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Scaling behavior of density gradient accelerated mixing rate
in shock bubble interaction
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Variable-density mixing in shock bubble interaction, a canonical flow of Richtermyer-
Meshkov instability, is studied with high-resolution simulation. While the dissipation
mainly controls the passive scalar mixing rate, an objective definition of variable-density
mixing rate characterizing the macroscopic mixing formation is still lacking, and the
fundamental behavior of mixing rate evolution is not yet well understood. Here we first
show that the variable-density mixing of shock bubble interaction is distinctly different
from the previous observations of the passive scalar mixing. The widely accepted hy-
perbolic conservation of the first moment of concentration in the scalar mixing, i.e., the
conservation of the mean concentration, is violated in variable-density flows. We further
combine the compositional transport equation and the divergence relation for the miscible
flows to provide evidence that the existence of a density gradient accelerated mixing
rate, decomposed by the accelerated dissipation term and redistributed diffusion term,
contributes to the anomalous decrease or increase of the mean concentration depending
on Atwood number. Further analyzing a number of simulations for the cylindrical or
spherical bubbles under a broad range of shock Mach numbers, Reynolds numbers, and
Péclet numbers, the density gradient accelerated mixing rate exhibits weak dependence on
Péclet numbers, and we identify an Atwood number range with high mixing rate, which can
be theoretically predicted based on the mode of hyperbolic conservation violation behavior.

DOI: 10.1103/PhysRevFluids.6.064502

I. INTRODUCTION

Richtmyer-Meshkov (RM) instability results from the baroclinic vorticity generation due to the
misalignment of pressure gradient and density gradient during shock impact on a density continuity
with perturbation [1–3]. A classical type of RM instability is the shock interacting on a circular
bubble of density difference with ambient gas. The high curvature of the density interface bringing
a strong nonlinear effect impedes the RM linear theory extension to this kind of shock bubble
interaction (SBI) [4]. The resulting interpenetration and mixing between the bubble and ambient
gas have vital applications in supernovas [5], inertial confinement confusion [6], and supersonic
mixing [7,8]. Thus, SBI with relatively simple initial conditions presents ample physical phenomena
gaining investigation of this problem ranging from theoretical [9–11], to experimental [12–14], and
numerical [15–17] perspectives.

SBI, as well as RM instability, defined as level 2 mixing by Dimotakis [18], shares the same
difficulties in a mixing study, namely, shock compression (specified by Mach number) and variable
density (specified by Atwood number) effect, two notoriously challenging problems absent in
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level 1 passive scalar mixing. The stretching rate of the bubble interface after shock impacts is
the focus in the study of mixing in SBI. By defining the bubble area, it is found that the mixing
leads to the decrease of bubble area [19], which reflects the macroscopic mixing behavior due to
vortical stretching. Referring to exponent stretching in classic turbulence proposed by Batchelor
[20], Yang studied the stretching rate of different shock Mach numbers and density ratios between
the bubble and ambient air [21]. Different configurations of shock heavy bubble interaction are
studied by Kumar et al. [22], showing that integral measurements like bubble width are insufficient
to characterize early-time mixing. Still, integral measurement, such as mixing zone width, is one
crucial indicator of mixing performance among those studied in RM instability due to the small
perturbation of density discontinuity [23]. Although integral geometric parameters such as mixing
width can reflect the general mixing status, it is molecular diffusion combining with the stretching
or growth rate that controls chemical reactions [24] and dilution of peak concentration [25]. Thus
advection/diffusion characteristics are vital to level 2 variable-density flows.

Advection of multicomponent species is converted into a density evolution equation, describing
the mixing of two incompressible fluids with different densities, ρ1 and ρ2, known as buoyancy-
driven Rayleigh-Taylor (RT) instability [26,27]. Through introducing the advection of density
mass flux and mole fraction mixing rate, the mixing width growth rate in RT instability was
successfully built by Cook et al. [28]. Recently, mean mass fraction and mean molecular fraction
were theoretically predicted in RT instability based on the asymptotic analysis of the mass fraction
advection equation [29]. As for RM instability flows, from the conservation equation for the mass
fraction of diffusive multispecies component [30], the evolution of density self-correlation (DSC) of
turbulent mixing in RM flows was investigated [31], suggesting a form of equilibrium of DSC as the
onset of mixing transition. Recently, Nobel [32] applied the normalized scalar advection-diffusion
equation to propose a model that predicts the growth rate of a shocked mixing width. The view
of the transport equation of mass fraction and density offers a new perspective in the research of
RT/RM-type variable-density mixing.

It is worth noting that the advection-diffusion equation of a passive scalar has been studied for
decades, which can be described as [25](

∂

∂t
+ u j

∂
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)
ϕ = 0, (1)

where ϕ(x, t ) is the scalar concentration that shows the conservation characteristic, leading to the
time derivative of mean concentration zero. To distinguish the mixing structure of conservative
scalar ϕ(x, t ), scalar energy 1

2ϕ(x, t )2 is defined, and its evolution follows [33](
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where the term on the right side is the well-known scalar dissipation or scalar mixing rate,
χ = D ∂ϕ

∂x j

∂ϕ

∂x j
, which is strictly positive to dissipate scalar. Thus many studies pay attention to the

degree of mixing that reflects the macroscopic mixing increase from the local scalar dissipation
rate. Cetegen and Mohamad [34] experimentally studied the passive scalar mixing in shear flows. By
defining the mixedness, f = 4ϕ(1 − ϕ), ranging from 0 to 1, the time evolution of f is controlled by
scalar dissipation χ by connecting the diffusivity of scalar D due to the hyperbolic conservation of
mean concentration (i.e., D〈ϕ〉/Dt = 0 where 〈·〉 is spatial averaging). Theoretically analyzing the
advection-diffusion equation in the form of a vortical flow, a passive scalar’s mixing time follows the
dependence of a 1/3 scaling law on Péclet number [35,36]. The mixedness f and scalar dissipation
rate χ suggest the quantification of the mixing behavior in all kinds of flows.

In RM-type flows, few pioneering studies applied scalar dissipation χ to investigate mixing.
Tomkins et al. [13] found that the scalar dissipation rate is mainly connected to the large-scale strain
field of the nonturbulent region in a shock accelerated heavy bubble. Several mixing indicators,
one of which is scalar dissipation, are studied in a shock accelerated gas curtain [37]. The result
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shows that the mixing rate decays faster in higher shock Mach number due to the higher degree
of stirring. The scalar dissipation rate can be enhanced in the RM instability with reshock [38].
The idea of the scalar energy and dissipation rate has also been extended to the other forms of
variable-density mixing, such as in the RT convection of porous media [39,40] and combustion
flows, such as in explaining the local flame extinction [41]. It can be concluded that scalar dissipation
not only displays the mixing rate of different flow structures in RM flows more clearly, but
connects the similarities in mixing behavior with passive scalar and discerns the differences from
the fundamental nature of the variable-density effect and shock Mach (Ma) number effect in RM
flows [42]. However, it is noteworthy that the passive scalar definition is still strictly applied in the
above variable-density flows.

The mass fraction of specific species in variable-density flows no longer follows the advection-
diffusion equation [Eq. (1)] but the transport equation of mass fraction Y obeying Fickian’s
law [43]:

∂ (ρY )

∂t
+ ∂

∂x j
(ρYuj ) = ∂

∂x j

(
Dρ

∂Y

∂x j

)
. (3)

This leads to the mass fraction dissipation different from the scalar energy function in Eq. (2), in
which the density effect cannot be neglected [44]. Knowing the evolution of mass fraction and
its energy evolution is vital for modeling the reaction rate [45] and extinction in nonpremixed
combustion [41]. Thus one of the inherent difficulties for further analyzing mixing in the form
of the mass fraction is to define correctly a mixing rate that controls the mass fraction and its energy
evolution, which is still lacking and urgently needed. Through high-resolution numerical simulation,
this paper investigates the mixing rate of the mass fraction and its energy in variable-density mixing
of SBI. The density gradient brings the accelerated dissipation and redistributed diffusion terms
for mixedness linear growth before an asymptotic limit of mixing is reached. The time-averaged
density gradient accelerated mixing rate shows the nontrivial time-dependent behavior and a weak
dependence on Péclet number under a broad range of systematic parameters. Moreover, the growth
rate of the mean mass fraction and its energy determines a density ratio range with a high mixing
rate pattern, which can be theoretically predicted based on the local and global mode of hyperbolic
conservation violation behavior. The accelerated dissipation of variable-density mixing found in
this paper implies what we believe is a new standpoint for auto-ignition [46] and extinction in
nonpremixed combustion [41] in the extensive variable-density problems.

II. METHODOLOGY AND CASES PRESENTATION

The governing equations for compressible flows comprising different miscible species, which
are controlled by Navier-Stokes (NS) equations, in the Cartesian frame of reference are

∂ρ̃
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+ ϑ
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= 0, (4)

∂ (ρ̃ũi )
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ρ̃D
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)]
, m = 1, 2, . . . , s − 1. (7)

Here ρ̃, p̃, ũi, Ẽ , and H̃ are density, pressure, velocity, energy, and enthalpy, respectively. The mass
fraction of species m is denoted as Ỹm. There are s components in total. Parameter ϑ determines the
axisymmetric coordinate (ϑ = 1) or symmetric coordinate (ϑ = 0). Moreover, subscript r does not
conduct Einstein’s summation, and if the x coordinate is set as the axis of symmetry, r = 2 [47,48].
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FIG. 1. (a) Initial conditions of shock cylindrical bubble interaction. (b) Time history of circulation and
compression rate. (c) Top: density contour, bottom: mass fraction contour; (c1) t̃ = 57.6 μs (t = 1.65); (c2)
t̃ = 96 μs (t = 2.74); (c3) t̃ = 187.2 μs (t = 5.35); (c4) t̃ = 321.6 μs (t = 9.2).

σ̃i j = μ[∂ ũi/∂ x̃ j + ∂ ũ j/∂ x̃i − 2/3δi j∂ ũk/∂ x̃k] is the viscous stress tensor in which μ is the
constant dynamics viscosity. q̃i = −λ∂T̃ /∂ x̃i is the heat flux calculated as λ = Cpμ/Pr where Cp

is constant-pressure specific heat [49], and the Prandtl number is chosen as Pr = 0.72 [50]. D is
Fickian diffusivity set to be constant in all cases. Then kinetic viscosity ν can be estimated as
ν = μ/ρ, where ρ = [(ρ∗

1 )′ + (ρ∗
2 )′]/2 is the average of postshock light bubble density (ρ∗

2 )′, and
postshock heavy ambient air density (ρ∗

1 )′ obtained from one-dimensional shock dynamics [51].
In this paper, the NS equations are solved using our in-house high-resolution code PARNS3D

[52–54] to study the mixing process of SBI. A third-order TVD Runge-Kutta method [55] is applied
for time marching, and convection terms are discretized by the fifth-order WENO scheme [56],
while the discretization of viscous terms is dealt with by the central difference method.

The initial conditions for a two-dimensional shock strength of Ma = 1.22 (only half cylindrical
bubble is shown) are plotted in Fig. 1(a). The bubble contains light gas helium with ambient air
around it before impacted by shock. The postshock parameters are determined by the Rankine-
Hugoniot equation [57]. The bubble boundary is set as a diffusive layer to avoid spurious vorticity
production from the grid step [11]. The distribution of the diffusive layer is the same as the one
reported in Ref. [52]. Boundary conditions are applied as fourth-order extra-interpolation to avoid
pseudo-pressure reflection wave interference with flow structures and classical symmetry conditions
at the bubble axis. The constant diffusivity D is set as 142 × 10−6 m2/s, and dynamics viscosity μ

is set as 125 × 10−6 Pa s for the case concerned.
After shock passages, the time evolution of bubble deformation is depicted in Figs. 1(c1)–1(c4)

at four specific time instants. Due to the baroclinic vorticity deposited along the bubble boundary
formed from the misalignment of the pressure gradient of shock and density gradient of bubble,
the bubble’s roll-up is gradually growing with time. A bridge structure links the upper part and the
lower part of the bubble, which forms the typical kidney shape of SBI at an early time [58]. The main
vortex is entraining the bubble lobe through the connector between them, as shown in Fig. 1(c2).
During the entrainment process presented in Fig. 1(c3), mixing happens mainly in the vortex region
and partly along the bubble’s edge because of concentration gradient diffusion. Finally, the main
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vortex becomes stable after absorbing the major baroclinic vorticity and maintains pure diffusion
with a low degree of mixing, as shown in Fig. 1(c4). Three points can be summarized: First, the
general pattern of density and mass fraction is similar. Second, mixing happens during the growth
of the main vortex. Third, particular mixing structures such as a bridge decrease its region, and we
will show that this decrease is caused by accelerated dissipation in variable-density flows.

For the qualitative value, the circulation, � = ˝
V ω(x, t ) dV , is obtained from the area inte-

gration of the vorticity inside the bubble region. Figure 1(b) shows the near-constant value of
circulation, which controls the mixing from stirring. Once we get the controlling system parameters,
variables considered are made dimensionless as follows in the following study:

xi = x̃i

D
, ui = ũi

u∗ , t = t̃

t∗ , ρ = ρ̃

ρ∗
1

, p = p̃

p∗
1

, (8)

where D = 5.2 mm is the diameter of bubble. u∗ = �/D and t∗ = D/u∗ in which � is the main
circulation of the bubble after shock impacts. ρ∗

1 , p∗
1 are density and pressure ahead of shock,

respectively. Then we can define the Reynolds (Re) number [59] and Péclet (Pe) number [35]:

Re ≡ �

ν
, Pe ≡ �

D
= Re Sc, η ≡

˝
V X (x, t → ∞) dV

V0
, (9)

where Sc = ν/D is the Schmidt number. The volume fraction is X (x, t ) =
(ρY2/M2)/(

∑s
m=1 ρYm/Mm) (the subscript 2 is denoted as the gas concerned). Then the initial

volume of the bubble is calculated as V0 = ˝
V X (x, t = 0) dV . Here the compression rate, η,

can be defined referring to Ref. [60], which is one fundamental dimensionless parameter reflecting
the main shock compression. As shown in Fig. 1(b), the near-constant compression rate is found
immediately after shock passages, which shows the apparent compression of bubble volume, as
illustrated in Fig. 1(c1). This compression volume maintains until the late-time evolution. We will
show that the compression rate controls the asymptotic scaling behavior of mixing in general.

III. HYPERBOLIC CONSERVATION VIOLATION OF THE MEAN MASS FRACTION
IN SHOCK BUBBLE INTERACTION

One important mixing descriptor is the mean concentration of scalar and scalar energy [33].
Here we study the first and second moment of mass fraction, i.e., mean mass fraction and mean
mass fraction energy, based on volume integration defined as

〈Y 〉(t ) =
˚

V
Y (x, t ) dV, (10)

〈Y 2〉(t ) =
˚

V
Y (x, t )2 dV . (11)

Then the mixedness can be defined locally as [34]

f (x, t ) = 4Y (x, t )[1 − Y (x, t )]. (12)

The bulk-integrated mixedness with time has a direct relationship with mean mass fraction 〈Y 〉 and
mass fraction energy 〈Y 2〉:

〈 f 〉(t ) = 4 × [〈Y 〉(t ) − 〈Y 2〉(t )]. (13)

Figure 2 illustrates the time evolution of volumetric mean mass fraction 〈Y 〉, mass fraction energy
〈Y 2〉, and mixedness 〈 f 〉. The fundamental observation is the decay of both mean mass fraction
and mass fraction energy. The decrease in the mean mass fraction indicates D〈Y 〉/Dt 	= 0. This
phenomenon violates the widely accepted concept of hyperbolic conservation of passive scalar
obeying Eq. (1), which can derive 〈ϕ〉 = const. The faster decay of mean mass fraction energy
is the inherent characteristic of mixing, leading to an increase of the mixedness profile, as shown in
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FIG. 2. Time history of the first moment of mass fraction 〈Y 〉, the second moment of mass fraction 〈Y 2〉
and mixedness 〈 f 〉. Insert: mixedness contour at t = 5.35.

Fig. 2. After t ≈ 6, the mixing indicator turns into a steady status, which means the well-mixed state
is obtained. Thus, the source of decay of mean mass fraction and mass fraction energy is the key to
understanding the mixing enhancement behavior in the variable-density vortical flows. Obviously,
the scalar dissipation rate defined from the advection-diffusion equation [Eq. (1)] cannot explain the
mixing behavior in such RM-type variable-density flows.

IV. DENSITY GRADIENT ACCELERATED DISSIPATION AND REDISTRIBUTED
DIFFUSION MECHANISM

A. Mixing rate of mass fraction in variable-density flows

Here we reveal the mechanism that causes the hyperbolic conservation violation in the com-
pressible variable-density mixing flows. We start from the fundamental behavior of the material
derivative of time in a nonzero divergence of the velocity field. The first thing we should obtain is
the time derivative expression of the mass fraction of concern in this paper. For arbitrary scalar field
φ(x, t ), its time derivative of volumetric mean value can be decomposed as

D
(˝

V φ dV
)

Dt
=
˚

V

Dφ

Dt
dV +

˚
V

φ
D(dV )

Dt
. (14)

The first term on the right of Eq. (14) reads the local rate of change of scalar field φ. Due to
the conservative characteristic of the passive scalar, this term is zero in limits of large Pe number
[34,61]. However, we will show that this term is the leading source for decreasing the mean mass
fraction of RM variable-density mixing. The second term on the right of Eq. (14) reflects the rate of
change in the volume occupied by the scalar field. In the compressible flows, the material derivative
of a finite volume is controlled by the divergence of velocity [62]:

D(dV )

Dt
= (∇ · V)dV . (15)

Although this term is usually not modeled in conservative passive scalar mixing of incompressible
mixing, which leads to D〈ϕ〉/Dt = 〈Dϕ/Dt〉 = 0, velocity divergence will occur in compressible
passive scalar mixing that makes the mixing area of passive scalar ϕ decrease or increase due
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to either compression or expansion of local flow element [63]. Nevertheless, the divergence-free
assumption is accepted by most studies since if ∇ · V 	= 0, the concentration of scalar ϕ will take
values larger than 1 or take negative values in the form of advection-diffusion equations with the
source of the Fisher-Kolmogorov-Petrovskii-Piskunov reaction rate [64]. For most variable-density
flows, velocity divergence exists even in incompressible flows ([65] and see Appendix E). Once
the complete source of the time derivative of the scalar is known, remaining problems are the
exact expression that reveals the physical mechanism leading to the anomalous decreasing of mean
concentration.

For mass fraction Y , the time derivative of its volumetric mean can be expressed as

D〈Y 〉
Dt

=
〈DY

Dt

〉
+ 〈Y (∇ · V)〉, (16)

and one of mass fraction energy is expressed as

D〈Y 2/2〉
Dt

=
〈

D(Y 2/2)

Dt

〉
+ 〈Y 2/2(∇ · V)〉. (17)

We first model the first term on the right-hand side of Eqs. (16) and (17). By using the canonical
correlation between mass fraction and density in multispecies miscible flows [31],

1

ρ
= Y

ρ ′
2

+ 1 − Y

ρ ′
1

, (18)

and we introduce σ = ρ ′
2/ρ

′
1 as the postshock density ratio and ρ ′

2 = ρ2/η (see more details in
Appendix C). From the dimensionless transport equation of species as Eq. (3), we can obtain(

∂

∂t
+ V · ∇ − 1

Pe
∇2

)
Y = − 1

Pe

1 − σ

(1 − σ )Y + σ
∇Y · ∇Y. (19)

Due to 〈 1
Pe∇2Y 〉 = 0 (proof and discussion are shown in Appendix D), we get〈DY

Dt

〉
= −

〈
1

Pe

1 − σ

(1 − σ )Y + σ
∇Y · ∇Y

〉
. (20)

From Eq. (19), one can obtain the convection-diffusion equation for mass fraction energy:(
∂

∂t
+ V · ∇ − 1

Pe
∇2

)
1

2
Y 2 = − 1

Pe

[
2 − σ

(1 − σ )Y + σ

]
∇Y · ∇Y. (21)

Due to 〈 1
Pe∇2(Y 2/2)〉 = 0, one obtains〈

D(Y 2/2)

Dt

〉
= −

〈
1

Pe

[
2 − σ

(1 − σ )Y + σ

]
∇Y · ∇Y

〉
. (22)

More details of the above derivation are shown in Appendix B. Here we can find a strictly negative
term for advection equation of mass fraction in Eq. (19), partly explaining the decrease of mean
volumetric mass fraction observed. Moreover, this term takes a similar form of scalar dissipation
and converges to zero as σ = 1, i.e., the constant-density passive scalar mixing scenario.

For the second term on the right side of Eqs. (16) and (17), velocity divergence exists even for
incompressible flows in the variable-density mixing. Also, due to the first shock impact bringing the
velocity divergence embedded in the shock, we can express the velocity divergence term as

∇ · V = −∇ ·
(

1

Pe

∇ρ

ρ

)
+ (∇ · V)S. (23)

The second part of divergence becomes small immediately after shock impacts (see discussion
in Appendix E). By using Eq. (18), one can obtain the complete expression for the right term of

064502-7



BIN YU, HAOYANG LIU, AND HONG LIU

Eq. (16) in the form of a mass fraction:

D〈Y 〉
Dt

=
〈
− 1

Pe
K1,Y (σ,Y )∇Y · ∇Y

〉
︸ ︷︷ ︸

DG Accelerated Dissipation

+
〈

1

Pe
K2,Y (σ,Y )∇2Y

〉
︸ ︷︷ ︸
DG Redistributed Diffusion

(24)

= 〈−χad,Y 〉 + 〈−χrd,Y 〉, (25)

with coefficients K1,Y on the density gradient accelerated dissipation term (DGAD) and K2,Y on
the redistributed diffusion term (DGRD):

K1,Y (σ,Y ) = �(1 + �Y ),

K2,Y (σ,Y ) = �Y, (26)

� = (1 − σ )/[(1 − σ )Y + σ ],

and complete expression for the decay rate of mass fraction energy [the right term of Eq. (17)] in
the form of the mass fraction:

D〈Y 2/2〉
Dt

=
〈
− 1

Pe
K1,Y 2 (σ,Y )∇Y · ∇Y

〉
︸ ︷︷ ︸

DG Accelerated Dissipation

+
〈

1

Pe
K2,Y 2 (σ,Y )∇2Y

〉
︸ ︷︷ ︸

DG Redistributed Diffusion

(27)

= 〈−χad,Y 2〉 + 〈−χrd,Y 2〉, (28)

also with the coefficient on the accelerated dissipation term and redistributed diffusion term:

K1,Y 2 (σ,Y ) = (1 + �Y )2/2 + 1/2,

K2,Y 2 (σ,Y ) = �Y 2/2. (29)

To gain the effect of the density ratio σ on these coefficients, we plot the coefficients of
accelerated dissipation and redistribution diffusion with the variation of mass fraction Y , as shown in
Fig. 3. The first observation is that when σ = 1, the coefficient degenerates to the constant-density
passive scalar mixing [33], K1,Y (σ,Y ) = K2,Y (σ,Y ) = K2,Y 2 (σ,Y ) = 0 and K1,Y 2 (σ,Y ) = 1,
which shows the generalization of mixing rate expression under a wide range density difference.

Second, for the density gradient acceleration term K1,Y (σ,Y ) and K1,Y 2 (σ,Y ), the coefficient
is much larger than passive scalar mixing when σ < 1 for the light gas case, as shown in Fig. 3(a).
When the mass fraction is low (σ = 0.133), the coefficient K1,Y (σ,Y ) is near 7, which means that
the mixing will decay faster due to the existence of the density gradient at lower value of the mass
fraction [66]. Thus, we call this term density gradient accelerated dissipation because the density
gradient amplifies dissipation of the scalar mass fraction. As far as heavy gas (σ > 1) is concerned,
K1,Y (σ,Y ) for the mass fraction is negative, leading to the increase of mass fraction, which also
occurs in the variable-density cases studied in a later section.

Third, for the redistributed diffusion term K2,Y (σ,Y ) or K2,Y 2 (σ,Y ), as shown in Fig. 3(b), it
is generally lower than the dissipation term when σ < 1. Monotonous growth with a mass fraction
shows that more diffusion will gain when the mass fraction concentration is higher. When σ > 1,
the redistributed diffusion term’s coefficients become negative, whose absolute value is higher when
density difference is higher. In this scenario, the redistributed diffusion term will take a dominant
role in the mass fraction or its energy growth rate. One thing to note is that the diffusion term ∇2Y
is not strictly negative, meaning that the diffusion term redistributes the local growth of the mass
fraction and mass fraction energy when variable-density mixing happens. The behavior of density
gradient accelerated dissipation and redistributed diffusion in the case of SBI will be introduced in
the next section.
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FIG. 3. Coefficients of density gradient accelerated dissipation, K1,Y for the mass fraction Y and K1,Y 2 for
the mass fraction energy Y 2/2 (a). Coefficients of density gradient redistributed diffusion, K2,Y for the mass
fraction Y and K2,Y 2 for the mass fraction energy Y 2/2 (b). The coefficients are shown with the variation of
mass fraction and postshock density ratio σ ranging from 0.133 to 4.0.

B. Behavior of density gradient accelerated dissipation and redistributed diffusion

Now we pay attention to the DGAD and DGRD behavior in SBI. In order to validate the local
mixing rate and global mean mixing descriptor, the time integral of DGAD and DGRD is defined
and compared with the first moment of the mass fraction:

MY (t ) = MY,0 −
ˆ t

0
[〈χad,Y 〉(t ′) + 〈χrd,Y 〉(t ′)]dt ′, (30)

and with the second moment of the mass fraction:

MY 2 (t ) = MY 2,0 − 2
ˆ t

0
[〈χad,Y 2〉(t ′) + 〈χrd,Y 2〉(t ′)]dt ′. (31)

The sudden decrease of the mean value from the first compression from shock is eliminated by
introducing the initial integration of MY,0 and MY 2,0. Figure 4 shows the comparison between mean
concentration 〈Y 〉 (〈Y 2〉) and mixing rate integral MY (MY 2 ) in a shock helium cylindrical bubble
interaction. General agreement is observed, validating that both the density gradient accelerated
dissipation and redistributed diffusion contribute to the decrease of mass fraction in a variable-
density problem. In accordance with the analysis of the coefficient of DGAD and DGRD, the
accelerated dissipation contributes much more than the redistributed diffusion to the decrease of
mean mass fraction when σ is small, as depicted in Fig. 4. Moreover, the time derivative of mean
concentration and volumetric integration of the mixing rate composed of DGAD and DGRD also
collapse with good agreement.

Further, a probability density function (PDF) offers the dissipative structure of DGAD and
DGRD, as shown in Fig. 5. At an early time of t = 1.65, the DGAD term’s PDF shows the steep
distribution of both the mass fraction and its energy, indicating the small amount of high mixing rate,
as shown in the left part of Fig. 5(a). As for the DGRD term, considerable counts show the opposite
sign. However, nearly the same number of counts of DGRD term are positive, which offset the
negative part. Moreover, the DGRD term with high-value points is much less than DGAD, meaning
a minor effect of DGRD term on the mixing rate. Thus, the scatter points of the DGAD term are
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FIG. 4. (a) Mixing rate of 〈Y 〉 composed by DGAD and DGRD term, validating Eq. (24). (b) Mixing
rate of 〈Y 2〉 composed of DGAD and DGRD terms, validating Eq. (27). Both mean mass fraction 〈Y 〉 and
mass fraction energy 〈Y 2〉 decrease monotonically with time. The integration of the mixing rate is defined
in Eqs. (30) and (31). The general agreement between local mixing rate and time derivative of macroscopic
mixing can be found.

plotted in the right part of Fig. 5(a). It can be found that at about Y = 0.5, the dissipation rate is
the highest. The density gradient accelerated dissipation of mass fraction and its energy are more
extensive than the value obtained from the passive scalar dissipation, showing the inherent nature
of faster decay in variable-density mixing. Also, the figure insert is the mixing rate of the mass
fraction. It offers the information that a high mixing rate concentrates on the bridge structure. At a
later time of t = 9.2, both DGAD and DGRD values are much lower than early ones, indicating
a steady mixing state. Still, DGRD becomes dominant to homogenize the mass fraction. This
homogenization is also validated by the Gaussian distribution of the mass fraction gradient [67],
as shown in the insert in the left part of Fig. 5(b).

C. Mixedness formation

Once the dissipation rate of mass fraction and its energy are obtained, the dissipation rate of
mixedness can be easily derived based on the definition of mixedness Eq. (13):

D〈 f 〉
Dt

= D〈4Y 〉
Dt

− D〈4Y 2〉
Dt

= 〈χ∗〉. (32)

A new dissipation rate χ∗ for mixedness in variable-density mixing can be expressed as

χ∗ = 4

Pe
K1, f (σ,Y )∇Y · ∇Y + 4

Pe
K2, f (σ,Y )∇2Y, (33)

also with the coefficient of density gradient accelerated dissipation term and redistributed diffusion
term:

K1, f (σ,Y ) = 5 − 2(σ + 1)

(1 − σ )Y + σ
+ σ

[(1 − σ )Y + σ ]2
,

K2, f (σ,Y ) = Y (1 − Y )(1 − σ )

(1 − σ )Y + σ
. (34)
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FIG. 5. Left: probability density function (PDF) of DGAD, DGRD, and derivative of the mass fraction (in-
sert). Right: the dissipative structure of density gradient accelerated dissipation with mass fraction comparing
with the constant-density scalar dissipation χ = 1/Pe∇Y · ∇Y . The contour of the mass fraction mixing rate
is inserted. At an early time of t = 1.65 (a), ∂Y/∂x shows the characteristic exponential tails while it tends
toward a Gaussian behavior (dashed dot line) at late time t = 9.2 (b), meaning the homogeneity of the flow.

A time integral of mixing rate 〈χ∗〉 is defined to compare with the mixedness profile:

M(t ) =
ˆ t

0
〈χ∗〉(t ′) dt ′. (35)

Figure 6 shows the time evolution of mixedness and relative variables. Except for a little
discrepancy observed at the early time due to the first shock compression, general agreement is
found between the density accelerated mixing rate and the time derivative of mixedness. The time
history of the mixing rate temporal integral shows remarkable similarity with mixedness except
that the initial mixedness from the diffusive layer is not considered in Eq. (35). Three specific time
instants of mixing rate χ∗ are given on the right side of Fig. 6. A high mixing rate occurs at the
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FIG. 6. Left: Time evolution of mixedness and its time derivative comparing with 〈χ∗〉. Right: The flow
structures, rendered by contour maps of density gradient accelerated mixing rate χ∗ are also explicitly given at
three specific time instants. The isoline of χ∗ = 0 is also plotted to show the region with the negative mixing
rate.

bridge structure and connector of the vortex and lobe from the observation. This causes the local
peak of the volumetric integrated mixing rate. At later times, the mixing rate becomes negative due
to the redistributed diffusion phenomenon, which will not occur in passive scalar mixing. From
the mixedness profile and time integral of the mixing rate, two mixing stages can be determined.
The first stage is the mixing growth stage, mainly due to the stretching of the vortex. The second
stage is the steady mixing stage, in which redistributed diffusion dominates and even decreases the
degree of mixing. This two-stage mixing rate shows the stirring effect from the baroclinic vortex
and equilibrium diffusion at the late time, which implies a vital scaling behavior of the mixing rate.

V. SCALING BEHAVIOR OF MIXING RATE AND MIXEDNESS

A. Scaling behavior of mixing rate on Pe number and Re number

Although the time-dependent mixing rate exhibits ups and downs during the mixing growth due
to specific mixing structures such as a bridge, the overall mixedness growth shows the quasilinear
behavior, indicating the constant average mixing rate. Here we examine a shock interacting with
cylindrical and spherical bubbles with a wide range of Ma, Re, and Pe numbers (Sc numbers within
a range of 0.1–1.0, typical in the gaseous mixture [4,38]), as shown in Fig. 7. Detailed controlling
parameters can be found in Supplemental Material [68]. The spherical bubble is simulated by the
two-dimensional axisymmetric boundary conditions as introduced in Sec. II. It is noteworthy that
the integration of an axisymmetric variable φ is

˜
V 2πyφ(x, y, t ) dy dx, where y is the distance to

axis. In order to compare the spherical cases with cylindrical cases in the same level of magnitude,
we revise the integration of the nondimensional axisymmetric variables, such as mean mass fraction
or mixedness, by a coefficient Vc/Vs = 3/(2D), where Vc and Vs are the volumes of a cylinder and
a sphere with diameter D, as illustrated in Fig. 7.

To outline the influence of Re and Pe numbers on mixing rate, we first analyze the time history
of the mixing rate 〈χ∗〉 of all cylindrical cases as depicted in Fig. 8(a). It can be found that a
similar magnitude of mixing rate in all cases is obtained. The mixing rate slightly decreases with
the increase of Pe number. Still, for higher Mach number, the steady mixing state is earlier than low
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FIG. 7. All helium bubble cases in the studied range from Pe ≈2500 to 25 000 and Re ≈3 × 103 to 1 ×
105. Square dots represent cylindrical cases, and circular dots represent spherical cases. Red: Ma = 1.22;
orange: Ma = 1.8; blue: Ma = 2.4; green: Ma = 3; black: Ma = 4. Isolines of Sc = 0.1 and 1 are plotted as a
dashed-dot line and dashed line, respectively. The inserted figure illustrates the volumetric difference between
cylindrical cases and spherical cases.

FIG. 8. (a) Time evolution of density gradient accelerated mixing rate 〈χ∗〉 for cylindrical helium bubble
cases. For clarity, Ma = 2.4 curves presented are the ones at Pe = 6400; Pe = 15 000 and Pe = 25 000 with
the same Re = 38 000. (b), (c) The time-averaged accelerated mixing rate calculated as 〈χ∗〉 = M(T )/T ,
where T is a time window before the rapid decay of second-stage mixing for averaging (at time intervals of
δt = 0.1). (b) Top: The scaling of time-averaged mixing rate 〈χ∗〉 on Pe number at constant Re = 38 000 and
Ma = 2.4. Bottom: The scaling of 〈χ∗〉 on Pe number for all cases. (c) The scaling of time-averaged mixing
rate independent of Pe number, 〈χ∗〉 · Pe0.185, on Re number. We indicate, with a dashed or solid line for each
figure, the best power-law fit over the concerned data, which shows the weak dependence of mixing rate on Pe
number or Re number.
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FIG. 9. (a) Time evolution of density gradient accelerated mixing rate 〈χ∗〉 for spherical helium bubble
cases. For clarity, Ma = 1.8 curves presented are the ones at Re = 3500, Pe = 2640; Re = 6900, Pe = 2640;
and Re = 7200, Pe = 4900, respectively. Ma = 2.4 curves presented are the ones at Pe = 6700; Pe = 10 000
and Pe = 15 000 with the same Re = 39 600. (b) Top: The scaling of time-averaged mixing rate 〈χ∗〉 on Pe
number at constant Re = 39 600 and Ma = 2.4. Bottom: The scaling of 〈χ∗〉 on Pe number for all cases. (c) The
scaling of time-averaged mixing rate independent of Pe number, 〈χ∗〉 Pe0.235, on Re number. A dashed or solid
line for each figure shows the best power-law fit over the concerned data.

Mach number cases due to the strong compression leading to a smaller quantity of mass fraction,
as analyzed in the following part. To compare more precisely the mixing rate of different cases, we
introduce a time-average dissipation rate during the first stage of mixing growth, defined as 〈χ∗〉 =
M(T )/T . The integration time T is longer for lower Mach number and shorter for higher Mach
number. Since a log coordinate is used in Fig. 8(a), the second stage of mixing rate with negative
value is invisible. Thus, we choose the integration time window that reaches 〈χ∗〉 = 0.01, which can
be deemed the end of the first-stage mixing growth. The integration time independence is studied to
set the upper integration bound of 〈χ∗〉 = 0.015 and lower integration bound 〈χ∗〉 = 0.005, shown
as an up error bar and down error bar.

By controlling Re = 38 000 of all Ma = 2.4 cases, we first examine scaling dependence of the
time average mixing rate on Pe number, as depicted in the upper half of Fig. 8(b). Considering the
fluctuations of mean mixing rate, we fit a power law to 〈χ∗〉 obtained from high-resolution simula-
tions, as a function of Pe number. The results yield a best fit 〈χ∗〉 ≈ (0.49 ± 0.01)Pe−0.186±0.006 for
Pe number dependence. If all cases are taken into account, as shown in the bottom half of Fig. 8(b),
the Pe number scaling shows a similar exponent as −0.185, which suggests that the weak scaling is
robust for the cases concerned in the present paper. Further analyzing the Re number effect, it can
be found that if the Pe number dependence is removed, an independent behavior of mixing rate on
Re number appears, 〈χ∗〉/Pe−0.185 ≈ (0.44 ± 0.08)Re0.008±0.002, as shown in Fig. 8(c).

The effect of Pe and Re number on the density gradient accelerated mixing rate of a spherical
bubble is examined in the same way as the cylindrical cases. Figure 9(a) shows the mixing rate
temporal evolution. Interestingly, by introducing the coefficient Vc/Vs into spherical cases, we
observe a similar magnitude of mixing rate between spherical bubble cases and cylindrical bubble
cases. Moreover, the scaling dependence of mixing rate on Pe and Re number, as shown in Fig. 9(b)
and 9(c), illustrates a similar trend as the cylindrical cases. While mixing rate dependence for even
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FIG. 10. The robust linear growth of 〈Y 〉 (a), 〈Y 2〉 (b), and M (c) of cylindrical bubble cases; 〈Y 〉 (d), 〈Y 2〉
(e), and M (f) of spherical bubble cases. The theoretical predictions of asymptotic limits from Eqs. (37) and
(38) for each case are plotted as horizontal solid lines. The curves presented in cylindrical cases in (c) and
spherical cases in (f) are under the same Re and Pe number as the ones in Fig. 8(a) and Fig. 9(a) respectively.

lower Re number (such as reported in Ref. [69]) or higher Pe number (i.e., higher Sc number)
deserves further validation, the scaling provides the conclusive evidence that the density gradient
accelerated mixing rate in RM-type mixing with large density variation predicts, in the regime
of high Pe number and Re number concerned, a weak dependence of mixing rate on Pe number
by a scaling exponent −0.185 for cylindrical bubble and −0.235 for spherical bubble, and near
independence on Re number.

B. Scaling behavior of mixedness evolution

From the characteristic of weak dependence on Pe and Re number, we can further find a robust
scaling that controls mixedness evolution in SBI. Figures 10(a)–10(c) show the time history of the
mean mass fraction, its energy, and the time integral of the mixing rate for several typical cylindrical
cases. Figures 10(d)–10(f) show the same variables of spherical cases as the cylindrical bubble.
The hyperbolic conservation violation of the mean mass fraction is observed in all cases. For the
mixedness representative, M, our results indicate the scaling law M(t ) ∼ t1, which characterizes
the mixing regime dominated by the convective stirring of a vortex. Furthermore, the linear slope of
mixing indicator M varies with Pe number, following Pe number scaling on mixing rate.

Interestingly, M(t ) has the same asymptotic limit at a later time, which is insensitive to Pe and
Re numbers at each Mach number and can be predicted upon the integration of Eq. (32) from t = 0
to t → ∞:

M∞ = 4
[(〈Y∞〉 − 〈

Y 2
∞

〉) − ε0
]
. (36)
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From the initial conditions, the mass fraction inside the bubble area is 1, Y (x, t = 0) = 1, thus
〈Y0〉 ≈ 〈Y 2

0 〉 ≈ π/4. For the well-mixed state, it can be found that the equilibrium state of final
mixing is composed of a vortex pair containing the well-distributed mass fraction. From Fig. 1(c4),
it is reasonable to assume the upper half and lower half of the vortex pair at a later time as two
bubbles with the same radius a. Inside the two bubbles, the mass fraction is Y (x, t → ∞) = 1/2
due to homogenous mixing. Then we obtain 〈Y∞〉 = πa2/D2 and 〈Y 2

∞〉 = πa2/(2D2). Since the
volume fraction can be expressed in form of the mass fraction as X (x, t → ∞) = Y/[(1 − σ )Y +
σ ] = 1/(1 + σ ) (see Appendix G), the mean volume fraction 〈X∞〉 = 2πa2/[(1 + σ )D2]. Thus, the
compression rate can be expressed as η = 〈X∞〉/〈X0〉 = 8a2/[(1 + σ )D2], and we further model
the mean mass fraction and its energy as

〈Y∞〉 = (1 + σ )ηπ

8
,

〈
Y 2

∞
〉 = (1 + σ )ηπ

16
. (37)

It is noteworthy that the asymptotic model above is also suitable for shock spherical bubble
interaction. In this case, the final mixing status can be assumed as a torus with bubble radius a
and vortex radius r, where homogenous mixing happens. Then the final mean mass fraction is
〈Y∞〉 = 1/2 Vtor (Vc/Vs)/D2 by considering the coefficient Vc/Vs to compare with the cylindrical
bubble case and nondimensionalized through the bubble diameter 1/D2. The volume of the torus is
Vtor = 2π2a2r. Due to the relationship between mass fraction and volume fraction, the compression
rate can be expressed as η = 〈X∞〉/〈X0〉 = 12πa2r/[(1 + σ )D3]. Then the unknown a2r is obtained
by the compression rate (1 + σ )ηD3/12π , which makes the model of final mean mass fraction and
mean mass fraction energy in Eq. (37) qualified for the toroidal vortex ring.

Although the spatial distribution of mass fraction at equilibrium state, such as vortex bubble
radius a (and vortex radius r in spherical bubble), is still unknown, the mean mass fraction 〈Y∞〉
and its energy 〈Y 2

∞〉 can be modeled using the conservative characteristic of mean volume fraction,
behaving as the near-constant compression rate η. The detailed modeling of the mean mass fraction
and its energy at a final state involves the spatial distribution of mass fraction [67] and the geometric
information (the vortex bubble radius a, and radius of vortex ring r in three dimensions [7]), which
deserves future study.

For ε0 in Eq. (36), it is the initial mixedness (due to the diffusion layer at the initial condition)
after the shock compression, which can be estimated by ε0 ≈ η(〈Y0〉 − 〈Y 2

0 〉) = η〈 f0〉/4. This means
that the integration of Eq. (32) starts after the shock compression. Rearranging Eq. (36) and using
Eq. (37), we obtain

M∞ = (1 + σ )ηπ

4
− η〈 f0〉. (38)

Mixedness of initial state 〈 f0〉 can be theoretically integrated if the diffusion layer distribution
is known, and it is the same, about 0.14 in all cases. The theoretical predictions from Eqs. (37)
and (38), which are explicitly presented for cylindrical or spherical bubble cases with different Ma
numbers by the horizontal solid lines in Fig. 10, represent the asymptotic limits of mixing evolution
that is mainly affected by the compression rate and density ratio. This behavior also implies that the
shock effect on the mixing rate is relatively weak, but stirring from a vortex dominates the mixing
rate growth after the initial shock passages.

The scaling of mixing in the second stage with time for both spherical and cylindrical cases is
plotted in Fig. 11 through the log chart. It suggests that the mixedness decreases after reaching
the equilibrium state under the scaling law M(t ) ∼ tα , where exponent α = −0.11 for cylindrical
cases and α = −0.2 for spherical bubble cases are determined via exponential fitting of M(t ).
Considering that 〈χ∗〉(t ) = ∂tM(t ), we can infer the scaling law of mixing rate with time as
〈χ∗〉(t ) ∼ t−1.11 for a cylinder and ∼t−1.2 for a sphere. It is noteworthy that the mixedness always
increases in the passive scalar mixing due to the hyperbolic conservation [34], while the cause of the
decrease of mixedness in variable-density flows is the production of DGRD with a negative value
as analyzed in Sec. IV B.
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(a) (b)

FIG. 11. The second-stage scaling of mixing rate integral M with time for cylindrical bubble cases (a) and
spherical bubble cases (b).

C. Effect of density ratio on mixing rate and mixedness

From Eqs. (37) and (38), we see the importance of density ratio on mixing indicators. Based on
the same Pe and Re numbers through controlling diffusivity D and dynamics viscosity μ, we change
the bubble component from helium to methane (CH4), carbon dioxide (CO2), krypton (Kr), xenon
(Xe), and sulfur hexafluoride (SF6) to analyze the influence of density difference on mixing (see the
Supplemental Material [68] for the setup details). The density ratio among these gases ranges from
σ = 0.12–5.4 or in the form of Atwood number At = (σ − 1)/(σ + 1) = −0.79–0.69. The left
part of Fig. 12(a) shows the time history of mixing rate 〈χ∗〉 of all At numbers. Unlike the helium
bubble case, the mixing rate of other cases still maintains a high level during the whole computing
time and shows a declining trend at late time. The mixing status at the end of simulation for all At
number cases can be explored in Fig. 12(b), showing that the bridge structure maintains a long time
and contributes to continuous mixing [13].

To obtain the appropriate time-averaged mixing rate, we set the integration time window T as
〈χ∗〉 > 0.5〈χ∗〉max when the mixing rate is high, characterizing the first-stage mixing growth. The
integration time independence is therefore investigated by setting the upper and lower integration
bound 〈χ∗〉 = 0.5〈χ∗〉max ± 〈�χ∗〉(5δt ). The variation of time-averaged mixing rate illustrates a
rise and decline with At number increasing, as plotted in the right part of Fig. 12(a). Based on a best
quadratic fitting, it predicts a higher mixing rate around At ≈0.1. Since the mixing rate is composed
by the time derivative of mean mass fraction and mass fraction energy from Eq. (32), we further
examine the differences of the mean mass fraction and its energy evolution between three typical At
numbers to seek the reason that causes the high mixing rate behavior with density ratio.

As for At = −0.21, the mean mass fraction is nearly conservative, which is near to constant
density mixing behavior, as depicted in Fig. 13(a). With the increase of At number, an interesting
phenomenon, the opposite sign of mixing rate for mass fraction 〈χY 〉 and mass fraction energy 〈χY 2〉,
occurs. Due to the variable-density effect on the coefficient of DGAD and DGRD as analyzed in
Sec. IV A, the mean mass fraction increases after shock compression in heavy bubble cases (At > 0)
as shown in Figs. 13(b) and 13(c), contrary to the light bubble cases (At < 0). However, the mean
mass fraction energy still decreases with time at small At number (At = 0.33) while it increases
at a large At number (At = 0.69). Hence, based on Eq. (32), we can infer that when the opposite
sign of slope of mean mass fraction and its energy appears (i.e., D〈Y 〉/Dt > 0 and D〈Y 2〉/Dt < 0),
the mixing rate will be relatively higher. The contribution of DGAD and DGRD to the mixing rate
of mass fraction and its energy are also plotted in Fig. 13, showing that the DGRD term plays a
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(a)

(b)

FIG. 12. (a) Left: Time evolution of density gradient accelerated mixing rate 〈χ∗〉 of cylindrical bubble
ranging from At = −0.79 to At = 0.69, where Atwood number is defined as At = (σ − 1)/(σ + 1). Right:
Variation of time-averaged accelerated mixing rate 〈χ∗〉 with Atwood numbers. Square dots: Ma = 2.4;
diamond dots: Ma = 1.22. Red: He; green: CH4; blue: CO2; black: Kr; orange: Xe; pink: SF6. (b) Characteristic
flow structure of different Atwood number cases. Top: Density gradient accelerated mixing rate; bottom:
mixedness. For each case, At = −0.21 at t = 1.75; At = 0.27 at t = 1.59; At = 0.33 at t = 4.19; At = 0.47
at t = 5.97; At = 0.49 at t = 7.33; At = 0.62 at t = 9.66; At = 0.69 at t = 10.24.

FIG. 13. Time evolution of mean mass fraction 〈Y 〉 and its mixing rate composed of DGAD and DGRD
terms, and mean mass fraction energy 〈Y 2〉 and its mixing rate composed of DGAD and DGRD terms with (a)
At = −0.21 (Ma = 2.4, CH4), (b) At = 0.33 (Ma = 2.4, Kr), and (c) At = 0.69 (Ma = 1.22, SF6).
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(a) (b)

FIG. 14. Time evolution of mean mass fraction 〈Y 〉, mean mass fraction energy 〈Y 2〉 (a) and mixing rate
integral M (c) of different Atwood numbers. Theoretical values of 〈Y∞〉, 〈Y 2

∞〉 in Eq. (37) and M∞ in Eq. (38)
are indicated by the solid and dashed-dot lines.

dominant role in causing the increase of mass fraction energy when At number is higher. Unlike the
strictly positive characteristic of dissipation, it is hard to predict the sign of the nonzero diffusion
term. Based on the generalized Green’s theorem, we expand the DGRD term integration in the form
of local dissipation in Appendix J. Therefore, the range of At number that leads to the increase of
mass fraction and the decrease of mass fraction energy is proven as At ∈ (0, 0.2), which coincides
with the best quadratic fitting’s range with a high mixing rate in Fig. 12(a).

Figure 14(a) further shows the time evolution of 〈Y 〉 and 〈Y 2〉 in all variable-density cases. Those
At number cases with an opposite sign between mean mass fraction and its energy growth overlap
with the At number range where the high mixing rate happens, as depicted in Fig. 12(b). Here,
the At number range with the high-level mixing rate can be predicted heuristically in terms of the
macroscopic well-mixed state model of 〈Y∞〉 and 〈Y 2

∞〉 in Eq. (37). Due to the shock compression,
both mass fraction and its energy will be compressed to ηπ/4 by compression rate at initial status.
The prediction is acceptable from the comparison between modeled values depicted as dashed lines
and the numerical results. Thus, when 〈Y∞〉 > η〈Y0〉 and 〈Y 2

∞〉 < η〈Y 2
0 〉, the opposite sign of 〈Y 〉

and 〈Y 2〉 growth occurs:

(1 + σ )ηπ

8
>

ηπ

4
,

(1 + σ )ηπ

16
<

ηπ

4
⇒ 1 < σ < 3. (39)

This range in the form of At ∈ (0, 0.5) is plotted by a yellow region in Fig. 12(b), which coincides
with the At number range with the high-level time-averaged mixing rate and overlaps the predicted
range (1 < σ < 3/2) based on local DGRD behavior in Appendix J.

The temporal integrals of mixing rate M of all variable-density cases are shown in Fig. 14(b).
Those mixedness profiles with high mixing rates grow linearly at a higher rate. Since the mixing
still grows for heavy bubble cases, the final asymptotic limit M∞ is presented as dashed-dot lines.
Such a prediction can offer the characteristic mixing time when the well-mixed status is reached, if
the mixing growth slope is previously known.

VI. CONCLUSIONS

We have investigated the behavior of convective mixing for RM-type shock bubble interaction
through high-resolution simulation in this paper. From the starting point, variable-density mixing
characteristic of a shocked cylindrical bubble containing helium is found with the hyperbolic
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conservation violation of mean mass fraction, which will not occur in the conservative passive scalar
mixing problem. The violation manifests the mean mass fraction decrease with time.

Further, by combining the compositional transport equation and the divergence relation for the
miscible flows, we offer the exact mixing rate expression that suits mixing involving a wide range of
density differences. The mixing rate shows two source terms from density gradient: density gradient
accelerated dissipation (DGAD) and density gradient redistributed diffusion (DGRD). The first term
dissipates the mass fraction at a rate that is higher than in passive scalar. The second term decreases
the mixing content at late-time steady mixing and plays a vital role in dissipating mean mass fraction
energy when heavy gas is concerned. More precisely, we have examined the time evolution of
the derived mixing rate 〈χ∗〉, the dependence on which any system parameter can be extracted.
Two-stage mixing status can be identified, a quasilinear growth stage of convective mixing due to
the vortex roll-up and a steady mixing stage with a low mixing rate.

Then we pay attention to the dependence of the first-stage mixing growth rate on system
parameters by analyzing several simulations for both cylindrical and spherical bubbles under a
broad range of shock Ma numbers, Re numbers, and Pe numbers while keeping a constant density
ratio as helium. We have found a relatively weak dependence of time-averaged mixing growth rate
〈χ∗〉 on Pe number by a scaling exponent −0.185 for cylindrical bubble and −0.235 for spherical
bubble, and near independence on Re number and Ma number. This leads to a robust scaling that
time integral of mixing rate M(t ) ∼ t1 at the first stage and M(t ) ∼ tα at the second stage, where
exponent α = −0.11 for cylindrical cases and α = −0.2 for spherical cases. Another interesting
scaling shows that the asymptotic behavior of mixing is controlled jointly by shock compression
rate and density ratio M∞ ∼ (1 + σ )η, which leads us to investigate the essential effect of density
ratio on mixing rate.

The time-averaged mixing rate manifests a nonmonotonic variation with the increase of the
density ratio. The mixing rate will be relatively higher when the opposite sign of the growth
rate of mean mass fraction and its energy occurs. The local mixing rate coefficient determines a
range (1 < σ < 3/2) when the opposite sign emerges, which overlaps the predicted range from
the macroscopic well-mixed model as 1 < σ < 3, in the form of Atwood number as At = 0–0.5.
The theoretical prediction from the local mixing rate coefficient or the global well-mixed model
coincides with the observed Atwood number range with high time-averaged mixing rate.

The accelerated dissipation of variable-density mixing found in this paper implies the new stand-
point for auto-ignition and extinction in nonpremixed combustion in the extensive variable-density
problems. Moreover, the scaling behavior of the density gradient accelerated mixing may pave a
new way for further examining the mixing behavior in variable-density flows and offer a quick
estimation of the amount of mixedness in combustion applications.
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APPENDIX A: GRID INDEPENDENCE STUDY

Here we examine the grid independence study of all cases studied in this paper. The grid
resolution has a pronounced effect on the second-order differential of scalar dissipation [70]. Thus
the grid resolution should be chosen cautiously.
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FIG. 15. Time history of circulation for all SBI cases. (a) Cylindrical bubble containing helium. (b) Spher-
ical bubble containing helium. The 3D spherical bubble circulation of Ma = 2.4 is plotted as the blue line with
triangle dots. (c) Cylindrical bubble containing variable density components.

Before testing the grid dependence, we need to choose the case with relative high Re number
and Pe number to make the grid resolution, which sets the mesh resolution standard that should
be reached by other concerned cases to guarantee the resolved grid number. As for Re number,
which is determined by circulation, Fig. 15 shows the circulation of all cases. The cases with higher
shock Ma number and higher absolute At number show higher circulation value. The conservative
characteristic of circulation maintains well with time. Thus, we choose the Ma = 2.4 cylindrical
bubble case with Re = 38 000 and Pe = 6400, to show the effect of grid resolution on concerned
parameters. By defining the mesh Re number as Re� = u∗�/ν and mesh Pe number as Pe� =
u∗�/D , where � is the mesh resolution, three kinds of mesh resolutions are studied qualitatively
and quantitatively. Figure 16 shows the density and vorticity contour of three grid resolution. Small
structures begin to appear in fine mesh with Re� = 55 and Pe� = 9.2, while gradient information is
smeared by numerical viscosity in coarse mesh with Re� = 180 and Pe� = 30. General agreement
from both density and vorticity is found between medium mesh and fine mesh.

Further checking influence of grid resolution on mixedness and dissipation, Fig. 17 illustrates the
grid dependence on these two quantitative parameters. A coarse mesh fails to meet the requirement
of capturing the correct value of dissipation, while the curve of medium mesh with Re� = 90 and
Pe� = 15 shows the similarity with the one of fine mesh. Considering the computational burden

FIG. 16. Density contour (top) and vorticity contour (bottom) of three different mesh resolutions. Ma =
2.4 cylindrical bubble case with Re = 38 000 and Pe = 6400 at t = 1.71. (a) Re� = 180 and Pe� = 30; (b)
Re� = 90 and Pe� = 15; (c) Re� = 55 and Pe� = 9.2.
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FIG. 17. Mixedness and dissipation rate for three different mesh resolutions.

and accuracy requirement of the simulation, we choose the medium-mesh resolution to convey the
study, which is sufficient for capturing the mixing process correctly in a quantitative way.

APPENDIX B: SOME DETAILS FOR DERIVATION OF DY/Dt AND D(Y 2/2)/Dt

Here more details for the derivation of DY/Dt and D(Y 2/2)/Dt are offered. Based on the NS
equations for diffusion transport for a scalar:

∂ (ρYm)

∂t
+ ∇(ρYmV) = ∇ · (Dρ∇Ym), m = 1, 2, . . . , s. (B1)

Here we choose m = 2 as concerned gas (helium) and abbreviate Y2 as Y in the following equations.
By using the mass conservation equation,

∂ρ

∂t
+ ∇ · (ρV) = 0 ⇒ Dρ

Dt
= −ρ(∇ · V), (B2)

we can obtain the equation of DY/Dt in the form of density ρ:

DY

Dt
= 1

ρ
∇ · (Dρ∇Y ), (B3)

where Dφ/Dt = ∂tφ + V · ∇φ. It can be further derived that(
∂

∂t
+ V · ∇ − D∇2

)
Y = D

ρ
∇ρ · ∇Y. (B4)

Again by using 1/ρ = Y/ρ ′
2 + (1 − Y )/ρ ′

1,

−∇ρ

ρ2
=

(
1

ρ ′
2

− 1

ρ ′
1

)
· ∇Y, (B5)

then we can obtain the advection equation of mass fraction in variable-density flows as shown in
Eq. (19) by the dimensionless form:(

∂

∂t
+ V · ∇ − D∇2

)
Y = −D

1 − σ

(1 − σ )Y + σ
∇Y · ∇Y. (B6)
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By multiplying the advection equation of mass fraction Eq. (B4) by mass fraction Y , we obtain the
advection equation of mass fraction energy Y 2/2 in the source of density,(

∂

∂t
+ V · ∇ − D∇2

)
1

2
Y 2 = DY

ρ
∇ρ · ∇Y − D∇Y · ∇Y, (B7)

and then the advection equation of mass fraction energy Y 2/2 as shown in Eq. (21):(
∂

∂t
+ V · ∇ − D∇2

)
1

2
Y 2 = −D

[
2 − σ

(1 − σ )Y + σ

]
∇Y · ∇Y. (B8)

APPENDIX C: SOME DISCUSSIONS ON EQ. (18)

Although Eq. (18) is widely accepted in incompressible variable-density miscible flows, the
compressible effect needs to be carefully examined in RM-type flows, especially with high shock
Ma number. The density of shocked air ρ ′

1 can be directly calculated from one-dimensional
shock dynamics. As for shocked gas, several reflected shocks will occur immediately after the
shock passage. Thus determining the macroscopic density of bubble ρ ′

2 is essential. Here, we find
the mass of helium bubble 〈ρY 〉 is essentially constant after shock, which can be proved as

D〈ρY 〉
Dt

=
〈

D(ρY )

Dt

〉
+ 〈ρY (∇ · V)〉. (C1)

From the diffusion equation of mass fraction in the form of NS (B1), we obtain

D(ρY )

Dt
= −ρY ∇ · V + ∇ · (Dρ∇Y ). (C2)

Then the time variation of mass of helium can be expressed as

D〈ρY 〉
Dt

= 〈∇ · (Dρ∇Y )〉 =
‹

S
Dρ∇Y · �n dS = 0, (C3)

by using Gauss’s flux theorem
˝

V ∇ · �φ dV = ‚
S

�φ · �n dS. Thus the density of postshock helium
in the bubble can be estimated as

ρ ′
2 = 〈ρY 〉

V∞
≈ ρ2V0

V∞
= ρ2/η. (C4)

Fortunately, compression rate η collapses to a steady value for most cases, as shown in Fig. 18.
The near-constant behavior of compression rate is also proven in Appendix G. The compression

FIG. 18. Compression rate of all cases studied. (a) Cylindrical bubble containing helium. (b) Spherical
bubble containing helium. The 3D spherical bubble compression rate of Ma = 2.4 is plotted as the blue line
with triangle dots. (c) Cylindrical bubble containing variable density components.
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FIG. 19. Comparison between nominated density ρ∗ and exact real density ρ at different shock Mach
numbers in cylindrical cases. (a) Ma = 1.22 (Re = 5750, Pe = 5500, t = 2.74); (b) Ma = 2.4 (Re = 38 000,
Pe = 6400, t = 1.71); (c) Ma = 4 (t = 1.42).

rate is slightly higher in spherical bubble cases than in cylindrical cases under the same shock
Ma number due to the weaker compression in axisymmetric shock than in symmetric shock [71].
It is noteworthy that the compression rate declines at high At number with Ma = 2.4, while a
conservative characteristic maintains well in other cases. The discrepancy is caused by strong shock
focusing in the heavy bubble cases, leading to the continuous compression from the reflect shock
inside the bubble [72].

Here, we validate Eq. (18) by defining an alternative density ρ∗ = 1/(Y/ρ ′
2 + (1 − Y )/ρ ′

1) com-
paring with numerical results of ρ as shown in Fig. 19. The alternative density from one-dimensional
shock dynamics ρ∗

1D = 1/[Y/(ρ ′
2)1D + (1 − Y )/ρ ′

1] is also compared. A linear relationship is ob-
tained for even the Ma = 4 case. However, it still can be found that at low Ma number ρ∗ ≈ ρ,
while a border width occurs at higher shock Ma number. This is due to the reflected shock that
exists in higher shock Ma number. Comparing ρ∗ and ρ∗

1D, we find that ρ∗
1D slightly underestimates

density in a high shock Ma number. Thus, it is better to use the compression rate to estimate the
postshock gas density. The theoretical model for the compression rate has already been determined
[60] and is recommended as the fundamental parameters that control mixing in RM-type flows.

APPENDIX D: SOME DISCUSSIONS AND PROOF OF 〈D∇2Y 〉 = 0

Since the diffusion term is highly nonlinear and not strictly positive as dissipation, the character-
istic of this term is briefly introduced in this Appendix. It is relatively simple to prove the zero value
of the diffusion term as

〈D∇2Y 〉 = D〈∇ · (∇Y )〉 = D

‹
S
∇Y · �n dS = 0. (D1)

This characteristic is vital in deriving the integration of 〈DY/Dt〉. Also, if we compare the right term
of Eqs. (B3), (B4), and (B6), we can find the interesting phenomena that, as shown in Fig. 20,

1

ρ
∇ · (Dρ∇Y ) 	= D

ρ
∇ρ · ∇Y ≈ −D�∇Y · ∇Y,〈

1

ρ
∇ · (Dρ∇Y )

〉
=

〈
D

ρ
∇ρ · ∇Y

〉
≈ −〈D�∇Y · ∇Y 〉. (D2)

This local nonzero but global zero integration behavior of diffusion term may shows its effect in the
density gradient redistributed diffusion term as introduced in this paper.
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FIG. 20. Relation between the right-hand term of Eqs. (B3), (B4), and (B6) where � = 1−σ

(1−σ )Y +σ
for the

Ma = 1.22 case. (a) Scatter points of the three terms at t = 2.74; (b) Time history of the volumetric integration
of the three terms.

APPENDIX E: SOME DISCUSSIONS ON EQ. (23)

Here the divergence of velocity relates to density is discussed. By using 1/ρ = Y/ρ ′
2 + (1 −

Y )/ρ ′
1, we can obtain (

1

ρ ′
2

− 1

ρ ′
1

)
DY

Dt
= − 1

ρ2

Dρ

Dt
. (E1)

As for Eq. (B3), by substituting DY/Dt by Eq. (E1) and ∇Y by Eq. (B5) in the form of ρ, then we
obtain

Dρ

Dt
= ρ∇ ·

(
D

∇ρ

ρ

)
. (E2)

By using the conservation law of mass, as shown in Eq. (B2), we can obtain Eq. (23):

∇ · V = −∇ ·
(

D
∇ρ

ρ

)
= −D

(∇2ρ

ρ
− 1

ρ2
∇ρ · ∇ρ

)
, (E3)

in which the first term on the right, also the primary source of density gradient redistributed
diffusion, can be expressed as

∇2ρ

ρ
=

[ √
2(1 − σ )

(1 − σ )Y + σ

]2

∇Y · ∇Y −
[

1 − σ

(1 − σ )Y + σ

]
∇2Y, (E4)

and the second term can be expressed as

1

ρ2
∇ρ · ∇ρ =

[
1 − σ

(1 − σ )Y + σ

]2

∇Y · ∇Y. (E5)

Here, we compare the divergence of velocity and D∇ρ/ρ of different shock Mach numbers, as
shown in Fig. 21. It can be found that there exists a weak linear dependence between these two terms
in Ma = 4. To gain the reason for this dissimilarity, we further sort the quantitative comparison
between these two terms, as shown in Fig. 22. The pressure contour and density contour illustrate

064502-25



BIN YU, HAOYANG LIU, AND HONG LIU

FIG. 21. Comparison between the velocity divergence and divergence of −D∇ρ/ρ. (a) Ma = 1.22 (Re =
5750, Pe = 5500, t = 2.74); (b) Ma = 2.4 (Re = 38 000, Pe = 6400, t = 1.71); (c) Ma = 4 (t = 1.42).

many shock structures in the Ma = 4 case, including the shocklets in the shear layer, reflected
shock, Mach stem, etc. These wave structures change the density distribution and add the source
term of divergence of velocity that makes the deviation of prediction shown in Eq. (E3). However,
we further show that this deviation will not largely change the mixing rate’s magnitude, as shown
in Fig. 23. The mean mass fraction decay of four higher Ma number cases is shown. It can be found
that the derivation of D〈Y 〉/Dt is still robust even in high shock Mach number in which there is only
a small deviation of mean mass fraction and time integral of mixing rate. This may be explained
by the fact that although the distribution of divergence of velocity in high shock Mach number is
changed, the integral value is offset for local compression and expansion coexists in the field, as
shown in Fig. 22.

APPENDIX F: VALIDATION OF 〈 f 〉 AND M IN TYPICAL CASES

In this section, we validate Eq. (33) for typical cases concerned. As shown in Fig. 24, the time
history of mixedness and its time derivative comparing with the density gradient accelerated mixing
rate 〈χ∗〉 are plotted. General agreement can be found in all cases, even for high shock Mach

FIG. 22. (a) Pressure contour; (b) density contour; (c) contour of Y (∇ · V) with the shock wave structures
denoted by blue lines; (d) contour of −Y ∇ · (D∇ρ/ρ ). Ma = 4 case at t = 1.42. IS: incident shock; RS:
reflected shock; MS: Mach stem; TS: transmitted shock.

064502-26



SCALING BEHAVIOR OF DENSITY GRADIENT …

FIG. 23. Mixing rate of 〈Y 〉 and its decay validating Eq. (24) for different Ma number in cylindrical cases.
(a) Ma = 2.4 (Re = 38 000, Pe = 6400); (b) Ma = 3; (c) Ma = 4.

numbers. Two-stage mixing is shown in the cylindrical and spherical bubbles containing helium.
From Eq. (37), the asymptotic limit of mixedness can be estimated as 〈 f∞〉 = 4(〈Y∞〉 − 〈Y 2

∞〉) =
(1 + σ )ηπ/4, indicated by a solid line. The model predicts well in all helium bubble cases. As
introduced in Sec. V C, the mixing in variable-density cases continues in accordance with the linear
growth of mixedness, as shown in Figs. 24(g)–24(i). For time integral of mixing rate M(t ), it shows
a similar trend as mixedness and is different only in the starting point due to the initial diffusion
layer that makes the nonzero of the initial value of mixedness 〈 f0〉, which has been considered in
Sec. V B.

APPENDIX G: AN EFFECTIVE PROOF OF D〈X 〉/Dt ≈ 0 AFTER SHOCK IMPACT

In the compressible flows, it always uses a normalized mole fraction [29] to define the volume
fraction, which is different from the definition in incompressible variable-density flows as X =
(ρ − ρ1)/(ρ2 − ρ1) [73]. Moreover, in combustion flows, the mole fraction is also used to calculate
the reaction rate [57]. Therefore, it is crucial to understand the variation of mole/volume fraction,
not only the mass fraction. From the profile of compression rate as shown in Fig. 18, the mean mole
fraction 〈X 〉 seems to be conservative contrary to the decay of mean mass fraction 〈Y 〉, which makes
the compression rate a robust controlling parameter for mixing. Figure 25 plots the time derivative
of the mean mole fraction D〈X 〉/Dt . While oscillation is found due to the reflected shock (especially
in high shock Ma number cases), the values are near zero for all cases at the medium-late time.

Although it can be assumed that the volume of the bubble is conservative after shock passage
from a physical standpoint, it is rather complicated to prove the conservation of bubble volume
from a mathematical standpoint in a rigorous way. Here an effective proof is provided by neglecting
the impact of first shock compression. Again by using Eq. (14) for mole fraction, we get

D〈X 〉
Dt

=
〈

DX
Dt

〉
+ 〈X (∇ · V)〉. (G1)

From the definition of the mole fraction in the form of mass fraction, we get

X = Y

(1 − α)Y + α
⇒ DX

Dt
= α

[(1 − α)Y + α]2

DY

Dt
, (G2)

where α = M2/M1 = ρ2/ρ1 of preshock conditions. Then Eq. (G1) can be rewritten as

D〈X 〉
Dt

=
〈

1

(1 − α)Y + α

[
α

(1 − α)Y + α

DY

Dt
+ Y (∇ · V)

]
︸ ︷︷ ︸

A

〉
. (G3)
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FIG. 24. Time evolution of mixedness and its time derivative comparing with 〈χ∗〉 in typical cases. (a)–(c)
Cylindrical bubble containing helium with Ma = 1.8 (Re = 20 700); Ma = 2.4 (Re = 38 000, Pe = 6400);
Ma = 3. (d)–(f) Spherical bubble containing helium with Ma = 1.8 (Re = 6900, Pe = 6400); Ma = 2.4 (Re =
39 600, Pe = 15 300); Ma = 3. (g)–(i) Cylindrical bubble containing variable density components with At =
−0.21 (Ma = 2.4, CH4); At = 0.33 (Ma = 2.4, Kr); At = 0.69 (Ma = 1.22, SF6).

Note that
α

(1 − α)Y + α
= 1 − (1 − α)X . (G4)

By using Eq. (E1) and conservation equation of mass Eq. (B2), then A can be expressed as in the
form of density ρ and mole fraction X :

A = − 1

(1/σ − 1)ρ2

Dρ

Dt
[ρ ′

1(1 − X ) + αρ ′
1X − ρ] ≈ 0. (G5)

Here a new alternative density ρ∗∗ = ρ ′
1(1 − X ) + αρ ′

1X can be defined. It can easily be deduced
that when α ≈ σ , ρ∗∗ ≈ ρ, which makes the conservative characteristic of mole fraction. The
validation of the ρ∗∗ ∼ ρ relationship is shown by the scatter points in Fig. 26. Similar to the
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FIG. 25. Time derivative of the mean volume fraction tends to be zero immediately after the shock passage
for cylindrical bubble cases.

relationship of ρ∗ ∼ ρ, a higher Mach number makes the broader width of the scatter points, while
the linear relation is also evident. That explains the near-conservative behavior of mole fraction 〈X 〉,
which is also believed to exist in spherical cases and variable-density cases. If the conservative
behavior is solid, it means the mole fraction shows a similar characteristic as passive scalar mixing,
which is another point not covered by this paper though worthy for future study.

APPENDIX H: SOME DISCUSSIONS ON SPHERICAL BUBBLE CASES

The 2D axisymmetric bubble is compared and validated by a full 3D bubble simulation to show
the 3D effect on mixing. Characteristic instantaneous flow structures of 3D results are depicted in
Fig. 27. From the isocontours of mass fraction in Fig. 27(b), azimuthal instability occurs ahead of the
main supersonic vortex ring. Further examining the isocontour of Q criterion [74], the vortex ring

FIG. 26. Comparison of nominated density ρ∗∗ and exact real density ρ at different Mach numbers for
cylindrical helium bubble cases. (a) Ma = 1.22 (Re = 5750, Pe = 5500, t = 2.74); (b) Ma = 2.4 (Re =
38 000, Pe = 6400, t = 1.71); (c) Ma = 4 (t = 1.42).
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FIG. 27. Flow structures of 3D spherical bubble cases at Ma = 2.4 with Re = 39 600 and Pe = 6700 at
t = 1.79. (a) Isocontours of the mass fraction at Y = 0.2 and 0.6 with its center slice of density contour;
(b) amplification of mass fraction isocontours colored by density magnitude; (c) isocontour of Q criterion
colored by density magnitude; (d) front view of isocontour of density (upper half) and Q criterion (bottom
half). AI: azimuthal instability.

and vessel-like coherent structures can be extracted in Fig. 27(c). This vessel-like vortex structure
is formed from secondary baroclinic vorticity, as analyzed later. The comparison of isocontours of
mass fraction and Q criterion from the front view as in Fig. 27(d) shows clearly that the azimuthal
instability comes from the secondary vortex structures. The axisymmetric characteristic maintains
well in full 3D results in general.

A quantitative comparison of mixedness and its time derivative between the 3D spherical case
and 2D axisymmetric case at the same conditions is shown in Fig. 28(a). Although the azimuthal
instability exists in the 3D case, the integral results conclude that the axisymmetric characteristic

FIG. 28. (a) Comparison of time evolution of mixedness 〈 f 〉 and its time derivative D〈 f 〉/Dt between 3D
spherical case and 2D axisymmetric case. (b) Comparison of density contour between 3D and 2D spherical
case at t = 1.79, as indicated by the dashed line in (a). (c) Comparison of vorticity contour with isoline of
Y = 0.01 (dashed-dot line) between 3D and 2D spherical cases. AI: azimuthal instability; MVR: main vortex
ring; SBV: secondary baroclinic vorticity.
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dominates the flow structures. The qualitative comparisons of density and vorticity contour between
3D and 2D axisymmetric results are illustrated in Figs. 28(b) and 28(c). General consistency is
obtained. The vorticity contour shows that the secondary baroclinic vorticity [75] is the cause
of azimuthal instability ahead of the main vortex ring, which also appears in oblique shock-jet
interaction [8].

In short, the scaling law revealed from the axisymmetric simulations in the present paper may
support the mixing pattern in full 3D SBI. Detailed analysis of the 3D effect in even higher Reynolds
number deserves future study. The axisymmetric simulation can also be validated through this
comparison.

APPENDIX I: TURBULENCE EFFECT ON MIXEDNESS AND MIXING RATE

Figures 29(a) and 29(b) compare both cylindrical and spherical bubble cases under the same
Pe number (Pe = 15 000 for cylinder and Pe = 15 300 for sphere) but two different Re numbers.
Two instantaneous vorticity contours are compared. As for the Re = 38 000 cylindrical case, a
large vortical structure dominates the flow, although secondary baroclinic structures form early
and dissipate at a late time. However, small-scale turbulence occurs and rips the main vortex into
disturbance status in the Re = 95 000 cylindrical case, which also appears in the high Re number
spherical bubble case.

Figure 30 quantitatively compares the effect of small-scale structures on mixedness and mixing
rate. The existence of turbulence in both cylindrical and spherical bubbles slightly increases the
mixedness growth rate, which can also be discovered from the mixing rate evolution profile.
However, the turbulence has a limited effect on mixing in accordance with the independent scaling
of mixing rate on Re number, as revealed in Sec. V A.

Also, the evolutionary difference of mixing behavior between the cylindrical and spherical case
can be observed in Fig. 30. The spherical bubble experiences a faster mixing rate than the cylindrical
bubble. The difference in mixing rate between the two configurations can be attributed to two
reasons. First, from Fig. 15, the circulation of spherical bubble is 5% larger than cylindrical cases,
leading to a faster stretching rate. Second, self-induced velocity in vortex ring [76] tends to a faster
vortex evolution in the spherical bubble than in the cylindrical bubble. The velocity model for shock
spherical bubble and cylindrical bubble interaction [8,77] also reflects the faster motion of a vortex
ring than a vortex pair. The mechanisms causing the difference in mixing behavior between spherical
and cylindrical geometry are worthy of investigation in future work.

FIG. 29. The comparison of vorticity contour between medium Re number (upper half) and high Re
number (bottom half) for cylindrical cases (a) and spherical cases (b). SBV: secondary baroclinic vorticity;
SST: small-scale turbulence.
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(a) (b)

FIG. 30. (a) Comparison of time history of mixedness between medium Re number and high Re number
with same Pe number. Subscripts sphe and cylin represent spherical and cylindrical bubbles, respectively.
(b) Comparison of time history of mixing rate 〈χ∗〉 between medium Re number and high Re number.

APPENDIX J: SOME DISCUSSIONS ON DGRD TERM

As for DGAD, its sign is solely determined by the coefficient K1,Y and K1,Y 2 since dissipation
rate ∇Y · ∇Y is strictly positive. Due to the nonzero DGRD term, it is hard to predict the sign
of D〈Y 〉/Dt and D〈Y 2/2〉/Dt from Eqs. (24) and (27) directly. However, it is remarkable that
by using the generalized Green’s theorem

˝
V (F∇2G + ∇F · ∇G) dV = ‚

S F (∂G/∂ �n) · �n dS, we
can expand the nonzero DGRD term integration in the form of a strictly positive dissipation term.
Starting from Eq. (24), the DGRD term can be expressed as〈

1

Pe
K2,Y (σ,Y )∇2Y

〉
= −

〈
1

Pe

σ

(1 − σ )Y + σ
∇2Y

〉
(J1)

= −
〈

1

Pe

σ (1 − σ )

[(1 − σ )Y + σ ]2
∇Y · ∇Y

〉
. (J2)

Then the coefficient on growth rate for the mean mass fraction is defined as

D〈Y 〉
Dt

=
〈
− 1

Pe
KY (σ,Y )∇Y · ∇Y

〉
, (J3)

where

KY (σ,Y ) = � · (1 + �Y ) + σ (1 − σ )

[(1 − σ )Y + σ ]2

[
� = 1 − σ

(1 − σ )Y + σ

]
. (J4)

As for DGRD term in Eq. (27), it can be expressed as〈
1

Pe
K2,Y 2 (σ,Y )∇2Y

〉
= 1

2

〈
1

Pe

(1 − σ )Y 2

(1 − σ )Y + σ
∇2Y

〉
(J5)

= 1

2

〈
1

Pe

{[
σ

(1 − σ )Y + σ

]2

− 1

}
∇Y · ∇Y

〉
. (J6)

In the same way, the coefficient on growth rate for the mean mass fraction energy is defined as

D〈Y 2/2〉
Dt

=
〈
− 1

Pe
KY 2 (σ,Y )∇Y · ∇Y

〉
, (J7)
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(a) (b)

FIG. 31. Coefficients of accelerated dissipation KY for the mass fraction Y (a) and KY 2 for the mass
fraction energy Y 2/2 (b).

where

KY 2 (σ,Y ) = (1 + �Y )2

2
− 1

2

[
σ

(1 − σ )Y + σ

]2

+ 1. (J8)

Then we can determine the sign of D〈Y 〉/Dt and D〈Y 2/2〉/Dt from the coefficients KY and KY 2 .
Figure 31 shows the variation of coefficients KY and KY 2 with mass fraction Y and postshock
density ratio σ . It can be found that when σ > 1, KY is strictly negative, and the mean mass fraction
will increase due to the positive source in Eq. (J3). For mean mass fraction energy, it is noteworthy
that the coefficient KY 2 will become negative at a large density ratio and large mass fraction. Thus,
the boundary of the strictly positive coefficient will be reached when KY 2 (σ,Y = 1) = 0 ⇒ σ =
3/2. The positive coefficient KY 2 at the range of σ < 3/2 identifies the conclusive decrease of mean
mass fraction energy.

Furthermore, based on Eqs. (J3) and (J7), we can reexpress the spatial-averaged dissipation rate
〈χ∗〉 of Eq. (32) in the form of the positive dissipation term:

〈χ∗〉 = D〈 f 〉
Dt

=
〈

8

Pe
K f (σ,Y )∇Y · ∇Y

〉
, (J9)

where the coefficient K f (σ,Y ) = 3 − (σ + 1)/[(1 − σ )Y + σ ]. Despite the complicated formulas
of mixing rate of the mass fraction and its energy, the expression of the dissipation rate is concise
in general and can degenerate to the passive scalar mixing scenario [34] when σ = 1.
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