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Solute transport in porous media is affected by several factors. The heterogeneous struc-
ture of the permeability field is a key factor controlling the spreading and mixing behaviors
of a solute cloud. On the other hand, other factors such as the viscosity contrast between the
dissolved solute and the ambient fluid can also play an important role. Although both these
mixing mechanisms (field heterogeneity and viscosity contrast) have been acknowledged
and studied, more investigations are needed in order to better characterize the effect of
the variation of both the degree of viscous fingering and the level of disorder of the
porous medium. This work aims to explore the impact of field heterogeneity and viscosity
contrast on the transport behavior of an inert solute in a two-dimensional flow field. To
achieve this, we performed high-resolution numerical simulations based on the spectral
method to solve coupled flow and transport equations for a given range of viscosity contrast
and log-permeability variance. We analyze the degree and rate of mixing, contour length
of the solute cloud, spatial statistics of the concentration field, and arrival times at a
control plane to characterize spreading and mixing in the domain. Through the use of
numerical simulations, we provide a quantitative separation of the impacts of fingering
and heterogeneity and we parametrize the concentration probability distribution function.
We find that the interplay among viscous fingering, high-permeability channeling, and
low-permeability stagnation at small scales create important features in the spreading
and mixing characteristics. In particular, our results indicate that at early times viscosity
contrast has a more significant impact on mixing than permeability heterogeneity, and the
effect of viscosity contrast on early and late arrival times at a control plane is enhanced by
increasing levels of permeability heterogeneity; on the other hand, heterogeneity reduces
the peak concentration at a control plane and causes larger solute cloud spreading when
the solute is more viscous than the ambient fluid compared to when the solute is less
viscous. Moreover, we find that the concentration cumulative distribution function of the
solute cloud can be described as a beta distribution for the range of viscosity contrast and
permeability heterogeneity considered.

DOI: 10.1103/PhysRevFluids.6.064501

I. INTRODUCTION

The fundamental mechanisms controlling transport phenomena in natural porous formations are
significantly affected by the spatially random fluctuations of the permeability field at different
scales. The presence of heterogeneity in the permeability field leads to the creation of fast flow
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channels that impact both the dispersive and mixing rate of the solute cloud [1–8] as well as
first passage times [9–11]. These heterogeneity features have been investigated in applications
such as management and remediation of groundwater contamination [12,13], artificial groundwater
recharge [14], human health risk analysis [15,16], and CO2 storage [17,18]. An often neglected
but important aspect controlling transport is the viscosity contrast between the solute and the
ambient fluid. As reported in the literature [19], groundwater contaminants such as nonhalogenated
semivolatile compounds and jet fuel are more viscous than water. On the other hand, contaminants
such as halogenated volatiles (amongst others) are less viscous than water. Moreover, the physical
properties of a solute, such as viscosity, can vary in space and time due to the dependence of the
property on the solute concentration and, therefore, mixing [20]. The contrast of viscosity between
two fluids leads to the well-known phenomenon of viscous fingering, when the less viscous fluid
displaces the more viscous fluid [21]. Viscous fingering is a type of hydrodynamic instability known
as the Saffman-Taylor instability that occurs in porous media or Hele-Shaw cells under both miscible
and immiscible flow conditions [22]. This phenomenon has received renewed attention due to
its role in applications such as enhanced oil recovery [20,23], geological CO2 storage [24], and
chromatography separation [25].

The effect of viscous fingering on spreading and mixing of fluid slugs has been reported
through laboratory experiments and numerical simulations. Experiments have been conducted using
Hele-Shaw cells [26,27], glass beads or sand packs [28–30], and naturally consolidated rocks
[31,32]. Numerical simulations have been conducted using higher-order finite difference methods
[33,34], particle tracking methods [35], spectral methods [36–39], and compact finite difference–
finite volume methods [20,40–42]. The effect of low levels of heterogeneity on spreading of slugs
due to viscous fingering has also been studied [32,40,43–50]. Nicolaides et al. [19] showed how
the interplay between two sources of disorder (i.e., viscosity contrast and physical heterogeneity of
the porous medium) impacted macroscopic features of the solute transport behavior, namely solute
breakthrough and removal times and mixing, in a flow field induced by injection and extraction
wells.

Our work focuses on further understanding of the joint role of medium heterogeneity and
viscous fingering on solute transport under miscible flow conditions. The analysis carried out in
the present contribution differs from Nicolaides et al. [19] by considering additional mixing and
statistical metrics such as the concentration statistical distribution. Differently from the work of
Nicolaides et al. [19], we consider transport under uniform-in-the-mean flow conditions. Our flow
configuration mimics an ambient flow, while in Nicolaides et al. [19] the flow is controlled by
injection and extraction wells. The presence of wells in the flow field impact the solute’s mixing
behavior and its concentration statistics (see [51]). We are particularly interested in quantifying the
relative importance of the two factors in the overall transport behavior. We achieve this goal in
two ways. First, we provide a theoretical analysis of how the sources of disorder, namely viscosity
contrast and medium heterogeneity, affect the solute transport process. Second, through the use of
high-resolution numerical simulations, we examine the effects of both medium heterogeneity and
viscosity contrast on the temporal evolution of statistical descriptors of transport (i.e., concentration
mean, variance, and probability density function) and the solute cloud’s contour length. These
metrics provide important information about the solute mixing state [52], and therefore its eventual
chemical reactivity [6,53], and assist site managers to estimate the risks associated with contamina-
tion [54]. For example, the effectiveness of groundwater remediation techniques may be related to
the contact surface area between two fluids, which is increased by solute spreading [55,56]. We also
show how the early breakthrough, associated with the leading edge of the solute cloud, is impacted
by permeability heterogeneity and viscous fingering. Differently from previous works, we introduce
two metrics that provide a quantitative separation of the impacts of fingering and heterogeneity.
These two metrics allow one to characterize and clarify the interplay between heterogeneity and
viscosity contrast on the macroscopic transport behavior. Finally, a relation between the solute
cloud’s concentration cumulative distribution function (CDF) and the beta distribution is reported.
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II. THEORETICAL BACKGROUND

A. Governing equations

In this work, we consider a two-dimensional (2D) porous medium where x = (x1, x2) is
the Cartesian coordinate system. The physical domain has dimensions L1 × L2 = {(x1, x2)|x1 ∈
L1 and x2 ∈ L2}. The permeability of the porous medium, denoted by k(x), is assumed to be locally
isotropic and spatially heterogeneous. Furthermore, we assume a constant porosity φ. The spatially
heterogeneous structure of the log-permeability f (x) ≡ ln[k(x)] is considered to be multi-Gaussian
and modeled through a random space function (RSF) [57]. The RSF model for f is characterized by
its mean 〈 f 〉, variance σ 2

f , and a correlation length λ. The angled brackets 〈·〉 represent the average
operator. In this study, we adopt an isotropic Gaussian log-permeability covariance model:

C f (r) = σ 2
f e−r2/λ2

(1)

with r = |x′′ − x′| denoting the lag distance.
Our study neglects the effects of density variations. This assumption is reasonable when dealing

with 2D planar flow fields and for solutes characterized by density values similar to the surrounding
fluid. Regarding the latter, the densities of certain contaminants are similar to water. Examples
consist of m-cresol, chlorobenzene, and benzene (with densities equal to 1.03, 1.11, and 0.88 g/ml
respectively).

For our work, we designate dimensional variables with the hat symbol (·̂). The governing
equation for the flow field is thus given by

ct
∂ p̂(x̂, t̂ )

∂ t̂
+ ∇x̂ · q̂(x̂, t̂ ) = 0, (2)

where q̂ is the specific discharge, p̂ denotes the pore fluid pressure and ct represents compressibility.
Assuming incompressible flow (ct ≈ 0) in the absence of both sinks/sources and temporally
variable boundary conditions, Eq. (2) becomes

∇x̂ · q̂(x̂, t̂ ) = 0. (3)

The heterogeneous permeability field is mapped on the specific discharge through Darcy’s law:

q̂(x̂, t̂ ) = − k̂(x̂)

μ̂(Ĉ(x̂, t̂ ))
∇x̂ p̂(x̂, t̂ ), (4)

where μ̂ is the ambient fluid mixture’s viscosity, which depends on the concentration Ĉ of the
injected solute, and p̂ denotes the pore fluid pressure. In this work we consider that the fluid
carrying the solute has a viscosity different than the viscosity of the ambient fluid and we assume
an exponential viscosity model [20]:

μ̂(Ĉ(x̂, t̂ )) = μ0e−R Ĉ(x̂,t̂ )
Co (5)

and R is the log-viscosity ratio, R = ln[μ0/μ1], Co is the inlet concentration of the solute, μ0 is
the viscosity of the pure fluid in the absence of a solute, and μ1 is the viscosity of the solute. We
consider permeameter-like boundary conditions, i.e., prescribed pressures at the inlet (x1 = 0) and
outlet (x1 = L1) of the flow domain and zero flux at the layer boundaries x2 = 0 and x2 = L2. Under
these conditions, the spatially heterogeneous flow field is driven by uniform-in-the-mean pressure
gradient.

An inert solute is instantaneously injected through an areal source zone with dimensions �1 and
�2 (with �1 � �2) into the divergence-free Darcy flow. The spatiotemporal distribution of the solute
concentration is provided by the advection-dispersion equation:

φ
∂Ĉ(x̂, t̂ )

∂ t̂
+ q̂(x̂, t̂ ) · ∇x̂Ĉ(x̂, t̂ ) = φD∇2

x̂Ĉ(x̂, t̂ ), (6)
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FIG. 1. Initial distribution of the concentration field in the flow domain. The solute is instantaneously
injected along a rectangular source zone in a spatially heterogeneous porous medium.

where D corresponds to the local-scale dispersion coefficient (assumed to be constant) and is
modelled through Scheidegger’s theory [58]. The boundary conditions for the transport problem
are periodic on the left and right boundaries, as well as the top and bottom of the domain. The
initial condition for the concentration distribution, as reported in Fig. 1, is a zero concentration in
the whole domain with the exception of the source area, where the concentration is set to be equal
to unit value, with a small numerical perturbation on the edges to allow the formation of viscous
fingers.

The Appendix reports the governing equations, i.e., Eqs. (3)–(6), in dimensionless form; see
Eqs. (A2)–(A5). As indicated in the Appendix, the ·̂ symbol is removed to denote all dimensionless
variables [see dimensionless groups, Eq. (A1) in the Appendix]. The Appendix also shows that the
dimensionless advection-dispersion equation is expressed in terms of the Péclet number. The Péclet
number is given by Pe ≡ Uλ/D. Due to the dependence of q on the concentration field C, Eq. (A5)
is nonlinear and needs to be solved numerically.

B. Mixing descriptors

The degree and rate of mixing can be quantified in the terms of the concentration variance (σ 2
c ).

The temporal evolution of σ 2
c under periodic boundary conditions (or in absence of any net injection

or extraction of the fluids) is governed by an ordinary differential equation that relates σ 2
c to the mean

scalar dissipation rate εc [20,59],

dσ 2
c (t )

dt
= −2εc(t ). (7)

The mean scalar dissipation rate is defined in terms of concentration gradients as

εc(t ) ≡ 〈|∇C(x, t )|2〉
Pe

, (8)

where 〈·〉 denotes the spatial averaging operator.

III. ANALYSIS ON THE SOURCES OF DISORDER IN THE FLOW FIELD

A. Viscosity contrast and heterogeneity effects on vorticity

The viscosity contrast R and spatial heterogeneity in the k field induce fluctuations in the flow
field, which give rise to fingering and channeling patterns on the solute interface. These fluctuations
can be quantified in terms of the vorticity ω = ∇ × q of the flow field. Using Eq. (4) and μ = e−RC,
we obtain [60]

ω(x, t ) = R∇C(x, t ) × q(x, t ) + 1

k(x)
∇k(x) × q(x, t ) = ωR(x, t ) + ωk (x, t ), (9)

which clearly shows how the two sources of disorder—viscosity contrast and heterogeneity—act on
the flow field to generate two types of vorticity, ωR and ωk , defined as ωR = R∇C(x, t ) × q(x, t )
and ωk = 1

k(x)∇k(x) × q(x, t ). In a 2D field, only the out-of-plane component of the vorticity vector
is nonzero, i.e., ω = [0, 0, ω]. Then Eq. (9) can be written in terms of the stream function ψ , which
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is defined as ∂ψ/∂x1 = −qx2 and ∂ψ/∂x2 = qx1 , to obtain

ω(x, t ) = −R∇C(x, t ) · ∇ψ (x, t ) − ∇ ln[k(x)] · ∇ψ (x, t ) = [ϑR(x, t ) + ϑk (x)] · ∇ψ (x, t ), (10)

where we split the vorticity generation mechanisms into its two parts, ϑR and ϑk . The stream
function and vorticity are also related to each other as ∇2ψ = −ω.

Let us analyze the two sources individually.
(1) The magnitude of

ϑR(x, t ) = −R∇C(x, t ) (11)

increases with nonzero R and ∇C, the latter being a dynamic quantity. The interface between the
initial solute cloud and the ambient fluid provides the initial ∇C, which is amplified by R to generate
the vorticity near the interface that creates viscous fingers and further growth of the concentration
gradients. This shows how the fingering process can grow like an instability. The concentration
gradient initially sparks the creation of a finger, and the tip of the finger in turn “pushes” to travel
faster than the ambient fluid, thus leading to the existence of a concentration gradient on the front
of the interface between scalar and fluid; as the finger moves and progresses, such gradient moves
along with it in the domain, causing local growth of the concentration gradient. Such local growth
can be seen in more detail in Fig. 2.

(2) The magnitude of

ϑk (x) = −∇ f (x) (12)

(with f = ln k) is not, on the other hand, a dynamic quantity and is constant in time for a given
permeability field.

These differences between the two sources of disorder, namely R and σ 2
f , give rise to different

flow structures depending on whether viscosity contrast or heterogeneity dominates the flow (see
Fig. 3). When fingering dominates heterogeneity (sufficiently large R compared to σ 2

f ), vorticity ωR

is high immediately behind the sharp interface of a finger tip, which grows and becomes “rounder”
as time increases until the tip splits into two nascent fingers [21,61]. Roundness and tip splitting of
fingers is absent at R = 0 regardless of how high σ 2

f is. Instead, fingers at high σ 2
f gradually thins

towards the tip and the tip fades away in analogy with the Taylor dispersion [62] effect (Fig. 3). In
viscous fingering-dominated flow, Taylor dispersion at the tip is suppressed due to the vorticity from
ϑR. This suppression happens because the solute cloud that is creating the finger has the tendency
to travel fast, pushing against the front and keeping it sharp.

In this study, we consider both R > 0 and R < 0 displacements. Fingering occurs at the leading
edge of the solute cloud in case of former and at the trailing edge in case of latter. For R < 0,
the fingers are developed in the trailing edge of the plume, opposite to the direction of mean flow
because their tips lie at the rear front of the less viscous fluid. The sign of R affects the viscosity
contrast-induced vorticity, ωR = −R∇C · ∇ψ , in three important ways. The first effect is obvious
because R appears explicitly in the expression of ωR. The second effect is through the ∇C vector.
Note that ωR is nonzero only near the interface because ∇C is zero away from the interface. The
direction of the ∇C vector changes along the entire interface and in particular along the interface
of a single finger, which can be split into three regions: the curved tip, curved rear, and straight
wall regions of the finger, as shown in Fig. 4. At the tip, ∇C and q vectors are opposite to each
other for R > 0, whereas they point in the same direction for R < 0. The third effect is through the
magnitude of q. The transverse velocity qx2 is highest near the tip and lowest along the wall region
[63]. Moreover, qx1 and qx2 magnitudes are higher at the tip of an R > 0 finger than at the tip of an
R < 0 finger, as is visible in Fig. 5.

B. Fingering mechanisms at R �= 0

To understand the effect of fingering on the transport metrics of the solute cloud, we need to
refer to the physical mechanisms of tip splitting, channeling, shielding, and merging of fingers that
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FIG. 2. Concentration field C(x, t ) (left column) and logarithm of the local scalar dissipation rate εl
c =

|∇C(x,t )|2
Pe (right column) at four subsequent time steps (from top to bottom) for a viscosity contrast R = 1 in a

homogeneous permeability field. Note how the concentration gradient progresses in the orange square, moving
from the bottom left quadrant to occupy the whole bottom half in the first two time snapshots. As another finger
enters the region defined by the orange square, the concentration gradient locally increases also in the upper
half of the considered square.

have been observed in viscous fingering simulations and experiments; see, e.g., [21,23,36,41,61].
As mentioned above, tip splitting refers to the splitting of the tip of a finger into two smaller, nascent
fingers. The nascent fingers compete with each other as well as with other fingers in their vicinity

064501-6



RELATIVE IMPACTS OF PERMEABILITY …

FIG. 3. Difference in the finger tip structures between fingering-dominated (top row) and heterogeneity-
dominated (bottom row) flows. The left column shows the concentration fields in the two cases within
a zoom-in view window. The right column shows the concentration contours (black lines) superposed
on the streamlines (red lines). Fingering-dominated flows produce rounder and better delineated tips than
heterogeneity-dominated flows. Fingering also produces tip splitting that is absent at R = 0.

by virtue of the global nature of the pressure field. This manifests as shielding of a smaller finger by
a larger, faster-moving finger and merging of the smaller finger into the larger finger. The shielded
finger experiences a stunted growth and either merges with the larger finger or fades away through
diffusion. At high R, multiple merging and shielding events can lead to emergence of a single finger
as a dominant feature of the flow. This is called channeling, which is often undesirable in mixing
applications because it leads to a reduction in transverse mixing of the two fluids compared to the
scenario where multiple fingers grow on the interface. However, note that channeling also implies
a faster breakthrough at pumping wells which may be desirable during some contaminant removal
operations. These fingering mechanisms are nonlinear and arise due to two-way coupling between

FIG. 4. Single finger regions: straight wall, curved rear, and curved tip.
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FIG. 5. Longitudinal and transversal velocity fields [qx1 (x, t ) and qx2 (x, t ) respectively] for a solute cloud
with viscosity contrast R = 1 (top row) and R = −1 (bottom row) in a homogeneous field. The black lines
represent the contour of the solute cloud at a threshold concentration value C = 0.1.

flow and transport processes. They remain active throughout the displacement period, albeit with
different strengths. For example, tip splitting is more pronounced at early times whereas channeling
emerges at later times. Also, the effect of two mechanisms can negate each other, e.g., tip splitting
can negate merging in terms of their net effect on the interface length.

To understand the impact of the sign of R on the solute transport behavior, we can analyze how
tip splitting and channeling mechanisms manifest themselves at the leading and trailing edges of
the cloud. From Eq. (10), ωR is larger at larger specific discharges qx1 and qx2 . Therefore, we expect
tip splitting to be more pronounced at R > 0 than at R < 0 because the velocities qx1 and qx2 at the
tip are higher at R > 0 than at R < 0. Channeling is almost exclusively reserved for R > 0 flows
because the tip velocity (with respect to the mean flow velocity) is smaller in R < 0 than in R > 0.

IV. NUMERICAL MODEL AND IMPLEMENTATION

We use a second-order accurate finite volume method to solve Eq. (3) for cell-centered pressures.
We linearize the equation by using the two-point flux approximation [64] of the Darcy flux in
Eq. (4), which expresses the face-centered flux in terms of cell-centered pressures of the two
neighboring cells and the face transmissibility computed from the harmonic mean of the cell
permeabilities, viscosities, and dimensions. To solve the transport problem [Eq. (6)], we use a
spectral method to discretize the spatial derivatives of cell-centered concentrations and a third-order
explicit Runge-Kutta scheme to integrate time; see Refs. [20,41] for details. Higher-order accuracy
of the spectral method allows us to resolve sharp gradients in the concentration field that arise from
viscous fingering. The pressure field is relatively smooth because of the assumption of miscibility
of the two fluids and, therefore, a second-order finite volume method provides sufficient numerical
accuracy for the flow problem.

We use a 2D Cartesian grid with a uniform mesh size. Each grid block has dimensions
� × � (see Table I). The number of cells is Nx × Ny = 1440 × 264 such that the ratio �/λ =
0.084, in order to capture the effects of the spatially heterogeneous permeability field on the
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TABLE I. Input parameters used in the simulations

Parameter Symbol Value Calculated as

Correlation length in the x and y directions λ 5 m
Domain length in the x1 direction L1 600 m 120λ

Domain length in the x2 direction L2 110 m 22λ

Mesh size in the x1 and x2 directions � 0.42 m λ/12
Distance of source from top and bottom boundary stb 15 m 3λ

Distance of source from left boundary sl 50 m 10λ

Length of source in the x1 direction �1 15 m 3λ

Length of source in the x2 direction �2 80 m 16λ

Longitudinal distance of control plane from left boundary Lcp 250 m 50λ

Mean longitudinal flow velocity U 1 m/d
Local dispersivity α 0.042 m2 0.1�

Local scale dispersion coefficient D 0.042 m2/d α U
Péclet number Pe 120 Uλ/D
Concentration at the source zone Co 1 mg/l
Threshold concentration for solute cloud delineation Ct 10−3 mg/l

spatiotemporal dynamics of the solute cloud; see, e.g., [65–67]. The simulations were performed
on high-performance computing nodes. Details about the input parameters for the numerical model
are reported in Table I.

V. RESULTS

All computational results are reported in dimensionless form. Both longitudinal and transverse
directions are normalized by λ, time is normalized by the advective timescale τu = λ/U , and the
concentration is normalized by the inlet concentration Co.

In Fig. 6 we report the results of the simulations performed for a k field characterized by σ 2
f = 0.5

at different times for the three selected values of viscosity contrast R = −1, 0, and 1. Qualitative
analysis of Fig. 6 illustrates that the mixing behavior is different for different R values, for example
the absence of viscosity contrast (R = 0) reduces the degree of mixing of the cloud. The exact
quantification of this behavior is reported in the following sections. It is also clear that in the case of
a positive R the solute cloud travels faster, while the opposite happens for negative values of R. This
holds true also for the fields with σ 2

f = 0 and σ 2
f = 0.25 (not shown in Fig. 6). We can thus expect

earlier first arrival times for cases where R > 0 with respect to transport in the absence of viscosity
contrast. Figure 6 also shows that clouds with R < 0 will be characterized by late arrival times. This
becomes clear in Fig. 7, which illustrates the impact of the mobility ratio R on the concentration
breakthrough curve (BTC) at the control plane for different levels of heterogeneity. Note that Fig. 7
reports the averaged normalized concentration over the control plane (i.e., transverse direction)
located at x1 = Lcp, namely

〈C(Lcp, x2, t )〉⊥ = 1

L2

∫ L2

0
C(Lcp, x2, t )dx2. (13)

The case for a homogeneous porous media is illustrated in Fig. 7(a). As the level of heterogeneity
increases, the maximum concentration decreases and macroscale spreading is augmented leading to
more tailing effects [compare Figs. 7(a)–7(c)]. The effects of the mobility ratio are also clearly
depicted in Fig. 7. For R = 1, the presence of fingering is pronounced in the leading edge of the
solute cloud which leads to earlier breakthrough at the control plane as opposed to the case of
R = −1. The asymmetry of the concentration signal at the control plane is amplified when R is
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FIG. 6. Two-dimensional representation of the concentration distribution with k field characterized by
σ 2

f = 0.5 for three different values of viscosity ratio R at three different simulation times.

different than zero. On one hand, the effects of heterogeneity tend to diminish the impact of the
mobility ratio on the maximum concentration [compare Fig. 7(b) with 7(c), results for R = −1 and
R = 1). On the other hand, Fig. 7 clearly illustrates that the mobility ratio impacts the spreading
of the solute cloud independent of the log-permeability variance. In all cases, the macrospreading
effects [1] (the plume spreading induced by fluctuations in the sources of disorder) are larger for
R < 0.

To evaluate the coupled effect of viscosity contrast and heterogeneity on early arrival times, we
define the variable η as

η = te|R �=0

te|R=0
, (14)

where te is the time at which the normalized concentration reaches a value of C = 0.05. The trend
of η for varying σ 2

f is reported in Fig. 8, where the blue curve represents the cases with negative
viscosity contrast while the light blue the positive one. From Fig. 8 is possible to notice that fingers
in the front of the cloud travel faster with increasing levels of heterogeneity. The opposite occurs
when fingers are developed in the tailing edge of the plume (i.e., the cloud slows down with respect
to the case with R = 0). This means that the hydraulic connectivity (i.e., early arrival times) of the
leading edge of the plume is enhanced for R > 0 whereas it is diminished for R � 0. These results
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FIG. 7. Breakthrough curves (BTCs) at a control plane located at x1 = Lcp for the three different levels of
heterogeneity of the permeability field: (a) homogeneous, (b) heterogeneous with σ 2

f = 0.25, and (c) heteroge-
neous with σ 2

f = 0.5.

show that neglecting viscosity contrast in transport models can have an impact on the estimation of
early arrival times which are critical in risk analysis and contaminant site management; see, e.g.,
[12,68].

Next, we evaluate the spatial mean of the concentration (normalized by Co) at all time steps
(Fig. 9). The spatial mean is calculated in the region of the domain occupied by the solute cloud,
defined as the volume V (t ) where the concentration is higher than the threshold value reported in
Table I, C(x, t ) > Ct . The dimensionless mean concentration 〈C〉 is thus calculated as

〈C〉 = 1

V (t )

∫
V (t )

C(x, t )dV. (15)

As shown in Fig. 9(a), for a homogeneous porous media the temporal evolution of the mean
concentration is the same for both R = 1 and R = −1. Furthermore, the mean concentrations for
R �= 0 cases are lower than the one obtained in the absence of viscous fingering (R = 0). When
R �= 0, the presence of fingering contributes to an increase of the surface area of the solute cloud
with the surrounding ambient fluid, also called interface stretching. It also contributes to a higher

FIG. 8. Effect of the viscosity ratio R on η for increasing levels of heterogeneity of the permeability field.
Results computed at x1 = Lcp, where the value of Lcp is reported in Table I.
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FIG. 9. Mean plume concentration for the three different levels of heterogeneity of the permeability field:
(a) homogeneous, (b) heterogeneous with σ 2

f = 0.25, and (c) heterogeneous with σ 2
f = 0.5. In the insets the

details of late times are plotted in a log-log scale, with the values of the parameter b.

concentration gradient along the interface. These two effects combined contribute to an enhance-
ment of the diffusive mass flux across the interface, which in turn leads to a more diluted cloud.
Furthermore, more vigorous tip splitting in the case of R = 1 increases the length of the fluid-fluid
interface compared to R = −1, which explains the larger dilution or smaller mean concentration
observed at R = 1. This explains also why, if we consider a scaling relation for the decay of the
mean concentration 〈C〉 ∼ t b at large times, the values of b are always slightly higher in modulus
for R < 0 than for R > 0. In fact, in the latter case the enhanced mixing at earlier times results into
smaller magnitudes of the gradients at intermediate times which retards mixing at later times. Both
cases however present a decay faster than the case of R = 0. The effects of the mobility ratio are
reduced when the level of heterogeneity increases [compare Figs. 9(a)–9(c)].

Figure 10 depicts the temporal dynamics of the concentration variance (normalized by C2
o ) within

the solute cloud of volume V (t ), calculated as

σ 2
c (t ) = 1

V (t )

∫
V (t )

[C(x, t ) − 〈C(t )〉]2dV. (16)
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FIG. 10. Concentration variance of the solute cloud for the three different levels of heterogeneity of the
permeability field: (a) homogeneous, (b) heterogeneous with σ 2

f = 0.25, and (c) heterogeneous with σ 2
f = 0.5.

As observed in Fig. 10, the presence of fingering causes a sudden increase of the concentration
variance followed by fast decay when compared to the R = 0 case, regardless of the level of
heterogeneity. Similarly to the mean concentration behavior observed in Fig. 9, more vigorous
tip splitting in the case of R > 0 leads to an increase of the surface area of the solute body with
the surrounding fluid which contributes to the dilution of the cloud and, therefore, lower variance
[compare curves for R = −1 and R = 1 in Figs. 10(b) and 10(c)]. It is interesting to note the dif-
ference in the impact of R between the heterogeneous and homogeneous cases. In fact, for the
heterogeneous cases, the curves for R = −1 and R = 1 become more distinct with respect to the
homogeneous one.

The cumulative distribution function (CDF) of the concentration field is plotted at different
times for σ 2

f = 0.5 and R = −1, 0 and 1 in Fig. 11. As shown in Fig. 11, the probability that
the concentration is below a certain value (i.e., C = 0.25) is higher for R = 1 [Fig. 11(c)] when
compared to the case of R = −1 [Fig. 11(a)]. The tip-splitting mechanism, which is stronger
for positive values of R, is the key reason for the increase in the likelihood of observing lower
concentrations. As shown in the literature [69], the concavity of the CDF can be used as a measure
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FIG. 11. Cumulative density function of the plume concentration in the k field with σ 2
f = 0.5 at three

different simulation times for three different values of viscosity ratio R: (a) R = −1, (b) R = 0, and (c) R = 1.

of the dilution state of the solute body. Based on the evidence published in previous papers in the
turbulence, atmospheric and hydrologic communities [54,70–72], the concentration CDF can be
approximated by a beta distribution for transport in spatially variable flow fields. Here we examine
if the beta distribution can approximate the concentration distribution in the presence of viscous
fingering. The beta CDF is given by

PC (c; x, t ) = �[ao + bo]

�[ao(x, t )]�[bo(x, t )]

∫ c

0
χao(x,t )−1(1 − χ )bo(x,t )−1dχ,

with

�[z] =
∫ ∞

0
ζ z−1e−ζ dζ ,

ao(x, t ) = 〈C(x, t )〉
β(x, t )

,

(17)
bo(x, t ) = 1 − 〈C(x, t )〉

β(x, t )
,

β(x, t ) = σ 2
c (x, t )

〈C(x, t )〉[1 − 〈C(x, t )〉] − σ 2
c (x, t )

,

where �[z] is the gamma function.
Figure 11 depicts an excellent agreement between the empirical CDF (obtained from the raw

numerical data) and the beta CDF model [Eq. (17)] parametrized by the mean and variance of C,
namely 〈C〉 and σ 2

c . From an application point of view, both quantities, i.e., concentration mean and
variance, can be estimated from monitoring wells in a contaminated site [54]. The results reported in
Fig. 11 show that the beta-CDF model can be employed to capture the full probabilistic distribution
of the solute cloud in the presence of viscous fingering for the range of heterogeneity and mobility
ratio explored in this work, i.e., σ 2

f < 1 and −1 � R � 1. This result can be used to predict the
probability that the solute concentration will exceed a threshold value which is of importance in risk
analysis and aquifer remediation [54,69].

The temporal evolution of the mean scalar dissipation rate [Eq. (8) is presented in Fig. 12 for the
homogeneous and heterogeneous flows. As illustrated in Fig. 12, the presence of viscous fingering
leads to a sharp increase in the scalar dissipation rate followed by a decay. The differences between
the curves for R = −1, 0, and 1 are attenuated in the heterogeneous scenarios [compare Fig. 12(a)
with Figs. 12(b) and 12(c)]. In all cases, the peak of the scalar dissipation rate is higher for R = 1.

Figure 13 illustrates the solute cloud’s contour length evolution in time. The contour length
is computed based on the normalized concentration C∗ = 0.05 isoline. As shown in Fig. 13, the
effect of the medium’s disorder contributes to an increase of the cloud’s contour length. For the
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FIG. 12. Mean scalar dissipation rate εc for the three different levels of heterogeneity of the permeability
field: (a) homogeneous, (b) heterogeneous with σ 2

f = 0.25, and (c) heterogeneous with σ 2
f = 0.5.

heterogeneous cases, i.e., σ 2
f = 0.25 and 0.5, the contour length is larger for R = 1 than the ones

computed for R = −1.
Next, we quantify the relative contribution of the medium’s disorder level and the viscosity

contrast on solute mixing. In order to do so, the effects of heterogeneity and viscosity contrast have
been here quantified by normalizing the mean scalar dissipation rate εc (Fig. 12) to the cases where
those effects are not present. The heterogeneity-induced dissipation is represented by the parameter
ξ thus calculated as

ξ (t ) = εc(t |R, σ f ) − εc(t |R, σ f = 0)

εc(t |R, σ f = 0)
, (18)

while the finger-induced dissipation is quantified by ϕ as

ϕ(t ) = εc(t |R, σ f ) − εc(t |R = 0, σ f )

εc(t |R = 0, σ f )
. (19)

The temporal evolution of ξ and ϕ is reported in Fig. 14 for the cases where both heterogeneity
and viscosity contrast are present. It is clear that at early times the effects induced by the viscosity
contrast are more pronounced on the dissipation rate as opposed to the ones induced by the physical
heterogeneity, as the values of ϕ in Fig. 14(a) are higher than the values of ξ in Fig. 14(b). From
Fig. 14(a), we notice that for the same level of heterogeneity, a positive viscosity contrast has a
greater impact on εc compared to a negative R case. At parity of R, the fingering effect on mixing
is attenuated by higher levels of heterogeneity, which is as expected. At later times, on the other
hand, heterogeneity [Fig. 14(b)] becomes the main contributor to dissipation, though its importance

FIG. 13. Evolution of the length of C = 0.05 contour for the three different levels of heterogeneity of the
permeability field: (a) homogeneous, (b) heterogeneous with σ 2

f = 0.25, and (c) heterogeneous with σ 2
f = 0.5.
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FIG. 14. Trends in time of the mean scalar dissipation rate εc normalized with respect to (a) the effect of
viscosity contrast, defined by the metric ϕ [Eq. (19)] and to (b) the effect of heterogeneity, defined by the metric
ξ [Eq. (18)].

is relatively marginal compared to the viscosity contribution to mixing at early times. The behavior
of ξ at parity of R does not seem to be greatly affected by an increase in σ 2

f , but this may be due
to the fact that the considered levels of heterogeneity do not differ much. However, heterogeneity
seems to enhance mixing at later times especially for R < 0; this can be explained considering
that mixing happens faster for R > 0, so at later times the process is almost over, while for R < 0
heterogeneity has sufficient time to kick in and have a more significant impact. This suggests that,
for the simulations considered here, the timescale of fingering-induced mixing mechanism is shorter
than that of the heterogeneity-induced mixing mechanism. The two time scales can further be related
to the length scales of diffusion (Pe) and permeability correlation length (λ). The prescribed initial
condition on the concentration field, i.e., the sharpness of the interface at t = 0, also affects the
separation of two timescales in this plot [44].

VI. SUMMARY

In this paper we investigate the impact of two sources of disorder, namely viscous fingering
and permeability heterogeneity, on the temporal evolution of key statistical descriptors of transport.
Our numerical simulations indicate that at early times the viscosity contrast is the dominant source
of disorder, and its impact on the arrival times at a control plane is enhanced by heterogeneity,
while permeability heterogeneity decreases the values of peak concentration at a control plane and
increases solute cloud spreading. In particular, we highlight the following points:

(1) Heterogeneity reduces the peak concentration observed at the control plane and, while it
does not affect the impact of the viscosity ratio, it produces asymmetry in the BTCs and a larger
cloud spreading for R < 0.

(2) A positive viscosity contrast enhances the connectivity of leading edge of the solute cloud
which leads to earlier breakthrough, while a negative viscosity contrast delays the arrival of
the solute to the control plane; this opposite impact of viscosity on connectivity increases with
increasing levels of heterogeneity.

(3) At late times, the mean concentration decay is described by a relation of the type 〈C〉 ∼ t b,
where the effect of the mobility ratio on the value of b is reduced for higher level of heterogeneity.

(4) The concentration CDF, whose concavity can be used as a proxy for dilution [69], can be
perfectly described as a beta distribution (parametrized solely by the concentration spatial mean and
variance) in the presence of viscous fingering for the range of σ 2

f and R considered in the present
study. This result can be used for predictions in risk analysis, and to the authors’ knowledge has
never been shown before for flow in the presence of viscosity contrast.

(5) The mean scalar dissipation rate for R �= 0 presents a sharp increase at early times, with
higher peaks for R > 0 because of the more intense tip splitting.
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(6) Longer cloud contours (and thus mixing interfaces) are caused by higher heterogeneity levels
and viscosity contrast, with R > 0 having a bigger impact on the contour than R < 0.

(7) At early times the effect of viscosity contrast on mixing is more significant than the effect
of heterogeneity, despite being attenuated for increasing values of σ 2

f . At later times, the impact of
heterogeneity becomes the main contributor to mixing, especially for R < 0.

The results shown in this study illustrate the importance of viscous fingering and heterogeneity in
controlling the temporal evolution of the statistical descriptors of the solute cloud. The conclusions
reported in our work are limited to the range of values explored for σ 2

f and R. Future research should
investigate the effects of higher level of heterogeneity on mixing in the presence of viscous fingering
as well as their relative contributions in three-dimensional flows.
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APPENDIX: DIMENSIONLESS EQUATIONS

We define the following dimensionless groups:

x = x̂
λ

, u = û
U

, t = t̂
τu

, C = Ĉ

Co
, μ = μ̂

μ0
, p = p̂

pc
, k = k̂

kc
, (A1)

where the (·̂) symbol denotes a dimensional variable. Here λ represents the characteristic length
scale (i.e., log-permeability correlation scale), U denotes the characteristic (mean longitudinal) ve-
locity, and τu = λ/U corresponds to the characteristic advective timescale. The inlet concentration
is Co. Furthermore, we set the ambient fluid viscosity μ0 as a characteristic viscosity and a unitary
value for the characteristic permeability kc = 1 m2. Finally, the characteristic pressure is defined as
pc = μ0Uλ/kc. Substituting the dimensionless groups (A1) into Eqs. (3)–(6), we obtain

q = − k

μ
∇x p, (A2)

μ = e−RC, (A3)

∇x · q = 0, (A4)

and
∂C

∂t
+ q

φ
· ∇xC = 1

Pe
∇2

xC, (A5)

where the Péclet number is given by Pe ≡ Uλ/D and φ is the porosity of the porous medium.
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