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Granular buoyancy in the context of segregation of single large
grains in dense granular shear flows
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Modeling of particle-size segregation in dense granular flows could benefit from a better
understanding of the segregation behavior of individual large grains that are surrounded by
smaller grains. In a previous study, the force in the direction of segregation experienced
by such a particle was measured and decomposed into a modified Archimedean buoyancy
force and a segregation lift force. Here we present a new micromechanical analysis of this
granular buoyancy force that connects the microscale contact behavior to the macroscopic
force, thereby lending further support to its validity. In the process of this validation we
uncover evidence linking the average surface contact density on a grain to the scaling
of the buoyancy force with its size. Our findings support the use of the existing Voronoi
approximation for calculation of the granular buoyancy force and substantiate the decom-
position of the net force into buoyancy and segregation lift. Ultimately, these insights will
aid development of new models for size segregation by closely linking micro and macro
behavior.

DOI: 10.1103/PhysRevFluids.6.064307

I. INTRODUCTION

Granular mixtures that consist of different-sized grains have the ability to segregate when
agitated, a complex mechanical process that leads to the spatial separation of grains by their size
[1–4]. Different forms of agitation of granular mixtures, such as shearing [5], shaking [6], or
vibration [7–11], can lead to different forms or types of size segregation. In dense granular flows
[12,13], driven by gravity or externally applied shear, size segregation most commonly consist of
larger grains rising against gravity towards the flow’s free-surface whilst smaller grains sink to the
bed. This process has been intensively studied (see, e.g., Refs. [14–31]), its relevance ranging from
geophysical mass flows to industrial handling of powders and grains.

The predictive power of current state-of-the-art modeling approaches [17,32–37] is acurate under
the condition that the small and large-particle concentrations (solid or volume fractions) in a mixture
are relatively similar [21]. With modifications that account for size-segregation asymmetry [38,39]
models do perform better for more unequal concentrations. However, predictions remain inaccurate
at very low large-particle concentrations, where large grains are surrounded by many smaller grains
and segregation progresses slowly [40]. Increasing our understanding and modeling capabilities of
size segregation in this lower limit is relevant because both during the process of segregation as
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well as after reaching a steady state local regions of very low large-particle concentration occur
and persist, even in mixtures where globally the volume-ratio between small and large grains is
comparable [38,41,42].

In an effort to understand the low large-particle concentration limit a number of studies have
addressed the segregation behavior of a single large particle in a dense shear flow composed of
smaller grains [42–46]. Such a particle is typically referred to as an intruder and is known to rise
towards the flow’s free-surface. Despite relevant progress no common consensus has been reached
about the origin, measurement and modeling of the forces responsible for rising of such an intruder.
To illustrate this point we will briefly recap the recent advances.

Guillard et al. [43] introduced a method that addressed two of the main challenges that arise
when trying to measure the segregation lift force on a single large intruder in simulations. The
first issue is as follows. If, as a result of some unknown segregation lift force, a large grain rises
towards the flow’s free-surface the net vertical force, as measured from the particle contacts, is on
average exactly equal and opposite to the gravitational force [45]. This would imply that no lift
force exists. However, it stands to reason that if there exists a force in excess of the gravitational
force, i.e., the total vertical contact force is larger than gravity, the intruder will rise but it will also
accelerate. Such an acceleration would naturally be counteracted by a drag force. Consequently,
the net vertical contact force would be lowered until it is once again in balance with gravity. This
reasoning suggests that measuring (on average) any force in excess of gravity is impossible for a
freely rising intruder. The second issue is one of time averaging. To accurately measure forces in this
problem long time-averaging is important because on the particle-scale fluctuations are strong. The
method introduced by Guillard et al. [43] solved both of these issues. In this method the intruder is
attached to a virtual spring that produces a force in the vertical direction only if the intruder moves
away from the anchor point. This prevents it from continuously rising and a drag force from building
up. Thus, with the spring attached the total vertical contact force can outgrow gravity and the excess
force can be measured (see the schematic in Figure 1). It also allows for long time-averaging because
the intruder never reaches the flow’s free-surface.

A question that arises with this particle-on-a-spring method is whether the force in excess of
gravity is the segregation lift force. Guillard et al. [43] side-stepped this question by modeling the
total vertical contact force, which is partly composed of the excess force. Their model consists
of scaling laws that depend on the spatial derivatives of the pressure and shear stress, and it
can accurately predict the direction of segregation in various flow configurations. Thereafter Jing
et al. [46] also considered the total vertical contact force. With a fitting equation they captured the
dependence of this force on the size ratio between the intruder and bulk grains. They demonstrated
the generality of the equation they retrieved by predicting the upward and downward segregation of
intruders with different sizes and densities, as reported by Félix and Thomas [47], in different flow
geometries. Sinking of intruders can occur if their density is higher than that of the bulk grains. It
is unclear, however, if this is due to a downward (in the direction of gravity) directed segregation
force, or a buoyancy effect.

It should be mentioned that Staron [45] argued that the force in excess of gravity that arises using
the particle-on-a-spring method is an artefact. For this reason she studied freely rising intruders,
found that the total vertical contact force balanced gravity and concluded that the lift force on a
free intruder has to be very small. She went on to model the rising of the intruder via positive force
fluctuations and an asymmetry in the ease at which an object in a granular flow can be pushed
downwards versus upwards [48].

While Guillard et al. [43] and Jing et al. [46] considered the total vertical force to model
segregation of single large intruders, Van der Vaart et al. [44] attempted a force decomposition to
isolate a distinct segregation lift force. Their goal was to shed light on its origin. The approach they
took was to subtract from the total vertical contact force a newly developed granular buoyancy force.
The inspiration for this decomposition came from measurements of the pressure field surrounding
the intruder that showed a deviation from a hydrostatic pressure when the intruder was larger than
the bulk grains. Van der Vaart et al. [44] argued that the hydrostatic component of the pressure
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FIG. 1. Schematic of the problem considered. A single intruder in a sheared granular flow. Several forces
are depicted. The total contact force Ftot (in red) results from all particle contacts. The vertical component of the
gravitational force Fgz (in black) is set by the size of the intruder. For Ftot we develop a model and subsequently
decompose it into a buoyancy force Fb (in blue) and remaining forces FR, of which we show in this schematic
the vertical component FRz (in blue). Together Fb and FRz make up the vertical component of the total force Ftotz

(in blue). The force FRz is composed of the segregation lift force [44] but possibly other forces as well. Last,
there is the spring force Fs (in orange), which is applied artificially in our simulation and adapts itself to balance
the vertical forces. Its function is only to prevent a large intruder from rising upwards through the process of
segregation thus allowing for long time-averaging. The presence of the spring force does not influence our
theoretical analysis.

cannot be held responsible for the lift force as it is also present when the intruder is identical to the
bulk particles and not segregating. Hence, the lift force should be associated with the deviation of
the pressure from hydrostatic. Therefore, the buoyancy force, which is the result of the hydrostatic
pressure, needs to be subtracted to obtain the lift force. The approach proved valuable as it revealed
a potential origin for the lift force. The lift force is a Saffman-like force [49] in that it correlates with
a velocity difference in the downstream direction between the intruder and the bulk. This velocity
“lag” of a segregating intruder was discovered in that same study [44]. The findings reported in
Ref. [44] also demonstrate that the lift force is in fact larger than the force in excess of gravity that
is measured through the particle-on-a-spring method. The reason being that granular buoyancy is
smaller than the gravitational force acting on large intruders. This finding has since been supported
by theoretical work [50].

The works of Jing et al. [46] and Staron [45] followed that of Van der Vaart et al. [44], indicating
that there are still open-questions about the origin of the segregation lift force with differing ideas
presented. One reason for this could be that the new granular buoyancy force [44] (which plays
such a critical role in isolating the segregation lift force) is currently not supported by any physical
or micromechanical understanding or derivation. Instead, its mathematical form, which makes use
of the Voronoi volume of the intruder, was chosen because it scales with the size ratio S between
intruder and the bulk grains and recovers the theoretically correct buoyancy force in two limits of
S; for an infinitely large intruder and for an intruder that is identical in size to the bulk grains.
Between these two limits this Voronoi-based granular buoyancy force can only be considered as an
approximation. We suspect that more firmly establishing the granular buoyancy force introduced in
Ref. [44] will help towards reaching a consensus on the topic of the segregation lift force in dense
granular flows.

In this study we address the lack of physical or micromechanical understanding of the granular
buoyancy force on a spherical grain introduced in Ref. [44]. In doing so we aim to more firmly
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establish this granular buoyancy force and in turn support the method of measuring the segregation
lift force [44]. We use a straightforward theoretical methodology to split the contact structure on
the intruder from the force structure and derive a micromechanical definition for granular buoyancy.
This definition makes use of anisotropic angular distribution functions for contacts and forces, as
well as an average contact density and an average contact force. We validate this new approach
through numerical simulations and find that it compares favourably with the granular buoyancy
introduced in Ref. [44] that makes use of the Voronoi volume of the intruder. Moreover, we uncover
evidence linking the scaling of granular buoyancy with the intruder size ratio to a change in surface
contact density, thereby providing additional fundamental insights into granular buoyancy. Figure 1
shows a schematic of the problem and the relevant forces.

II. THEORETICAL BACKGROUND

Before discussing our findings we will outline the necessary theoretical background and devel-
opments in fluid and granular buoyancy in this section.

A. Classical buoyancy: Archimedes’ principle

Before we consider a granular material we will begin with Archimedes’ principle for objects
submerged in a Newtonian fluid. Archimedes’ principle states that such an object experiences a
force, called the buoyancy force, that is proportional to the weight of the displaced fluid, the origin
of which is the weight of the fluid pushing on the object. With the horizontal forces balancing and
the fluid underneath the object exerting a stronger force as a result of the higher pressure, the net
buoyant force is in the opposite direction of gravity. In a normal fluid, as long as the density of the
object is equal to that of the fluid the buoyancy force is balanced by the gravitational force acting
on the object.

Given the stress tensor in a Newtonian fluid [51] σ = τ − pI, the total force on a submerged
object can be calculated by integrating the stress over its surface area,

F =
∫

Ap

σndA, (1)

where n is the normal outward unit vector. Here, the object’s surface area is Ap. The component
of the total force that is the buoyancy force Fb is defined as the integral of the pressure over the
object’s surface area, or the integral of the gradient of the pressure over the object’s volume,

Fb ≡
∫

Ap

−pRndA = −
∫

Vp

∇pRdV, (2)

where the divergence theorem is used to obtain the volume integral. Here, the object’s volume is Vp.
The pressure has to be taken in the absence of the object in the so-called undisturbed reference flow,
here referred to with the superscript R.

B. Granular buoyancy for S → ∞
A straightforward and established translation of the classical Archimedean buoyancy force to a

particle in a dense granular flow uses the granular hydrostatic pressure,

ph = φbρgz[H − z], (3)

where φb is the solids or volume fraction of the bulk, ρ is the density of the bulk particles, gz is the
vertical component of the gravitational acceleration, H is the flow depth and z is the vertical position
of the intruder. Since the pressure is equal to ph = −σ R

zz = −(τR
zz − pR), the stress anisotropy that

exists in granular flows is accounted for in the hydrostatic pressure [52]. With the derivatives of
the pressure in the x and y direction being zero it follows from Eq. (2) that the granular buoyancy
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force is

Fb,∞ ≡ −
∫

Vp

∂ ph

∂z
dV = φbρVpgz. (4)

The subscript ∞ refers to the theoretical limit S → ∞ where the size ratio between intruder and
bulk particles goes to infinity and this definition is expected to hold true. When the size ratio goes
to infinity the bulk particles are so small that they can be treated as a fluid with a density φbρ,
essentially yielding the classic Archimedean buoyancy force. The only experimental verification of
this definition for a granular system to our knowledge was reported by Huerta et al. [53], who studied
large intruders (S > 8), of lesser density [54] compared to the bulk particles, rising in a horizontally
shaken granular fluid. With this form of agitation the Brazil nut segregation mechanism [6,55] is
absent, therefore the upward force can safely be attributed to buoyancy. Huerta et al. [53] found this
force to be equal to Eq. (4). Because it is unknown how to turn off the shear induced segregation
lift force, buoyancy forces have not been measured in isolation in dense shear-driven granular flows
(except for when the intruder is identical to the bulk particles). When considering the buoyancy
force in other types of systems, such as the fluidization of static granular materials, this pressure
gradient causes additional phenomena [56,57].

C. Granular buoyancy for S = 1

A second limit for which a granular buoyancy can be defined is at S = 1, where buoyancy
must balance gravity if the intruder has the same density as the bulk particles. The definition in
Eq. (4) cannot be used in this limit since it differs from the gravitational force. The most reasonable
approach to resolve this issue is as follows. Since the hydrostatic pressure is defined over the entire
volume, that is, also in the void space, integration of the pressure can be done over an effective
volume that includes this void space. This effective volume Veff should be the total volume of
the mixture divided by the number of particles it contains. In this way the void space is equally
divided over all particles, which is required at S = 1 because all particles are identical. Given
the definition of the bulk volume fraction φb = NVp/Vtot, the effective volume can be expressed
as Veff = Vtot/N = Vp/φb. It is plain to see that integrating the pressure gradient over this volume
removes the factor φb, yielding a buoyancy force that equals gravity,

Fb,1 ≡ −
∫

Veff

∂ ph

∂z
dV = ρVpgz = Fg, (5)

where the subscript “1” refers to the limit of S = 1.

D. Voronoi-based approximation to granular buoyancy

A natural approach to satisfy both the limit at S = 1 and at S → ∞ with one buoyancy definition
is to use an effective volume for integration that has an appropriate size-ratio dependence. For this
purpose van der Vaart et al. [44] introduced the Voronoi volume of the intruder particle V , which
leads to a buoyancy force of the form

Fb,V ≡ −
∫
V

∂ ph

∂z
dV = φbρVgz. (6)

This definition theoretically satisfies both limits. For a homogeneous mixture at S = 1, each particle
has identical values for Vp and (on average) for V . As such, V = Vp/φb, and thus Fb,V = Fb,1. For
S → ∞ the bulk particles will be so small that the intruder Voronoi volume fits closely to its surface,
in other words V → Vp, and thus Fb,V = Fb,∞.

The Voronoi-based granular buoyancy is a simple approach that defines a granular buoyancy
force for grains within the two size ratio limits, based on purely geometrical arguments [44]. It is
unknown whether it guarantees physical correctness between the two limiting points. For that reason
we have performed the micromechanical derivation in this study.
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E. Intermezzo: Granular buoyancy versus gravity

Per the definition in Eq. (6), for size ratios above unity the granular buoyancy is smaller, by a
factor of φb, than the gravitational force Fg = ρVpgz on an intruder with identical density as the bulk
particles. This has two implications. First, in the absence of a segregation lift force [43,44,46] large
intruders should sink instead of rise against gravity as they are known to do in dense granular flows.
Second, taking the vertical force in excess of gravity to be the segregation lift force is incorrect and
underestimates the latter.

Studies on very large intruders in dense granular flows (S > 5) have indeed reported that these
can sink instead of rise [47,58]. A possible explanation is that the lift force changes sign. The more
likely scenario, however, is that the lift force eventually decreases, and with the buoyancy being less
than gravity the large intruder will sink.

Recently two important pieces of evidence were reported. In numerical simulations, van der
Vaart et al. [44] set the contact friction of a large intruder to zero and observed that the gravitational
force was bigger than the vertical contact force, which resulted in the intruder sinking. Thus,
demonstrating that the granular buoyancy force does not balance gravity for S > 1. The second
piece of evidence supports a decreasing segregation lift force at size ratios bigger than 2. Namely,
for a normal frictional large intruder van der Vaart et al. [44] subtracted the granular buoyancy force
from the vertical contact force and found that the remainder, i.e., the segregation lift force, first
increased with intruder size ratio and then decreased after S ≈ 2.

A recent theoretical derivation of granular buoyancy [50], that uses the equation of state of hard
sphere mixtures [59], has shown good agreement with the simulation results reported in Ref. [44].

III. METHODS

A. Simulation method and setup

We simulate a gravity driven granular flow down an inclined plane (chute flow) composed of bulk
particles that are all identical and a single intruder particle. The inclination angle θc = 22◦ and we
apply periodic boundaries in the x and y directions. This geometry was chosen because it produces
a velocity field which is shearing in only one plane, the xz plane. Second, this is a well studied and
understood system, see Refs. [52,60,61] and references therein.

We use the discrete particle method (DPM), also known as the discrete element method. The
system is nondimensionalized such that the nondimensional bulk particle diameter d = 1, density
ρ = 6/π, and the gravitational acceleration g = 1. The simulation box has a size (Lx, Ly, Lz ) =
(20, 8.9, 40)d . The gravitational acceleration is given by g = [sin(θc), 0,− cos(θc)]. A rough bot-
tom is composed of particles, with a diameter of 1.7d , slightly larger than the bulk particles. Details
for the creation method of the rough bottom can be found in Weinhart et al. [61].

There are roughly 6000 dry frictional bulk particles. This yields an average flow height of
h ≈ 30d . Contacts between particles are modeled using a linear spring-dashpot model [52,62] with
linear elastic and linear dissipative contributions for the normal forces between particles. Particle
properties and contact parameters are given in Table I. The stiffness and dissipation of the contact
laws are computed through the analysis of two colliding particles [63]. The tangential, sliding and
rolling friction between bulk particles are all equal to the friction coefficient μb in Table I. The
friction between intruder and bulk particles is taken similar to μb. Simulations are performed by the
open-source software package MercuryDPM [64–66].

The single intruder particle with size ratio S = dp/d is introduced in the flow at a height of
zp,0 = 23. To prevent the intruder from rising continuously, a virtual restoring spring is introduced
in the z direction, whilst it can freely flow in the x and y directions. This method was introduced by
Guillard et al. [43]. The spring stiffness of the restoring spring is set to ks = 20. We verified that the
flow properties without an intruder present conform with the literature.
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TABLE I. Dimensionless particle properties and contact model parameters. Contact duration and restitution
coefficient set the stiffness and dissipation of the particles; see Luding [63].

Parameter Symbol Value

Bulk particle diameter d 1.0
Intruder size ratio S 1.0–3.2
Intruder particle diameter dp 1.0–3.2
Particle density ρ π/6

Restitution coefficient er 0.1
Contact duration tc 0.005
Friction μb 0.5

B. Analysis of simulations

To measure and analyze forces and contacts on the surface of the intruder we tessellate its surface
with mesh elements. Here we use a spherical coordinate system with (r, θ, φ), respectively, the
radial, azimuthal, and polar direction, where θ ∈ [0, 2π ) and φ ∈ [0, π ]. The angles are uniformly
discretized with 	θ = 2π/nθ and 	φ = π/nφ , where nθ and nφ are the number of elements in the
θ and φ direction, respectively. The surface area of a mesh element is denoted by 	Ai j , where the
indices i and j indicate the mesh coordinates θi and φ j . To obtain good statistical data, Nt = 3400
time snaps were used with 9724 contacts for the S = 1 case. A grid of nθ = 20 and nφ = 10 resulted
in a detailed yet reasonably smooth surface. Larger sized intruders encounter more contacts due to
increasing coordination number improving the statistical results.

IV. RESULTS

A. Contact structure and force structure

To gain microscale insights into the granular buoyancy force we investigate the structural changes
around the intruder when the size ratio increases. Although the interaction between particles is of
a discrete nature, we consider a situation where the flow is in a steady state and we average over a
long time-window such that a continuum approach is allowed; the many contacts that occur lead on
average to a net force. This average total contact force on the intruder (see Fig. 1) can be expressed
as

F tot =
∫

Ap

dF
dA

dA, (7)

where dF is the average force on an infinitesimal surface element dA of the intruder and Ap is its
surface area. By taking a similar approach to Rothenburg and Bathurst [67], the total force on the
surface of the intruder can be split into a force structure and a contact structure. This approach has
been used to study bulk behavior of granular materials in 2D [68,69] and 3D [70] for constitutive
modeling. Applying the chain rule yields

F tot =
∫

Ap

dF
dC

dC

dA
dA =

∫
Ap

FcEdA, (8)

where dC is the number of contacts on an infinitesimal surface element dA,

Fc ≡ dF
dC

(9)
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is the average local force per contact, called the force structure, and

E ≡ dC

dA
(10)

is the average local number of contacts per surface area, called the contact structure. Both the
force structure and contact structure are orientation dependent, i.e., dependent on the location on
the intruder surface. Integrating the contact structure over the surface area yields the coordination
number Z , ∫

Ap

EdA =
∫

Ap

dC

dA
dA =

∫ Z

0
dC ≡ Z. (11)

Next, we rewrite the total force, Eq. (8), in terms of normalized angular distribution functions for
the contacts and contact forces. We write the contact structure as

E = cρPE , (12)

where PE is an angular (probability) distribution function that is normalized to one, and cρ is the
average number of contacts per surface area

cρ ≡ Z/Ap, (13)

which we will refer to as the contact density.
To rewrite the force structure in terms of an angular distribution function we first split the former

into a force magnitude Fc and contact vector nc,

Fc ≡ Fcnc, (14)

where Fc is an orientation dependent scalar. Normalization of Fc by the average force per contact F̄c

yields the normalized angular (probability) distribution function of the contact force

PFc ≡ Fc

F̄c
. (15)

Thus, the force structure can be written as

Fc = F̄cPFc nc. (16)

It is possible to further decompose nc into tangential and normal components, but for our analysis
of the buoyancy force we believe this is not required; both the tangential and normal component can
contribute to the vertical component of the contact force which is the buoyancy force.

Finally, substituting Eqs. (12) and (16) in Eq. (8) yields

F tot = F̄ccρ

∫
Ap

PFc PE ncdA. (17)

By construction both F̄c and cρ are orientation independent scalars that only depend on S. All
orientation dependence is captured in the angular distribution functions. With this micromechanical
definition of the total contact force we are now able to define a buoyancy force.

B. Micromechanical definition for granular buoyancy

Our next step is to decompose the total contact force [Eq. (17)] into the granular buoyancy force,
which we know acts in the vertical direction, and the remaining force composed of lift and drag
forces in which we are not interested presently. To do so we must first realize that whilst we can
decompose forces, we can not decompose contacts. Hence, the contact structure will have to remain
intact. So what we are left with to decompose is the angular distribution function of the forces PFc

and the average contact force F̄c.
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To proceed we make the following assumptions that follow from the ansatz that buoyancy arises
due to the weight of the fluid pushing on the intruder:

(1) At S = 1 no segregation occurs and the buoyancy force is in equilibrium with the gravita-
tional force, therefore the vertical contact force is equal to the buoyancy force;

(2) The hydrostatic pressure is linear in depth, therefore the buoyancy component of individual
contact forces has to be (on average) linear in depth;

(3) The hydrostatic pressure is independent of intruder size, therefore the buoyancy component
of individual contact forces has to be (on average) independent of intruder size.

Assumptions 2 and 3 specifically are consequences of the ansatz that buoyancy arises from
the weight of the fluid—which for real fluids is the established origin of buoyancy. Since it is a
priori impossible to know for S > 1 what the buoyancy component of individual contact forces is,
assumptions 2 and 3 can only be verified in a flow where no vertical drag or lift forces act on the
intruder.

The preceding assumptions lead us towards a solution where we (i) introduce a linear dependence
on z, (ii) take F̄c at S = 1, and (iii) take the component of PFc at S = 1 that is linear in depth. The
decomposition of the force structure into a buoyancy and nonbuoyancy is, thus,

F̄cPFc = F̄c,1bz,1 z + R(S), (18)

where F̄c,1 ≡ F̄c(S = 1), and bz,1 is the magnitude of the linear vertical component of the angular
distribution of forces at S = 1. We obtain the value of this coefficient from a fit to the measured
distribution (see Appendix B). The R(S) term is the remainder of the force structure, which will
have a dependency on S (among others) and can be attributed to other mechanisms, such as drag
and lift. Integration of R(S = 1) should be zero which we verify in the next section.

Plugging the decomposition of the force structure [Eq. (18)] into the total force [Eq. (17)] and
accounting for the fact that the buoyancy force acts along the direction of the pressure gradient, i.e.,
the vertical direction, we obtain

F tot = Fb,δez + FR, (19)

where the micromechanical definition for the granular buoyancy force is

Fb,δ = F̄c,1bz,1cρ (S)
∫

Ap

zPE (S)nc · ezdA, (20)

and FR encompasses all other forces. The subscript δ is used to distinghuish the micromechanical
approach from the Voronoi-based buoyancy Fb,V and from the two definitions of buoyancy in the
limits of S. The buoyancy force depends on S through the contact structure and possibly also through
the contact vector nc.

C. Verification

We compare the micromechanical buoyancy force [Eq. (20)] to the Voronoi-based approximation
[Eq. (6)] and verify it against the limits at S = 1 and S → ∞. For this purpose we plot both
approaches as a function of size ratio and nondimensionalise them by Fb,∞. After this nondimen-
sionalization, if the buoyancy force satisfies the correct limits, it should tend to unity for large
S and to 1/φb for S = 1. A second important aspect of nondimensionalization is that it divides
out the dependency on the diameter of the intruder, leaving only the size ratio dependency. To
calculate Fb,δ (S) we use measurements for the contact structure (see Appendix B 2), contact density
and contact vector, whilst the values for bz,1 and F̄c,1 are obtained from the fit to the angular
force distribution (see Appendix B). To calculate Fb,V (S) the average intruder Voronoi volume is
measured.

Figure 2 shows the two nondimensionalized buoyancy force definitions. The Voronoi-based
buoyancy, which after normalization simplifies to V/Vp, satisfies the two limits by construction
(see Sec. II D). The micromechanical definition has at S = 1 a value of roughly 1.05/φb, which is
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FIG. 2. The micromechanical buoyancy Fb,δ , the Voronoi-based buoyancy Fb,V , and the measured vertical
component of the total contact force Ftotz at S = 1, all nondimensionalized by Fb,∞. Since the vertical contact
force increases with S we plot it for S = 1 only, where it is expected to be equal to the buoyancy force. The
upper dashed line corresponds to 1/φb and the lower dashed line to 1. These are the two physical limits of the
buoyancy at S = 1 and S → ∞, given by Eqs. (5) and (4), respectively. The contact density cρ multiplied with
an empirical scaling factor of 2.2 (and not normalized) is also shown.

slightly above the expected value 1/φb. The reason for this difference is likely related to force fluc-
tuations which are much stronger for S = 1. The correct continuum limit is probably reached when
averaging over a very long time period. The micromechanical definition does match up correctly
with the vertical component of the total contact force Ftotz measured at S = 1, thereby verifying our
assumption that integration of R(S) yields zero at S = 1. This also supports our choice to use bz,1.
For increasing S the micromechanical definition approaches, seemingly asymptotically, towards
unity, in agreement with the expected limit. The Voronoi approximation compares favourably with
the micromechanical definition, and the only notable difference is that at large S the Voronoi
approximation slightly over estimates the buoyancy force, despite reaching the correct limit.

An important insight is revealed when comparing the size-ratio dependence of the normalized
micromechanical definition for buoyancy to a measurement of the contact density cρ (S). If multi-
plied with a proportionality factor of 2.2 the contact density practically overlaps with the normalized
buoyancy force, thus demonstrating that the latter’s dependency on size ratio can be attributed
entirely to the contact density.

A simple geometrical analysis in the following section will explain why the contact density
decreases with intruder size ratio.

D. Contact density

By assuming that the buoyancy component of each contact force does not depend on S, it directly
implies that any change with S comes from a change in contact structure. This could have been either
a change in cρ , PE , or the contact force vector nc. As we have seen in the previous section the contact
density cρ is the sole culprit.

The scaling of cρ with S can be understood by considering the contact between a bulk particle
and the intruder. An area As on the surface of the intruder is shielded from having contacts with
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FIG. 3. Two-dimensional schematic depicting the decrease in curvature and increase of the shielded area
As [71,72] when the intruder size ratio increases. As a result the contact density decreases with size ratio.

other bulk particles [71,72] (see Fig. 3). In three dimensions As is given by

As = 2πS2r2
b

⎛
⎝1 −

√
1 −

(
1

S + 1

)2
⎞
⎠, (21)

where rb = db/2. The limits As(S = 1)/r2
b = 2π (1 − √

3/4) ≈ 0.84 and As(S → ∞)/r2
b = π tell

us that As increases with S. To relate the contact density to As we recall a property called the
compacity cs ≡ ZAs/Ap = Ascρ . Previous studies have assumed and validated that compacity is
roughly constant for larger particles in compressed polydisperse packings [71–73]. If the same
assumption is used here, then the contact density could be expressed as cρ (S) = cs/As(S), and the
decrease of contact density with size ratio can be rationalized through an increase in shielded area.
Another way of thinking about this is to attribute the scaling of the buoyancy force with size ratio
to a decrease in surface curvature of the intruder.

V. RELEVANCE TO MIXTURE THEORY SEGREGATION MODELING

Before concluding this work we will describe briefly a relevant link between the granular
buoyancy force derived here and segregation modeling based on the mixture theory framework.

Following the seminal work of Savage and Lun [18], who proposed a statistical mechanical
approach to modeling of particle segregation that related microscopic properties to macroscopic
segregation velocities, Gray and Thornton [32] introduced an approach based on mixture theory.
Like the microscopic models presentation in this paper the continuum mixture theory approach is
also built on the assumptions of a linear pressure with depth that is independent of intruder size (see
Sec. IV B, assumptions 2 and 3). The mixture theory approach was simpler to follow and has been
picked up my many others (see, e.g., Refs. [16,29,34]).

Mixture theory deals with partial variables that are defined per unit volume of the mixture rather
than intrinsic variables associated with properties of the individual constituents. The basic mixture
postulate states that every point in the mixture is ‘occupied simultaneously by all constituents’, and,
hence, at each point in space and time there are overlapping partial variables associated with the
different constituents [74]. For most variables simple relations can be shown between their intrinsic
and partial counterparts. For example, the relationships for density and velocity are, respectively,

ρν = φνρν∗, uν = uν∗, (22)

where the superscript * denotes an intrinsic variable. The superscript ν is a place holder for the
constituent name, such that summing over the number of constituents n gives the bulk variable:

ρ =
n∑

ν=1

ρν. (23)
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However, in general, no relationship can be shown between the partial and intrinsic stress of the
constituents. For the case where the stress tensor can be represented by a hydrostatic pressure field,
it is common to assume a linear volume fraction scaling for the pressure as well, that is,

pν = φν pν∗. (24)

For granular segregation a relation like Eq. (24) had to be generalized with

pν = f ν p, (25)

where f was postulated (see Ref. [21] for a review of proposed forms for f ). Interestingly,
Archimedes’ principle can be used to show that Eq. (24) holds for a fluid constituent interacting with
a solid constituent [75]. Thus, theoretically, an Archimedes’ principle for one granular constituent
submerged in another, like the one presented in this work, could be used to derive Eq. (24) for
granular materials.

Recently, Ref. [76] showed how to bridge this gap between the microscopic description presented
in Secs. I–IV and the macroscopic description presented here. However, they did not get perfect
agreement when upscaling a single particle model to predict a system with a more equal volume
fraction φ. We would suggest they are missing extra forces which arise when multiple large particles
interact. Therefore, extra work is still required on the microscopic description before it can be used
to create a predictive macroscopic model. However [76] shows clearly how the two descriptions can
be linked. Therefore, in the future it will be possible to have a continuum model which is closed in
terms of microscopic particle parameters.

VI. CONCLUSIONS

We have derived and verified a micromechanical based definition for the granular buoyancy
force on a single grain in a dense granular flow. The definition is micromechanical in the sense that
it takes into account both the structure of contacts and forces on the grain. This granular buoyancy
force differs from classic Archimedean buoyancy in two ways. When a grain is identical to the
surrounding bulk particles the buoyancy force is balanced by gravity. But when the grain becomes
larger than the bulk particles the buoyancy force becomes less than the gravitational force and
asymptotically approaches classic Archimedean buoyancy.

We also report that the scaling of granular buoyancy with the size ratio between the intruder grain
and bulk particles can be attributed entirely to a change in contact density. This simple but important
insight sheds new light on the micromechanical behavior of granular buoyancy. The scaling of
contact density with intruder size effects the total force and also each of its components, such as lift
and drag forces.

The granular buoyancy derived here lends additional support to a recent study on the lift force
experienced by segregating large intruders [44]. The insights into the segregation lift force that were
reported, and are more firmly established through the current study, are as follows: first, granular
buoyancy does not balance the weight of large segregating intruders and thus the segregation lift
force is obtained by subtracting this buoyancy force from the total vertical contact force [44].
Furthermore, the segregation lift force has a maximum and decreases for large size ratios.

We have compared the micromechanical definition to the previously reported Voronoi-based
approximation [44] of the granular buoyancy force. We find that the new definition and the approx-
imation yield very similar results and tend to the correct limits. The Voronoi-based approximation
does overestimate the micromechanical definition above a size ratio of 2. From a practical point
of view, the micromechanical definition should be more accurate but it is more challenging to
measure. While the purely geometrical Voronoi-based approximation, however, sacrifices a physical
and theoretical foundation for ease of measurement [44].

Future work could investigate at what exact size ratio the classic Archimedean buoyancy is
approached by measuring the vertical component of the total contact force experienced by very large
freely sinking intruders. We have briefly described how the derived granular buoyancy force could
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play a role in further development of segregation models based on mixture theory [17,29,32,34,35],
using the approach described by Ref. [76]. This approach would reveal how the idea of a granular
buoyancy arises in these different mixture theory descriptions and how the different modeling
approaches can be interrelated and combined. Ultimately, leading to a connection between the micro
and macro descriptions of segregation. Last, we verified the micromechanical definition of granular
buoyancy for mono-disperse flows. Although there is no obvious reason to believe that this definition
does not hold for polydisperse flows, this should be investigated nonetheless.
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APPENDIX A: CALCULATING PARAMETERS FROM RAW DATA

In this Appendix, several equations are defined that are used for calculating parameters in the
main text and the other appendices. To distinguish several parameters that are measured in the
simulations from their theoretical definitions in the main text we use the hat (ˆ) symbol.

The contact structure, or the average local number of contacts per area in area element 	Ai j , is
given by

Êi j = 1

Nt	Ai j

∑
c

1, c ∈ 	Ai j, (A1)

where the contact c needs to be within element 	Ai j . Summation over the surface area yields the
coordination number

Z =
∑

i

∑
j

Êi j	Ai j . (A2)

The average local force on a surface element F̂ i j can be obtained by summation of all local contact
forces f̂ c,

F̂ i j = 1

Nt

∑
c

f̂ c, c ∈ 	Ai j . (A3)

Note that summing over all elements yields the average net or total contact force on the intruder,

F̂tot =
∑

i

∑
j

F̂ i j . (A4)

The force structure or average contact force F̂ci j in a single element 	Ai j is obtained by dividing
the average local force by the number of contacts,

F̂ci j = F̂ i j

Êi j	Ai j
. (A5)

The average total force on the intruder particle can also be expressed as

F̂tot =
∑

i

∑
j

F̂ci j Êi j	Ai j . (A6)

We make use of the time-averaged number of contacts on a surface element,

Ci j = 1

Nt

∑
c

1, c ∈ 	Ai j, (A7)
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FIG. 4. (a) Upper row shows a measurement of the normalized angular distribution of the contact force PFc

on an intruder for increasing S on equal grids and in the xz plane. The red cross marks the center of the plot.
Dashed lines are visual guides. The average contact force is also shown in each panel. (b) Bottom row shows
fits to the measured data using Eq. (B1). The color bar for all plots are identical.

to calculate the three-dimensional normalized angular distribution of forces P̂Fc we use

P̂Fc,i j = |F̂ i j |
Ci j

Ap∑
i

∑
j

|F̂ i j |
Ci j

	Ai j

, (A8)

where |...| indicates the vector norm. The three-dimensional normalized contact distribution of
forces P̂E is calculated using

P̂E ,i j = Ci j

	Ai j

Ap∑
i

∑
j Ci j

. (A9)

APPENDIX B: MEASURING THE ANGULAR DISTRIBUTION FUNCTIONS

1. Force distribution

Figure 4(a) shows measurements of the three-dimensional normalized angular distribution of
forces P̂Fc , viewed in the xz-plane, for three different intruder size ratios. These are calculated using
Eq. (A8). The average contact force F̄c is also shown and increases with S. The distribution for
S = 1 is pill-shaped and angled at 45◦. As S increases this shape changes and contact forces at the
bottom-right corner grow with respect to the top-left corner. This matches previous observations of
an increase in pressure at the bottom of the intruder on the downstream side in combination with an
increase in anisotropy [44]. Readers should not be mislead to believe that forces at the top-left are
decreasing with S. After all, the distribution is normalized and the average contact force increases.
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FIG. 5. (a) Coefficients obtained from fitting Eq. (B1) to P̂Fc . (b) Coefficients obtained from fitting Eq. (B2)
to P̂E . The error bars indicate the 95% confidence intervals of the fitting coefficient.

The force distribution is also but half of the story, the other part is the contact distribution, and
together these make up the total contact force felt by the intruder.

The angular distribution of forces can be fitted with an equation combining the most important
contribution from a second-order Fourier series [70] and linear contributions for the x and z
direction,

P̂Fc ≈ 1 + bxrp cos(θ ) sin(φ) + bzrp cos(φ) + bxz cos(φ) cos(θ ) sin(φ), (B1)

here the right-most term with bxz is responsible for the closed shape of the distribution and for
the anisotropy at 45◦. This term is nonlinear in the x and z direction but symmetric. The more
negative this term is the stronger will be the forces at the top left and bottom right relative to the
two other corners. The first and second terms, with bx and bz, are horizontal and vertical linear
gradients, respectively, and therefore asymmetric. The fits, shown in Figure 4(b), capture the overall
shape of the distribution quite well whilst ignoring the noise. The accuracy of the fit is tested in
Appendix B 3.

A detailed look at the scaling of the coefficients as a function of S [see Fig. 5(a)] reveals more
about the change of the distribution. For S = 1 the coefficient bx is zero, indicating that there is no
gradient along the horizontal axis. Coefficient bz, however, has a small negative value accounting for
a linear increase of forces towards the bottom of the particle. For larger size ratios the coefficient bx

grows positively and bz grows negatively. The latter can be associated with an increase in buoyancy
force and emergence of the segregation lift force. The degree of anisotropy, captured by bxz, also
grows with S.

Given our assumptions about the buoyancy force in Sec. IV B we take bz at S = 1 for our
decomposition of the total force into buoyancy and other forces. We do not take bxz because it
is not linear in z.

2. Contact distribution

Figure 6(a) shows measurements of the three-dimensional normalized contact distribution of
forces P̂E , viewed in the xz plane, for three different intruder size ratios. These distributions
are calculated using Eq. (A9). The contact density cρ is also shown and decreases with S. We
observe that for all S the top-left and bottom-right part of the intruder encounter many contacts,
whilst the top-right and bottom-left barely show any contact. For S = 1, two contact planes are
visible, one horizontal and a second at an angle of roughly 45◦ with a dip in contacts in-between
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FIG. 6. (a) Upper row shows a measurement of the normalized angular distribution of the number of
contacts per surface area PE on an intruder for increasing S on equal grids and in the xz-plane. The red cross
marks the center of the plot. Dashed lines are visual guides. The average contact density is also shown in each
panel. (b) Bottom row shows fits to the measured data using Eq. (B2). The color bar for all plots are identical.

them at 22◦. This pattern can be rationalized as follows, the contacts made with particles exactly in
front and behind the intruder shield contacts slightly above and below thus resulting in the dip. For
S > 1 the dip is smoothed out, presumably because contacts can be more evenly distributed along
the 45◦ angle. The amount of contacts at the top-left also increases with respect to the bottom-right.

For completeness we also fit the contact distribution. We use a similar fit function as used for P̂Fc

but normalized by the intruder surface area,

P̂E ≈ 1 + bE
x rp cos(θ ) + bE

z rp cos(φ) sin(φ) + bE
xz cos(φ) cos(θ ) sin(φ), (B2)

where rp is the intruder radius. Similar to Eq. (B2) the right-most term is responsible for anisotropy
and the closed shape, whilst the first and second term account for horizontal and vertical gradients,
respectively. The fit function is able to capture the overall shape and trend [Fig. 6(b)], although by
construction it cannot reproduce the dip in contacts at 22◦ for S = 1. The coefficients of the fit as a
function of S are shown in Fig. 5(b).

3. Accuracy of the fit functions

We test the accuracy of the fit functions by computing the total force via Eq. (A6) using
the fits for the force and contact distributions. A comparison of the vertical component of the
total force Ftotz is shown in Fig. 7. Using both fits (light blue curve) the result shows significant
deviations from Fz, especially close to S = 1. Judging from Fig. 6 it is likely that the fit to PE is
responsible for this. When the raw data for PE is used instead, the blue curve is obtained, which is
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FIG. 7. Vertical component of the total force on the intruder (normalized by gravity) obtained in three
different ways; the raw measured value (dark blue triangles), the value calculated using the fits for both PFc and
PE (light blue squares), and using only the fit for PFc (yellow circles). In the latter case the raw measured values
for PE are used.

a much better match demonstrating that the fit to PFc is accurate, whereas PE is captured much less
accurately.
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