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We perform numerical simulations on inertial migration of a non-neutrally buoyant
particle with a density ratio of 0.98–1.02 in a linear shear flow dominated channel with
a Reynolds number up to 500 in the presence of thermal convection using a double-
population lattice Boltzmann method. It is found that under the isothermal condition, the
particle with a larger density difference from the fluid will either settle to the bottom of the
channel or float to the top of the channel, while the particle with a smaller particle-fluid
density difference remains suspended in the channel due to the inertial lift force. The
presence of thermal convection (characterized by the Grashof number Gr) induces an addi-
tional downward lift force, which results in distinctive migration behaviors that depend on
whether the particle density is larger or smaller than that of the fluid. For a particle heavier
than the fluid, the settling is enhanced by thermal convection due to the synergistic effect of
the thermal lift force and the gravitational force. The critical Reynolds number for lifting
the particle increases compared with the isothermal case and is linearly correlated with the
dimensionless density ratio (σ ). On the other hand, for a particle lighter than the fluid, an
empirical dimensionless number Gr∗, defined as Gr/[σ (1.59Re + 9.31)], is introduced to
characterize the particle migration. It is discovered that the particle’s equilibrium position
depends on whether it migrates to the top wall or remains suspended in the shear flow under
the isothermal condition. For the former case, when thermal convection is introduced, the
particle stays at the top wall when Gr∗ < 1, and becomes suspended in the channel when
Gr∗ > 1.

DOI: 10.1103/PhysRevFluids.6.064306

I. INTRODUCTION

Understanding the complex dynamic behavior of particle transportation in shear flows is im-
portant in a variety of industrial and biological applications [1–6]. Recently, inertial migration
of particle suspensions has prompted great potential in microfluidic applications, because of the
increased control and precision in manipulation and separation of microparticles [7–9]. Segré and
Silberberg first observed experimentally the tubular pinch effect in the pipe flow of neutrally buoyant
particle suspensions [10], where particles migrate across streamlines due to inertial effects and are
equilibrated at a radial position around 0.6 radius of the pipe. This counterintuitive observation
motivated a flurry of subsequent studies to explore the underlying physics of such a fascinating
phenomenon [11–20], as there was no theoretical explanation at the time when it was discovered.
It was well recognized that the equilibrium position of a particle in a shear flow was determined
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by the synthetic effects of several forces, including a lubrication force close to the wall boundary,
a lift force due to slip velocity (Saffman lift force), a lift force due to particle rotation (Magnus lift
force), and a lift force caused by the curvature of the fluid velocity profile (only in Poiseuille flow)
[16]. The dominating lateral forces on the particle were derived theoretically with the technique of
matched asymptotic expansions [12,14,17,19,20].

The majority of previous studies on inertial migration in shear flows are confined to the isother-
mal condition. However, there are plenty of examples that such multiphase flows are frequently
accompanied by phase change, reaction, and heat transfer [21–27], which are not well understood
theoretically. The most challenging problems stem from several mesoscopic features: (1) the cou-
pling of heat and mass transfer between fluid flow and the moving interfaces; (2) the complicated
interaction and the heat transfer among neighboring particles [23]. Over the past two decades,
a large number of studies investigated the effects of mixed convection on the particle’s motion
[23,28–34]. Nevertheless, much attention was paid to the particle settling behavior in the presence
of thermal convection, e.g., the settling trajectory with different Grashof numbers [23,28], the drag
coefficient of a settling particle [29], and the effects of temperature boundary conditions [30,31], as
well as the drafting-kissing-tumbling phenomenon of two cold particles [32]. Very few studies were
performed to explore the thermal effects on inertial migration of a particle in shear flows. To our
best knowledge, the only works were conducted by Hu and Guo [33] and Safa et al. [34] recently.
Hu and Guo [33] numerically investigated inertial migration of a cold neutrally buoyant particle
in a planar Poiseuille flow and found that the particle’s equilibrium position changed from above
the centerline to below the centerline as the Grashof number reached a critical value. Safa et al.
[34] investigated the lateral migration of a cold particle in a Couette flow and discovered that the
equilibrium position of the particle moves toward the bottom wall with the increase of the Grashof
number. Their works are confined to only neutrally buoyant particles and a very narrow range of
parameters. A comprehensive understanding of such migration behavior with thermal effects still
deserves further exploration.

Undoubtedly, the thermal effects play a significant role in determining the particle’s lateral
migration position. However, the physics underlying inertial migration in nonisothermal shear flows
is still not well understood. The motivations of the present work are not only exploring the heat
transfer in sheared particle suspensions [35], but also attempting to seek the potential application
in a thermal energy storage system with fluidized bed and suspensions [36–38], where both the
fluid and the particles are heated by solar energy. Therefore, in this work we start with the inertial
migration of a particle in a simple shear flow in the presence of thermal convection, which is
investigated numerically using a double-population lattice Boltzmann method (LBM). Different
from the previous studies, the main focus of the present study is on non-neutrally buoyant particles
with solid-fluid density ratios in the range of 0.98–1.02, for which the particle’s equilibrium position
is determined by not only the hydrodynamics, but also the thermal effects and the buoyancy.

II. NUMERICAL METHOD

A. Double-population lattice Boltzmann method

In this study, the fluid field and temperature field are modeled using the double-population lattice
Boltzmann method, in which the single relaxation time model [Bhatnagar-Gross-Krook (BGK)
approximation] is employed in the relaxation collision operator [39,40]. The viscous heat dissipation
and compression work carried out by the pressure are not considered, so that the temperature field is
treated as a passive scalar and advected by the fluid flow. The governing lattice Boltzmann equations
are given, respectively, as [41,42]

fi(x + ei�t, t + �t ) − fi(x, t ) = − 1

τ f

[
fi(x, t ) − f eq

i (x, t )
] + Fi�t, (1)

gi(x + ei�t, t + �t ) − gi(x, t ) = − 1

τg

[
gi(x, t ) − geq

i (x, t )
] + Si�t, (2)
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where τ f and τg are the dimensionless relaxation parameters for the fluid and temperature fields,
respectively. fi(x, t ) and gi(x, t ) represent the distribution functions for fluid and temperature at
position x and time t , respectively. Fi and Si denote the external body force and heat source term,
respectively. �t is the time step, which is usually set as 1 in the LBM lattice unit. fi

eq(x, t ) and
gi

eq(x, t ) are the distribution functions at the equilibrium state, and are defined as

f eq
i = ρ f ωi

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− u2

2c2
s

]
, (3)

geq
i = T ωi

[
1 + ei · u

c2
s

]
, (4)

where cs = 1/
√

3 is the lattice sound speed. ρ f , u, and T are the macroscopic fluid density, velocity,
and temperature, respectively. ωi is the weight coefficient decided by the lattice speed model. In this
work, the D2Q9 lattice speed model is employed so that the discrete velocity vectors ei are defined
as

ei =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0), i = 0(
cos iπ−π

2 , sin iπ−π
2

)
, i = 1, 2, 3, 4

(
cos 2iπ−9π

4 , sin 2iπ−9π
4

)
, i = 5, 6, 7, 8

. (5)

Correspondingly, the weight coefficient ωi for the D2Q9 model is given as

ω0 = 4
9 , ω1,2,3,4 = 1

9 , ω5,6,7,8 = 1
36 . (6)

The macroscopic fluid quantities are determined by the microscopic distribution functions via
the following equations,

ρ f =
∑

i

fi, (7)

ρ f u =
∑

i

fiei + �t

2
F, (8)

T =
∑

i

gi, (9)

where F represents the macroscopic body force. The external body force term Fi in Eq. (1) is
explicitly defined with the following force scheme [43]:

Fi =
(

1 − 1

2τ f

)
ωi

[
ei − u

c2
s

+ (ei · u)

c4
s

ei

]
· F. (10)

To couple the fluid flow with the temperature field, the Boussinesq approximation is adopted and
expressed as

ρ f = ρ0[1 − β(T − Tref )], (11)

where ρ0 is the fluid density at the reference temperature Tref , and β is the thermal expansion
coefficient of the fluid. Hence an external buoyancy force is exerted on the fluid due to the
temperature difference,

FB = −ρ0gβ(T − Tref ), (12)

where g is the gravitational acceleration. In the current work, only the thermal convection between
the particle and the wall is considered, so that the heat source term Si in Eq. (2) is assumed to be
zero.
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The macroscopic continuum equation and momentum equation, as well as the energy equation
can be recovered from the microscopic lattice Boltzmann equations, i.e., Eqs. (1) and (2), using the
Chapman-Enskog multiscale expansion [44] as follows

∇ · u = 0, (13)

ρ f
∂u
∂t

+ ρ f (u · ∇)u = −∇p + μ∇2u + F, (14)

∂T

∂t
+ u · ∇T = α∇2T, (15)

where p is the fluid pressure, which is determined by p = cs
2ρ f , μ is the fluid dynamic viscosity,

and α is the thermal diffusion coefficient. The fluid kinematic viscosity ν and thermal diffusivity α

can be obtained with the relaxation parameters τ f and τg, respectively, using the Chapman-Enskog
expansion,

ν = 2τ f − 1

6
, (16)

α = 2τg − 1

6
. (17)

B. Fluid-solid coupling

The fluid-solid coupling plays an important role in determining the hydrodynamic interactions
between the fluid and the particle. In this work, an interpolated bounce-back technique is employed
to account for the fluid-solid interaction, which is proved to be of second-order accuracy [45,46].
When a solid particle moves in a fluid domain meshed with discrete lattice grids, its solid boundary
is usually not located exactly on any lattice node. Assume that the solid boundary lies between a
fluid node x f and a solid node xs at time t , where the exact position of the solid boundary is denoted
as xb; the relative location of the solid boundary is described with a weighting parameter,

q = |x f − xb|/|x f − xs|. (18)

The undetermined distribution function f−i(x f , t + �t ) bounced back from the solid boundary
xb is computed using the following three steps, where −i denotes the direction from the solid node
xs to the fluid node x f .

Firstly, using the existing distribution functions fi(x f , t ) and fi(x f f , t ) at the nearest fluid nodes
x f and x f f the distribution function at the solid boundary fi(xb, t + �t ) is calculated with a first-
order interpolation,

fi(xb, t + �t ) = q fi(x f , t ) + (1 − q) fi(x f f , t ). (19)

Secondly, an instantaneous bounce-back operation at the solid boundary xb gives

f−i(xb, t + �t ) = fi(xb, t + �t ) − 2ωiρub · ei, (20)

where ub is the velocity of the solid boundary.
Finally, the unknown distribution function f−i(x f , t + �t ) is interpolated with the newly ob-

tained f−i(xb, t + �t ) and existing distribution function f−i(x f f , t + �t ),

f−i(x f , t + �t ) = 1

1 + q
f−i(xb, t + �t ) + q

1 + q
f−i(x f f , t + �t ). (21)
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Note that second-order interpolation is also applicable, which requires the distribution function
from further fluid node x f f f .

The hydrodynamic force on the particle at the solid boundary xb is computed using the momen-
tum exchange method with a Galilean invariance to reduce the unphysical numerical error [46],
which is evaluated as

Fi = (ei − ub) f +
i (x f , t ) − (e−i − ub) f−i(x f , t + �t ). (22)

Then the total hydrodynamic force and torque are calculated by summing up all the contributions
from every lattice direction and every nearest fluid node,

F f =
∑
all x f

∑
i

Fi, (23)

M f =
∑
all x f

∑
i

(xb − xc) × Fi. (24)

For the boundary conditions of temperature field, only the Dirichlet boundary condition, i.e., the
constant temperature boundary, is considered. A general bounce-back scheme for the concentration
boundary condition is applied in the current study [47], which yields

g−i(x f , t + �t ) = −g+
i (x f , t ) + 2ωiTb × [1.0 + 4.5(ei · ub)2 − 1.5|ub|2], (25)

where Tb is the temperature at the interface and gi
+(x f , t + �t ) is the postcollision distribution

function at the fluid node x f .

C. Particle’s motion

The translational and rotational motions of solid particles are governed by Newton’s equations
of motion,

m
dup

dt
= F f + G, (26)

I
d�p

dt
= M f , (27)

where up and �p are the transitional and rotational velocities of the particle, respectively. m is the
particle mass and I is the moment of inertia. F f and M f represent the fluid force and the torque
exerting on the particle, respectively. G is the gravity. Given that only one particle is considered in
the current work, the interparticle collision will not come into effect. To account for the particle-wall
interaction, the lubrication effect between the particle and the wall is carefully considered, in order
to prevent the particle from touching the wall due to the interstitial fluid pressure. An analytical
representation is employed to describe the lubrication force Flub [48],

Flub = −6πμr2vR(h)

(
1

h
− 1

hcrit

)
, (28)

where vR(h) is the relative velocity between the particle and the wall at the gap h, r is the particle
radius, and hcrit is the critical gap distance to trigger the lubrication correction, which is set as one
lattice grid hcrit = 1 in the current work. When the gap between the particle and the wall is larger
than hcrit , the lubrication force is not computed. Therefore, the total hydrodynamic force on the
particle is given as

Fhydro =
{

F f , h � hcrit

F f + Flub, h < hcrit
, (29)
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FIG. 1. Schematic of the model setup.

where F f is the fluid force calculated from the LBM [see Eq. (23)]. More detailed discussions on the
LBM–discrete element method (DEM), including model validation and applications, can be found
in our recent paper [49–51].

D. Simulation setup

As depicted in Fig. 1, a single particle with diameter d = 10 is initially suspended in a two-
dimensional channel with length L and height H . Periodic boundary conditions are considered at
the inlet and outlet of the domain. The top and bottom walls move with constant velocities Uw and
−Uw, respectively, which creates a simple shear flow with a constant shear rate γ = 2Uw/H . For
the lattice dimensions, the length of the channel is set as L = 500, which is sufficient to eliminate
the periodic effect, while the height is fixed at H = 100. To explore the effect of buoyancy, the
particle’s mass density is varied between 0.98 and 1.02 without being equal to 1. The effect of
thermal convection is imposed by applying the Dirichlet boundary conditions on the particle surface
as well as the top and bottom walls. The particle surface is kept at a cold temperature, Tc = 0, while
the top and bottom walls are set with a hot temperature, Th = 1. The initial temperature of the fluid
is the same as that of the wall. The reference temperature in this study is selected as Th = 1, and the
fluid density at Th = 1 is defined as the reference value to determine the density ratio.

The dimensionless control parameters for this problem include the dimensionless density ratio
σ , the Prandtl number Pr, the channel Reynolds number Re, and the Grashof number Gr, which are
defined as

σ = |ρp − ρ f |
ρ f

, (30)

Pr = ν

α
, (31)

Re = 2UwH

ν
, (32)

Gr = gβ(Th − Tc)d3

ν2
. (33)

Note that the particle Reynolds number based on the shear rate is also defined, Rep = γ d2

ν
, which

is related to the channel Reynolds number via Rep = Re( d
H )2. Since the particle size used in this

work is a fixed value, the two Reynolds number can be easily converted to each other through a
constant factor. The Prandtl number is fixed at Pr = 0.7, and the channel Reynolds number is in the
range of Re = 20−500. Hence the particle Reynolds number ranges from 0.2 to 5, which is in the
laminar flow regime. Table I gives a summarization of the major computational parameters used in
the simulations.
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TABLE I. A list of simulation parameters.

Physical parameters Lattice value

Channel length (L) 500
Channel height (H ) 100
Fluid density (ρ f ) 1
Fluid kinematic viscosity (ν) 0.05
Wall velocity (Uw) 0.005–0.125
Particle diameter (d) 10
Particle mass density (ρp) 0.98–1.02
Prandtl number (Pr) 0.7
Channel Reynolds number (Re) 20–500
Grashof number (Gr) 0–55

III. NUMERICAL VALIDATION

The numerical method is validated through two benchmark tests. One is the inertial migration
of a neutrally buoyant particle in a simple shear flow under the isothermal condition, and the other
is the sedimentation of a cold particle in hot fluid under gravity. The two validations ensure that
the well-known lateral migration phenomenon can be reproduced and the heat convection between
particle and fluid is computed correctly.

A. Inertial migration of a neutrally buoyant particle in simple shear flow under isothermal condition

The setup of the validation is the same as illustrated in Fig. 1, except that the thermal convection
is not considered. A particle with diameter of d = 25 is initially released at two symmetrical starting
positions y0/H = 0.25 and y0/H = 0.75. The channel Reynolds number is fixed at Re = 40. All the
parameters are identical to those used in [16].

Under the isothermal condition, the particle will migrate toward the centerline of the channel,
which is the only equilibrium position for a simple shear flow. Figure 2 shows a quantitative
comparison of the particle’s lateral trajectory obtained in our numerical simulation with the results
in [16]. Obviously, excellent agreement is reached between our numerical results and the literature.

FIG. 2. Particle’s lateral trajectory in a simple shear flow under isothermal condition. The open square
denotes the results from Feng et al. [16].
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FIG. 3. Time evolution of the particle’s horizontal position for different particle Grashof numbers. The
normalized values are defined as x∗ = x/W and t∗ = tν/d2. The solid lines denote the results of the present
work, while the dotted lines are results from [33].

Therefore, it is believed that our numerical model is able to predict the hydrodynamics and
reproduce the inertial migration in simple shear flow.

B. Sedimentation of a cold particle in a hot fluid

Sedimentation of a cold particle in a hot fluid bounded by two vertical walls is a well-validated
benchmark test for thermal fluid-particle problems and has been revisited by many scholars
[23,30,32,33]. It is well accepted that the settling trajectory of a single particle remarkably depends
on the particle Grashof number, Grp = gβ�T d3/ν2, where six different regimes of settling behavior
are identified. Particularly, when 810 < Grp < 2150, the particle settles vertically at a horizontal
position away from the centerline [23], which is the only settling position at the equilibrium state
under the isothermal condition.

To reproduce the interesting settling phenomenon, several typical Grashof numbers are selected
from different regimes. The computational domain with size of W ×H = 100×8000 is bounded by
four no-slip walls, where the left and right walls are imposed with a hot temperature Tw = 1, while
the top and bottom walls are adiabatic, i.e., dT/dy = 0. The initial fluid temperature is also Tw = 1,
and the temperature of the particle surface is fixed at Tp = 0. The particle with diameter of d = 25
is initially released at a position d/2 away from the centerline and 5d/2 away from the top wall. The
density ratio of the particle to the fluid is ρp/ρ f = 1.002 32. The height of the channel is sufficiently
long, so that the particle can reach the steady state of settling before touching the bottom wall. The
reference particle Reynolds number is fixed at Rep = Uref d/ν = 40.5, which is the same as used
in the literature [23,28], with Uref being the reference velocity Uref = √

πd (ρp/ρ f − 1)g/2. The
relaxation parameter is set as τ f = 0.65 and the Prandtl number is fixed at Pr = 0.7.

Figure 3 shows the time evolution of the particle’s horizontal position for different particle
Grashof numbers, where the numerical results from [33] are also included for comparison. It is clear
that our results are in qualitative agreement with the literature. A further quantitative comparison
of the equilibrium positions at Gr = 1000 and Gr = 2000 are listed in Table II. It can be seen that
excellent agreement is realized between our numerical results and the literature, which demonstrates
the applicability and validity of our numerical approach.
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TABLE II. Equilibrium positions of the particle at Gr = 1000 and Gr = 2000.

Gr Present work Reference [28] Reference [33]

1000 2.92 2.89 2.91
2000 2.76 2.74 2.76

IV. RESULTS AND DISCUSSIONS

A. Lattice grid independency

The independence of the lattice resolution is first examined by using different grids with the
same Reynolds number and Grashof number. The grid setup is set as 20d×10d and three different
size resolutions d = 10, 16, 20 are employed. The Reynolds number is fixed at Re = 100 and
the Grashof number is Gr = 1. For convenience, the particle is neutrally buoyant in the grid
independency test and its initial position is fixed at y0/H = 0.6. Figure 4 shows the particle lateral
trajectory for different grid setups. Obviously, there is no considerable difference in the equilibrium
position for all lattice grids considered. Hence, the lattice grid of d = 10 is believed to be sufficient
to obtain reliable results.

When a particle is released from rest at a certain height in the shear flow, it is expected that the
particle will settle to the bottom of the channel when ρp > ρ f , and rise to the top when ρp < ρ f ,
in the absence of shear flow. However, the shear flow produces a lift force on the particle, which is
toward the centerline, according to previous studies [16]. Thus, for a slightly non-neutrally buoyant
particle, it can be suspended again in the channel when the lift force is large enough to overcome
the gravitational force (buoyancy). Nevertheless, it was also reported that the presence of thermal
convection creates an additional lift force on the particle, which is always toward the bottom of the
channel when the particle is cold and the fluid is hot [33,34,52]. As a result, it is apparent that the
migration behavior of a non-neutrally buoyant particle depends on whether its density is larger or
smaller than the fluid, which will thus be discussed separately below.

B. Particles with ρp > ρ f

We start with the migration of a particle that is heavier than the fluid, under the isothermal
condition. Figure 5(a) shows the time evolution of the lateral position of the particle with various

FIG. 4. Particle lateral position as a function of time for different lattice grids with the same Reynolds
number Re = 100 and Grashof number Gr = 1.
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FIG. 5. Time evolution of the lateral position of particles with (a) different initial positions with the same
ρp = 1.002, and (b) different particle densities. The Reynolds number is fixed at Re = 100 and the Grashof
number is Gr = 0. The dashed lines represent the bottom of the channel.

initial positions. It can be seen that the particle ends up at the same equilibrium position with the
same Reynolds number and density, which implies that the final equilibrium position is independent
of the initial position. Therefore, the initial releasing position of the particle is fixed at y0/H = 0.6
in the following discussions, if not particularly mentioned. Figure 5(b) shows the trajectory of the
particle with different densities and the same Reynolds number. It is clear that heavier particle
settles closer to the bottom of the channel, due to the larger gravitational force. The equilibrium
positions of the particle as a function of the Reynolds number are further analyzed and shown in
Fig. 6. It can be observed that the particle reaches the bottom of the channel, which corresponds to
a dimensionless height of y/H = 0.06, at a relatively low Reynolds number. With the increase of
Reynolds number, the particle becomes suspended again in the channel at some critical points and
lifts to a higher equilibrium position when Re is further increased. Moreover, Fig. 6 also reveals that
the critical Reynolds number increases with the increase of particle density. Hence it is of interest to
identify the conditions when a particle settles to the bottom or remains suspended at an equilibrium
position.

FIG. 6. Equilibrium positions of the particle as a function of the Reynolds number for different densities.
The dashed line represents the bottom of the channel.
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FIG. 7. The regime map showing whether a particle is settled or suspended in terms of the dimensionless
density ratio and Reynolds number. The dashed line represents the results from Feng and Michaelides [18].

Following the work of Feng and Michaelides [18], more simulations were carried out with a
wider range of the parameters, i.e., Re = 20−500 and σ = 0.001−0.02. To assess whether a particle
settles at the bottom or remains suspended, a critical distance from the lower tip of the particle to
the bottom of the channel is defined as one lattice unit in the current study, which is equivalent to
a dimensionless height of y/H = 0.01. Thus, a particle with an equilibrium position yeq/H � 0.06
is regarded as settled, while it is suspended if yeq/H > 0.06. In Fig. 7, whether a particle is settled
or suspended is illustrated for a wide range of the dimensionless density ratio σ and Re considered.
Two distinctive regions are identified and the boundary curve can be well described with a power
law

Recrit,Gr=0 = aσ b, (34)

where a = 4067 and b = 0.59. It is noted that the exponent b = 0.59 in the above correlation
function is in excellent agreement with the result reported by Feng and Michaelides [18] that is also
superimposed in Fig. 7 using the dashed line. The overestimation of the critical Reynolds number
in Feng and Michaelides’ work might be attributed to the different model setups in the simulation.

Furthermore, a new dimensionless parameter can be deduced from Eq. (34),

λH = Re

Recrit,Gr=0
= Re

4067σ 0.59
, (35)

which can be treated as a relative strength between the lift force represented by the Reynolds
number, and the driving force of settling denoted by the density difference. With this dimensionless
parameter, the equilibrium positions of all the simulation conditions are quantified in a unified form,
and the results are shown in Fig. 8. It can be seen from Fig. 8 that the equilibrium positions for a
particle with different Reynolds numbers and densities coalescence into a single master curve and
can be well depicted with the new parameter λH . When λH < 1 the particle settles at the bottom of
the channel. When λH > 1, the equilibrium position of the particle increases consistently with the
increase of λH , which is well described by a logarithmic function,

yeq

H
= c1 ln(λH ) − c2, (36)

where the fitting parameters are c1 = 0.184 and c2 = 0.051 in the current study.
However, the above discussions are only confined to isothermal condition, where the influence

of thermal convection is not included. Then simulations with different Grashof numbers were
performed to explore the effect of thermal convection on the particle migration. The equilibrium
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FIG. 8. Equilibrium positions as a function of λH .

positions as a function of the Grashof number for different densities and Reynolds numbers are
shown in Fig. 9. It is observed that the equilibrium position decreases with the increase of the
Grashof number, when the particle is suspended at Gr = 0. However, when the particle already
settles at the bottom of the channel at Gr = 0, thermal convection has little effect on the equilib-
rium position. For example, the equilibrium position of the particle with ρp = 1.002−1.005 and
Re = 100 stays at the bottom of the channel for all the Grashof numbers, while the equilibrium
position of the particle with ρp = 1.001 and Re = 100 drops from yeq/H = 0.12 to yeq/H = 0.06
when Gr is increased from 0 to 40. These observations confirm that the thermal convection facilitates
the settling of the particle. Furthermore, it is interesting that the equilibrium position seems to
reach a stable value when the Grashof number is increased to a very large value, which appears
not necessarily to be the bottom of the channel (yeq/H = 0.06). Hence this stable lateral position
is defined as an asymptotic equilibrium position of the particle at the infinite Grashof number limit
(Gr → ∞). As can be seen from Figs. 9(b) and 9(c), the asymptotic equilibrium position moves
away from the bottom of the channel with the increase of Reynolds number, and seems to be
slightly different for different particle densities. As a result, it is anticipated that there are still two
distinguished regions, i.e., settled and suspended, for the particle migration behavior at the infinite
Grashof number limit, which also depend on the Reynolds number and the particle density.

Similarly, a regime map can be constructed in terms of Re and σ to indicate when a particle is
settled or suspended at Gr → ∞, and the result is displayed in Fig. 10. Note that the equilibrium
position at Gr = 30 is used as a representative value at the infinite Grashof number limit. It is
observed from Fig. 10 that, comparing to the isothermal regime map (see Fig. 7), the region of

FIG. 9. Equilibrium position as a function of Grashof number for different particle densities and Reynolds
numbers: (a) Re = 100, (b) Re = 200, and (c) Re = 300. The dashed line represents the bottom of the channel.
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FIG. 10. A regime map showing whether a particle is settled or suspended in terms of Re and σ at Gr = 30.

settled particles is enlarged, which is denoted by the dark gray area. In this enlarged region, a
particle that originally remains suspended at Gr = 0 settles to the bottom of the channel at Gr → ∞,
implying that a higher Re is needed to lift the particle to be suspended again in the presence of
thermal convection. Hence, we termed this area as a thermal convection enhanced settling regime.
Furthermore, the critical Reynolds number, i.e., the boundary curve between settled and suspended
regions, does not follow the power law given in Eq. (34), but can be described with a linear function,

Recrit,Gr→∞ = c3σ + c4, (37)

where the fitting parameters are c3 = 9873.6 and c4 = 166.4 in the current study. Note that the
power law in Eq. (34) is also incorporated in Fig. 10 for comparison. It can be seen that the linear
function lies above the power law in the range σ = 0−0.01, and almost collapses with the power
law when σ > 0.01, which implies a nonlinear dependence of the thermal convection enhanced
settling on the particle density. For example, the critical Reynolds number is increased from Recrit =
65 at Gr = 0 to Recrit = 173 at Gr → ∞ when σ = 0.001, while it is almost the same for σ =
0.01; i.e., Recrit = 265 at Gr = 0 and Recrit = 268 at Gr → ∞. Hence it can be inferred that the
thermal convection imposes greater influences on the settling of a relatively lighter particle (σ <

0.01). However, when σ > 0.01, the critical Reynolds number is almost the same for Gr = 0 and
Gr → ∞, which indicates that thermal convection has little effect on the migration behavior of the
particle.

It was previously reported that the introduction of thermal convection produces an additional
downward lift force on a cold particle in a hot fluid [33,34,52], which increases with the increase
of the Grashof number. Thus, the lift force caused by thermal convection is in the same direction
as the gravitational force, as depicted in Fig. 11(a), which enhances the settling of the particle.
The other lateral forces, including the wall repulsion, the Saffman force due to shear flow, and the
Magnus force due to particle rotation [16], are all against these two driving forces. The magnitude
of the inertial lift force in a simple shear flow is scaled as FL ∝ ρ f U 2d4/H2 based on the asymptotic
expansion technique [12,17], where U denotes the mean fluid velocity. Considering that the sizes of
the channel and the particle are constant in the current study, the inertial lift force only depends
on the fluid velocity, which can be related to the Reynolds number. The gravitational force is
determined by the dimensionless density ratio. Therefore, the equilibrium position of a particle that
is heavier than the fluid is a result of the complicated competition between the inertial lift force and
the synergistic effect of both gravitational force and thermal convection, which are further reduced
to three dominating dimensionless parameters, i.e., Re, σ , and Gr.
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FIG. 11. Lateral forces on a particle that is (a) heavier than the fluid and (b) lighter than the fluid in the
simple shear flow.

To further examine the various forces exerted on the particle, the lateral trajectory and the slip
velocity, as well as the fluid pressure distribution, are analyzed with more details. First, the effect
of Magnus force is revealed by turning off the particle rotation. As shown in Fig. 12(a), it can be
seen that the particle rotation seems to have limited impact on the equilibrium position, where the
particle without rotation is equilibrated at a slightly lower place. This is because the Magnus force is
always toward the centerline when the particle is in the bottom half of the channel due to a clockwise
rotation. Once it is switched off, the total upward force decreases, so that a new lower equilibrium
position must be met. Figure 12(b) shows the particle’s slip velocity as a function of time, which
is defined as the difference between the particle velocity and the undisturbed fluid velocity at the
center of the particle. It is found out that the particle’s slip velocity is almost zero for the isothermal
case, while it increases to larger positive value as the Grashof number increases, which indicates that
the particle always leads the fluid in the presence of thermal convection. Hence, an upward Saffman
lift force toward the centerline is produced due to a larger relative velocity at the upper tip of the
particle, which increases with the increase of Gr. The effect of the wall repulsion is evaluated via the
pressure distribution at the equilibrium state, which is displayed in Fig. 13. Obviously, the pressure
between the lower side of the particle and the wall increases with the increase of Gr, resulting in a
stronger wall repulsion to balance the gravitational force and thermal effect.

The effect of thermal convection is mainly caused by the cooling of the surrounding fluid due to
the temperature difference between the particle surface and the fluid. According to the Boussinesq

FIG. 12. (a) The effect of particle rotation on the lateral position for different particle densities. Time
evolution of the particle’s (b) slip velocity and (c) lateral positions for different Grashof numbers.
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FIG. 13. The pressure distribution of the flow field for (a) isothermal, (b) Gr = 4, and (c) Gr = 20 at the
equilibrium state. The particle density is ρp = 1.005 and the Reynolds number is fixed, Re = 300.

approximation, the density of cold fluid increases and thus moves toward the bottom wall, which
induces a downward flow around the particle. Figure 14 illustrates the flow field in the vertical
direction at the very early stage (γ t = 2.5) of the particle migration. Compared with the isothermal
case that is only driven by the gravitational force, a conspicuous negative velocity field is formed
around the particle in the presence of thermal convection, of which the magnitude rises as the
Grashof number increases. Therefore, the particle will drop rapidly toward the bottom wall once it is
released in the channel, as can be witnessed from the particle trajectory shown in Fig. 12(c). When
the particle gradually reaches its equilibrium position, the wall repulsion and the Saffman lift force
as well as the Magnus force, grow larger and become strong enough to balance the gravitational
force and the lift force due to thermal convection.

C. Particles with ρp < ρ f

In this section, migration behavior of particles that are lighter than the fluid is examined. In the
light of the symmetry of the shear flow system, it is anticipated that the equilibrium positions of
particles lighter and heavier than the fluid with the same density difference σ are symmetric about
the centerline of the channel under the isothermal condition. An diagram identical to that displayed
in Fig. 7 can be obtained to decide whether the particle floats up to the top of the channel or remains
suspended.

From the previous discussion, it is clear that the downward lift force due to thermal convection is
in the same direction as the gravitational force of the particle that is heavier than the fluid. However,
when the particle is lighter than the fluid, the gravitational force turns into an upward buoyancy, as
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FIG. 14. The vertical velocity contour of the flow field for (a) isothermal, (b) Gr = 4, and (c) Gr = 20 at
γ t = 2.5. The particle density is ρp = 1.005 and the Reynolds number is fixed, Re = 300.
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FIG. 15. A regime map showing the two cases studied to explore the effect of thermal convection. The
solid line refers to Eq. (34).

revealed in Fig. 11(b), which becomes an opponent of the thermal lift force. Hence, the equilibrium
position of the particle mainly results from the competition between the buoyancy and the thermal
lift force. To explore the effect of thermal convection, two cases are considered according to the
diagram shown in Fig. 7 under the isothermal condition; they are illustrated in Fig. 15. Case A
refers to the particle floating to the top (corresponding to the settled regime for a particle heavier
than the fluid), and case B denotes the particle that remains suspended in the channel. For each case,
the equilibrium positions of the particle with various Grashof numbers are examined.

Figure 16 shows the equilibrium position as a function of Grashof number for case A. It can be
seen that with the increase of Gr, the particle first stays at the top wall of the channel and suddenly
starts to settle down until a critical Gr is reached. Then the particle gradually moves toward the
bottom wall when Gr is further increased. As shown in each subplot in Fig. 16, it is observed that
the critical Grashof number that triggers the settling increases with the decrease of particle density
when the Reynolds number is fixed. Comparing the results of the same particle density, it is also
found that the critical Grashof number also increases with the increase of the Reynolds number. For
instance, the critical Grashof numbers for ρp = 0.980 are Grcrit = 3.50, 4.55, and 6.55 for Re = 50,
100, and 150, respectively.

Figure 17(a) summarizes the critical Grashof number Grcrit as a function of the dimensionless
density ratio σ for different Reynolds numbers. A linear relationship between Grcrit and σ is found
for all the Reynolds numbers investigated. The larger the Reynolds number, the larger the slope of
the linear function. Furthermore, it is worth noting that all of the linear correlations seem to pass

FIG. 16. Equilibrium position as a function of Grashof number for different particle densities and Reynolds
numbers: (a) Re = 50, (b) Re = 100, and (c) Re = 150. The dashed line represents the top of the channel.
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FIG. 17. (a) Critical Grashof number as a function of dimensionless density ratio for different Reynolds
numbers. (b) Normalized critical Grashof number as a function of the Reynolds number.

through the origin, implying a rigorously positive proportional relationship between Grcrit and σ .
Therefore, another dimensionless parameter can be defined as

λL = Gr

σ
, (38)

which characterizes the ratio of the lift force caused by thermal convection to the buoyancy.
Figure 17(b) replots the critical value of Gr/σ as a function of Re. It is found that Grcrit/σ for
different particle densities all collapse and a master linear relationship is obtained between Grcrit/σ

and Re,

λL,crit = c5Re + c6, (39)

where the fitting parameters are c5 = 1.59 an c6 = 9.31 in the current study. According to the above
discussion, the lift force due to thermal convection is downward while the buoyancy is upward, and
the balance between these two forces determines the equilibrium position of the particle. With the
increase of σ , i.e., the particle is lighter, the buoyancy becomes stronger. Thus a larger thermal lift
force is required to trigger the settling of the particle, leading to a higher Recrit. A close examination
of Fig. 17(b) reveals that the dominating parameter to describe the particle’s equilibrium position
can be universally defined as Gr/σ for various particle densities, and the critical value is the same
when the Reynolds number remains unchanged.

FIG. 18. Equilibrium position as a function of (a) Gr/σ and (b) Gr/σ
λL,crit

for different particle densities and
Reynolds numbers in case A.

064306-17



WENWEI LIU AND CHUAN-YU WU

FIG. 19. Equilibrium position as a function of Grashof number for different particle densities and Reynolds
numbers: (a) Re = 400 and (b) Re = 500. The dashed line represents the top of the channel.

Then the new parameter Gr/σ is employed to replot the data in Fig. 16, and the results are shown
in Fig. 18(a). It can be seen that the equilibrium positions of different particle densities are well
regressed with Gr/σ for each Reynolds number. With the increase of Re, the equilibrium position
profile shifts toward the right, giving rise to a larger critical value of Gr/σ . If we further normalize
the data with the empirical critical value λL,crit obtained in Eq. (39), a universal description can be
obtained, which is revealed in Fig. 18(b). It is observed that the equilibrium positions for different
particle densities and Reynolds numbers all collapse on a single master curve, where a critical
value is identified as (Grcrit/σ )/λL,crit = 1 to distinguish two regimes, i.e., floating and suspending.
When (Grcrit/σ )/λL,crit < 1, the particle stays at the top wall, and it starts to settle due to thermal
convection and remains suspended in the channel as (Grcrit/σ )/λL,crit > 1. With the increase of the
parameter (Grcrit/σ )/λL,crit , the equilibrium position gradually moves toward the bottom wall.

For case B, the equilibrium positions of the particle are presented in Fig. 19. Different from
case A, the particle at Gr = 0 does not stay at the top wall, but remains suspended at a position
depending on the Reynolds number and density, as shown in Fig. 7. With the increase of the
Grashof number, the equilibrium position moves smoothly toward the bottom of the channel, where
the sudden occurrence of the settling is not observed. It is noted that the variation of equilibrium

FIG. 20. Equilibrium position as a function of (a) Gr/σ and (b) Gr/σ
λL,crit

for different particle densities and
Reynolds numbers for case B.
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position of a particle with ρp = 0.985 at Re = 400 seems to resemble that for case A, because
this particular case locates close to the critical line shown in Fig. 15. In order to compare with
case A, the same dimensionless parameters Gr/σ and (Gr/σ )/λL,crit are applied to reanalyze the
results, which are shown in Fig. 20. From Fig. 20(a) it can be seen that the equilibrium position
profiles of the same Reynolds number are not well regressed on the same curve in terms of Gr/σ ,
indicating a different scaling of the particle’s equilibrium position. Figure 20(b) further shows
the regression of equilibrium position with respect to (Gr/σ )/λL,crit , where the fitting of case A
is included for comparison. It is interesting that the variation of the equilibrium position when
(Gr/σ )/λL,crit > 1 appears to follow a similar pattern to case A. However, the equilibrium positions
with (Gr/σ )/λL,crit < 1 are not well depicted with a single curve. The variation depends on the
Reynolds number and the particle density. Therefore, two different regimes for case B can be defined
in a similar way, i.e., a suspending regime with (Gr/σ )/λL,crit > 1 and a continuous settling regime
with (Gr/σ )/λL,crit < 1.

V. CONCLUSIONS

In this study, inertial migration of a non-neutrally buoyant particle in simple shear flows in
the presence of thermal convection is numerically analyzed using a double-population lattice
Boltzmann method. The particle density considered is in the range of ρp = 0.98−1.02 and the
channel Reynolds number is up to 500. The effect of thermal convection is tuned by systematically
varying the Grashof number, which is in the range of Gr = 0−55. Under the isothermal condition
(Gr = 0), the particle with a fixed density either settles to the bottom of the channel (ρp > ρ f )
or floats to the top (ρp < ρ f ) when the Reynolds number is below a critical value, above which
the particle becomes suspended due to the inertial lift force. The relationship between the critical
Reynolds number and the particle density can be well described by a power law with an exponent
of 0.59. However, in the presence of thermal convection, the migration behavior of the particle
is dependent on whether its density is larger or smaller than the fluid’s. For a particle heavier
than the fluid, the settling is enhanced by thermal convection because of the synergistic effect
of the downward thermal lift force and the gravitational force. As a result, the critical Reynolds
number to lift the particle to be suspended increases and can be depicted with a linear function of
the dimensionless density ratio σ within the range σ = 0−0.02. On the other hand, for a particle
lighter than the fluid, the variation of the equilibrium position as a function of the Grashof number
depends on whether it floats to the top wall or remains suspended at Gr = 0. For a particle that
floats to the top, it will suddenly settle down and become suspended when the Grashof number
is increased above a critical value. It is discovered that the critical Grashof number for different
particle densities is a unique function of a normalized form Gr/σ , which increases linearly with
the increase of Reynolds number. Furthermore, an empirical dimensionless number is proposed as
(Gr/σ )/λL,crit = (Gr/σ )/(1.59Re + 9.31) in order to distinguish the floating and suspending of the
particle. When (Gr/σ )/λL,crit < 1, the particle stays at the top wall. When (Gr/σ )/λL,crit > 1, the
particle becomes suspended in the channel and its equilibrium position gradually moves toward the
bottom wall. However, for particles initially suspended in the channel at Gr = 0, the critical settling
behavior is not observed anymore. Instead, the particle’s equilibrium position moves continuously
from a position below the top wall toward the bottom wall with the increase of the Grashof number.
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