. The choice of OGT for
the present study was therefore motivated by its stationarity. It is an important condition because it
ensures that the energy-injection rate, the energy transfer across scales, and the energy-dissipation
rate should be equal.
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FIG. 1. (a) Experimental setup: (1) crankshaft + gear-motor system, (2) ball bearing, (3) composite main
shaft, (4) grid, (5) test section (“aquarium”), (6) inner (helium) double-wall glass vessel, (7) outer (nitrogen)
double-wall glass vessel, (8) Aluminum radiation shield. (b) Details of the grid and test section dimensions.

To have good control of particle size dispersion, we decided to use hollow glass microspheres.
Such particles have a diameter of a few tens of micrometers (an order of magnitude bigger than ice
particles) and part of our study aims at probing whether such particles would make good tracers.

In Sec. II we present the experimental device. Section III describes the typical experimental
protocol to optimize the operation of the facility for particle-tracking measurements. Section IV A
describes particle detection methodology before the exploration of particle trapping in Sec. IV B.
Section IV C is dedicated to particle tracking. Finally, we present the velocity field in Sec. V and
Sec. VI is devoted to the assessment of the dissipation rate at different scales of the flow.

II. EXPERIMENTAL SETUP

To generate inertially driven turbulence in liquid helium, we designed an oscillating grid experi-
ment together with a dedicated cryostat. The final scope is to access Lagrangian velocity statistics by
means of particle-tracking experiments in He I and He II and also to investigate eventual preferential
concentrations of particles in He II.

Figure 1(a) presents a simplified sketch view of the experiment with the main elements of the
facility.

In the following we first detail the turbulence generation system, then describe the cryostat and
the visualization setup, and finally describe the particle seeding technique.
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TABLE I. Grid characteristics: mesh size M, grid bar thickness e, solidity G, frequency f , stroke S.

Grid

M e G f S
[mm] [mm] [%] [Hz] [mm]

15 3 36 5 26

A. Turbulence generation

Turbulence is produced by oscillating a grid [item (4) in Fig. 1(a)] in a liquid helium bath (light
gray). The grid is driven by a gear motor (1), inside the cryostat but at room temperature, via a shaft
(3) which is designed to minimize heat losses due the thermal gradient.

The motor is a MDP EC40 equipped with a planetary gear head GP 42 C with a reduction ratio
of 26 : 1. The system has a maximal rotation frequency of 6.4 Hz and can deliver a maximal torque
of 4.2 N m. During the experiments presented in this paper, the grid was always driven at constant
frequency f = 5Hz.

We use a crankshaft with an adjustable stroke S to convert the rotation to quasisinusoidal vertical
translation. The maximal stroke is about 30 mm, but experiments exposed in this paper were all
performed with S = 1.77M ≈ 26 mm.

The grid oscillates vertically in a glass box [item 5 in Fig. 1(a)] with square cross-section
immersed in the bulk of the liquid helium. The sides of the box are W = 120 mm large [marginally
larger than the grid itself, see Fig. 1(b)] and the height is H = 250 mm. The top and bottom ends
of the box are open: the goal of this “aquarium” is to ensure a reproducible turbulence generation
region, with well-controlled boundary conditions. The open top and bottom help in minimizing
recirculating flows, although some residual large-scale mean recirculations are known to be hardly
avoidable in oscillating grid experiments. The four side walls of the aquarium are made of glass for
optical access purposes.

1. Grid Geometry

Figure 1(b) shows the grid geometry. It has been designed based on previous studies in classical
fluids in order to respect canonical conditions on the solidity and the end conditions [18], known to
produce a well-characterized turbulence, with good homogeneity and isotropy properties.

The grid is made of anodized aluminum with square bars and has a solidity G ≈ 36%. As a
reminder, the solidity G is defined as the ratio between the frontal area effectively blocked by the
bars and the total cross section area of the grid, which for a square grid as ours can be simply related
to the bar width e and the mesh size M:

G = e

M

(
2 − e

M

)
. (1)

When the grid solidity exceeds 40%, the jets and wakes produced by the oscillation of the grid
are known to become unstable and merge together to form larger structures [17]. We have chosen a
solidity of 36% (e = 3 mm, M = 15 mm) for which “ the wakes coalesce with each other without
bending their axes; shear-free turbulence can be expected on either side of the grid at sufficiently
large z” [22].

Table I summarizes the grid characteristics.

2. Expected flow characteristics

From the chosen grid parameters, it is possible to estimate the expected flow characteristics by
means of empirical laws. The integral length scale L increases linearly with the distance to the
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TABLE II. Expected flow characteristics. (a) Primary quantities obtained from correlations (2) and (3) at
f = 5 Hz, S

M = 1.77, z
M = 4.6. The main assumption is that the energy injection at large scale does not depend

on the fluid. The uncertainties are computed by considering the minimum and maximum values of z in the field
of view together with reported uncertainties on cL and cu. (b) Derived quantities: ε from Eq. (4), Reλ is the
Reynolds number based on the Taylor length and is obtained under the assumption of homogeneity and isotropy
of the flow as Reλ = √

15Lσu/ν, η is the Kolmogorov length scale, and τη is the Kolmogorov timescale. In He
II, we define the kinematic viscosity as ν = μn/ρ, where μn is the dynamic viscosity of the normal component
and ρ is the total density.

L [mm] σu [mm s−1]

(a) 14 ± 5 9.3+2.6
−1.9

T [K] P [bar] ε [1 × 10−5m2 s−3] Reλ η [μm] τη [ms]

(b) 2.8 1 5.8+12.2
−3.7 280 22 20

3.5 1 5.8+12.2
−3.7 270 24 21

2 0.031 (sat.) 5.8+12.2
−3.7 440 11 10

grid z:

L = cLz, (2)

where cL is a constant that depends on the grid geometry. For comparison we will use cL = 0.2,
which is the value Hopfinger and Toly [17] obtained with S/M = 8/5, the closest to our configura-
tion.

For simplicity, we define the origin of the vertical coordinate z as the midpoint of the oscillation
even though Hopfinger and Toly [17] report virtual origins of order M.

The transverse (horizontal) fluctuating velocity σu has been shown to follow

σu = cu f M1/2S3/2z−1, (3)

where cu is a constant that depends on the grid geometry. Based on the literature [17,22] we consider
cu = 0.25. The fluctuating velocity decreases as the inverse of the distance z.

In the sequel we also measure the dissipation rate ε per unit mass of the flow. In previous grid
experiments, it has been shown to behave as

ε = Cε

σ 3
u

L
, (4)

where Cε ≈ 1 [23].
Assuming that the flow is quasihomogeneous and isotropic, from the dissipation rate one can

then infer the Kolmogorov dissipative length scale

η =
(

ν3

ε

)1/4

. (5)

It is generally unclear how exactly the kinematic viscosity ν should be defined in He II flows.
Babuin et al. [24] have measured an effective viscosity νeff, which is defined as the ratio between
the dissipation rate and the mean enstrophy in a turbulent grid flow. They found that, around 2 K,
the value of νeff is of the same order of magnitude as μn/ρ, where μn is the dynamic viscosity of the
normal component. In the sequel, we thus use ν = μn/ρ ≈ 1 × 10−8m2s−1 as an approximation in
He II.

Table II summarizes the above primary and derived quantities in our experimental conditions.
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FIG. 2. Top view of visualization system.

B. Cryostats

Usually, visualization experiments in cryogenic facilities are performed in stainless-steel
cryostats with small planar optical accesses to minimize heat losses in the helium bath [9,11,25].
However, the field of view is then limited by the number of available windows and by the diameter
of the windows. We have chosen for our facility to use glass (rather than stainless steel) as the
material for the cryostat in order to have a higher level of versatility for visualization purposes.
For instance, although we only present here two-dimensional (2D) measurements, a glass cryostat
with full optical access allows us to consider in future campaigns multicamera experiments for
simultaneous recordings at several viewing angles, hence allowing well-resolved three-dimensional
(3D) particle-tracking measurements. The use of a glass cryostat has the additional benefit of being
less expensive than the mixed stainless-steel plus glass solution because it avoids the requirement
of sophisticated welding between a stainless-steel cryostat and optical accesses.

Two cylindrical concentric double-wall glass vacuum cryostats are used. The inner cryostat
contains the liquid helium bath, where the turbulence is generated. The outer cryostat contains
liquid nitrogen and plays the role of thermal shield to limit losses between room temperature
and the bulk of liquid helium. Glass is naturally opaque to the infrared radiations and is heated
by room-temperature radiation and in turn heats up the liquid nitrogen, thus producing bubbles.
These bubbles disturb the visualization through the cryostats. To avoid this perturbation, the level
of nitrogen is kept below the visualization area during operation of the experiment. This in turn
reduces the efficiency of the nitrogen thermal shield. To further minimize radiation heat load, an
aluminum shield [item 8 in Fig. 1(a)] is also immersed inside the liquid nitrogen cryostat. Holes are
made in the aluminum shield at the level of the visualization area. Note that this aluminum shield is
disposable and a new adapted shield can easily be prepared if cameras are added to the experiment
or if the visualization area needs to be enlarged.

C. Visualization system

Measurements are based on high-speed visualization with a Phantom V12 camera (with a max-
imum frame rate of 6200 images per second at the highest resolution of 1280 pixels × 800 pixels
on a one inch CMOS sensor). We use a red light-emitting diode (LED) with a collimation lens in
order to produce an approximately parallel light beam aiming straight on the camera lens, as shown
in Fig. 2.
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TABLE III. Particles characteristics: mean diameter �p, mean density ρp.

�p ρp

Material [μm] [kg m−3 ]

Hollow glass 85 ± 15 177 ± 45

In this backlight configuration, we record the shadows of the particles traveling across the light
beam, with an a priori undetermined position in the y direction (along the line of sight of the camera).
We therefore use a lens with a large numerical aperture (a long-distance microscope K2-SC CF-1/B)
that ensures both a good luminosity (and contrast) and a small depth of field. The latter has been
measured to be of the order of δdof � 1.4 mm, hence ensuring quasi-2D measurements at a fixed
known y position. Besides, the backlight configuration allows for a good contrast with a low light
power, which minimizes the heat sources into the helium bath.

All the measurements discussed here have been done at a vertical position centered around a
distance z = 4.6M below the average position of the grid. The overall field of view is 1.8M × 1.2M
(i.e., 25 × 18 mm2). The camera lens was located at a working distance of 35.5 cm from the center
of the aquarium. The geometrical configuration is the same in He I and in He II.

D. Particles

Particle seeding was done by using K20-type hollow glass microspheres from 3M. These
particles are commercially available as a polydisperse population with sizes ranging from 10 to
200 μm and densities ranging from 130 to 200 kg m−3.

We first sieved the particles in order to remove the largest and smallest ones. Only particles that
have a diameter larger that 71 μm and smaller than 100 μm have been retained for our measure-
ments. The particle size distribution has then been measured using a Spraytech diffractometer from
Malvern Instruments, Ltd. The particle mean diameter D32 (defined as the ratio between the mean
volume and the mean area) has been found to be of the order of 85 μm.

We also measured the average particle density: we immersed a know mass of particles in a known
volume of water and measured the resulting total volume. We found a mean particle density of the
order of 177 kg.m−3.

Table III summarizes the particle characteristics.
Finally, we observed the shape of the particles with a binocular and verified that they were

spherical except for a small fraction corresponding to broken particles. These pieces of sphere
were no longer hollow and contributed to a slight increase in overall density so that the value of
177 kg.m−3 is a maximum value. During the experiment, the broken particles sank rapidly after
injection.

Particles are dried and injected in the flow using a removable cryogenic syringe. A few minutes
before recording data, we start oscillating the grid. This has two main advantages: (i) the flow
reaches a steady state and (ii) dense or broken hollow microspheres settle and only particles with a
density close to the density of the fluid stay in our visualization field. Typically we estimate that the
difference between particles density and fluid density to be less than 15%.

III. EXPERIMENTAL PROCEDURE

As mentioned in the introduction, we aim at performing experiments both in normal He I and
superfluid He II. From a cryogenic point of view, a fundamental difference between these two states
of liquid helium concerns the heat conductivity. While He I has a very low thermal conductivity
(e.g., 0.02 Wm−1K−1 at 3 K and 1 bar), He II has a very high effective thermal conductivity. As a
consequence, a He II bath is quasi isothermal, as opposed to a He I bath.
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TABLE IV. Experimental conditions: temperature T , density ρ f of the carrier fluid, oscillating frequency
f of the grid.

T ρ f f
Config. # Fluid [K] [kg m−3 ] [Hz]

1 He I 2.8 ± 0.1 145.0 5
2 He I 3.5 ± 0.1 138.0 5
3 He II 2 147.5 5

If the free surface of liquid helium is at saturation pressure Psat(Tfree-surf ), in absence of a temper-
ature gradient in the fluid, any point below the free surface is subcooled due to the pressurization
resulting from the immersion depth. In He II it is reasonable to assume that there is no temperature
gradient and the liquid is therefore always subcooled. This ensures that no bubbles appear and
perturb the flow.

On the contrary, He I has a low thermal conductivity and the temperature of the liquid below
the free surface can increase due to parasitic heat inputs (through the walls). Those temperature
differences can easily overcome the subcooling due to the immersion depth, resulting in boiling
inside the bath.

To avoid the presence of bubbles in the field of view, the following procedure is applied for
He I experiments: After filling with liquid helium, the bath is cooled down to 2.4 K by pumping,
the liquid level being kept well above the top of the test section. Then, helium gas at atmospheric
pressure is reintroduced above the liquid interface enabling pressurization and stratification (cold
liquid is denser and remains at the bottom). This pressurization process gives enough time to
perform quasistationary measurements in He I without bubbles: we can typically have half an hour
at the operating grid frequency (5 Hz) before the temperature at the visualization level reaches the
saturation temperature (≈4.2 K), generating bubbles again.

In He II, a MKS 600 valve is used to control the bath pressure (hence the temperature). As
previously mentioned, the grid is oscillated a few minutes before taking measurements in order to
ensure a steady state is reached [26]. For the three explored experimental conditions (see Table IV),
at least 80 films of 400 images are recorded to achieve a good statistical convergence. To resolve
particle dynamics, the sequences of 400 images are recorded at a frame rate Fs = 3000 frames per
second so that δt � τη, where τη is the dissipative Kolmogorov timescale of the flow (previously
estimated in Table II) and δt = F−1

s is the time between two images. Typically we have 60 frames
per τη.

Furthermore, images extracted from different films can be considered as uncorrelated because
the delay between two consecutive films is 20 s, which is greater than the integral time of the flow
(1.4 s)

The different test conditions explored in this paper consist in three different configurations that
are summarized in Table IV.

IV. IMAGE PROCESSING

In this section we first describe how the image sequences are postprocessed to determine the
position of individual particles at a given time t . The seeding procedure is then validated using
Voronoï tessellation to show that particles are randomly distributed in space. Finally, we show how
we reconstruct tagged particle tracks along time from individual particle positions.

A. Particle detection

Figure 3 shows a typical raw image of the hollow microspheres to be tracked in the oscillating
grid flow. This image shows important optical distortions which may affect particle detection and
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FIG. 3. Raw image with a zoom on ghost particles in He II at 2 K (Config. #3, see Table IV). The field of
view is 1280 px × 800 px.

eventually the accuracy of the overall particle-tracking procedure. It can indeed be seen that out-of-
focus particles are strongly distorted, with either a vertical or a horizontal image. This anisotropic
distortion is classical of a cylindrical lens effect, very likely induced by the cylindrical double walls
of the inner and outer cryostats. The main goal of the image postprocessing is to correctly detect the
particles which are in focus.

The overall image processing sequence is as follows: First, to clean images, we apply morpholog-
ical opening of the image in order to retrieve the slightly inhomogeneous background illumination,
which is subtracted from the corresponding image. Second, a thresholding is applied to select the
most contrasted particles; this eliminates most particles that are out of the depth field because
they are dimmer. Finally, in-focus particles are often found to exhibit a pattern with multiple
(typically three) images closely aligned in the horizontal direction. This is very likely due to multiple
reflections between the walls of the concentric cryostats. To remove this effect, a morphological
closing using a small horizontal segment is used to connect dark pixels (we recall that particles
appear dark on a bright background) that are closer to each other by less than five pixels (i.e.,
100 μm). This leads to processed images where most in-focus particles appear as smooth blobs of
pixels. Their center is determined as the center of mass of these blobs, see Fig. 4.

x [px]
 

z [
p

x]

200 400 600 800 1000
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FIG. 4. Detection of particles in the raw image from Fig. 3, in He II at 2 K (Config. #3, see Table IV).
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FIG. 5. Voronoï diagram of particles detected in Fig. 4, in He II at 2 K (Config. #3, see Table IV).

B. Seeding validation procedure

The flow conditions explored here lead to a Kolmogorov scale (in He I) of the order of 23 μm.
According to Babuin et al. [24], we expect that the intervortex distance should be of the same order.
Thus, the 85 μm microspheres used here are also of the same order of magnitude. In addition, the
microspheres that remain in the field of view after a certain delay have a density very close to the
density of the fluid. These particles can therefore be expected to behave like tracers and be randomly
distributed in space. In this section, we will verify this in both He I and He II.

Contrary to ideal tracers, which follow the flow and are randomly distributed, inertial particles
may experience clustering (see, e.g., Monchaux [27]). On the other hand, even for tracer particles,
preferential concentration may arise in He II due to the trapping of particles about the core of the
quantized vortices. This phenomenon has been widely studied by direct visualization of turbulent
counter-flow experiments [10,28,29] in He II at rest, but has never been addressed in mechanically
forced superfluid turbulence.

Following Monchaux et al. [30], we propose to explore the seeding properties based on Voronoï
tessellations of the spatial distribution of the detected particle centers in order to explore whether
particles exhibit some nontrivial structure. We thus use a Voronoï diagnosis in a superfluid experi-
ment. Note that we do not aim here to explore in detail the possible trapping of particles by quantized
vortices, a topic which goes beyond the scope of this article, but simply to check whether the
particle distribution is random or exhibits some significant degree of preferential concentration. The
presence of clustering of particles would reveal a possible bias in the subsequent analysis of particle
dynamics due a trapping mechanism. The absence of clustering, even though reassuring, cannot
totally rule out a possible bias because it is unclear how the distribution of particles preferentially
trapped by randomly entangled vortices should look. This is a very interesting topic which deserves
a dedicated study. We consider, however, that, in the absence of significant differences in the seeding
properties diagnosed by Voronoï tessellation between normal and superfluid conditions, no major
bias due to trapping is expected.

A Voronoï diagram consists in defining a cell that contains all the points of the space that are
closer to a given particle than to any other particle. Such a cell, associated with a particle i appearing
on a frame at time t has an area Ai(t ). Figure 5 presents the Voronoï diagram of particles detected
in Fig. 4.

In regions with a large number of particles, Voronoï cells have a small area, and where there are
few particles, cells are bigger. Experimentally, we observe that the number of particles per frame
decreases with time (settling due to the slight density mismatch), although the overall average
spatial distribution of particles within the measurement zone does not exhibit any large-scale
inhomogeneity. Consequently, we measure the normalized area Ai(t ) = Ai(t )/Ai

t
where Ai

t
stands
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FIG. 6. Probability density functions of normalized Voronoï area A.

for the average of Ai(t ) measured at time t . The cell area’s probability density function (PDF)
provides a quantitative way to describe the degree of clustering of a set of particles. This method of
analysis of particle preferential concentration has already been widely used but we use it on He II
seeding. We applied this method to our measurements both in He I and He II.

In Fig. 6, the black curve represents the PDF of the Voronoï cell areas in the case of randomly
distributed particles. This kind of distribution can be modeled by a random Poisson process (RPP)
for which the standard deviation of Voronoï cell areas can be analytically calculated as σ ≈ 0.53
[31]. The blue and orange curves are the PDF of Voronoï areas in He I and He II, respectively.
The curves follow the same trend within the accuracy of our measurements. Therefore, the spatial
distribution of particles does not depend on the state of helium. Furthermore, in spite of some small
deviations in the tails of the measured deviations compared with RPP case (note, however, that the
deviations appear amplified by the logarithmic scale), the PDF in He I and He II both have a standard
deviation σ comparable to that of the RPP. This means that the distribution of the particles is very
close to random, as expected for tracer particles.

We have done further tests that show that the PDF do not depend on the height z, either. This
demonstrates that the position of the injector is sufficiently far to avoid any residual preferential
concentration.

At this point, it is interesting to have an estimate of the intervortex distance δ. The latter can
be obtained, following Babuin et al. [24], from the turbulent Reynolds number computed using an
effective νeff ≈ κ/5. This leads to δ ≈ 35 μm.

Consequently, we should consider that a single particle is always in contact with at least two
vortices. In that case, it is difficult to predict the effect of the trapping mechanism on our “big”
particle. Nevertheless, our data show no significant deviation from a homogeneous distribution.

C. Particle tracking

Once particles are identified (typically we have an average of 80 particles per image), they are
tracked to get their trajectory along time. For this we perform Lagrangian particle tracking using the
particle tracking code by Ouellette [32].
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FIG. 7. Particle trajectories over 400 images in He II (Config. #3 in Table IV). Dark green is for t = 0 and
light green relates to the end of a video (400th image) at t = 133 ms.

In Fig. 7, we show typical trajectories obtained after particle tracking over a sequence of 400
images acquired at a frame rate of 3 kHz.

Lagrangian velocity and acceleration are obtained by convolution of the raw trajectories with a
truncated Gaussian smoothing and differentiating kernel [33] to filter high-frequency noise from
the recorded trajectories. Traditionally, the width of the filtering kernel is chosen to minimize
the impact of noise on acceleration variance [34–37]. However, the level of small-scale noise is
particularly high in our experiment compared with classical experiments at ambient temperature,
due to the multiple curved optical interfaces between the core of the cryostat and the cameras. As
a consequence, the typical timescales of the noise overlap with the small turbulent dynamics of the
particles, and estimates of acceleration remain sensitive to the choice of the filtering width, which
affects the robustness of acceleration statistics (see Sec. VI C). Future experiments are planned to
improve this by an entirely new design of the cryostat in order to avoid multiple layers of curved
interfaces. For the present study, we therefore chose the filtering properties based on particle velocity
variance, which is less sensitive to small-scale noise than acceleration. We find that a Gaussian
smoothing kernel of width 6 ms (18 frames) limits reasonably well the impact of noise with a weak
impact on velocity estimates.

Figure 8 represents an example of such a raw and filtered trajectory, clearly showing the high
degree of small-scale noise. As discussed in Sec. V B, even after this filtering procedure, velocity
increment statistics at inertial scales may still be weakly affected by some remaining level of noise.
This led us to deploy a strategy in order to access a robust statistical estimate of the Lagrangian
dynamics of the particles based only on their position (and position increments) statistics, hence
avoiding the amplification of noise associated with numerical differentiation (see Secs. V B and
VI B 1).

V. SINGLE-TIME VELOCITY STATISTICS

Figure 7 shows a typical set of reconstructed trajectories. An overall vertical trend of particle
motion can be seen which suggest the existence of a mean drift velocity, see Refs. [26,38]. This
is expected as particles are slightly denser than the carrier fluid, see Table V. Besides, to get a
zero mean velocity in an oscillating grid experiment, an infinite aspect ratio of the aquarium for
the test section H/W is required. In the horizontal direction, where the gravity should have no
effect, the mean velocity 〈u〉 has been measured and found to be negligible compared with velocity
fluctuations. The ratio between the average and the standard deviation of the velocity is 〈u〉/σu ≈ 0.1
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FIG. 8. Particle trajectory filtered with a Gaussian kernel of width 18 points (6 ms).

in He I and 〈u〉/σu ≈ 0.3 in He II. In the next sections we focus the analysis on the horizontal
component u of the velocity.

A. Velocity probability density function and classical fluctuating velocity computation

Figure 9 shows the centered and reduced probability density function (PDF) of the horizontal
velocity fluctuations. They are found to be quasi-Gaussian, with slightly over-Gaussian tails.
Surprisingly, the PDF of velocity fluctuations is not well documented in the existing literature
of oscillating grid turbulence in classical fluids. One exception is the thesis of Drayton [39],
who reports that, for measurements performed further than about four meshes from the grid, (i)
velocity PDFs do not exhibit any significant asymmetry, (ii) they are nearly Gaussian up to about
two standard deviations, and (iii) they present over-Gaussian tails beyond typically two-standard
deviations. These trends are in very good qualitative agreement with the PDFs we report in Fig. 9,
both in He I and He II conditions. Therefore, no visible deviation of inertially forced superfluid
turbulence from the classical behavior is detectable in these PDFs. In particular, we do not observe
the emergence u3 tails as has been reported in superfluid counter-flows.

The PDFs shown in Fig. 9 were reduced by the velocity standard deviation in order to explore
first any eventual change of the global shape of the fluctuations distribution between the normal
and the superfluid cases. Because no significant such change has been observed, we focus now on
the velocity standard deviation of velocity fluctuations itself. Table V summarizes the trends of the
standard deviation of velocity and its comparison with the expected value from classical empirical
laws usually used for oscillating grids in classical fluids [Eq. (3)]. A good agreement is found with

TABLE V. Summary of horizontal velocity measurements obtained using position differentiation.

σu 〈u〉
Config. Fluid [mm s−1] [mm s−1] σu

σ th
u

1 He I 8.3 ± 1.7 0.9 0.86
2 He I 9.3 ± 1.9 0.3 0.96
3 He II 9.1 ± 1.8 −3.2 0.94

064604-13



FATIMATA SY et al.

-4 -2 0 2 4
10-3

10-2

10-1

100

P
D

F

FIG. 9. Probability density function of normalized velocities alongside the horizontal axis x. He I (#1),
He I (#2), He II (#3).

the empirical law, with no major difference between the fluid and the superfluid cases. A small
difference is observed however between the two measurements performed in He I: Config. #1 shows
a larger deviation from empirical laws.

B. An alternative way to access the fluctuating velocity

Lagrangian velocity is usually obtained from the derivative of individual particle trajectories (see
previous Sec. V A). Statistics are then estimated from this data set of individual velocities. Such
a numerical differentiation process on individual trajectories tends to amplify the noise present in
the position data of the particles and requires to filter the trajectories. As described in Sec. V A,
this is done here using Gaussian-filtering. Choosing appropriate filtering parameters is not trivial: if
individual trajectories are not sufficiently filtered, the statistical quantities estimated (as the velocity
standard deviation) may be biased because they still include noise contributions, whereas if the
trajectories are too filtered, they will be artificially smoothed.

We propose here an alternative estimation of the standard deviation of the particle velocity based
on purely kinematic considerations of the position temporal increments δx. This approach does not
require filtering individual trajectories and hence gives a more robust estimate. It is described in
more detail by Machicoane et al. [40].

Let us consider the mean square displacement of the particles δx2 = 〈(x(t ) − x(t + τ ))2〉 where
x(t ) and x(t + τ ) represent the horizontal position at two different times of the same particles
along its trajectory. Assuming the trajectories are smooth (and differentiable) for sufficiently small
time lags while they become uncorrelated and nonsmooth for large time lags, the mean square
displacement is expected to have at least two asymptotic regimes:

〈δx2〉 =
{

u2
rmsτ

2 for τ � TL

2u2
rmsTLτ for τ � TL,

(6)

where u2
rms is the second-order moment of the velocity and TL represents the Lagrangian correlation

timescale of the particles motion. In our study the duration of a video (133 ms) is shorter than the
integral time TL = 1.4 s, so only the short-term ballistic regime 〈δx2〉 = u2

rmsτ
2 is expected to be

observed.
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In practice, experimental data of particle position do not exhibit a smooth ballistic regime at the
smallest timescales, because of the presence of experimental noise. This results in a deviation from
the quadratic dependence δx2 ∝ τ 2 for the smallest τ . For a purely uncorrelated noise, mimicking
perfect Brownian motion at short timescales, one would expect to see δx2 ∝ τ . To model the
influence of noise, the measured particle position x can be written as the sum of the real position x∗
(without noise contribution) and the experimental noise θ : x = x∗ + θ . The measured mean square
displacement can then be rewritten, for the short time lags, as

〈δx2〉 = u2
rmsτ

2 + 2〈θ2〉[1 − Rθθ (τ )] + O(τ 3), (7)

where Rθθ is the autocorrelation function of the noise:

lim
τ→0

Rθθ (τ ) = 1, (8)

Rθθ (τ � τθ ) = 0. (9)

Here τθ is the correlation timescale of the experimental noise.
From Eq. (7), by replacing u2

rms by 〈u〉2 + σ 2
u , hence not necessarily assuming the mean velocity

〈u〉 is zero, one sees that the standard deviation of the velocity σu can be estimated from the measured
mean square displacement:

〈δx2〉 − 〈u〉2τ 2 = σ 2
u τ 2 + 2〈θ2〉[1 − Rθθ (τ )] + O(τ 3). (10)

If we consider time lags τ sufficiently short to neglect high-order corrections to the ballistic term
σ 2

u τ 2 (what implies τ � TL), although longer than the correlation timescale τθ of the noise in order
to neglect Rθθ , the velocity standard deviation can be robustly estimated from simple finite-time
position increments (hence without effectively differentiating the trajectories) from the following
relation:

σ 2
u + 2

〈θ2〉
τ 2

= 〈δx2〉
τ 2

− 〈u〉2, (11)

for τθ � τ � TL.
Figure 10 presents (〈δx2〉/τ 2 − 〈u〉2)1/2 as a function of τ 2. The rapid initial decrease corre-

sponds to the noise contribution 2θ2/τ 2 and possibly also to some reminiscence of the noise
correlation Rθθ , which may not be exactly zero for the shortest time lags. We see, however, that
the curve rapidly reaches a plateau, which suggests that the second term on the left-hand side of
Eq. (11) is negligibly small and that the contribution of the noise to the position increment variance
vanishes for a time lag corresponding to one or two inter-frame times.

At large timescales, the decrease of the curve corresponds to the onset of high-order corrections to
the initial ballistic displacement, but probably also to statistical bias associated with the correlation
between the duration of a track and the velocity of the corresponding particle: at large time, we
essentially sample slow particles. We have no robust explanation though for the difference between
the data sets with regards to the time at which the curves departs from a plateau. We therefore only
focus on the time lapse for which the expected short-term ballistic regime appears well behaved.

The value of the plateau at intermediate timescales gives a robust estimate of the standard
deviation of the velocity σu. These new estimates are reported in Table VI for both He I and
He II experiments and compared with the estimates from the empirical laws for oscillating grid
turbulence. It can be noted that this new estimate shows no significant difference between He I and
He II. The agreement with the empirical laws is good, although the measured value is systematically
of the order or 20% smaller than the empirical estimates. This difference can be attributed to a
slightly different value of the constant cu [see Eq. (3)] in our experiment compared with tabulated
values in the literature. This may be the consequence of minor geometrical differences between our
setup to the reference ones.

Note that the new estimates of σu are slightly lower than the direct estimate from Lagrangian
velocity. This points to the fact that, in spite of the Gaussian filtering, taking the derivative of the
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FIG. 10. Estimate of σu from the second-order moment of the separation along the horizontal axis x [see
Eq. (11)] at f = 5 Hz, S

M = 1.77 and z
M = 4.6. He I (#1), He I (#2), He II (#3). The difference in time

between each point corresponds to the inter-frame time of the recorded movies.

position to estimate velocity remains a noise-amplifying operation. The excess of standard deviation
measured from the velocity estimate is very likely due to a choice of filter width too narrow to
efficiently reduce the noise.

VI. ENERGY BUDGET

In this section we assess the estimate of the energy-injection rate εL, the energy transfer εI across
inertial scales, and the dissipation rate εη. The energy injection is estimated based on large-scale
statistics, using the results of the previous section on velocity fluctuations. The energy-transfer rate
is estimated at inertial scales of turbulence by using the second-order Eulerian structure function and
classical Kolmogorov scalings. Finally, we show an attempt at determining the dissipation rate εη

based on Lagrangian acceleration measurements and the use of the Monin-Yaglom relation, which
relates the dissipation rate εη to the variance of acceleration.

In stationary conditions, in classical turbulence, the three estimates are expected to be identical
because the only channel to dissipate energy is viscosity. All the injected energy therefore flows
across scales via a unique cascade ending in viscous dissipation.

In He II, the question remains somehow open, since other dissipation mechanisms may exist
which would lead to multiple channels for the energy to flow across scales in the normal and
superfluid components which are eventually coupled via mutual friction [41].

TABLE VI. Summary of horizontal velocity measurements obtained using quadratic displacement fitting.

T σu

Config. [K] [mm s−1 ] σu
σ th

u

1 2.8 8.1 0.84
2 3.5 7.8 0.81
3 2 8.5 0.88
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It remains unclear at the moment which component the Lagrangian particles actually trace in
He II. One goal of the present study is to proceed to different estimates of energy across scales
in order to explore possible deviations from classical behavior, which may indicate any specificity
of superfluid behavior (due either to a preferential sampling of the tracer to one component or
the other or to the existence of different channels for energy to flow and dissipate across scales).
To this end, we have estimated the energy rates at different scales, always assuming fundamental
laws because they are known for classical fluid turbulence, seeking scale by scale for significant
differences between measurements carried out in He I and He II.

A. Energy injection at large scales

Mechanical energy is injected into the flow at a scale L, known as the integral scale of the flow. A
fundamental property of classical turbulence, related to the so-called dissipative anomaly property,
relates the energy-injection rate εL to the standard deviation σu of velocity fluctuations and to the
integral scale L of the flow: εL = Cεσu

3/L.
Cε is a universal constant of order unity [42]. In classical fluids, the dissipative anomaly stands

for the fact that this relation does not involve viscosity, whereas all the energy which is injected
at large scales is eventually dissipated at small scales by viscosity. This implies that dissipation
remains finite even in the limit of vanishing viscosity, which in turns implies the appearance of ever
smaller scales eventually leading to the energy cascade of turbulence.

We make use here of Eq. (4) to estimate the energy-injection rate. We assume the Reynolds
number of our flow is large enough for Cε to be constant and take Cε = 1.

We cannot directly estimate at the moment the integral scale of our flow. This would imply
measuring Eulerian statistics over a much larger measurement volume than what is currently
accessible. We therefore estimate the integral scale based on the empirical law (2) for oscillating
grids. This is justified due the relative good agreement already reported in the previous section for
the fluctuating velocity compared with the corresponding empirical law. Besides, in Eq. (4), the
dependency on L is linear, while the dependency on σu is cubic. We therefore expect that major
impacts on the overall estimate of εL will be associated with changes of σu rather than eventual
small deviations of L.

Figure 11 shows the estimates of εL for the three different experimental configurations we have
explored. The gray area in Fig. 11 depicts the range of expected values for ε in our experimental
conditions, considering the main uncertainty which lies in the value of experimental constants as
determined by earlier studies: cu = 0.25 ± 0.025 and cL = 0.2 ± 0.05, [17,19,38,43,44]. Further-
more, the experimental area is located at z = (4.6 ± 0.6)M distance from the grid, and ε is expected
to scale as z−2.

We find that, within experimental error bars, the estimates of εL are in good agreement, with
empirical laws for classical turbulence at large scales. In addition, no significant difference is
observed between He I and He II.

B. Estimate of energy transfer at inertial scales

Assuming classical homogeneous isotropic turbulent scalings, the energy transfer rate εI through
the inertial scales is classically estimated from the Eulerian second-order structure function
[SE

2 (r) = 11
3 C2(εI r)

2
3 ], which in a Lagrangian prospect can robustly be calculated from the particles’

relative dispersion statistics [45]. As described below, this method has the benefit to give an estimate
of the structure function based on position increments, without requiring the calculation of particles
velocities. This way we avoid having to differentiate trajectories individually, which as discussed
previously is very sensitive to experimental noise.
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FIG. 11. Dissipation rate εL for the three explored temperatures computed using the σu obtained from the
ballistic separation method. The gray area shows the range of expected values for ε according to empirical
laws.

1. Methodology: Estimate of Eulerian SE
2 from pair separation statistics

The second-order Eulerian structure function can be efficiently estimated from displacement
statistics by considering pair statistics. Particle pair dispersion was first introduced in 1926 by
Richardson [46] and has become since a classical problem of Lagrangian turbulence. We will only
be interested here in the short-time separation regime (also called the ballistic regime [45]), which is
the relevant regime to estimate SE

2 . Consider two particles with an initial separation �D0; the quadratic
relative separation between two particles can be written

R2
D0

(t ) = 〈| �D(t ) − �D0|2〉,

with D(t ) being the instantaneous separation between the particles, and where the average 〈·〉 is
taken over a set of particles with identical initial separation |D0|. By a simple Taylor expansion, one
can show that, in the limit t → 0 (ballistic regime), R2

D0
is kinematically related to SE

2 by

R2
D0

(t ) = SE
2 (D0)t2 + O(t3). (12)

By fitting a quadratic relation for the early-stage pair separation while sweeping the value of
initial separation D0, it is possible to infer SE

2 (r) across scales. Compared to a direct estimate from
the velocity increments, this method to estimate SE

2 has the great benefit to avoid computing the
position derivative, thus limiting the amplification of experimental noise.

Note that, in practice, we only consider the relative quadratic separation R2
D0,x(t ) in the x

direction, so that the above-mentioned procedure will give access to the one-component structure
function SE

2,x(r). In isotropic conditions, SE
2,x(r) is simply one third of the total structure function

SE
2 (r).

Finally, assuming classical Kolmogorov scalings for SE
2 , one can then estimate ε from R2

D0,x(t )
using the relation (valid only in the limit of small time lags)

R2
D0,x

(t )
11
9 C2D2/3

0

= ε
2/3
I t2 + O(t3). (13)
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2. Results

Figure 12 presents the time evolution of the normalized mean square separation (in the x
direction) R2

D0,x/( 11
9 C2D2/3

0 ) against t . Each curve is for a specific bin of initial separation D0. The
expected ballistic regime is clearly visible for time lags t ≈ τη. A deviation from the ballistic regime
can be seen at the shortest time lags. This is a signature of the noise in the position measurement:
in the limit of a purely random (Brownian-like noise) the particle separation rate is expected to be
purely diffusive [R2(t ) ∝ t], which is consistent with the less steep slope at short times.

By individually fitting each curve in Fig. 12 against t2, we can extract the value of the slope
SE

2,x/( 11
9 C2D2/3

0 ) for each initial separation D0. Assuming Kolmogorov scaling, we can then assess
εI using the relation εI = (SE

2,x/
11
9 C2)3/2D0 [see Eq. (13)]. The result of this fitting procedure is

shown in Fig. 13 as a function of the initial separation D0.
A first important and interesting finding is that Fig. 13 does not highlight any measurable

difference between the He I and He II situations. We see a pseudoplateau in the inertial range
(we recall that, in the present situation, the integral scale is estimated to be L � 14 mm), indicating
a reasonable Kolmogorov scaling. At small scales, one would expect a trivial dissipative scaling
S2(D0) ∝ D2

0, and hence the points in Fig. 13 increasing linearly with D0, which is clearly inconsis-
tent with the decrease observed at D0 � 5 mm. This is primarily due to the fact that small scales are
biased by the finite depth of field (δdof � 1.4 mm) of our measurement volume, since we only have
access to 2D measurements. Estimates of separation data are therefore accurate only in the limit
D0 > δdof. In addition, given the dilute nature of our flow there are not enough statistics at small D0.
For separations D0 of the order of and smaller than δdof, the possible overlap of the 2D projection
of particles within the depth of field allows for large relative velocities even in the limit of small
apparent separations.

We therefore estimate the dissipation rate εI by averaging [(SE
2,x/

11
9 C2)3/2D0] over the plateau

in the range 6 mm < D0 < 14 mm, corresponding to inertial scales not significantly affected by the
finite depth of field bias, delimited by the two vertical dashed lines in Fig 13.

The corresponding values of εI as a function of the operating temperature is shown in Fig. 14.
It is found that, within error bars, the inertial scale estimate εI is in good agreement both with
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FIG. 13. Slope SE
2,x of the quadratic relative separation R2

D0
versus t2, normalized and scaled to show the

inferred dissipation εI as a function of the initial separation D0. The horizontal dashed line shows the average
value of εI over relevant length scales (see text for details). He I (#1), He I (#2), He II (#3).
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FIG. 14. Dissipation rate εI for the three explored temperatures computed the function estimated from pair
separation. The gray area shows the range of expected values for ε according to empirical laws.
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FIG. 15. Dissipation rate εη vs temperature T at dissipative scales.

empirical laws and with the estimate εL discussed in the previous section. In particular, no difference
is observed between He II and He I.

C. Dissipative scales

Estimation of the dissipation at dissipative scales requires the analysis of small-scale information.
In the Eulerian context, this usually goes back to the definition of dissipation εη = 2ν2 (with 2

being the enstrophy), which in homogeneous isotropic turbulence can simply be rewritten in terms
of a single-component (say u) spatial derivative : εη = 15ν∂xu. This requires measurements with
high spatial resolution, allowing us to take well-resolved spatial derivatives of the velocity field. In
the context of Lagrangian measurements, as in the present study, the relevant small-scale quantity
is the Lagrangian acceleration (rather than the velocity gradient), which is related to the dissipation
rate via the Heisenberg-Yaglom relation:

σ 2
ax = a0ε

3/2
η ν−1/2. (14)

In this relation σax is the standard deviation of horizontal acceleration fluctuations and a0 is a
dimensionless coefficient that is empirically known in classical turbulence (from experimental and
numerical studies; see, for instance, the review article of Toschi and Bodenschatz [47]) and which is
known to depend on the Reynolds number following an empirical law a0 � 0.85R−.25

λ , see Ref. [48].
Unfortunately, considering the noise issues previously discussed regarding the direct estimates

of velocity statistics, it is unlikely that our measurements are sufficiently well resolved at small
temporal scales to actually resolve Lagrangian derivatives required to estimate acceleration, as
taking second-order derivatives is extremely sensitive to experimental noise.

Still we attempted to perform this estimate. The acceleration is calculated by convolution of
particles trajectories with a second-derivative Gaussian kernel, as classically done in Lagrangian
studies to estimate filtered derivatives [33], with the same filtering parameters (in particular the same
filter width as for the direct velocity estimates previously discussed in Sec. V). From these data we
calculate the acceleration variance σax , which is then used to estimate the small-scale dissipation
rate from the Heisenberg-Yaglom relation. The corresponding results are plotted as a function of the
operating temperature in Fig. 15.
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As one can see in Fig. 15, our experimental data do not match the expected values from the
literature, neither in He I nor in He II. Consequently, this result cannot be attributed to a particular
behavior of II but rather to an insufficient temporal resolution to accurately estimate the acceleration
at dissipative scales. Efforts have been put at present on the experimental side in order to improve
this and perform measurements with sufficient resolution at inertial and dissipative scales.

VII. CONCLUSION

A oscillating grid experiment has been developed in order to study homogeneous and isotropic
turbulence in normal and superfluid helium. Lagrangian trajectories were obtained using 2D particle
tracking of hollow glass spheres of diameter 85 μm. Special emphasis was put on the validation of
the particle seeding procedure, through the use of Voronoï tessellation, and additionally we have
compared thoroughly every observable with standard data obtained at room temperature to conclude
that our setup produces the expected canonical flow.

The Lagrangian tracks allowed us to build a complete turbulent energy budget by estimating
the energy-injection rate at an integral scale, the rate through inertial scales, and then the energy
dissipation rate at dissipative scale. The most important result is that, independent of the actual value
of the terms, no difference could be found between He I and He II within experimental uncertainty.
The energy injection rate εL = σ 3

u /L has been obtained by two methods, which allowed us to discuss
the contribution of experimental noise in the estimation of the standard deviation of the velocity. The
results compare very well with oscillating grid experiments. The rate εI was obtained by estimating
the Eulerian function from particle pair separation. As expected in the framework of HIT, εI were
found to match the energy-injection rate εL. Finally, we used the Heisenberg-Yaglom relation to
estimate the energy-dissipation rate εη at small scale. We found a large discrepancy with the other
two terms of the energy budget but, again, we found consistent values in He I and He II, which
proved to be overestimated in both cases. The larger value was attributed to some limitations in our
2D measurement setup, with a finite depth of field.

This motivates us to focus future experimental projects towards small scales, with smaller
particles or larger dissipative scales, low noise, and 3D measurements while continuing our strategy
of direct comparison between helium I and II.
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