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Kinetic energy transfer in compressible homogeneous anisotropic turbulence is studied
by numerical simulations of forced anisotropic turbulence (FAT) in a periodic box and
homogeneous shear turbulence (HST) at different turbulent Mach numbers Mt and different
Taylor Reynolds numbers Reλ. In both FAT and HST, the subgrid-scale (SGS) kinetic
energy flux is dominated by the streamwise component at large scales, and tends to be
isotropic at small scales. As the turbulent Mach number increases, the compressibility
slightly enhances the anisotropy of SGS kinetic energy flux and viscous dissipation. The
redistribution of kinetic energy from the streamwise direction to two transverse directions
by pressure-strain mainly occurs at large length scales. The kinetic energy transferred
from the streamwise component through the pressure-strain is shared unequally by the
other two components in HST, which is different from the situation of FAT. In FAT, as
the Taylor Reynolds number increases, the total SGS kinetic energy flux and its positive
and negative components tend to a Reynolds number asymptotic state at small scales
for Reλ � 105. In HST, the positive vertical SGS flux of kinetic energy is significantly
enhanced by compression motions, causing the vertical SGS flux component to be larger
than the streamwise component at small scales. The interscale energy transfer of the
solenoidal mode and dilatational mode is studied by employing Helmholtz decomposition.
The dilatational kinetic energy of FAT is nearly isotropic, but that of HST is significantly
anisotropic. In HST, the dilatational mode obtains energy not only from the solenoidal
mode through nonlinear advection, but also from mean shear by the dilatational production.
As the turbulent Mach number increases, the nonlinear advection of HST increases first
and then decreases. The dilatational production of HST increases monotonically with the
turbulent Mach number, providing the main source of kinetic energy to the dilatational
mode at high turbulent Mach number Mt � 0.46.

DOI: 10.1103/PhysRevFluids.6.064601

I. INTRODUCTION

The most important feature of turbulent flow is the interscale energy transfer from the large
injecting scales down to the dissipative small scales [1,2]. The energy transfer mechanism remains
one of the most challenging problems in turbulence theory due to its complex nonlinear and
multiscale nature. The interscale energy transfer is also of practical importance for the large-eddy
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simulation (LES), which solves the large-scale structures of turbulence and models the effect of
small-scale flow structures on the large-scale flow dynamics by the subgrid-scale stress [3]. In
compressible turbulence, the interscale transfer of kinetic energy is more complex due to the strong
couplings between the velocity field and thermodynamic fields, as compared to the situation of
incompressible turbulence [4–10].

Most investigations of interscale energy transfer in compressible turbulence are focused on
homogeneous isotropic turbulence (HIT) [9,11–16]. Kida and Orszag [11] investigated the statistical
properties of decaying compressible isotropic turbulence. They reported that the energy exchange
between the kinetic energy and internal energy through the pressure-dilatation interaction can be
negligible for the case in which the compressive ratios are small. Aluie [12,14] proved that interscale
transfer of kinetic energy in compressible turbulence is dominated by local interactions, under the
assumption that the pressure-dilatation cospectrum decays at a sufficiently rapid rate. The result
was further verified by numerical simulations of both forced and decaying compressible isotropic
turbulence [13]. Wang et al. [15] investigated kinetic energy transfer in numerical simulation of
compressible isotropic turbulence by applying large-scale forces to both solenoidal and dilatational
components of the velocity field. They reported that the subgrid-scale (SGS) kinetic energy flux of
the dilatational mode is significantly larger than that of the solenoidal mode in the inertial range,
due to the effect of sheetlike shock waves of large scale generated in the simulated flow. Wang
et al. [9] studied the kinetic energy transfer in compressible isotropic turbulence by numerical
simulations with solenoidal forcing. They showed that with the increase of the turbulent Mach
number, compression motions enhance the positive SGS flux of kinetic energy, and expansion
motions enhance the negative SGS flux of kinetic energy. They found that the compressible (or
dilatational) mode persistently absorbs kinetic energy from the solenoidal mode through nonlinear
advection. Moreover, the kinetic energy of the compressible mode cascades from large scales to
small scales through the compressible SGS flux, and is dissipated by viscosity at small scales.

However, in the vast majority of real-world scenarios, the turbulence is significantly anisotropic
due to the anisotropic forcing, including the rotating turbulence [17], magnetohydrodynamical
turbulence with a background magnetic field [18–20], stratified turbulence [21], and various types
of shear turbulent flows [22–25]. In this study we will focus on compressible homogeneous shear
turbulence (HST) and forced anisotropic turbulence (FAT) in a periodic box which are two canonical
examples of flows exhibiting the anisotropic features of interscale energy transfer. The FAT has
no correlation among the velocity components in different directions, making it the simplest
anisotropic flow configuration. The previous studies of FAT have been mainly focused on the local
isotropy hypothesis [26], the properties of nonlinear interscale couplings in the Fourier-spectral view
[27–29], and the anisotropic scaling laws [30,31]. It is crucial to study the anisotropic properties
of interscale energy transfer in homogeneous turbulence. The HST can be considered as a bridge
between the strongly idealized homogeneous isotropic turbulence and more realistic turbulent shear
flows, sharing the natural energy-generation mechanism of shear flows with the simplicity of
homogeneity [32–34]. Early papers on interscale energy transfer of HST usually employ bandpass
filtering techniques in the spectral space to separate the length scales in the velocity field. Aluie
and Eyink [35] pointed out that individual Fourier modes have no physical significance. Summation
over logarithmic wave number bands is necessary to a physical description of a turbulent cascade
which is resolved both in scale and in space. Recently, Dong et al. [34] employed a spatial filtering
approach to study the three-dimensional flow structure associated with regions of intense energy
fluxes in incompressible homogeneous shear turbulence. Cardesa and Lozano-Durán [36] studied
the properties of SGS energy flux with alternative formulations in the filtered kinetic energy equation
in three different incompressible flows, namely, statistically steady homogeneous shear turbulence,
isotropic turbulence, and plane turbulent channel flow.

The purpose of this paper is to explore the interscale kinetic energy transfer in two com-
pressible homogeneous anisotropic turbulences, including statistically steady homogeneous shear
turbulence and forced anisotropic turbulence in a periodic box. Our analysis is mainly focused
on the anisotropic nature and the effect of compressibility for the kinetic energy transfer process.
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The following section describes the governing equations and computational method. The one-point
statistics of the simulated flow are provided in Sec. III. The dynamical equations for the filtered
kinetic energy and its solenoidal and dilatational components are derived in Sec. IV. Section V is
devoted to the numerical results on interscale transfer of kinetic energy, with particular care on the
anisotropy. Finally, conclusions are drawn in Sec. VI.

II. GOVERNING EQUATIONS AND NUMERICAL METHOD

For compressible turbulence, we introduce a set of reference variables to normalize the hy-
drodynamic and thermodynamic variables, including the reference length Lr , velocity Ur , density
ρr , pressure pr = ρrU 2

r , temperature Tr , energy per unit volume ρrU 2
r , viscosity μr , and thermal

conductivity κr [4,7]. There are three reference governing parameters: the reference Reynolds
number Re = ρrUrLr/μr , the reference Mach number M = Ur/cr , and the reference Prandtl number
Pr = μrCp/κr , which is assumed to be equal to 0.7. In addition, the speed of sound is defined by
cr = √

γ RT , where R is the specific gas constant. γ = Cp/Cv is the ratio of specific heat at constant
pressure Cp to that at constant volume Cv , which is assumed to be equal to 1.4.

The following dimensionless Navier-Stokes equations in conservation form are solved numeri-
cally for forced anisotropic turbulence,

∂ρ

∂t
+ ∂ (ρuk )

∂xk
= 0, (1)

∂ (ρui )

∂t
+ ∂ (ρukui )

∂xk
= − ∂ p

∂xi
+ 1

Re

∂σik

∂xk
+ δ1iF, (2)

∂E

∂t
+ ∂[(E + p)u j]

∂x j
= 1

α

∂

∂xk

(
κ

∂T

∂xk

)
+ 1

Re

∂ (u jσ jk )

∂xk
− 
 + δ1 jFu j, (3)

p = ρT/(γ M2), (4)

where ui are fluctuation velocity components, and the indices i = 1, 2, 3 denote the three spatial
directions represented by x1, x2, and x3, which are the streamwise, vertical, and spanwise directions,
respectively. ρ is instantaneous density, p is instantaneous pressure, and T is instantaneous tem-
perature. Here, F is a streamwise large-scale forcing applying to the solenoidal component of the
velocity field, and 
 is a large-scale cooling function per unit volume [37]. In general situations,
the energy is injected at all scales, such as in buoyancy driven, chemically reacting, and shear
turbulence. The artificial large-scale forcing applied here only affect the energy transfer near the
forcing scales. This localizing kinetic energy injection to the largest scales is important to enable
the study of an intermediate scale range over which inertial processes dominate [14].

The viscous stress σik is defined as

σik = 2μSik − 2μθ

3
δik, (5)

in which Sik = (∂ui/∂xk + ∂uk/∂xi )/2 is the strain rate tensor, and θ = ∂uk/∂xk is the velocity
divergence. The total energy per unit volume E is defined as

E = p

γ − 1
+ 1

2
ρuiui. (6)

The temperature-dependent viscosity coefficient and thermal conductivity coefficient are specified
by Sutherland’s law [38].

In HST, the flow is sustained by a mean velocity field with the form of U = (Sx2, 0, 0),
where S = ∂U/∂x2 is a uniform shear rate. After the Reynolds decomposition, the dimensionless
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TABLE I. Simulation parameters and resulting flow statistics.

Flow type Reλ Mt N η/x λ/η u′ θ ′ ω′ S3 ε −〈pθ〉
FAT1 64 0.91 64 0.65 16.6 2.05 0.97 4.80 −0.43 0.50 4.10×10−3

FAT2 90 0.99 128 0.76 18.4 2.22 1.97 6.87 −0.72 0.53 9.71×10−3

FAT3 105 1.01 256 1.03 19.2 2.25 3.19 9.36 −1.14 0.64 3.49×10−2

FAT4 156 0.40 512 1.01 24.9 2.27 0.46 16.71 −0.51 0.71 3.13×10−3

FAT5 156 0.60 512 0.99 24.9 2.30 2.04 16.86 −0.51 0.74 1.44×10−3

FAT6 155 0.81 512 1.01 24.0 2.30 3.57 16.48 −0.69 0.74 7.99×10−4

FAT7 163 1.00 512 1.05 23.8 2.26 4.79 14.63 −1.25 0.63 3.87×10−2

FAT8 267 1.00 1024 1.04 30.8 2.23 6.67 22.76 −1.29 0.58 1.94×10−2

HST1 145 0.17 512 1.02 21.8 1.48 0.78 12.15 −0.51 0.28 1.57×10−3

HST2 148 0.35 512 0.89 23.8 1.74 3.00 14.25 −0.94 0.41 2.33×10−2

HST3 156 0.46 512 0.91 23.6 1.71 3.30 13.61 −1.05 0.39 2.97×10−2

governing equations for the density, fluctuating velocity, and total energy in a fixed frame of
reference are [37,39]

∂ρ

∂t
+ ∂ (ρuk )

∂xk
+ Sx2

∂ρ

∂x1
= 0, (7)

∂ (ρui )

∂t
+ ∂ (ρukui )

∂xk
+ Sx2

∂ (ρui )

∂x1
+ Sρu2δi1 = − ∂ p

∂xi
+ 1

Re

∂σik

∂xk
, (8)

∂E

∂t
+ ∂[(E + p)u j]

∂x j
+ Sx2

∂E

∂x1
+ ρSu1u2 = 1

α

∂

∂xk

(
κ

∂T

∂xk

)
+ 1

Re

∂ (u jσ jk )

∂xk
+ Sσ12

Re
− 
. (9)

Several new terms appear in the governing equations and the viscous stress σik becomes

σik = 2μSik − 2μθ

3
δik + μS(δi1δk2 + δi2δk1). (10)

The numerical simulation has been performed using an in-house simulation code employing a
hybrid numerical scheme proposed by Wang et al. [40]. The hybrid scheme combines a seventh-
order weighted essentially non-oscillatory (WENO) scheme [41] for the shocklet regions and an
eighth-order compact central finite difference scheme [42] for smooth regions. The shock front is
identified by spatial points with highly negative local velocity divergence as defined by θ < −Rθ θ

′,
with Rθ set to 3.0, where θ ′ is the rms value of velocity divergence. The stability and accuracy
of the scheme have been demonstrated in previous studies of compressible turbulence [7,9,40,43].
Combined with Rogallo’s method [44], the hybrid scheme can be used to simulate the compressible
HST in a triply periodic box domain, as shown by Chen et al. [37,45] in recent studies of statistically
stationary compressible HST.

The numerical simulations of compressible FAT are performed in a periodic cubic box of (2π )3

with a uniform grid. The governing equations of compressible HST are solved in a rectangular
domain with side lengths Lx = 4π, Ly = Lz = 2π , and the number of grid points (N) in the x
direction is doubled, so that the resolution is essentially the same as FAT. The influence of the
geometry of the computational domain for HST was investigated by Sekimoto et al. [33], suggesting
that the aspect ratios of streamwise and vertical dimensions to the spanwise dimension should be
sufficiently large (Lx � 2Lz, Ly � Lz ) to ensure that the flow statistics become independent of the
computational domain. The simulation parameters are summarized in Table I. More details about
the numerical algorithm can be found in the papers of Wang et al. [40,46] and Chen et al. [37].
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III. GENERAL STATISTICS AND COMPONENT ANISOTROPY

A summary of the relevant one-point statistics are given in Table I for both FAT and HST. The
Taylor microscale Reynolds number, Reλ, and the turbulent Mach number, Mt , are calculated as

Reλ = Re
〈ρ〉u′λ√

3〈μ〉 , Mt = M
u′

〈√T 〉 , (11)

where 〈〉 represents the spatial average. Here, the root mean square (rms) value of the velocity is

given by u′ =
√

〈u2
1 + u2

2 + u2
3〉 and the Taylor microscale is defined by

λ =
√ 〈

u2
1 + u2

2 + u2
3

〉
〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉 . (12)

Different numerical simulations of FAT are performed in this study to investigate the effect of the
Taylor Reynolds number and turbulent Mach number, respectively. Five Taylor Reynolds numbers
ranging from 64 to 267 are considered at a high turbulent Mach number Mt ≈ 1.0. Four different
turbulent Mach numbers of 0.4, 0.6, 0.8, and 1.0 are considered at a Taylor Reynolds number Reλ ≈
160, corresponding to the different levels of compressibility. For compressible HST, three cases are
carried out at turbulent Mach numbers of 0.17, 0.35, and 0.46 for a Taylor Reynolds number close
to Reλ ≈ 150.

The Kolmogorov length scale is defined by η = [〈μ/(Reρ)〉3/〈ε〉]1/4, where the dissipation rate
of kinetic energy per unit mass ε is defined as ε = (σi j/Re/ρ)(∂ui/∂x j ). The parameter η/x
represents the grid resolution, where x denotes the grid spacing in each direction. The resolution
parameter η/x is around 1.0 in our simulations which is enough to ensure that the overall statistics
are well converged [37,46]. The velocity derivative skewness S3 is defined by

S3 = [〈(∂u1/∂x1)3 + (∂u2/∂x2)3 + (∂u3/∂x3)3〉]/3

{〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉/3}3/2
. (13)

In the two homogeneous anisotropic turbulences, the values of S3 at different compressibility levels
(different Mt ) are similar to the typical values of −1.5 to −0.4 in compressible isotropic turbulence
[46]. The rms value of velocity divergence and vorticity are computed as θ ′ =

√
〈θ2〉 and ω′ =√

〈ω2
1 + ω2

2 + ω2
3〉, respectively. Due to the significant effect of compressibility, the magnitudes of

S3 and θ ′ increase with Taylor Reynolds number Reλ and turbulent Mach number Mt . It is found
that the rms value of vorticity ω′ is sensitive to the change of Taylor Reynolds number, while it is
insensitive to turbulent Mach number. Similarly to compressible isotropic turbulence, the conversion
rate of kinetic energy into internal energy by the pressure dilatation −〈pθ〉 is much smaller than the
viscous dissipation ε, which can be attributed to the cancellation between the positive values of pθ
in expansion regions and the negative values of pθ in compression regions [7,9,47].

The component anisotropy for the velocity, velocity derivatives, and vorticity is presented in
Table II. As expected, the rms value of the streamwise velocity fluctuation u′

1 is obviously larger

than u′
2 and u′

3, since the energy is all fed from streamwise, where u′
i =

√
〈u2

i 〉. In FAT, u′
2 is almost

equal to u′
3. In HST, u′

2 is slightly smaller than u′
3, which is in agreement with previous observations

of HST [48] and also resembles that in wall shear turbulence [49].

The rms values of Sii = ∂ui/∂xi (avoiding summation) and ωi are calculated by S′
ii =

√
〈S2

ii〉 and

ω′
i =

√
〈ω2

i 〉, respectively. The anisotropy level of S′
ii and ω′

i is lower than that of velocity, since the
velocity gradient is dominated by the small-scale motions of turbulence which has a tendency to
be isotropic at very high Reynolds number according to Kolmogorov theory [3]. S′

11 is a little less
than S′

22 and S′
33. ω′

1 is smaller than ω′
2 and ω′

3 at low Taylor Reynolds number, and becomes larger
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TABLE II. Component anisotropy statistics in velocity, velocity derivative, and vorticity.

Velocity Velocity derivative Vorticity

Flow type u′
1/u′ u′

2/u′ u′
3/u′ S′

11 S′
22 S′

33 ω′
1 ω′

2 ω′
3

FAT1 0.90 0.31 0.31 1.07 1.17 1.16 2.48 2.90 2.89
FAT2 0.87 0.35 0.35 1.76 1.90 1.91 3.94 3.98 3.98
FAT3 0.85 0.38 0.38 2.60 2.74 2.75 5.45 5.39 5.38
FAT4 0.82 0.40 0.40 4.15 4.33 4.33 9.95 9.51 9.47
FAT5 0.81 0.42 0.42 4.32 4.45 4.45 9.97 9.61 9.62
FAT6 0.81 0.41 0.41 4.40 4.53 4.53 9.72 9.39 9.41
FAT7 0.85 0.37 0.37 4.15 4.31 4.28 8.61 8.34 8.38
FAT8 0.85 0.38 0.37 6.42 6.59 6.57 13.34 13.02 13.06

HST1 0.70 0.49 0.52 3.04 3.19 3.18 7.25 6.90 6.89
HST2 0.70 0.49 0.51 3.69 4.14 3.87 8.46 8.11 8.11
HST3 0.71 0.49 0.50 3.57 4.03 3.75 8.08 7.75 7.72

at high Taylor Reynolds numbers. The magnitudes of both S′
ii and ω′

i increase significantly as the
Taylor Reynolds number increases, and they are insensitive to turbulent Mach number.

IV. DYNAMICAL EQUATIONS FOR FILTERED KINETIC ENERGY
AND HELMHOLTZ DECOMPOSITION

A filtering technique can be applied to perform a multiscale analysis of compressible turbulence.
For a given field f , a filtered field f is defined by

f (x) ≡
∫

d3rGl (r) f (x + r), (14)

where Gl (r) ≡ l−3Gl (r/l ) is the filter function, and Gl (r) is a normalized window function. Here,
l is the filter width associated with the wavelength of the smallest scale retained by the filtering
operation. The Favre filtered field is defined as f̃ ≡ ρ f /ρ. A top-hat filter is used in our numerical
analysis, which is calculated in one dimension by [50]

f i = 1

4n

(
fi−n + 2

i+n−1∑
j=i−n+1

f j + fi+n

)
, (15)

where the filter width is l = 2nx.
The equations for the average of the filtered kinetic energy Ẽk = 〈ρũ2

i /2〉 in FAT and HST read
as [9,16]

∂〈Ẽk〉
∂t

= −〈�l〉 − 〈�l〉 − 〈Dl〉 + 〈Pl〉, (16)

∂〈Ẽk〉
∂t

= −〈�l〉 − 〈�l〉 − 〈
�m

l

〉 − 〈Dl〉 + 〈Pl〉. (17)

Here, �l is the large-scale pressure-strain term, �l is the SGS kinetic energy flux, Dl is the viscous
dissipation term, and Pl is the energy production term. There is an extra term �m

l in Eq. (17) for
HST, which represents the kinetic energy transfer due to interaction between the filtered and mean
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flow. These terms are defined as

�l ≡ −p̃Sii, (18)

�l ≡ −ρτ̃i j
∂ ũi

∂x j
, (19)

Dl ≡ σ i j

Re

∂ ũi

∂x j
, (20)

�m
l ≡ −ρ(ũiU − ũiŨ )

∂ ũi

∂x1
, (21)

and

Pl ≡ ũiδ1iF (22)

or

Pl ≡ −Sρδi1ũiũ2 (23)

for FAT and HST, respectively. Here, the subgrid-scale (SGS) stress is ρτ̃i j = ρ(ũiu j − ũiũ j ). It
is straightforward to obtain the equations for three components of kinetic energy by avoiding
summation convention over repeated index i in Eqs. (16) and (17). This yields

∂〈Ẽk,i〉
∂t

= −〈�l,i〉 − 〈�l,i〉 − 〈Dl,i〉 + 〈Pl,i〉, (24)

∂〈Ẽk,i〉
∂t

= −〈�l,i〉 − 〈�l,i〉 − 〈
�m

l,i

〉 − 〈Dl,i〉 + 〈Pl,i〉, (25)

where i = 1, 2, 3. The Reynolds shear stress in HST is nonzero. The equation for the average of
large-scale Reynolds shear stress reads

∂

∂t
〈ρũ1ũ2〉 = −〈�l,12〉 − 〈�l,12〉 − 〈

�m
l,12

〉 − 〈Dl,12〉 + 〈Pl,12〉, (26)

where Pl,12 = −S〈ρũ2ũ2〉 is the production term, �l,12 = 2〈p̃S12〉 is the large-scale pressure-strain
term, �l,12 and �m

l,12 is the kinetic energy flux, and Dl,12 is the viscous dissipation term.
A filtered density-weighted variable can be introduced as w̃ = √

ρũ. Helmholtz decomposition
of the w̃ yields w̃ = w̃s + w̃d , where w̃s and w̃d are the solenoidal and dilatational components,
respectively. Take HST, for example; the two components of the filtered density-weighted variable
satisfy the following relations: ∇ · w̃s = 0 and ∇×w̃d = 0. The filtered equation for the average of
the solenoidal (or dilatational) component of the large-scale kinetic energy is [9,16]

∂

∂t

〈
1

2

(
w̃X

i

)2
〉

= 〈
AX

l

〉 + 〈
PX

l

〉 − 〈
�X

l

〉 − 〈
�X

l

〉 − 〈
�m,X

l

〉 − 〈
DX

l

〉
. (27)

Here, X = s, d . AX
l is the nonlinear advection term. �X

l is the large-scale pressure-dilatation term.
�X

l is the SGS kinetic energy flux. DX
l is the viscous dissipation term. These terms are defined as

AX
l ≡ −w̃X

i

(
ũ j

∂w̃i

∂x j
+ w̃i

2

∂ ũ j

∂x j
+ Ũ

∂w̃i

∂x1

)
, (28)

PX
l ≡ −w̃X

i Sw̃2δi1, (29)

�X
l ≡ −p

∂

∂xi

(
w̃X

i√
ρ

)
, (30)

�X
l ≡ −ρ(ũiu j − ũiũ j )

∂

∂x j

(
w̃X

i√
ρ

)
, (31)
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FIG. 1. Average of overall kinetic energy transfer: (a) at Taylor Reynolds numbers Reλ = 64, 90, 105, 163,
267 for Mt ≈ 1.0; (b) at turbulent Mach numbers Mt = 0.4, 0.6, 0.8, 1.0 for Reλ ≈ 160.

�m,X
l ≡ −ρ(ũiU − ũiŨ )

∂

∂x1

(
w̃X

i√
ρ

)
, (32)

DX
l ≡ σ i j

Re

∂

∂x j

(
w̃X

i√
ρ

)
. (33)

It is straightforward to derive the following relations: 〈As
l + Ad

l 〉 = 0, �s
l + �d

l = �l , �s
l +

�d
l = �l , and Ds

l + Dd
l = Dl .

V. NUMERICAL RESULTS

A. Forced anisotropic turbulence in a periodic box

1. Effect of large-scale forcing

In Fig. 1(a), we plot the average of overall kinetic energy transfer at Taylor Reynolds numbers
Reλ = 64, 90, 105, 163, 267 for Mt ≈ 1.0. The energy transfer terms are normalized by the total
dissipation of kinetic energy εT = ε − 〈pθ〉. In general, kinetic energy is injected at large scales in
the streamwise direction, redistributed to vertical and spanwise directions, transferred gradually to
smaller scales, and dissipated finally by viscosity at small scales which are close to the Kolmogorov
length scale. Since large-scale external forcing is applied only in the streamwise direction, the
overall kinetic energy transfers in the vertical and spanwise directions are zero, and those for the
total kinetic energy and streamwise component coincide with each other. It is shown that the effect
of forcing is focused on the relatively large scales. As the Taylor Reynolds number increases, there is
an increase of the forcing scale, giving rise to a wider scale range where the normalized total kinetic
energy transfer is nearly equal to 1. The average of overall kinetic energy transfer at turbulent Mach
numbers Mt = 0.4, 0.6, 0.8, 1.0 for Reλ ≈ 160 is shown in Fig. 1(b). The overall kinetic energy
transfer decreases rapidly as the filter width l/η increases from 100, suggesting that the effect of
large-scale external forcing is negligible at scales l/η � 100 for Reλ ≈ 160. Similarly to the results
in compressible isotropic turbulence by Wang et al. [9], the averages of the energy transfer terms in
FAT remain insensitive to turbulent Mach number; thus they are presented only for the case FAT7
in the rest of this section for brevity.

2. Viscous dissipation

The average of viscous dissipation at turbulent Mach number Mt = 1.0 and at Taylor Reynolds
number Reλ = 163 is shown in Fig. 2(a). The viscous dissipation of all three components is of
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FIG. 2. (a) Average of viscous dissipation terms 〈Dl〉/εT and 〈Dl,i〉/εT at Mt = 1.0 and Reλ = 163.
(b) Ratio of transverse to streamwise components of viscous dissipation 〈Dl,2〉/〈Dl,1〉 at Mt = 0.4, 0.6, 0.8,
1.0 and Reλ ≈ 160.

great importance, 〈Dl,i〉 ≈ 0.33〈Dl〉, at small scales l/η � 10, and decays rapidly at different rates
as the filter width increases from 10. It appears that the dissipation processes are anisotropic at
larger scales. As seen in Fig. 2(b), with the decrease of the filter scale, the ratio of transverse to
streamwise components of viscous dissipation increases from zero at larger scales to more than
0.8 at small scales. The anisotropy at small scales is primarily due to incomplete recovery of local
isotropy at finite Taylor Reynolds number. As turbulent Mach number increases, the compressibility
slightly increases the anisotropy of viscous dissipation.

The averages of viscous dissipation at different Taylor Reynolds numbers are shown in
Figs. 3(a)–3(c) for Mt ≈ 1.0. As the Taylor Reynolds number increases, the total viscous dissipation
〈Dl〉 and the streamwise viscous dissipation component approach a Reynolds number asymptotic
state where 〈Dl〉 exhibits a scaling behavior of (l/η)−1.5 and 〈Dl,1〉 exhibits a scaling behavior of
(l/η)−1.2 at large scales l/η � 20. The Reynolds number dependency of the transverse viscous
dissipation component is more significant in our numerical simulations. At high Taylor Reynolds
numbers, the three viscous dissipation components are approximate to εT /3 due to the local
isotropy of the viscous dissipation process at small filter width. The anisotropy at small scales
decreases rapidly as the Taylor Reynolds number increases, which is also shown in Fig. 3(d) for
Mt ≈ 1.0.

3. Large-scale pressure-strain term

The average of large-scale pressure-strain at turbulent Mach number Mt = 1.0 and at Taylor
Reynolds number Reλ = 163 is shown in Fig. 4(a). The total pressure-strain term 〈�l〉 = 〈pθ〉
accounts for the net conversion of kinetic energy into internal energy by the pressure dilatation,
which is negligibly small due to the cancellation between compression and expansion works. The
streamwise component 〈�l,1〉 is positive, while the two transverse components 〈�l,2〉 and 〈�l,3〉 are
negative almost everywhere. Considering that no production occurs in the two transverse directions,
the pressure-strain components redistribute energy from the streamwise direction to two transverse
directions. As seen in Fig. 4(b), the ratio of transverse to streamwise components of pressure-strain
approximately equals 0.5 at different length scales, indicating that energy loss from the streamwise
component is shared equally by the two transverse components. This redistribution process mainly
occurs at large scales l/η � 10.

In Figs. 4(c) and 4(d), we plot the root mean square (rms) values of pressure-strain, defined
as �′

l =
√

〈(�l − 〈�l〉)2〉, at turbulent Mach numbers Mt = 0.4, 0.6, 0.8, 1.0. �′
l/εT and �′

l,i/εT
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FIG. 3. Average of viscous dissipation and ratio of transverse to streamwise components of viscous dissipa-
tion at different Taylor Reynolds numbers Reλ = 64, 90, 105, 163, 267 for Mt ≈ 1.0: (a) 〈Dl〉/εT ; (b) 〈Dl,1〉/εT ;
(c) 〈Dl,2〉/εT ; (d) 〈Dl,2〉/〈Dl,1〉.

become larger as the filter width l/η decreases. It is interesting to observe that �′
l/εT is nearly

constant at the smallest scale for moderate and high turbulent Mach numbers Mt � 0.6. Since 〈�l〉
is negligibly small, �′

l can be well approximated by
√

〈(�l )2〉 ≈ pθ ′
l . The ideal gas equation of state

[Eq. (4)] indicates that the spatial average pressure is nearly proportional to M−2
t . Consequently, the

constant behavior of �′
l/εT at the smallest scale indicates that θ ′

l is almost proportional to M2
t at

the smallest scale when Mt � 0.6. The rms values of all three pressure-strain components �′
l,i ≈

p(∂ ũi/∂xi )′ are consistent with each other and are nearly proportional to M−2
t , since (∂ ũi/∂xi )′ is

nearly independent of Mt , as presented in Table II.
The averages of large-scale pressure-strain at different Taylor Reynolds numbers are shown in

Fig. 5(a) for Mt ≈ 1.0. As the Taylor Reynolds number increases, the loss of streamwise energy
by pressure-strain approaches 〈�l,1〉 = 2/3εT , and the gain of transverse components approaches
1/3εT . This observation is consistent with previous theoretical analysis of the pressure-strain in
incompressible homogeneous shear turbulence [48]. In Fig. 5(b), the filter width l is normalized
by the maximum turbulent length scale lmax = N/2 that is determined by the domain size. It is
interesting to find that the average of large-scale pressure-strain is nearly independent of Reλ at
large scales, indicating that the energy redistribution process is self-similar. The equality of energy
redistribution into transverse components by the pressure-strain process holds at different Taylor
Reynolds numbers, as shown in Fig. 5(c). �′

l and �′
l,i are close to each other and increase as the

Taylor Reynolds number increases, which is consistent with the fact that θ ′
l and (∂ ũi/∂xi )′l (no
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FIG. 4. (a) Average of pressure-strain terms at Reλ = 163 and Mt = 1.0. (b) Ratio of transverse to stream-
wise components of pressure-strain terms at Mt = 0.4, 0.6, 0.8, 1.0 for Reλ ≈ 160. The rms values of (c) �l

and (d) �l,i at Mt = 0.4, 0.6, 0.8, 1.0 for Reλ ≈ 160.

summation on i, i = 1, 2, 3) are similar to each other and both enhanced by Reλ, as presented in
Table II (�′

l,2 is omitted for brevity).

4. SGS kinetic energy flux

The average of the SGS flux of kinetic energy at turbulent Mach number Mt = 1.0 and at Taylor
Reynolds number Reλ = 163 is shown in Fig. 6(a). The SGS kinetic energy flux 〈�l/εT 〉 is close to
1.0 at scales 30 � /η � 100 and dominated by the streamwise component 〈�l,1/εT 〉 at large scales.
The peak of the streamwise SGS flux component occurs at scale l/η ≈ 100, while the peaks of the
two transverse SGS flux components occur at smaller scale l/η ≈ 20 with much lower magnitude.
The anisotropy of the SGS flux decreases with the decreases of filter width, as presented in Fig. 6(b);
meanwhile, it is strengthened by compressibility as turbulent Mach number increases. The ratio of
transverse to streamwise components of SGS flux is less than 0.8 at small scales, indicating that the
anisotropy of SGS flux is stronger than that of viscous dissipation. The rms value of SGS flux is
defined as �′

l =
√

〈(�l − 〈�l〉)2〉. At relatively small scales l/η < 10, �′
l and �′

l,i become larger
as turbulent Mach number increases, as shown in Fig. 7, which indicates that the compressibility
effect will enhance the local transfer of kinetic energy by the SGS stress. It is worth noting that
at larger scales l/η > 10, �′

l and �′
l,1 slightly increase with turbulent Mach number, while �′

l,2
decreases slightly with turbulent Mach number.
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FIG. 5. (a) Average of pressure-strain terms, (b) average of pressure-strain terms versus l/lmax, (c) ratio
of transverse to streamwise components of pressure-strain, and (d) rms values of pressure-strain at different
Taylor Reynolds numbers Reλ = 64, 90, 105, 163, 267 for Mt ≈ 1.0.

The averages of SGS kinetic energy flux at different Taylor Reynolds numbers are shown in
Figs. 8(a)–8(c) for Mt ≈ 1.0. The corresponding scales of the peak values of total SGS flux 〈�l〉/εT

and SGS flux components 〈�l,i〉/εT become larger as the Taylor Reynolds number increases, and
the peak of 〈�l〉/εT is always located between peaks of 〈�l,1〉/εT and 〈�l,2〉/εT . The peak values
of 〈�l〉/εT and 〈�l,2〉/εT increase monotonically with the Taylor Reynolds number, while the
peak value of 〈�l,1〉/εT increases for Reλ < 160 and then slightly decreases at Reλ = 267. It is
worth noting that 〈�l〉/εT exhibits Reynolds number similarity at small scale l/η < 30 for high
Taylor Reynolds numbers. This Reynolds number similarity indicates that the universal statistical
property of the kinetic energy transfer at small scales starts to appear for Reλ approximately greater
than 150, and the scale range for the universal statistics increases gradually with Taylor Reynolds
number. The anisotropy of SGS flux decreases as the Taylor Reynolds number increases, as shown
in Fig. 8(d). We speculate that the peak values of all three normalized SGS flux components
may gradually approach 1/3 as the Taylor Reynolds number increases, which is to say that the
SGS flux becomes more isotropic in the inertial range with the increase of Taylor Reynolds
number.

The probability density function (PDF) of the normalized SGS kinetic energy flux at two Taylor
Reynolds numbers Reλ = 105 and 267 for a high turbulent Mach number Mt = 1.0 is shown in
Fig. 9. The inverse kinetic energy flux from small scales to large scales is demonstrated by the
negative side of the PDF. The PDF of SGS flux is skewed to the positive value, indicating that the
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FIG. 6. (a) Average of SGS flux at Reλ = 163 and Mt = 1.0. (b) Ratio of transverse to streamwise
components of SGS flux at turbulent Mach numbers Mt = 0.4, 0.6, 0.8, 1.0 for Reλ ≈ 160.

kinetic energy transfer by the SGS stress has a tendency to be from large scales to small scales. We
observe that the two tails of the PDF become longer at smaller filter width l and at larger Taylor
Reynolds number Reλ, particularly for the right tail. The PDF tails of �l,2/εT are much shorter

FIG. 7. The rms values of SGS flux at turbulent Mach numbers Mt = 0.4, 0.6, 0.8, 1.0 for Reλ ≈ 160.
(a) �′

l ; (b) �′
l,1; (c) �′

l,2.
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FIG. 8. Average of SGS flux terms and normalized streamwise and transverse components of SGS flux
at different Taylor Reynolds numbers Reλ = 64, 90, 105, 163, 267 for Mt ≈ 1.0. (a) 〈�l〉/εT ; (b) 〈�l,1〉/εT ;
(c) 〈�l,2〉/εT ; (d) 〈�l,i〉/〈�l〉.

than those of �l/εT and �l,1/εT . For brevity, the PDFs of SGS flux at different turbulent Mach
number are not presented here as the effect of compressibility is qualitatively similar to the situation
of compressible isotropic turbulence [9].

We decompose the SGS kinetic energy flux �l into positive and negative parts, which are defined
as �+

l = 1/2(�l + |�l |) and �−
l = 1/2(�l − |�l |), respectively. The positive part �+

l represents
the direct transfer of kinetic energy from large scales to small scales. In contrast, the negative part
�−

l represents the inverse transfer of kinetic energy from small scales to large scales, i.e., the
backscatter of kinetic energy. The normalized averages of the positive and negative components
of SGS flux are shown in Fig. 10. As the turbulent Mach number increases, the magnitudes of
〈�+

l 〉/εT and 〈�−
l 〉/εT become larger, demonstrating the significant effect of compressibility on

the SGS energy transfer. Particularly, the SGS backscatter of total kinetic energy becomes more
important at higher turbulent Mach numbers. It is shown that 〈�+

l,1〉/εT and 〈�−
l,1〉/εT are less

affected by turbulent Mach number. Moreover, the positive and negative components of 〈�l,2〉/εT

and 〈�l,3〉/εT are nearly independent of turbulent Mach number, as can be seen in Fig. 10.
The averages of the positive and negative components of SGS flux at different Taylor Reynolds

numbers are shown in Fig. 11 for Mt ≈ 1.0. As expected, the behaviors of 〈�+
l 〉/εT and 〈�+

l,i〉/εT

are similar to those of 〈�l〉/εT and 〈�l,i〉/εT (see Fig. 8), respectively. It is worth noting that
〈�−

l 〉/εT shows Reynolds number similarity at larger extent of scale l/η < 100 and at higher Taylor
Reynolds number. Moreover, 〈�−

l,1〉/εT also shows Reynolds number similarity. The peak value of
〈�−

l,2〉/εT increases with the Taylor Reynolds number and exceeds that of 〈�−
l,1〉/εT for Reλ > 150.
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FIG. 9. PDF of the normalized SGS flux for different filter widths l/η = 16, 32, 64, 128 at Mt = 1.0 and
at two Taylor Reynolds numbers (a)–(c) Reλ = 105 and (d)–(f) Reλ = 267. (a), (d) �l/εT ; (b), (e) �l,1/εT ;
(c), (f) �l,2/εT .

5. Effect of velocity divergence on SGS flux of kinetic energy

For compressible flow, the dilatation serves as an excellent indicator of local compressibility.
More insight into the effect of the compressibility on SGS flux of kinetic energy can be gained
from the joint PDF of the normalized SGS kinetic energy flux and the normalized filtered velocity
divergence. Wang et al. [9] found that as the turbulent Mach number increases, the fractions of the
second and fourth quadrants of the joint PDF become larger, while the fractions of the first and
third quadrants become smaller for compressible isotropic turbulence. They also showed that the
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FIG. 10. Normalized average of the positive and negative components of SGS flux at different turbulent
Mach numbers Mt = 0.4, 0.6, 0.8, 1.0 for Reλ ≈ 160. (a) 〈�+

l 〉/εT ; (b) 〈�+
l,1〉/εT ; (c) 〈�+

l,2〉/εT ; (d) 〈�−
l 〉/εT ;

(e) 〈�−
l,1〉/εT ; (f) 〈�−

l,2〉/εT .

occurrence of strong compression associated with the shocklet structure greatly enhances the direct
SGS flux of kinetic energy from large scales to small scales.

The joint PDFs of (�l/εT , θl/θ
′
l ) and (�l,i/εT , θl/θ

′
l ) are shown in Fig. 12 for the case with

Mt = 1.0 and Reλ = 163. We find that the shape of the joint PDF of (�l/εT , θl/θ
′
l ) exhibits

a strong statistical preference in the second and fourth quadrants, consistent with Wang et al.
[9]. The shapes of the PDF(�l,1/εT , θl/θ

′
l ) and PDF(�l,2/εT , θl/θ

′
l ) are very similar and both

become less asymmetric as compared to that of PDF(�l/εT , θl/θ
′
l ), indicating that the filtered

velocity divergence is less relevant to the SGS flux components. It is also found that the shape
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FIG. 11. Normalized average of the positive and negative components of SGS flux at different Taylor
Reynolds number Reλ = 64, 90, 105, 163, 267 for Mt ≈ 1.0. (a) 〈�+

l 〉/εT ; (b) 〈�+
l,1〉/εT ; (c) 〈�+

l,2〉/εT ;
(d) 〈�−

l 〉/εT ; (e) 〈�−
l,1〉/εT ; (f) 〈�−

l,2〉/εT .

of PDF(�l,1/εT , θl/θ
′
l ) is slightly broader than that of PDF(�l,2/εT , θl/θ

′
l ), which is consistent

with the observations in Fig. 9.
Figures 13(a)–13(c) depict the expansion regions represented by isosurfaces of the velocity

divergence (θl/θ
′
l = 2) for the filter width l/η = 16 at Mt = 1.0 and Reλ = 163. The isosurfaces are

colored based on the normalized SGS flux of kinetic energy. It is found that the expansion motions
are bloblike and almost all of them contribute to the negative SGS flux of kinetic energy �−

l /εT ,
while the fractions of positive SGS flux components, �+

l,1/εT and �+
l,2/εT , on the isosurfaces

064601-17



WANG, WANG, LI, AND CHEN

FIG. 12. Joint PDF of �l,i/εT and θl/θ
′
l for the filter width l/η = 16 at Mt = 1.0 and Reλ = 163. (a) �l/εT ,

(b) �l,1/εT , (c) �l,2/εT .

increase apparently. The high compression regions are shown in Figs. 13(d)–13(f); most of them
are sheetlike structures, which indicates the generation of shocklets at high turbulent Mach number
Mt = 1.0. We find that almost all compression motions contribute to the positive SGS flux of kinetic
energy �+

l /εT , while the fractions of negative SGS flux components, �−
l,1/εT and �−

l,2/εT , on the
isosurfaces increase apparently. These results imply that correlation between SGS flux components
�l,i/εT and velocity divergence θl/θ

′
l is weaker than that of �l/εT .

Figures 14(a)–14(c) show the average of normalized SGS kinetic energy flux conditioned on
the normalized filtered velocity divergence θl/θ

′
l for different filter widths l/η = 16, 22, 32, 44, 64

at Mt = 1.0 and Reλ = 267. We can see that both 〈�l/εT |θl/θ
′
l 〉 and 〈�l,i/εT |θl/θ

′
l 〉 are greatly

dependent on filtered velocity divergence θl/θ
′
l and nearly independent of filter width l/η for

16 � l/η � 64, which is consistent with previous studies in compressible isotropic turbulence
by Wang et al. [9]. The magnitude of 〈�l,1/εT |θl/θ

′
l 〉 is larger than that of 〈�l,2/εT |θl/θ

′
l 〉 in

compression regions, while both are clearly smaller than that of 〈�l/εT |θl/θ
′
l 〉. Wang et al. [9]

proposed simple algebraic models for the conditionally average of SGS flux in compression regions
(θ � 0) and in expansion regions (θ � 0), read as

〈�l/εT |θl/θ
′
l 〉 = b + α0(θ/θ ′)n, θ � 0, (34)

〈�l/εT |θl/θ
′
l 〉 = b − α1(θ/θ ′)m, θ � 0, (35)
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FIG. 13. Isosurfaces of (a)–(c) θl/θ
′
l = 2 and (d)–(f) θl/θ

′
l = −2 for the filter width l/η = 16 at Mt = 1.0

and Reλ = 163. The isosurface is colored by (a), (d) �l/�
′
l ; (b), (e) �l,1/�

′
l,1; (c), (f) �l,2/�

′
l,2. Red for

positive SGS flux and blue for negative SGS flux.
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FIG. 14. Average of (a)–(c) normalized SGS flux and (d)–(f) βl conditioned on the normalized filtered
velocity divergence θl/θ

′
l for different filter widths l/η = 16, 22, 32, 44, 64 at Mt = 1.0 and Reλ = 267.

(a) 〈�l/εT |θl/θ
′
l 〉, (b) 〈�l,1/εT |θl/θ

′
l 〉, (c) 〈�l,2/εT |θl/θ

′
l 〉, (d) 〈βl |θl/θ

′
l 〉, (e) 〈βl,1|θl/θ

′
l 〉, (f) 〈βl,2|θl/θ

′
l 〉.

where b = 1, α0 = 0.42, α1 = 1.0, n = 2.0, and m = 1.2 at Mt = 1.0 and Reλ ≈ 260 in com-
pressible isotropic turbulence. The intercept b is the normalized SGS flux in incompressible
flow and tends to 1 in the inertial range at high Taylor Reynolds numbers. For isotropic tur-
bulence, 〈�l,i/εT |θl/θ

′
l 〉 = 1/3〈�l/εT |θl/θ

′
l 〉 exactly. For FAT at Mt = 1.0 and Reλ = 267, it is

found that α0 = 0.38 is a little smaller than 0.42 in isotropic turbulence, and 〈�l,1/εT |θl/θ
′
l 〉 =

0.4〈�l/εT |θl/θ
′
l 〉, 〈�l,2/εT |θl/θ

′
l 〉 = 0.3〈�l/εT |θl/θ

′
l 〉, as indicated by solid lines in Figs. 14(a)–

14(c).
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The anisotropy of the conditional average of SGS flux can be interpreted by the relation between
the large-scale strain and the SGS stress which is denoted by βl , defined as

βl ≡ (̃τi j S̃i j )/(|̃τ ||̃S|), (36)

where |̃τ | = √
τ̃i j τ̃i j and |̃S| =

√
S̃i j S̃i j . The three components βl,i can be obtained by avoiding

summation convention over repeated index i in Eq. (36). The average of βl conditioned on the
normalized filtered velocity divergence θl/θ

′
l for different filter widths l/η = 16, 22, 32, 44, 64 at

Mt = 1.0 and Reλ = 267 is shown in Figs. 14(d)–14(f). We find that 〈βl |θl/θ
′
l 〉 is close to −1 when

θl/θ
′
l < −5, indicating the antiparallel alignment between the large-scale strain and the SGS stress.

The conditional averages of βl,1 and βl,2 approach −0.7 and −0.6, respectively, for θl/θ
′
l < −5.

The nonparallel alignment between the large-scale strain and SGS stress decreases the efficiency of
interscale kinetic energy transfer in the streamwise and transverse directions.

6. Kinetic energy transfer in spectral space

In this section we present kinetic energy transfers in spectral space and make a rudimentary
comparison with that in physical space. In spectral space, the kinetic energy equation is derived by
multiplying the Fourier representation of the governing equation for density-weighted variable w =√

ρu by its complex conjugate ŵ∗ [15,51,52], and integrating inside the sphere of radius k = |k| to
obtain

∂

∂t
Êk = −�̂k − �̂k − D̂k + P̂k, (37)

where Êk is total kinetic energy inside the sphere of radius k. �̂k is the kinetic energy transfer
between the lower wave numbers inside and the higher wave numbers outside the sphere of radius
k, namely, between large scales and small scales. �̂k and D̂k are the total pressure dilatation and
the total viscous dissipation rate inside the sphere, respectively. The last term P̂k is the total energy
injection rate inside the sphere by the external force. These terms are defined as

Êk =
∑
|k|<k

1

2
ŵi(k)ŵ∗

i (k), (38)

�̂k = −
∑
|k|<k

Im

[ ∑
m+n=k

(
k j û j (m)ŵi(n)ŵ∗

i (k) + 1

2
k jŵi(m)û j (n)ŵ∗

i (k)

)]
, (39)

�̂k = −
∑
|k|<k

Im

[ ∑
m+n=k

kiâ(m) p̂(n)ŵ∗
i (k)

]
, (40)

D̂k = 1

Re

∑
|k|<k

Im

[ ∑
m+n=k

k j â(m)b̂i j (n)ŵ∗
i (k)

]
, (41)

P̂k =
∑
|k|<k

Re[F̂i(k)ŵ∗
i (k)], (42)

where â = Fk{ρ−1/2}, b̂i j = Fk{σi j}, and Fk{·} indicates the Fourier transform of the argument in
curly brackets; Re[·] and Im[·] represent the real and imaginary components of the argument in
square brackets, respectively. It is straightforward to obtain the equations for three components of
kinetic energy in spectral space by avoiding the summation convention over repeated index i in the
above equations. This yields

∂

∂t
Êk,i = −�̂k,i − �̂k,i − D̂k,i + P̂k,i. (43)
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FIG. 15. Normalized (a) viscous dissipation and (b) pressure-strain terms in spectral space at Reλ = 163
and Mt = 1.0.

We can find that Eqs. (37) and (43) are similar to Eqs. (16) and (24) for the kinetic energy in physical
space.

We plot the normalized viscous dissipation and pressure-strain terms in the spectral transport
equations (37) and (43) at Reλ = 163 and Mt = 1.0 in Fig. 15, and they are shown as functions of
wavelength λ = 2π/k for the convenience of comparison. It is found that the normalized viscous
dissipation and pressure-strain terms are very similar to those in physical space, as shown in Figs. 2
and 4. In spectral space, the observed decrease of the viscous dissipation term starts to appear at
length scale λ/η ≈ 10, and at λ/η ≈ 20 for the pressure-strain term, while both start to decrease at
smaller length scale in physical space. It is also found that the viscous dissipation term presents a
slower decay than that in physical space at large scales. As expected, these two terms are insensitive
to the change of turbulent Mach number in our simulations, and the results for other turbulent Mach
number are omitted here for brevity.

In Figs. 16(a) and 16(b), we depict the normalized energy flux in spectral space at Mt = 0.4, 1.0
and Reλ ≈ 160. The normalized total energy flux �̂k/εT at Mt = 0.4 is consistent with previous
numerical results in incompressible turbulent flow [53,54]. We find that the anisotropic property in
both real and spectral space is quite similar at λ/η > 10. Both �̂k/εT and �̂k,i/εT are obviously
small at scales λ/η < 10, especially, for small turbulent Mach number Mt = 0.4, which agrees with
the results by using the sharp spectral filter [9]. In contrast to the behavior of the three components of
energy flux in physical space, �̂k,2/εT and �̂k,3/εT are larger than �̂k,1/εT at small scales λ/η < 10
and high turbulent Mach number Mt = 1.0. In analogy with the analysis in physical space, we
decompose the energy fluxes into positive and negative parts, as shown in Fig. 16(c). At small
scales λ/η < 10, the magnitudes of �̂+

k /εT , �̂+
k,i/εT and �̂−

k /εT , �̂−
k,i/εT are nearly equal to each

other and are much larger than 1, which is consistent with the previous study by Wang et al. [9] in
compressible isotropic turbulence and by Lee et al. [55] in incompressible turbulence. It is known
that the sharp spectral truncation of density can have negative values in physical space, which would
violate fundamental conservation laws [14]. The numerical results of Wang et al. [9] show that, in
compressible turbulence, the statistics of the energy flux of kinetic energy in physical space by the
sharp spectral filter are obviously different from those by the top-hat filter and the Gaussian filter.
Thus, the sharp spectral truncation is rarely applied in the study of compressible turbulence.

B. Homogeneous shear turbulence

The natural energy-generation mechanism of any shear flows is that the production term draws
energy from the mean flow, the largest-scale fluid motion, and deposits it into the fluctuating field,
which is fully retained within HST. The production term −S〈ρũ1ũ2〉 and overall kinetic energy
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FIG. 16. Normalized energy flux in spectral space at (a) Reλ=156, Mt=0.4 and (b) Reλ=163, Mt = 1.0.
(c) The normalized positive and negative components of energy flux in spectral space at Reλ = 163, Mt = 1.0.

transfer for HST are shown in Fig. 17(a) at Reλ = 156 and Mt = 0.46. Since the kinetic energy
is all fed into the streamwise component, the production term is precisely balanced by the overall
kinetic energy transfer. It is worth noting that the effect of the production term is similar to that of

FIG. 17. Average production term −S〈ρũ1ũ2〉 and overall kinetic energy transfer for HST at Reλ = 156
and Mt = 0.46, compared to overall kinetic energy transfer for FAT at Reλ = 156 and Mt = 0.40. (b) Average
of transfer terms of large scale Reynolds shear stress at Reλ = 156 and Mt = 0.46.
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FIG. 18. Average of (a) viscous dissipation terms 〈Dl〉/εT , 〈Dl,i〉/εT , and (b) pressure-strain terms 〈�l〉/εT ,
〈�l,i〉/εT at Reλ = 156 and Mt = 0.46.

large-scale external forcing in FAT, i.e., kinetic energy is generated mainly at large scales, while the
effect extends to much smaller scale l/η ≈ 50 as compared with FAT at Reλ ≈ 160 [see Fig. 1(b)].

One of the major differences between FAT and HST is the significant Reynolds shear stress
in HST. Average values of transfer terms of large-scale Reynolds shear stress 〈ρũ1ũ2〉 are shown

FIG. 19. (a), (b) Average of SGS flux 〈�l〉/εT and 〈�l,i〉/εT ; (c), (b) rms values of SGS flux �′
l/εT and

�′
l,i/εT for HST. (a), (c) Reλ = 145 and Mt = 0.17; (b), (d) Reλ = 156 and Mt = 0.46.
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FIG. 20. Joint PDF of �l,i/εT and θl/θ
′
l for the filter width l/η = 16 at turbulent Mach number Mt = 0.46.

(a) �l/εT , (b) �l,1/εT , (c) �l,2/εT , (d) �l,3/εT .

in Fig. 17(b) at Reλ = 156 and Mt = 0.46. We can see that the transfer of large-scale Reynolds
shear stress 〈ρũ1ũ2〉 is dominated by the pressure-strain term 2〈p̃S12〉 and production term −〈ρũ2

2〉,
while the viscous dissipation and SGS flux are negligibly small. The magnitudes of 2〈p̃S12〉
and −〈ρũ2

2〉 are 1.5 times larger than total dissipation of kinetic energy εT at small filter width
l/η ≈ 10. This observation is consistent with a previous numerical study of kinetic energy transfer
in weak compressible HST by Hamba [56]. In Fig. 18, we plot averages of viscous dissipation
and pressure-strain terms of large-scale kinetic energy for HST at Reλ = 156 and Mt = 0.46. The
viscous dissipation term is similar to that in FAT [see Fig. 2(a)]. The pressure-strain terms 〈�l,2〉
and 〈�l,3〉 are clearly unequal, indicating that the energies redistributed from 〈 1

2ρũ1ũ1〉 to 〈 1
2ρũ2ũ2〉

and 〈 1
2ρũ3ũ3〉 are different.

In Fig. 19, we plot the average of SGS kinetic energy flux for HST at Mt = 0.17 and 0.46. As
expected, the SGS kinetic energy flux is dominated by the streamwise component at large scales
in homogeneous shear turbulence. At a higher turbulent Mach number Mt = 0.46, the vertical SGS
kinetic energy flux component 〈�l,2〉 is larger than the streamwise component 〈�l,1〉 at small scales.
This high-level anisotropy at the high turbulent Mach number can be more clearly observed from
the rms values of SGS kinetic energy flux, as shown in Fig. 19(d).

We focus on the effect of compressibility on SGS kinetic energy flux of HST. The joint PDFs
of (�l/εT , θl/θ

′
l ) and (�l,i/εT , θl/θ

′
l ) are shown in Fig. 20 for Mt = 0.46 and Reλ = 156. The
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FIG. 21. Isosurfaces of normalized SGS flux at �l/�
′
l = 2.0 and �l,i/�

′
l,i = 2.0 for the filter width

l/η = 16 at Mt = 0.46. (a) �l/�
′
l ; (b) �l,1/�

′
l,1; (c) �l,2/�

′
l,2; (d) �l,3/�

′
l,3.

fractions of the second quadrant of the joint PDF of (�l/εT , θl/θ
′
l ) are much larger as compared

to that for FAT at Mt = 1.0 and Reλ = 163 [shown in Fig. 12(a)], indicating that the effect of
compressibility is more prominent in HST [45,57]. It is interesting to observe that the shape of
the joint PDF of (�l,2/εT , θl/θ

′
l ) is much more asymmetric than those of �l,1/εT and �l,3/εT .

Therefore, in HST, strong compression motions induce strong direct SGS flux of vertical kinetic
energy �l,2/εT , possibly explaining the larger �l,2 at small scales at turbulent Mach number Mt =
0.46, as shown in Fig. 19(b).

Figure 21 depicts the isosurfaces of normalized SGS kinetic energy flux at �l/�
′
l = 2 and

�l,i/�
′
l,i = 2 for the filter width l/η = 16, at turbulent Mach number Mt = 0.46. The isosurfaces

are colored based on the normalized filtered velocity divergence θl/θ
′
l . The isosurfaces of �l/�

′
l =

2 are the mixture of sheetlike and bloblike structures. The sheetlike structures are associated with
strong compression motions and exhibit much larger length scales than the bloblike structures,
indicating the generations of shocklets at higher turbulent Mach number Mt = 0.46 [45]. The
strong compression motions mainly contribute to the positive SGS flux of kinetic energy. The
large-scale sheetlike structures of the isosurface of �l,2/�

′
l,2 = 2 are similar to that of �l/�

′
l = 2,

while those of �l,1/�
′
l,1 = 2 and �l,3/�

′
l,3 = 2 evidently decrease, demonstrating that the effect

of compressibility on �l,2 is much stronger than that on �l,1 and �l,3.
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FIG. 22. Isosurfaces of normalized SGS flux at �l/�
′
l = −1.0 and �l,i/�

′
l,i = −1.0 for the filter width

l/η = 16 at Mt = 0.46. (a) �l/�
′
l ; (b) �l,1/�

′
l,1; (c) �l,2/�

′
l,2; (d) �l,3/�

′
l,3.

The isosurfaces of normalized SGS kinetic energy flux at �l/�
′
l = −1.0 and �l,i/�

′
l,i = −1.0

for the filter width l/η = 16 at turbulent Mach number Mt = 0.46 are shown in Fig. 22. The
isosurfaces are colored based on the normalized filtered velocity divergence θl/θ

′
l . Intuitively, the

isosurfaces of �l/�
′
l = −1.0 and �l,i/�

′
l,i = −1.0 are mainly bloblike structures and uniformly

distributed over the whole flow field, as compared with the isosurfaces of positive SGS flux.
The bloblike structures of �l/�

′
l = −1.0 are more sparse than that of �l,i/�

′
l,i = −1.0. Most

of isosurfaces �l/�
′
l = −1.0 are distributed in strong expansion regions θl/θ

′
l > 1.0, while the

isosurfaces �l,i/�
′
l,i = −1.0 are nearly equally distributed in compression regions and expansion

regions.
To obtain a more quantitative picture of the effect of compressibility on SGS flux of kinetic

energy, the average of normalized SGS flux conditioned on the normalized filtered velocity diver-
gence θl/θ

′
l is shown for different filter widths l/η = 16, 22, 32, 44, 64 at Mt = 0.46 and Reλ = 156

in Fig. 23. The SGS kinetic energy flux of HST exhibits the scale-invariant property, which is
consistent with that observed in FAT shown in Fig. 14 and in isotropic turbulence by Wang
et al. [9]. It is found that in high compression region θl/θ

′
l > 4, the conditional averages of three

SGS flux components satisfy the relationship 〈�l,3/εT |θl/θ
′
l 〉 < 〈�l,1/εT |θl/θ

′
l 〉 < 〈�l,2/εT |θl/θ

′
l 〉,

which indicates that the local SGS kinetic energy transfer of 〈 1
2ρũ2

2〉 is affected more significantly
by strong compression motions, as compared to 〈 1

2ρũ2
1〉 and 〈 1

2ρũ2
3〉. For HST, similar algebraic
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FIG. 23. Average of normalized SGS flux conditioned on the normalized filtered velocity divergence
θl/θ

′
l for different filter widths l/η = 16, 22, 32, 44, 64 at Mt = 0.46 and Reλ = 156. (a) 〈�l/εT |θl/θ

′
l 〉,

(b) 〈�l,1/εT |θl/θ
′
l 〉, (c) 〈�l,2/εT |θl/θ

′
l 〉, (d) 〈�l,3/εT |θl/θ

′
l 〉.

models [in Eqs. (34) and (35)] fit 〈�l/εT |θl/θ
′
l 〉 fairly well in the compression regions with b =

1.0, α0 = 0.34, n = 2.0 and in the expansion regions with b = 1.0, α1 = 0.9, m = 1.2 at Mt = 0.46
and Reλ = 156, as shown in Fig. 23(a). In the compression regions, the (b, α0, n) are (0.5, 0.07, 2.0),
(0.2, 0.15, 2.2), and (0.3, 0.15, 1.5) for 〈�l,i/εT |θl/θ

′
l 〉 (i = 1, 2, 3), respectively.

The average of βl conditioned on the normalized filtered velocity divergence θl/θ
′
l for different

filter widths l/η = 16, 22, 32, 44, 64 at Mt = 0.46 and Reλ = 156 is shown in Fig. 24. The con-
ditional averages of βl and βl,i for different filter widths collapse rather well to a single curve. It
is found that 〈βl,2|θl/θ

′
l 〉 is much closer to −1 than 〈βl,1|θl/θ

′
l 〉 and 〈βl,3|θl/θ

′
l 〉 when θl/θ

′
l < −5,

indicating the higher efficiency of interscale kinetic energy transfer in the vertical direction.

C. Helmholtz decomposition on SGS flux of kinetic energy

The rms fluctuations of the solenoidal velocity us and the dilatational velocity ud are listed in
Table III, as well as their three components. Both in FAT and in HST, the dilatational component
contributes to a small fraction of the total kinetic energy. The rms fluctuation of us

i is similar with
that of ui (see Table II). It is interesting to find that (ud

i )′ is isotropic in FAT, while it is obviously
anisotropic in HST with more dilatational kinetic energy residing in the vertical direction, consistent
with a previous numerical result by Livescu and Madnia [58].

The averages of the solenoidal production 〈Ps
l 〉/εT and the dilatational production 〈Pd

l 〉/εT are
shown in Fig. 25 for HST. Both 〈Ps

l 〉/εT and 〈Pd
l 〉/εT are positive, indicating that the mean energy
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FIG. 24. Average of βl conditioned on the normalized filtered velocity divergence θl/θ
′
l for different filter

widths l/η = 16 at Mt = 0.46 and Reλ = 156. (a) 〈βl |θl/θ
′
l 〉, (b) 〈βl,1|θl/θ

′
l 〉, (c) 〈βl,2|θl/θ

′
l 〉, (d) 〈βl,3|θl/θ

′
l 〉.

is transferred to turbulent kinetic energy not only from solenoidal mode but also from dilatational
mode. The solenoidal production 〈Ps

l 〉/εT is significantly larger than the dilatational production
〈Pd

l 〉/εT , probably leading to qualitative similarity of energy transfer between HST and FAT where

TABLE III. Component anisotropy statistics of dilatational velocity and solenoidal velocity.

Dilatational velocity components Solenoidal velocity components

Flow type (ud )′/u′ (ud
1 )′/u′ (ud

2 )′/u′ (ud
3 )′/u′ (us )′/u′ (us

1)′/u′ (us
2)′/u′ (us

3)′/u′

FAT1 0.15 0.09 0.09 0.09 0.99 0.89 0.30 0.30
FAT2 0.19 0.11 0.11 0.11 0.98 0.86 0.33 0.34
FAT3 0.20 0.12 0.12 0.12 0.98 0.83 0.36 0.36
FAT4 0.06 0.04 0.03 0.03 1.00 0.82 0.40 0.39
FAT5 0.13 0.08 0.08 0.07 0.99 0.80 0.41 0.41
FAT6 0.16 0.10 0.09 0.09 0.99 0.81 0.40 0.40
FAT7 0.19 0.11 0.11 0.11 0.98 0.84 0.35 0.36
FAT8 0.19 0.11 0.11 0.11 0.98 0.84 0.36 0.36

HST1 0.08 0.03 0.06 0.04 1.00 0.70 0.48 0.52
HST2 0.21 0.09 0.16 0.10 0.98 0.69 0.47 0.50
HST3 0.23 0.11 0.17 0.11 0.97 0.70 0.46 0.49
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FIG. 25. Average of solenoidal and dilatational components of the production of HST. Solid line for
〈Ps

l 〉/εT and dash-dotted line for 〈Pd
l 〉/εT .

the large-scale force is only applied to solenoidal component of the velocity field. We can see
that 〈Pd

l 〉/εT increases with the increasing turbulent Mach number, suggesting the enhancing of
the production of dilatational kinetic energy by compressibility. Figure 26 displays the averages
of the normalized solenoidal and dilatational components of the viscous dissipation: 〈Ds

l 〉/εT and
〈Dd

l 〉/εT . The solenoidal viscous dissipation makes a major contribution to loss of kinetic energy
at small scales. As turbulent Mach number increases, the normalized solenoidal viscous dissipation
decreases, while the normalized dilatational viscous dissipation increases.

Figure 27 displays the average of the normalized solenoidal and dilatational components of
the SGS kinetic energy flux: 〈�s

l 〉/εT and 〈�d
l 〉/εT . For both FAT and HST, the solenoidal SGS

flux 〈�s
l 〉/εT makes a major contribution to the net transfer of kinetic energy from large scales to

small scales in the range of 30 � l/η � 100. The average dilatational SGS flux 〈�d
l 〉/εT increases

with turbulent Mach number, implying the enhancement effect of compressibility on the interscale
transfer of dilatational kinetic energy. The observations are consistent with previous studies on
compressible isotropic turbulence by Wang et al. [9]. The average solenoidal SGS flux 〈�s

l 〉/εT

is more affected by turbulent Mach number in HST, while it is nearly independent of turbulent
Mach number in FAT and in HIT [9].

FIG. 26. Average of solenoidal and dilatational components of the viscous dissipation. (a) FAT and (b) HST.
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FIG. 27. Average of solenoidal and dilatational components of the SGS kinetic energy flux. (a) FAT and
(b) HST. The legend is the same as in Fig. 26.

Figure 28 displays the average of solenoidal and dilatational components of the nonlinear advec-
tion: 〈As

l 〉/εT and 〈Ad
l 〉/εT . Wang et al. [9] found that in solenoidally forced stationary compressible

isotropic turbulence, the kinetic energy is transferred from the solenoidal mode to the dilatational
mode by the nonlinear advection terms, 〈As

l 〉/εT and 〈Ad
l 〉/εT , which are enhanced by the increase

of turbulent Mach number. As shown in Fig. 28(a), the behavior of nonlinear advection in FAT
is consistent with that in compressible isotropic turbulence by Wang et al. [9]. It is interesting
to observe that the nonlinear advection in HST first increases at lower turbulent Mach numbers
Mt � 0.37 and then decreases as the turbulent Mach number increases at higher turbulent Mach
numbers Mt > 0.37. At the highest turbulent Mach number Mt = 0.46, the nonlinear advection of
HST (〈Ad

l 〉/εT ≈ 0.02) is negligibly small as compared with the dilatational production (〈Ps
l 〉/εT ≈

0.15), indicating that the dilatational mode is maintained by dilatational production. In FAT and HIT
[9], −〈As

l 〉/εT and 〈Ad
l 〉/εT increase with the decrease of filter width until the smallest one, but the

growth rate in HST is almost zero at small filter width. The observations indicate that the dilatational
mode absorbs energy from the solenoidal mode through the nonlinear advection at different length
scales in FAT and HIT, while mainly at large length scales in HST.

FIG. 28. Average of solenoidal and dilatational components of the nonlinear advection. (a) FAT and
(b) HST. The legend is the same as in Fig. 26.
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VI. CONCLUSION

In the present work, we have studied interscale and intercomponent kinetic energy transfer in
stationary compressible FAT and HST with particular emphasis on the component anisotropy. A
large-scale source of anisotropy is induced by large-scale streamwise external forcing and mean
shear rate in FAT and HST, respectively. In both FAT and HST, the behaviors of transfer terms for
total kinetic energy are quite consistent with a previous study on compressible isotropic turbulence
by Wang et al. [9]. The SGS kinetic energy flux and viscous dissipation are dominated by the
streamwise component at large scales, and tend to be isotropic at small scales. The recovery of
local isotropy at small scales is incomplete due to the finite Taylor Reynolds number considered
here. As turbulent Mach number increases, the compressibility slightly enhances the anisotropy of
SGS flux and viscous dissipation. The average pressure-strain components redistribute energy from
the streamwise direction to transverse directions, and this process mainly occurs at large length
scales.

The anisotropy of SGS kinetic energy flux and viscous dissipation decreases rapidly with the
increasing Taylor Reynolds number, but still exists at small scales up to Reλ = 267. As the Taylor
Reynolds number increases, the total viscous dissipation and its streamwise component approach
a Reynolds number asymptotic state, where a power-law decay is clearly observed at large scales.
The total SGS kinetic energy flux is also found to be Reynolds number independent at high Taylor
Reynolds number Reλ � 105, as well as its positive and negative components. Although the positive
component of streamwise SGS flux is strongly dependent on Taylor Reynolds number, its negative
component is nearly independent of Taylor Reynolds number.

In HST, large-scale Reynolds shear stress acts as the production of kinetic energy, whose effect
is similar, but extends to much smaller scales as compared with that of large-scale external forcing
in FAT. The streamwise energy loss by the pressure-strain is shared unequally by the other two
components in HST. At high turbulent Mach numbers, the shape of the joint PDF of (�l,2/εT ,
θl/θ

′
l ) is much more asymmetric than those for �l,1/εT and �l,3/εT , and dominated by the second

quadrant. The enhancement of positive vertical SGS kinetic energy flux by compression motions is
stronger than that of the two other components, causing the vertical SGS flux component 〈�l,2〉 to
be larger than the streamwise component 〈�l,1〉 at small scales.

The interscale energy transfer of the solenoidal mode and dilatational mode is studied by
employing Helmholtz decomposition. The dilatational production term in HST is nonzero and
increases with the turbulent Mach number. In HST, kinetic energy transfer from the solenoidal mode
to the dilatational mode by nonlinear advection occurs primarily at larger length scales as compared
with that in FAT and HIT. The nonlinear advection term increases with turbulent Mach number in
FAT and HIT, while it increases first and then decreases as the turbulent Mach number increases in
HST, since the dilatational production provides more energy into the dilatational mode in HST.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (NSFC Grants
No. 91952104, No. 92052301, No. 11702127, and No. 91752201), by the National Numerical
Windtunnel Project (No. NNW2019ZT1-A04), by the NSFC Basic Science Center Program (Grant
No. 11988102), by the China Postdoctoral Science Foundation (CPSF Grant No. 2020M672409),
by the Shenzhen Science and Technology Program (Grants No. KQTD20180411143441009
and No. JCYJ20170412151759222), by Key Special Project for Introduced Talents Team of
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Grant No.
GML2019ZD0103), and by Department of Science and Technology of Guangdong Province (Grants
No. 2019B21203001 and No. 2020B1212030001). This work was also supported by Center for
Computational Science and Engineering of Southern University of Science and Technology. J.W.
acknowledges the support from Young Elite Scientist Sponsorship Program by CAST (Grant No.
2016QNRC001).

064601-32



KINETIC ENERGY TRANSFER IN COMPRESSIBLE …

[1] L. F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge,
1922).

[2] A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large
Reynolds numbers, Dokl. Akad. Nauk SSSR 30, 299 (1941).

[3] S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000).
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