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Small-scale averaging coarse-grains passive scalar turbulence
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Scalar fields which are subject to turbulent mixing typically feature a broad range of
scales. When focusing on the large-scale dynamics, it remains a question how to effectively
parametrize the small scales. Here, we address this question within the framework of a
stochastic, one-dimensional passive scalar model. We show that small-scale averaging,
i.e., an ensemble average over small-scale velocity fluctuations, results in an effective
diffusivity reminiscent of phenomenological eddy viscosity models, while reducing the
effective Reynolds number of the advecting velocity field. Based on that, we establish a
filtering procedure that exactly maps second-order statistics of the fully resolved passive
scalar field to the one obtained by small-scale averaging. Using fully resolved simulations,
we show that small-scale averaging also captures higher-order large-scale statistics of
passive scalar fields.
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I. INTRODUCTION

Turbulent mixing plays an important role for many processes in nature and engineering [1,2] such
as the dispersal of pollutants and aerosols in the atmosphere [3] or marine microorganisms in the
ocean [4–7]. In such settings, large-scale quantities are often of interest, which motivates the search
for effective coarse-grained descriptions. Capturing the effect of the complex multiscale dynamics
of turbulent mixing on the large scales remains a computational and theoretical challenge.

To study turbulent mixing in its essence, one commonly considers passive scalar turbulence,
i.e., a scalar field which is passively advected with the flow and subject to diffusion, without any
back reaction on the flow [8,9]. Even in this simple setting, the resulting fields show an intermittent
spatial structure with shallow ramps and steep cliffs [10–15]. Conceptually simple models such as
the Kraichnan model [16], i.e., the advection of a scalar field in a white-in-time Gaussian field, have
proven to be instrumental to gain insights into phenomena such as intermittency and anomalous
scaling [17–19]. In particular, such models also highlight that many of the relevant phenomena do
not depend on the details of the underlying flow field but are rather inherent to the mixing process
itself.

In this spirit, we here consider a passive scalar advected by a compressible Kraichnan flow in one
dimension. This simple model features advection and diffusion, thereby sharing characteristics of
scalar turbulence. Hence, the model is suited to develop and test coarse-graining approaches. While
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those are not necessarily quantitatively transferable to other flows, they can provide qualitative
insights.

Here, we explore to what extent the effects of spatial coarse-graining can be replaced by an en-
semble average over small-scale turbulent fluctuations. We find that averaging over the small-scale
velocity fluctuations effectively coarse-grains passive scalar turbulence. Through this small-scale
averaging, the small scales of the passive scalar field are smoothed, while the statistics of the large
scales remain largely unaffected. Within the framework of the Kraichnan model, the procedure leads
to closed large-scale equations. In contrast to large eddy simulation (LES) approaches for passive
scalar turbulence [20–22], the coarse-grained equations do not need to be augmented with explicit
models for the unresolved scales. Yet, to establish the connection to filtering approaches, which, for
example, are used for developing LES, we additionally construct a filter. The filter is designed to
match the spectra of the filtered fully resolved passive scalar and the small-scale-averaged passive
scalar fields, leading to identical second-order statistics. Using direct numerical simulations, we
furthermore show that also higher-order statistics are very similar in the two cases.

The paper is organized as follows. We introduce the model in Sec. II. In Sec. III, we explain
small-scale averaging and the filter construction. We then validate the approach by comparing the
scalar energy budget and statistics of the large scales obtained by small-scale averaging and filtering
a fully resolved system in Sec. IV, before we conclude in Sec. V.

II. PASSIVE SCALAR MODEL

The dynamics of a passive scalar field is described by an advection-diffusion equation. In the
Kraichnan model, the advecting velocity field is not governed by the Navier-Stokes equations
but instead is a Gaussian random field, delta correlated in time [16]. Here, we consider a one-
dimensional passive scalar field θ (x, t ) on a periodic domain, which evolves according to

∂tθ + u∂xθ = κ∂2
x θ + f , (1)

where κ denotes the diffusion constant. The advecting velocity field u(x, t ) and the forcing f (x, t )
are two independent, white-in-time Gaussian random fields with spatial correlations:

〈u(x1, t1)u(x2, t2)〉 = Qu(x1 − x2)δ(t1 − t2),

〈 f (x1, t1) f (x2, t2)〉 = F (x1 − x2)δ(t1 − t2).

Note that, therefore, Eq. (1) is a stochastic partial differential equation in the Stratonovich sense.
For the velocity field, we choose a model spectrum of the following form, inspired by [23]:

Ek ∝ k−5/3

(
kL0

[(kL0)2 + 1]1/2

)5/3+2

e−kl . (2)

Here, L0 and l determine the largest and smallest length scales, respectively.
Our analytical results are complemented with simulations on a periodic domain of length L =

160π (code units). We employ a pseudospectral scheme with a spatial resolution of N = 215. For
time stepping, we use the Itô representation and an Euler-Maruyama integration scheme with a
time step �t = 10−7 (code units), taking into account the Itô-Stratonovich correction [24]. The
large-scale forcing has unit variance and acts only on wave number k = 3�k, where �k = 2π/L.
Additionally, we set the zeroth Fourier mode of the scalar field to zero. This acts as a large-scale sink
and leaves the dynamics of all other modes unaffected. We impose the spectrum of the velocity field,
Eq. (2), as also shown in Fig. 2. The velocity field has unit variance, and for the two length scales, we
choose L0 = 0.05L and l ≈ 2 × 10−4L. Moreover, the diffusivity is κ ≈ 0.038 (code units). Even
though the velocity in our model is a random field without explicit viscosity, one can define an
effective Schmidt number. Here, we interpret the cutoffs of the velocity spectrum Ek and the scalar
spectrum Ck as the wave numbers corresponding to the Kolmogorov scale ηK and Batchelor scale
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FIG. 1. Fully resolved, filtered, and small-scale-averaged scalar fields (the latter two are defined below)
and corresponding gradient fields of an example realization resolved with N = 215 grid points. The extreme
events in the form of cliffs in the scalar field are represented as strong peaks in the gradient field. On the
large scales, all three scalar fields share a similar structure. The zoom into one cliff structure highlights the
differences between the three field types on the scale of the filter length λc.

ηB, respectively:

8

5

∑
k6Ek�k∑
k4Ek�k

≈ k2
ηK

,
14

8

∑
k6Ck�k∑
k4Ck�k

≈ k2
ηB

. (3)

The sums are dominated by different powers of the respective cutoff wave numbers and, therefore,
allow an estimation of those. The different prefactors originate from the scaling of the two spectra,
i.e., − 5

3 for the velocity spectrum and − 7
3 for the scalar spectrum. A Schmidt number can be defined

through the ratio of Kolmogorov and Batchelor scales [11]:

Sc ≡
(

ηK

ηB

)2

=
(

kηB

kηK

)2

≈ 0.3. (4)

We also define a Peclet number Pe ≡ Qu(0)/κ ≈ 26 and a Reynolds number for the velocity field
via the scale separation:

Re ≡
(

L0

ηK

)4/3

≈ 1000. (5)

An example realization of scalar and gradient (w = ∂xθ ) fields, is shown in Fig. 1. As typical for
scalar turbulence, the scalar field features cliffs [9,11,14,25,26], which are the smallest structures
and correspond to strong peaks and extreme events in the gradient field.

III. COARSE-GRAINED DYNAMICS

A. Common filter approach

Filtering is a versatile tool for analyzing turbulent flows to gain insights into the interaction be-
tween different length scales and structures of turbulence [27–30]. Furthermore, it is the foundation
for approaches aiming at coarse-grained dynamics such as LES [23]. To obtain such large-scale
dynamics, one usually applies a low-pass filter. In real space, filtering is defined by a convolution
integral with the filter kernel G, which becomes a product of the respective Fourier components in
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Fourier space:

θ̃ (x) =
∫

dy G(x − y)θ (y), θ̃k = Gkθk . (6)

Here, the subscript k denotes the Fourier mode corresponding to the wave number k (assuming
periodic boundary conditions). Applying the filter to the equation of motion, we obtain the exact
large-scale equation

∂t θ̃ + ũ∂xθ = κ∂2
x θ̃ + f̃ . (7)

The filtered dynamics, however, are not closed as the advection contribution involves the filtered
product of two fields. In the framework of large eddy simulations, this filtered product is expressed
as a product of the filtered fields, and the residual terms are modeled (see, e.g., [21]).

B. Small-scale averaging

Low-pass filtering is essentially a local weighted volume average over small scales while
large scales remain unchanged. Therefore, it seems plausible to average directly over small-scale
fluctuations to obtain coarse-grained dynamics without filtering. For the model discussed here, we
propose a coarse-graining by an ensemble average over the small-scale velocity fluctuations rather
than scalar fluctuations or both. We refer to this procedure as small-scale averaging (SSA). As
we will show in the following, in the framework of the Kraichnan model, this results in a closed
effective large-scale equation with an effective diffusivity reminiscent of eddy viscosity models.
Hence, there is no need for modeling unclosed terms. Intuitively, small-scale velocity fluctuations
distort the scalar field on the corresponding length scales, while leaving the large scales unaffected.
As a result, small-scale averaging captures the large scales while the small scales are smoothed out.

To derive the effective large-scale equation, we split the velocity field into large scales U and
fluctuations u′ with a sharp Fourier filter, as visualized in Fig. 2:

u(x, t ) =
∑

k

uk (t )eikx =
∑
|k|<kc

uk (t )eikx

︸ ︷︷ ︸
U (x,t )

+
∑

|k|�kc

uk (t )eikx

︸ ︷︷ ︸
u′(x,t )

. (8)

Next, we introduce an ensemble average over the small-scale fluctuations u′, and denote θ̂ = 〈θ〉u′

as the small-scale-averaged scalar field. The wave number separating fluctuations and large scales,
kc, defines the coarse-graining length scale λc = 2π/kc. The forcing f and the large-scale velocity
field U are statistically independent of the small-scale fluctuations u′. Hence, they commute with
an ensemble average over realizations of u′. Applying this average then to the equation of motion,
Eq. (1), results in

∂t θ̂ + U∂x θ̂ = − 〈u′∂xθ〉u′ + κ∂2
x θ̂ + f . (9)

Since the velocity fluctuations are a Gaussian random field, one can evaluate the average advection
term 〈u′∂xθ〉u′ = − 1

2 Qu′
(0)∂2

x θ̂ using the Furutsu-Donsker-Novikov identity [31–33]. Here, Qu′
(0)

is the spatial correlation function of u′ evaluated at the origin. This leads to an additional diffusive
term proportional to the energy contained in the fluctuations. Additionally, the small scales of the
advecting velocity field are removed, which implies an effectively reduced Reynolds number Re′ =
(ηK/λc)4/3Re [cf. Eq. (5)]. For our concrete numerical example (see Fig. 2), this leads to Re′ ≈ 12.
Thus, our proposed effective large-scale equation has a closed and exact form:

∂t θ̂ + U∂x θ̂ = [
κ + 1

2 Qu′
(0)

]︸ ︷︷ ︸
κeff

∂2
x θ̂ + f . (10)

Despite the complementary approach, the effective diffusion with constant κeff is similar to the eddy-
diffusivity closures for the Kraichnan model [21]. The small-scale-averaged equation of motion,
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FIG. 2. Spectral characteristics of the fully resolved passive scalar system, its filtered version, and the
small-scale-averaged version. (a) The top panel shows the spectrum of the advecting velocity field u and
illustrates the splitting into small-scale and large-scale components, u′ and U , respectively. Here, kc = 128�k
denotes the wave number separating small and large scales, which in the following also defines the filter
length scale. In the bottom panel, the fully resolved scalar spectrum Ck , filtered scalar spectrum C̃k , and
small-scale-averaged scalar spectrum Ĉk obtained from a simulation are compared to the respective analytical
solutions (dashed gray lines) [see Eqs. (18)–(20)]. For wave numbers larger than the filter wave number, the
small-scale-averaged and filtered spectrum drop off relative to the fully resolved one with minor deviations
among each other at the end of the spectral cutoff. (b) Individual contributions of the balance between the
small-scale-averaged and filtered spectral energy budget, Eq. (26), normalized by the forcing amplitude F (0).
Overall, the sum of the small-scale-averaged spectral energy flux 
̂k and the small-scale-averaged spectral
energy dissipation ε̂k add up to the spectral energy flux of the filtered passive scalar, showing that SSA can
capture the spectral characteristics of the filtered spectral energy budget. The minor deviation in the balance of
small-scale-averaged flux and dissipation to the filtered flux contribution, Eq. (26), is highlighted with an inset;
it can be traced back to the fact that our filter is not a perfect low-pass filter. It commutes with the large-scale
forcing only approximately.

Eq. (10), has the same structure as the one for the full scalar, Eq. (1), i.e., it features advection by a
Gaussian random field, diffusion with a constant diffusivity, and identical forcing.

For small-scale averaging being effective, the smallest scales of the velocity field should be
smaller or equal to those of the scalar, i.e., Sc � 1. Otherwise, there exists a range of scales for the
scalar field in which no velocity fluctuations are present and the additional diffusion contribution
in Eq. (10) may become negligible. This appears consistent with recent findings based on direct
numerical simulations of three-dimensional scalar turbulence which show that turbulent mixing
becomes ineffective for larger Schmidt numbers [34].

As a side note, we mention that the SSA approach can be generalized to the d-dimensional
Kraichnan model:

∂tθ + u · ∇θ = κ�θ + f , (11)

where the scalar field θ (x, t ) is advected by an incompressible d-dimensional Kraichnan velocity
field u(x, t ). Analogous to Eq. (8), we can split the velocity field and average over the fluctuations
u′ resulting in the small-scale-averaged dynamics

∂t θ̂ + U · ∇θ̂ = −〈u′ · ∇θ〉u′ + κ�θ̂ + f

=
(

Tr(Qu′
)(0)

2d
+ κ

)
�θ̂ + f . (12)

Similar to Eq. (10), one obtains an additional diffusivity in the form of the trace of the correlation
tensor of the small-scale velocity fluctuations.
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C. Extracting large scales from fully resolved passive scalar turbulence

Next, we establish a connection between the traditional filtering approach and SSA, and show that
small-scale averaging captures the large scales of a fully resolved system. To this end, we introduce
a low-pass filter which extracts large scales from a fully resolved system. The filter is designed
such that the second-order statistics of the filtered fields correspond exactly to those obtained from
small-scale averaging.

Filtering modulates the amplitude of the individual Fourier components and accordingly the
scalar spectrum Ck = 2〈θkθ−k〉/�k. Therefore, an optimal filter can be constructed by demanding
that the spectrum of the filtered field coincides with that obtained from the small-scale-averaged
dynamics:

C̃k = G2
kCk = Ĉk, (13)

which implies

Gk ≡
√

Ĉk

Ck
. (14)

Hence, constructing the filter requires knowledge of the respective spectra. For the one-dimensional
Kraichnan model, an analytical expression for the two-point correlator of the scalar field has
been derived in Ref. [35], from which the spectrum can be obtained. Using the Furutsu-Donsker-
Novikov identity, one can derive the time evolution of the two-point correlators of the scalar
θ and scalar gradient w = ∂xθ , C(r, t ) = 〈θ (x, t )θ (x + r, t )〉 and �(r, t ) = 〈w(x, t )w(x + r, t )〉,
respectively [35,36]:

∂tC(r, t ) = [Su(r) + 2κ]∂2
r C(r, t ) + F (r), (15)

∂t�(r, t ) = ∂2
r [(Su(r) + 2κ )�(r, t )] − ∂2

r F (r). (16)

Here, Su(r) corresponds to the second-order structure function of the velocity field, which can be
defined as

Su(r) = Qu(0) − Qu(r). (17)

Assuming statistical stationarity, the solution for the gradient correlator has been explicitly obtained
in Ref. [35] and takes the form

�(r) = F (r)

2κ + Su(r)
− A

2κ + Su(r)
. (18)

Here, A is an integration constant fixed by the condition
∫ L

0 dr �(r) = 0, which is a consequence of
the periodic boundary condition. The spectrum of the gradient field is given by a Fourier transform
of the two-point correlator

�k = 1

π

∫ L

0
dr e−ikr�(r). (19)

The scalar spectrum is then obtained by spatial integration, which is equivalent to a multiplication
with k−2 in Fourier space:

Ck = 1

k2
�k, k �= 0. (20)

Because the SSA dynamics is identical to that of the full field, the corresponding SSA correlators
and spectra, as well as their evolution equations, have an identical functional form. The evolution
equations for the SSA correlators can be obtained from (15) and (16) simply by replacing the
second-order structure function of the full velocity field by that of the large-scale field, and by
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replacing the diffusivity with the effective diffusivity. This leads to the corresponding small-scale-
averaged equations:

∂tĈ(r, t ) = [SU (r) + 2κeff]∂
2
r Ĉ(r, t ) + F (r), (21)

∂t �̂(r, t ) = ∂2
r [(SU (r) + 2κeff )�̂(r, t )] − ∂2

r F (r), (22)

where SU denotes the second-order structure function of the large-scale velocity field U . Based on
this, the correlator of the SSA gradient field takes the form analogous to (18), and through (19) and
(20) we can compute the spectrum Ĉk of the SSA scalar field. In Fig. 2, the spectra resulting from
the analytical computations in this section are compared to spectra obtained from simulations of the
fully resolved and small-scale-averaged dynamics, Eqs. (1) and (10), respectively, demonstrating
good agreement. Figure 2 also shows that for wave numbers larger than kc the SSA spectrum drops
off in comparison to the fully resolved one, showing that kc signifies the wave number beyond which
the smoothing effect of SSA sets in. With the results on the spectra of the fully resolved and the SSA
scalar fields, we can explicitly express the filter kernel according to Eq. (14). When applied to a fully
resolved scalar field, such a filter leads to a coarser scalar field with less extreme gradients as shown
in Fig. 1.

IV. COMPARISON OF FULLY RESOLVED, FILTERED, AND SSA SIMULATIONS

A. Spectral scalar energy budget

The spectral scalar energy budget characterizes the time evolution of the scalar spectrum. We
now show that small-scale averaging essentially has the effect of filtering on the fully resolved scalar
energy budget. As the spectrum is the Fourier transform of the corresponding two-point correlator,
we obtain the evolution equation for the SSA spectrum from Eq. (21):

∂tĈk = T̂k − 2κeffk
2Ĉk + Fk, with T̂k = F

{
SU (r)∂2

r Ĉ(r, t )
}

k
, (23)

where T̂k denotes the small-scale-averaged scalar transfer, and Fk denotes the forcing spectrum. In
comparison, the spectral budget of the filtered field takes the form

∂tC̃k = G2
kTk − 2κk2C̃k + F̃k, with Tk = F

{
Su(r)∂2

r C(r, t )
}

k . (24)

Here, the tilde denotes quantities based on the filtered scalar dynamics, and Tk is the unfiltered scalar
transfer.

In a statistically stationary state C̃k = Ĉk holds due to our filter choice defined by Eq. (14). Also,
the filter is a low-pass filter, which approximately leaves the spectrum of the large-scale forcing
unaffected, i.e., F̃k = G2

kFk ≈ Fk . We also test the validity of this approximation numerically in
terms of the energy budget (see inset of Fig. 2). Using those two properties, we compare the different
contributions to the scalar energy budget.

Subtracting (24) from (23) and assuming a statistically stationary state, only the transfer terms
and one diffusive term originating from the difference between κ and κeff = κ + 1

2 Qu′
(0) remain.

We thereby obtain a relation between filtered and the small-scale-averaged scalar transfer

G2
kTk ≈ T̂k − Qu′

(0)k2Ĉk . (25)

This shows that the filtered scalar transfer is related to a combination of the SSA scalar transfer
and the additional diffusivity which arises from the averaged small-scale velocity field. To further
compare the individual contributions, we sum this equation up to wave number k and obtain


̃k ≈ 
̂k + ε̂k . (26)
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FIG. 3. Statistics of the fully resolved, filtered, and small-scale-averaged scalar fields. (a) All three one-
point scalar PDFs are close to Gaussian, here marked by a black dashed line. Note that the PDFs of the full and
the filtered fields are almost indistinguishable. (b) The gradient PDFs show the characteristic heavy tails and a
good agreement between filtered and small-scale-averaged PDFs up to the outer tails, which are significantly
less heavy than those of the fully resolved, unfiltered fields. The transparent areas correspond to confidence
intervals of 95% obtained by a basic bootstrap [37]. (c) For increments larger than the filter length, all three
scalar fields show a similar flatness, approaching the Gaussian value for large increments (gray line). Here, the
transparent areas also correspond to the confidence intervals of 95%.

Here,


̃k = −
k∑

k′=0

G2
k′Tk′�k, 
̂k = −

k∑
k′=0

T̂k′�k, and ε̂k =
k∑

k′=0

Qu′
(0)k′2Ĉk′�k (27)

are the scalar flux terms and the scalar dissipation up to wave number k by the additional diffusivity
due to small-scale averaging. To visually show the validity of the spectral balance, Eq. (26), all
contributions are compared individually in Fig. 2. Across all scales, the balance is satisfied. This
demonstrates that small-scale averaging captures the effect filtering has on the fully resolved scalar
flux and energy budget. That means, given an appropriately defined filter, the second-order statistics
of the coarse-grained scalar field are identical to those obtained by small-scale averaging.

B. Comparison of higher-order statistics

Through simulations, we additionally verify that our approach also captures higher-order statis-
tics and spatial structure. We expect the fully resolved, filtered, and small-scale-averaged scalar
fields to have similar one-point statistics since all three feature a very similar large-scale structure
as illustrated in Fig. 1. Indeed, the three scalar one-point probability density functions (PDFs) shown
in Fig. 3 are close to Gaussian and match very well.

The gradient, which is naturally more sensitive to small-scale features, is strongly affected
by filtering and small-scale averaging. Because of the shallower cliff structures in the SSA and
filtered fields, the corresponding gradient PDFs have less heavy tails than the fully resolved PDF.
Importantly, the gradient PDFs of the filtered and small-scale-averaged fields agree up to the outer
tails, which shows that small-scale-averaged fields feature higher-order one-point statistics similar
to the filtered fields.

Regarding two-point statistics, we turn to the flatness 〈�rθ (x)4〉/〈�rθ (x)2〉2 of scalar increments,
�rθ (x) = θ (x + r) − θ (x). For very small spatial separation, we essentially sample the gradient
field. Corresponding to the PDFs discussed previously, the fully resolved scalar field has an
increased flatness for the small increments compared to the SSA and filtered fields. Throughout
the range of separations, the small-scale-averaged and filtered scalar have a very similar increment
flatness. Moreover, for separations larger than the filter length, all three fields have similar flatnesses
and finally approach the Gaussian value 3 for very large separations. This indicates that small-scale
averaging reproduces the spatial structure of the large scales from fully resolved simulations.
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V. CONCLUSION

We introduced the SSA approach for obtaining an effective large-scale equation for passive
scalar turbulence. Within the framework of a one-dimensional Kraichnan model for passive scalar
turbulence, we have shown that an ensemble average over the small-scale fluctuations of the
advecting velocity field leads to closed equations for the coarse-grained dynamics. This procedure
leads to an additional diffusivity of the scalar field due to small-scale velocity fluctuations, while
effectively reducing the Reynolds number of the advecting velocity field.

To enable quantitative comparisons to the large-scale statistics of fully resolved fields, we have
established a filter that maps the large scales extracted from fully resolved simulations to those
obtained by our approach. Based on this, we compared the energy budgets of the full, filtered,
and SSA fields, finding that the SSA approach indeed captures second-order large-scale statistics.
We also compared higher-order statistics by means of fully resolved simulations, finding a good
agreement between the statistics of the filtered fields and the SSA fields.

As briefly discussed, this procedure can also be applied to the Kraichnan model in any dimension.
Furthermore, it could also be interesting to explore to what extent the presented approach can be
transferred to a passive scalar advected by a turbulent flow governed by the Navier-Stokes equations,
which lacks the idealized features of the Kraichnan model. In real turbulence, the advecting velocity
field is non-Gaussian and continuous in time, making an exact analytical approach infeasible.
Motivated by the fact that SSA and filtering effectively reduce the Reynolds number of the
advecting velocity field while introducing a corresponding turbulent diffusion of the scalar field,
the investigation of a systematic mapping of the large-scale statistics of passive scalar turbulence at
various Reynolds and Schmidt numbers could be an interesting direction for further work.
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