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Viscous propulsion of a two-dimensional Marangoni boat driven by reaction
and diffusion of insoluble surfactant
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An analytical solution is derived for the flow generated by a self-propelling two-
dimensional Marangoni boat driven by reactive insoluble surfactant on a deep layer
of fluid of viscosity μ at zero Reynolds number, capillary number, and surface Péclet
number. In the model, surfactant emitted from the edges of the boat causes a surface
tension disparity across the boat. Once emitted, the surfactant diffuses along the interface
and sublimates to the upper gas phase. A linear equation of state relates the surface
tension to the surfactant concentration. The propulsion speed of the boat is shown to be
U0 = �σ (2πμ)−1e

√
DaK0(

√
Da) where Da is a Damköhler number measuring the reaction

rate of the surfactant to its surface diffusion, �σ is the surface tension disparity between
the front and rear of the boat, and K0 is the order-zero modified Bessel function. Explicit
expressions for the streamfunction associated with the Stokes flow beneath the boat are
found facilitating ready examination of the Marangoni-induced streamlines. An integral
formula, derived using the reciprocal theorem, is also given for the propulsion speed of the
boat in response to a more general Marangoni stress distribution.

DOI: 10.1103/PhysRevFluids.6.064003

I. INTRODUCTION

The study of self-propelled objects on free surfaces is of extensive current interest [1–3]. One
mechanism by which self-propulsion is achieved is by the setting up of a Marangoni stress on an
interface: the moving objects are then variously known as “Marangoni boats,” or “surfers” [4,5].
The strategic release of surfactants can provoke a surface tension gradient, and a concomitant
Marangoni stress, that can lead to locomotion. This phenomenon is familiar in natural biological
settings [6] and has also been exploited in synthetic situations [2,3]. External stimuli can also be
used to alter the local surface tension to manipulate particles on free surfaces [7–9]. The physics
can be complex: surfactants, possibly of multiple species, can diffuse along the surface, or into the
bulk fluid, sublimate into an ambient gas phase, or be convected by fluid motions, thereby setting
up a surface tension gradient resulting in a Marangoni stress at the interface.

The complexity of the interacting processes calls for theoretical investigation and models of
these effects are naturally of interest. In the study of camphor boats [3,10,11]—a type of Marangoni
boat whose motion is typically caused by a camphor particle at the rear of the boat that lowers the
effective surface tension there—equations of motion are usually written down based on Newton’s
second law coupled with a reaction-diffusion equation for the surfactant concentration which feeds
back to alter the surface tension force appearing in the force imbalance causing motion of the boat
[12]. As observed in a recent review [3], few of these models properly account for the surface
Marangoni stresses which cause flow in the bulk fluid which then provides a source of additional
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forces on the boats. These often neglected Marangoni effects can be important and there is an
ongoing effort to understand and model them [11,13,14]. A recent numerical and experimental study
[15] has examined Marangoni surfers driven by soluble surfactants and having various shape profiles
and in fluid baths of various depths. The flow patterns are visualized over a range of Reynolds
numbers and Péclet numbers. An interesting feature is that a forward, backward, or an arrested
motion of the surfers can be observed depending on the degree of confinement, a phenomenon that
had been observed earlier in theoretical investigations [16].

There is a growing number of theoretical studies of Marangoni propulsion. Under the assumption
of zero Reynolds, capillary, and surface Péclet numbers Lauga and Davis [21] found an analytical
expression for the Marangoni-induced net speed of propulsion of a floating circular disk as a func-
tion of an imposed surfactant distribution at the contact line. This propulsion speed was compared
to that obtained by ignoring details of the Marangoni-induced flow altogether and estimating the
boat speed instead using a balance of forces between surface tension and the viscous drag on a
forced particle; the two speeds, while of the same order of magnitude, are quite different underlining
the importance of properly resolving the Marangoni effects. Under the same assumptions on the
Reynolds, capillary, and surface Péclet numbers Masoud and Stone [17] used the reciprocal theorem
for Stokes flow to calculate the propulsion speed of active oblate and prolate spheroids suspended
at interfaces. And motivated by the observation of collective “uniform flow” states of multiple
boats interacting on a free surface [18,19] a recent study [20] finds an analytical solution for the
Marangoni-induced flow of a periodic array, or “flotilla,” of identical boats driven purely by surface
diffusion of insoluble surfactant in a two-dimensional setting. Even in the simpler two-dimensional
setting, and with the same assumptions of zero Reynolds, capillary, and surface Péclet number
used by other authors [16,17,21], the relevant problems that incorporate Marangoni effects are
challenging mixed boundary value problems requiring proper resolution of the associated contact
line stress singularities. The methods of complex analysis can, however, be deployed to great
advantage in such two-dimensional problems. For a flotilla of two-dimensional Marangoni boats
such methods were used to derive an explicit expression for its collective propulsion speed, as well
as an analytical description of the low-Reynolds-number Marangoni-induced flow beneath it [20].
As discussed in that study [20] the solution for propulsion of a single two-dimensional boat driven
purely by surface diffusion does not exist, a matter discussed in more detail later.

The present paper is a sequel to the author’s previous study [20] and shows how to incorporate
reaction effects into that two-dimensional Marangoni boat model. An understanding of reaction
effects is important because the latter lead to a removal of surfactants from the interface. When
surfactants are deliberately deposited to provide propulsion this removal by sublimation has the
useful effect of clearing the surface of surfactant thereby renewing and strengthening surface
tension gradients necessary for locomotion. In an experimental study of vapor-driven propulsion
on a free surface [22] steady propulsion of a floating boat is achieved through a continuous supply
of fuel vapor that lowers the surface tension of the liquid coupled with a spontaneous recovery
of the surface tension after the boat has passed caused by evaporation of the surfactant off the
interface. To study such a scenario we extend the model of diffusion-driven motion of a flotilla
of Marangoni boats [20]. Here, however, we restrict our attention to a single boat but incorporate
the additional physical effect of first-order reaction kinetics; this regularizes the two-dimensional
problem making a solution possible for a single boat. Using complex analysis techniques, it is
demonstrated that a complete analytical description is possible. The strength of the reaction kinetics
relative to the surface diffusion of surfactant is measured by a Damköhler number Da. Evidence of
the nonexistence of a solution to the single boat problem driven purely by surface diffusion emerges
as a singular limit of the new solutions found here as reaction effects vanish in the zero reaction
Da → 0 limit.

Figure 1 shows a schematic of the model. A single Marangoni boat modeled as a thin neutrally
buoyant “strip,” or plate, of length 2L on y = 0 in an (x, y) plane floats on a fluid of viscosity μ

occupying the lower-half plane y < 0. The boat is actuated, for example, by imposing surfactant
concentrations �± at its ends that cause a local change in the surface tension, according to a linear
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FIG. 1. A Marangoni boat of length 2L in an (x, y) plane with surfactant levels �± imposed at its front
and rear moves with speed U0 atop a fluid of viscosity μ due to a surface tension disparity �σ caused by the
surfactant. The surfactant sublimates to the upper gas phase and diffuses along the interface with the relative
strength of these two effects characterized by a Damköhler number Da.

equation of state, and a resulting disparity in surface tension �σ across the boat. Under a zero
surface Péclet number assumption, once surfactants are deposited on the interface they diffuse along
it and sublimate to the ambient gas phase in the upper-half plane y > 0. The model is arguably the
simplest one possible that captures these physical effects. Despite its simplicity it has an interesting
nontrivial solution structure as will be shown

It is useful to summarize the key theoretical results. The speed of the model boat shown in Fig. 1
is found to be

U0 = �σ

2πμ
e
√

DaK0(
√

Da), Da ≡ αL2

D
, �σ = β(�− − �+), (1)

where Da is a Damköhler number and the material parameter β = RT reflects the sensitivity of
the surface tension to changes in the surfactant concentration; R is the gas constant and T denotes
absolute temperature. The parameters α and D will be explained in Sec. II. K0 is the modified
Bessel function of order zero. The (quasisteady) incompressible Stokes flow beneath the interface
is described by the streamfunction

ψ (z, z) = Im[(z − z) f (z)], (2)

where f (z) is given parametrically, in terms of a mathematical parameter ζ , by the explicit expres-
sions

f (z) = F (ζ ) ≡ − �σ

4μ(1 − r)

[
e
√

Da

2π

∫
CL

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
e
√

DaX (ζ ′ )/L

+ re
√

Da

2π

∫
CR

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
e−(

√
DaX (ζ ′ )/L)

]
,

z = Z (ζ ) = 2ζL

ζ 2 + 1
= X (ζ ) + iY (ζ ), r = �+

�− , �− �= 0, (3)
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where CR and CL denote the right and left halves of the unit circle in a complex ζ plane as sketched
later in Fig. 7. As shown in Sec. III variants of the boundary value problem for the surfactant
concentration at the edges of the boat can also be solved with only minor adjustments of the scheme.
The important special case where the boat is actuated by a surfactant source only at the rear of the
boat corresponds to �+ = 0, or r = 0, for which f (z) simplifies to

f (z) = F (ζ ) ≡ − �σ

8πμ
e
√

Da
∫

CL

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
e2

√
Daζ ′/1+ζ ′2

. (4)

The paper is organized as follows. Sections II–IV set out the theoretical model and describe
the derivation of the solution summarized in (1)–(3). This involves a reformulation of the Stokes
equations in terms of two analytic functions and the derivation of a mixed boundary value problem
for one of them; that mixed boundary value problem is solved in Appendix B using conformal
mapping methods that fully take account of singularities arising at the contact line. Properties of the
solution given in (1)–(3) are analyzed in Sec. V. Section VI provides a complementary view of the
problem using the reciprocal theorem and gives a different way to retrieve the same propulsion speed
(1). It also leads to a general formula for the propulsion speed useful in other problems involving
the same geometrical setup where the Marangoni stress distribution on either side of the boat is
determinable. The paper concludes with a discussion in Sec. VII of the implications of the results
and possible generalizations.

II. MARANGONI BOAT DRIVEN BY REACTION AND DIFFUSION

Under the assumption that the Reynolds number is zero there is a slow viscous Stokes flow with
incompressible velocity u = (u, v) in the bulk fluid of viscosity μ in the lower-half plane (x, y) as
shown in Fig. 1. The governing Stokes equations are

μ∇2u = ∇p, ∇ · u = 0, (5)

where p(x, y) is the fluid pressure. The upper-half region y > 0 is occupied by a gas at uniform
pressure pg. In anticipation of finding a boat translating steadily with some speed U0 in the positive
x direction it is expedient to use a frame of reference cotraveling with this a priori unknown speed.
In this frame the boat occupies the interval [−L, L]. The fluid velocity as y → −∞ is

(u, v) → (−U0, 0), as y → −∞. (6)

On each portion of the interface the stress induced by the nonuniform surface tension σ (s), where
s denotes arc length along the boundary taken such that s increases with the fluid region on the left,
must be balanced by the fluid stress or [23,24]

[T · n]fluid
gas = σκn − ∇sσ, T ≡ −pI + μ

[∇u + (∇u)T
]
, (7)

where T is the fluid stress tensor in either phase, [T · n]fluid
gas denotes the jump in the bracketed

quantity between its limit approached from the fluid side and from the gas side, κ is the curvature of
the surface, and ∇s = (I − nn) · ∇ denotes the surface gradient on the interface having unit normal
n directed into the fluid. The tangential projection of the boundary condition (7) along the interface
gives the Marangoni stress balance

μt · [∇u + (∇u)T
] · n = −∂σ

∂s
. (8)

It is this condition that drives the motion of the boat. If a capillary number based on the clean-flow
surface tension σ0 is defined to be

Ca = μU0

σ0
, (9)
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it can be shown [20] by an analysis of the normal component of (7) that as Ca → 0 it is consistent to
seek a solution for a flat interface on either side of the boat where p0 = pg where pg is the uniform
gas pressure in y > 0 and p0 denotes the average pressure in the fluid in y < 0. The justification is
reviewed in Appendix A where the fluid pressure is conveniently decomposed as p = p0 + P(x, y)
where P(x, y) is the deviation from p0. It is shown there that, for a flat, zero curvature interface,
the pressure p0 must balance the ambient gas pressure pg. It is also assumed that any surfactant
leaving the interface has no effect on the constant pressure gas in y > 0 which can be taken to be
dynamically inactive.

In summary, in the limit Ca → 0 the line y = 0 is a streamline of the flow. The Marangoni stress
balance (8) holds on the interface on each side of the boat. On the boat itself, in the reference frame
cotraveling with speed U0, the no-slip condition

(u, v) = (0, 0) (10)

holds. At the edges of the boat the fluid velocities must be continuous, but integrable singularities of
the fluid stress are expected. The propulsion speed U0 will be set by the condition that the net force
on the boat is zero so that the surface tension force across the boat is balanced by viscous drag.

III. SOLUTION FOR THE SURFACTANT DISTRIBUTION

For a flat interface on y = 0 it is natural to view the surface tension distribution as a function
of x, σ = σ (x). It is a common model to take a linear equation of state [20,21,23,24] relating the
surfactant concentration �(x) to the local surface tension value:

σ (x) = σ0 − β�(x), (11)

where β was introduced earlier. This is a good model for moderate surfactant concentrations. By
(11) the corresponding surface tension values σ± at the edges of the boat are

σ+ = σ0 − β�+, σ− = σ0 − β�−. (12)

Defining �σ ≡ σ+ − σ− to be the difference in surface tension across the boat, then

�σ ≡ σ+ − σ− = −β(�+ − �−). (13)

Halpern and Frenkel [25] (see their Appendix B) give a simple derivation of the two-dimensional
equation governing the evolution of insoluble surfactant with density �(x, t ) on a two-dimensional
interface in an (x, y) plane. For a flat interface y = 0 the equation is

∂

∂t
� + ∂

∂x
(�u) = D

∂2�

∂x2
− α�, on y = 0, (14)

where u is the slip velocity in the x direction on the interface, D is the surface diffusion coefficient,
and the final term in (14), not included by Halpern and Frenkel [25], has been added to account
for the first-order reaction kinetics associated with sublimation of the surfactant to the gas phase
[13,14]. The parameter α is the reaction rate. Nondimensionalizing � with respect to �−, lengths
with respect to L, velocities with respect to the boat speed U0, and time with respect to L/U0, the
nondimensional form of (14) is

Pes

[
∂�

∂t
+ ∂

∂x
(�u)

]
= ∂2�

∂x2
− Da�, Pes ≡ U0L

D
, (15)

where all quantities are now taken to be nondimensional and Pes is the surface Péclet number. The
Damköhler number, Da, defined in (1) is a ratio of the reaction rate to the surface diffusion rate.

In the limit Pes → 0 where surface diffusion dominates, surface advection equation (15) reduces,
in the cotraveling frame, to

d2�(x)

dx2
− λ2� = 0, λ2 = α

D
, |x| > L, (16)
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where we have reverted to dimensional variables which turn out to be more convenient. The solution
to this second-order ordinary differential equation is

�(x) =
{
�−eλ(L+x), x � −L
�+eλ(L−x), x � L.

(17)

The solution (17) satisfies the far-field condition �(x) → 0 as x → ±∞ meaning that the interface
far from the boat is free of surfactant (“clean”), which is physically reasonable since the boat is
taken to be the only surfactant source. Solutions will depend on the nondimensional parameter
r = �+/�− introduced in (3). The most common scenario envisaged is that �+ = 0 with �− > 0
so that, in order to propel itself in the positive x direction, a boat ejects surfactant from its rear. This
is the case r = 0. The model, however, allows for any r �= 0. It follows from (17) and (11) that

−∂σ

∂x
=

{+βλ�−eλ(L+x), x � −L
−βλ�+eλ(L−x), x � L,

(18)

which is the gradient of surface tension that drives the motion according to (8).
It is worth mentioning that if, instead of the Dirichlet-type condition on �(x) at the edges of the

boat used above, a Neumann-type boundary condition for the surfactant concentration is used at the
edges of the boat, namely,

−d�

dx
=

{−J−, x = −L
J+, x = +L,

(19)

where J± denote specified magnitudes of the surfactant fluxes ejected from the edges of the boat,
then the analysis to follow is unchanged except for a simple adjustment of the constants, that is,
instead of (17) the solution becomes

�(x) =
{

(J−/λ)eλ(L+x), x � −L
(J+/λ)eλ(L−x), x � L.

(20)

A mixture of Dirchlet-type and Neumann-type conditions at the two edges of the boat can also be
incorporated with similarly minor adjustments of constants.

IV. COMPLEX VARIABLE FORMULATION

The challenge is to solve for the Stokes flow in the lower-half plane y < 0 with the mixed
boundary conditions on y = 0 derived in Sec. II and with the surface tension distribution found
in Sec. III. We can introduce the complex variable representation of a biharmonic streamfunction
ψ (z, z) given by [20,23,24]

ψ (z, z) = Im[z f (z) + g(z)], (u, v) =
(

∂ψ

∂y
,−∂ψ

∂x

)
, u − iv = 2i

∂ψ

∂z
, (21)

where f (z) and g(z) are two functions of z = x + iy, having the dimensions of a velocity, that are
analytic in y < 0 except possibly on y = 0 and as |z| → ∞. From the Stokes equations it can be
shown that the fluid pressure P, the vorticity ω = −∇2ψ = −4∂2ψ/∂z∂z, and the fluid rate-of-
strain tensor ei j = (1/2)(∂ui/∂x j + ∂u j/∂xi ) are related to f (z) and g(z) through

4 f ′(z) = P

μ
− iω, u − iv = − f (z) + z f ′(z) + g′(z), e11 + ie12 = z f ′′(z) + g′′(z), (22)

where primes denote differentiation with respect to z. A derivation of these fundamental relations is
given in an Appendix of the study of the Marangoni boat flotilla [20]. There is an additive degree of
freedom in the choice of f (z) and g′(z) since the transformations

f (z) 	→ f (z) + c, g′(z) 	→ g′(z) + c, (23)
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where c ∈ C is a constant do not affect the complex velocity field u − iv given in (22). This degree
of freedom will be specified later.

On inspection of (21) it can be checked that the choice

g(z) = −z f (z) (24)

ensures that ψ = 0 on y = 0, where z = z, and renders it a streamline. That this choice is consistent
with the far-field requirements and force-free condition on the boat will be verified later. Moreover,

g′(z) = −z f ′(z) − f (z) (25)

so that if f (z) 	→ f (z) + c, then g′(z) 	→ g′(z) − c implying that the additive degree of freedom c
in (23) is now constrained to be purely imaginary. From (22) the complex velocity field, with g(z)
given by (24), is

u − iv = − f (z) + z f ′(z) + g′(z) = − f (z) + (z − z) f ′(z) − f (z). (26)

On y = 0, where z = z = x, it follows from (26) that

u − iv = − f (z) − f (z) = −2Re[ f (z)]. (27)

The boundary condition (10) then implies that on the boat,

Re[ f (z)] = 0, |x| < L, y = 0. (28)

From (6) and (27) the function f (z) must also satisfy the far-field condition in the lower-half plane

f (z) → U0

2
+ O(1/z), as |z| → ∞, y � 0, (29)

where a possible purely imaginary constant has been set to zero without loss of generality using the
available purely imaginary degree of freedom c in (23).

As for the stress condition on the interface, the author has shown elsewhere [20] that the
tangential stress condition can be written as

Re

[
2μi

dH

dx

]
= −∂σ

∂x
, (30)

where

H (z, z) = f (z) + z f ′(z) + g′(z). (31)

If we now use the expression (18) for −∂σ/∂x derived earlier from the surfactant evolution equation,
then

Re

[
2μi

dH

dx

]
=

{+βλ�−eλ(L+x), x � −L
−βλ�+eλ(L−x), x � L.

(32)

This can be integrated with respect to x,

Im[2μH] =
{−β�−eλ(L+x) + Im[2μH−], x � −L
−β�+eλ(L−x) + Im[2μH+], x � L,

(33)

where two real constants of integration, one on each portion of the interface, have been written as
Im[2μH±] where

H+ ≡ lim
x→+∞[H (x + i0)], H− ≡ lim

x→−∞[H (x + i0)]. (34)

With the choice (24), it can be checked that

H = f (x) − f (x) = 2i Im[ f (x)], on y = 0 (35)
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implying, in order that (33) is consistent with (29) as |x| → ∞, that H± = 0. Then, combining (33)
and (35), it is found that on the interface

Im[ f (x)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− β

4μ
�−eλ(L+x), x � −L

− β

4μ
�+eλ(L−x), x � L.

(36)

The total force (per unit length in the direction perpendicular to the plane of interest) due to
surface tension across the entire y = 0 line is

σ (∞) − σ (−∞). (37)

The total force due to viscous stress along it is

2μi
∫ x=∞

x=−∞
dH = 2μi(H+ − H−). (38)

But using (35) when adding together (37) and (38) implies that the total force over y = 0 is

σ (∞) − σ (−∞) − 4μ(Im[ f (∞ + i0)] − Im[ f (−∞ + i0)]). (39)

Since the boundary condition on the interface portions of y = 0 is one of local force balance, the
sum of the surface tension and viscous drag over these will be zero meaning that (39) is the total
force on the boat. For force-free motion, and assuming no other external forces on the boat, the
quantity (39) must therefore vanish. The total force (39) is purely real so there is no net force in the
y direction; indeed from (22) and (28) it is easy to check that, on the boat, the disturbance pressure
from the average P = 0 so the normal pressure forces on the boat are in balance and the net torque
on it vanishes.

When Da �= 0 the surfactant evolution equation on the interface tells us that the far-field interface
is always rendered clean by reaction effects, i.e.,

σ (∞) = σ (−∞) = σ0 (40)

implying, from (39), that

Im[ f (∞ + i0)] = Im[ f (−∞ + i0)]. (41)

This is consistent with the far-field requirement on f (z) that it be lower analytic tending to a constant
value in the far field. A solution to the Marangoni boat problem exists in this case.

On the other hand, when Da = 0 (no reaction) the surfactant evolution equation requires that

σ (∞) − σ (−∞) = �σ �= 0 (42)

since the surfactant concentrations must be (different) constants either side of the boat.
Expression (39) then implies

4μ(Im[ f (∞ + i0)] − Im[ f (−∞ + i0)]) = �σ �= 0. (43)

This is not consistent with the far-field requirement (29) on f (z) unless �σ = 0: the solution for
force-free motion of the boat with �σ �= 0 therefore does not exist when Da = 0. Indeed, a jump
in the imaginary part of an analytic function as a point is approached from different directions—in
this case, the point at infinity—is the signature of a logarithmic singularity, having a purely real
strength, at that point. Indeed, it follows from (43) that we must have

f (z) ∼ �σ

4μπ
log z = �σ

4μπ
(ln |z| + i arg[z]), as |z| → ∞, (44)

where log denotes the complex logarithm function since arg[z] = 0 for z = x > 0 and arg[z] = −π

for z = x < 0 where we pass from the positive real axis to the negative x axis through the lower-half
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FIG. 2. The mathematical problem for the lower analytic function f (z) to which the physical problem in
Fig. 1 is reduced. It is a mixed-type boundary value problem for a lower-analytic function f (z). There are
square root branch points in f (z) at z = ±L. The solution can be found using conformal mapping methods as
shown in Appendix B.

plane (the fluid region). But the real part of such an f (z) is logarithmically singular as |z| → ∞ and
therefore does not tend to a constant value as required in (29).

The same logarithmic divergence of the far-field velocity arises when one tries to satisfy the
no-slip condition on a steadily translating body in a two-dimensional Stokes flow: consequently
a solution to that “dragging problem” does not exist. This is the familiar Stokes paradox. Indeed
it can be shown, using a Schwarz reflection argument to extend the Stokes flow in the Da = 0
Marangoni boat problem in the lower-half plane to a Stokes flow in the entire plane exterior
to a finite “plate” (i.e., the boat), that the Da = 0 Marangoni boat problem considered here is
mathematically equivalent to the problem of dragging a flat plate (i.e., the boat) along the x axis
through an unbounded viscous fluid.

The problem for Da �= 0 has thus been reduced to a mixed boundary value problem for the lower
analytic function f (z) as shown schematically in Fig. 2. The imaginary part of f (z) is a known
function, dictated by solution of the surfactant evolution equation, on the two interface portions
on y = 0 while the real part of f (z) is known to vanish on the boat. This mixed boundary value
problem for f (z) can be solved explicitly using conformal mapping methods; the details can be
found in Appendix B with the results of that analysis reported in (1)–(3). The following section
explores features of the solutions.

V. CHARACTERIZATION OF THE SOLUTIONS

Figure 3 shows a graph of U0(2πμ)/�σ against Damköhler number Da. The propulsion velocity
of the boat becomes unbounded as Da → 0 when reaction effects become unimportant. Indeed, as
Da → 0 it follows from (1) and the known behavior [26]

K0(
√

Da) ∼ − ln
√

Da (45)

that

U0 ∼ − �σ

2πμ
ln

√
Da, as Da → 0. (46)

The boat speed therefore becomes logarithmically unbounded as reaction effects vanish. This
singular limit is a manifestation of the nonexistence of a solution, as just discussed, to the model
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FIG. 3. Graph of U0(2πμ)/�σ against Da. The dashed line is the asymptote
√

π/2(Da)−1/4.

problem when Da = 0. The analysis indicates that the presence of nonzero Marangoni stresses on
the interface due to reaction effects, i.e., Da > 0, can regularize the problem. This result is consistent
with a similar result in the single-boat limit of the flotilla analysis [20] where the same logarithmic
singularity in the propulsion speed emerges as the period of the arrangement tends to infinity. Just
as periodicity regularized the nonexistent single-boat limit there, that is, consideration of a periodic
flotilla of boats rather than just a single boat, here it is reaction effects that provide the regularization
mechanism for nonzero Da.

In the opposite limit Da → ∞, where reaction effects dominate, the fact [26] that

K0(
√

Da) ∼
√

π

2
√

Da
e−√

Da (47)

can be used to deduce from (1) that

U0 ∼ �σ

2πμ

√
π

2

1

Da1/4 , as Da → ∞. (48)

There is a slow algebraic decay of propulsion speed with increasing Da. In this limit surfactant
sublimates off the interface so readily after it is emitted from the boat that the driving mechanism
for Marangoni propulsion eventually becomes ineffective.

Figure 3 reveals that U0 increases dramatically only for small Da, it decays slowly, like Da−1/4,
for large Da, and there is a large intermediate range of Da where the propulsion speed does not
vary appreciably. In an experimental study of vapor-driven propulsion on a free surface [22], the
propulsion speed of the boat is found to be relatively insensitive to changes in operating conditions.
Those observations are qualitatively consistent with the theoretical evidence in Fig. 3. The boat
speed is also always positive, and this is consistent with previous analyses [16] where disk-shaped
boats are found to always travel in the expected direction. Reverse Marangoni propulsion is believed
to be associated with regions of negative pressure on the boat [15] and, as mentioned earlier, the
pressure forces on the flat boat in the present setup vanish so any such mechanism for reverse
propulsion is absent.

Given the explicit form (2)-(3) for the streamfunction, its contours, that is, the streamlines, are
readily examined for different parameters. When r = 1 an equal amount of surfactant is ejected
at the front and rear of the boat. The associated speed of propulsion U0 = 0 since the Marangoni
flow generated by the surfactant is symmetric about the center of the boat. Until this left-right
symmetry is broken, no propulsion of the boat is expected in this zero surface Péclet number
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FIG. 4. Fore-aft symmetric eddy structure beneath the boat when Da = 1 and r = 1 so that equal amounts
of surfactant are ejected both fore and aft. The flow induced by the Marangoni stress is symmetric about the
center of the boat which consequently remains stationary: U0 = 0.

regime. Figure 4 confirms that the streamline distribution for Da = 1 and r = 1 has the anticipated
symmetry. Although the boat is not moving, there is nevertheless a nontrivial recirculatory flow
beneath it driven by the Marangoni stress. The lower surface tension near the edges of the boat
compared to the value in the far field means that a fore-aft symmetric eddy pair is set up whereby
fluid is dragged out along the interface away from the boat towards remote areas with higher surface
tension. There must be a compensating upwelling of fluid towards the boat in the y direction leading
to the observed eddy structure.

Besides Da and μ, the propulsion speed U0 depends only on the surface tension disparity �σ

across the boat. The latter, in turn, depends only on the difference �− − �+ and the constant β. For
fixed μ and β there is, for any choice of Da, a one-parameter family, parametrized by r, of different
flows associated with the same boat propulsion speed U0. To investigate this it is convenient to
assume �− �= 0 and to set

�+ = r

1 − r
, �− = 1

1 − r
, 0 � r < 1 (49)

so that r = �+/�− parametrizes a family of solutions for which the propulsion speed U0 is
fixed since �− − �+ = 1 for any choice of r. Only the range 0 � r < 1 is of interest for the
following reasons. First, r > 0 since it is a ratio of (positive) surfactant concentrations. With the
parametrization (49), r = 1 is not allowed but this corresponds to the symmetric case shown in
Fig. 4 that has just been discussed. Finally, any r > 1 corresponds to exchanging the roles of �−
and �+ and offers no new information—the boat will merely move to the left instead.

Figure 5 shows the streamline distributions, both in the fixed and cotraveling frames, for fixed
Da = 1 and four values of r decreasing from unity: r = 0.75, 0.5, 0.25, and 0. The boat speed
U0 is the same for all cases shown, yet the streamline topologies are quite different. As r decreases
from unity, the quantity of surfactant emitted at the front of the boat relative to its rear decreases
until, at r = 0, no surfactant is emitted there at all. The symmetry breaking is most evident in the
cotraveling frame where the effect on the symmetric eddy structure in Fig. 4 can be readily tracked.
As r decreases the eddy near the rear of the boat at x = −L increases in size while that near the front
of the boat at x = L becomes more compact until, eventually, it is no longer visible when r = 0. An
eddy is only visible in the fixed reference frame, near the front of the boat, when r is close to unity.
Figure 6 shows streamlines for the same set of r values but for Da = 10 so that sublimation off the
interface is stronger.

VI. A RECIPROCAL THEOREM FOR A 2D MARANGONI BOAT

In view of previous work [16,17] where reciprocal theorems for Marangoni propulsion have
been deployed in the three-dimensional case under the same assumptions of zero Reynolds and
capillary numbers adopted here, it is of interest to ask if there is an analogous result in the two-
dimensional setting. The answer is in the affirmative: it is demonstrated in Appendix C how the
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FIG. 5. Streamlines in the fixed frame (left column) and the cotraveling frame (right column) for Da = 1
and r = 0.75 (top row), 0, 5, 0.25, and 0 (bottom row). The case r = 0 corresponds to actuation at the rear
only. The boat propulsion speed U0 is identical in all cases shown although the streamline topology changes
dramatically with r.

reciprocal theorem for Stokes flow can be used to deduce that

U0 = − 1

2πμ

[∫ −L

−∞
ln

∣∣∣∣x − √
x2 − L2

L

∣∣∣∣∂σ

∂x
dx +

∫ ∞

L
ln

∣∣∣∣x − √
x2 − L2

L

∣∣∣∣∂σ

∂x
dx

]
. (50)

This is a general formula: it can be used to compute the boat speed in any such Marangoni flow
problem where a determination of ∂σ/∂x is possible. In Appendix C it is also verified that the
earlier result (1) for U0 can be retrieved from (50) thereby providing a consistency check on the
analysis. It is important to note that formula (50) is derived assuming a solution to the force-free
Marangoni boat problem exists. In the reaction-diffusion Marangoni boat problem considered here,
when Da = 0 a solution when �σ �= 0 does not exist meaning that (50) does not apply.

VII. DISCUSSION

A simple model problem of a Marangoni boat propelled by surface diffusion and sublimation
of insoluble surfactant has been presented and solved using complex variable methods. The boat
propulsion speed is given by formula (1); the streamfunction associated with the flow driven in the
bulk viscous fluid can be represented as an explicit integral (2)-(3). Such formulas make it easy to
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FIG. 6. Streamlines in the fixed frame (left column) and the cotraveling frame (right column) for Da = 10
and r = 0.75 (top row), 0, 5, 0.25, and 0 (bottom row). The case r = 0 corresponds to actuation at the rear
only. The boat propulsion speed U0 is identical in all cases shown.

study streamline topologies and other solution features. Solutions to variants of this problem can be
found by simple adjustments of the methodology.

The new solutions can be viewed as a form of solitary traveling wave caused by the localized
emission of surfactant driving a Marangoni-induced flow in the bulk viscous fluid. By extension,
a previous analysis of a flotilla of Marangoni boats [20] driven purely by surface diffusion and
also available in closed form, can be viewed as periodic traveling waves. By a combination of the
mathematical ideas presented here and in the study of the flotilla [20], analytical progress on finding
the collective speed of a Marangoni boat flotilla when both surface diffusion and first-order reaction
kinetics are present is also possible. The details remain to be worked out but, in view of the present
and former [20] studies, such an analysis is a routine extension.

Analytical solutions of such multiphysics problems are rare but valuable. While the direct
physical applicability of two-dimensional models is limited, their tractability compared with the
three-dimensional case facilitates theoretical examination of physical effects which, in many in-
stances, are likely to be qualitatively similar in three dimensions. A perturbative approach, using the
analytical solutions here as a base state, is an obvious strategy for incorporating additional physical
effects and has been illuminating in recent studies of other problems [27,28]. This is particularly
important in multiphysics settings where, in just a partial list, additional physical effects here might
include weak solubility in the bulk, small Péclet number effects (both surface and bulk), small
capillary number effects and interface deflection, higher-order reaction kinetics or modeling of
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multiple species, small inertia effects, and unsteadiness either in the surfactant evolution equation,
or the hydrodynamics, or both. Use of domain perturbation techniques is expected to allow the
study of propulsion of boats of different shapes including nonflat surfers such as those studied in
[15–17], as well as finite-depth effects [15]. The availability of analytical solutions is also valuable
when combined with reciprocal theorems. Useful information about solutions to new problems can
often be gleaned by using these integral identities together with exact solutions to known problems
[17,27,29]. The result of Sec. VI using an exact solution given in (C2) of Appendix C is an example
of precisely this. Deployment of the new analytical solution (1)–(3) in reciprocal identities may
similarly lead to other new results.

Conformal mapping methods akin to those deployed here have proven to be useful in solving
other mixed boundary value problems arising in studies of the effects of reaction kinetics on the
self-propulsion of so-called Janus particles driven not by Marangoni stresses but by slip velocities
caused by solute dissolution into the bulk ambient fluid [30,31]. As here, the methods led to an
explicit formula for the particle velocity in that problem too.

APPENDIX A: ZERO CAPILLARY NUMBER ASSUMPTION

Suppose the pressure in the fluid is denoted by

p(x, y) = p0 + P(x, y), (A1)

where p0 is the average fluid pressure on the interface and P(x, y) is the deviation from this average
value. On each portion of the interface (7) says that the stress induced by the nonuniform surface
tension must be balanced by the fluid stress [23,24]. From the Marangoni stress balance (8) we
expect the boat speed U0 to scale with the jump in surface tension �σ across it:

U0 ∼ �σ

μ
. (A2)

The normal component of (7) is

−(p0 − pg) − P(x, y) + μn · [∇u + (∇u)T
] · n = κ[σ0 − β�(x)]. (A3)

If we nondimensionalize the pressure disturbance P(x, y) with respect to μU0/L, lengths with
respect to L, and β�(x) with respect to �σ , (A3) can be written as

− (p0 − pg)L

σ0
+ Ca

[−P̂(x, y) + n · [∇û + (∇û)T
] · n

] = κ̂

(
1 − �σ

σ0
β̂�̂(x)

)
, (A4)

where hats denote nondimensional quantities and the capillary number based on the clean-flow
interface surface tension is defined in (9). The final term of (A4) can be seen to be of order Ca since,
on use of (A2),

�σ

σ0
∼ Ca. (A5)

If Ca � 1 the dominant terms in the normal stress balance (A4) require

− (p0 − pg)L

σ0
= κ̂ . (A6)

A constant curvature interface is therefore a consistent solution in this small capillary number limit.
For the flat surface of interest here κ̂ = 0 and we must have p0 = pg. For this flat interface to be a
consistent equilibrium it must be a streamline of the flow.
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FIG. 7. Conformal mapping (B1) from the lower-half unit disk in a complex ζ plane to the fluid region y <

0 below the Marangoni boat. The point ζ = −i is the preimage of the point at infinity in the lower-half z plane
y → −∞. The preimage of the boat is the real diameter ζ ∈ (−1, 1). Tracing arrows around the boundaries in
each plane shows the correspondences under (B1).

APPENDIX B: SOLUTION BY CONFORMAL MAPPING

To solve for the flow we will employ conformal mapping techniques. Let

z = Z (ζ ) = 2ζL

ζ 2 + 1
= X (ζ ) + iY (ζ ). (B1)

This conformal mapping is the reciprocal of the well-known Joukowski mapping, (1/2)(ζ + ζ−1),
to a flat-plate airfoil familiar in aerodynamics [32,33]. The mapping (B1) transplants the lower-half
unit disk in a complex ζ plane to the fluid region in the lower-half plane y < 0, with the real diameter
ζ ∈ (−1, 1) corresponding to the boat and the lower-half unit circle, denoted by C−

0 , corresponding
to the interface. The point ζ = −i is the preimage of the point at infinity in the lower-half complex
z plane. Figure 7 shows a schematic of the mapping and the boundary correspondences under it.

To see which parts of C−
0 correspond to the left and right portions of the interface it is convenient

to give names to four “halves” of the unit ζ circle: C+
0 and C−

0 will denote the upper-half and
lower-half unit ζ circles; CR and CL will denote the right-half and left-half unit ζ circles. This
means, for example, that C+

0 ∪ CR denotes the portion of the unit ζ circle in the first quadrant; the
three other quadrants have similar designations as indicated in Fig. 7. Under the mapping (B1) the
segment C−

0 ∪ CR is transplanted to the interface on the positive real axis on the right of the boat in
Fig. 7; C−

0 ∪ CL is transplanted to the interface on the negative real axis on the left of the boat.
It is useful to introduce the function h(z) defined via

f (z) = − iβ

4μ
h(z), (B2)

together with this function composed with the conformal mapping, namely,

H(ζ ) ≡ h(Z (ζ )). (B3)

The function H(ζ ) is known to be analytic in the lower-half unit ζ disk. We now employ some
useful manipulations used by the author in other problems [23,32] where a similar mathematical
structure pertains. On the real diameter ζ ∈ (−1, 1), which corresponds to the boat, we have ζ = ζ
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and it follows from (28) that

Im[H(ζ )] = 0, or H(ζ ) = H(ζ ), (B4)

where the Schwarz conjugate p(ζ ) of an analytic function p(ζ ) is defined by p(ζ ) ≡ p(ζ ). We can
infer from (B4), using the Schwarz reflection principle [34], that H(ζ ) is also analytic in the upper-
half unit disk |ζ | < 1, implying that it is analytic in the entire unit disk. On C−

0 , which corresponds
to the interface, it follows from (36) that

Re[H(ζ )] =
{
�−eλ[L+X (ζ )], ζ on C−

0 ∪ CL

�+eλ[L−X (ζ )], ζ on C−
0 ∪ CR.

(B5)

Suppose now that ζ ∈ C+
0 ∪ CR, then ζ ∈ C−

0 ∪ CR; similarly, if ζ ∈ C+
0 ∪ CL, then ζ ∈ C−

0 ∪ CL.
Therefore, for any ζ ∈ C+

0 , that is, any point on the upper-half unit ζ circle, we have

Re[H(ζ )] = Re[H(ζ )] = Re[H(ζ )] =
{
�−eλ[L+X (ζ )], ζ on C−

0 ∪ CL

�+eλ[L−X (ζ )], ζ on C−
0 ∪ CR,

(B6)

where the first equality follows because the real parts of complex conjugate quantities are equal,
the second equality follows from (B4), and the third equality follows from (B5). If ζ ∈ C0, then
ζ = 1/ζ and it is easy to check that

X (ζ ) = X (1/ζ ) = Z (1/ζ ) = Z (ζ ) = X (ζ ) (B7)

implying, from (B6), that

Re[H(ζ )] =
{
�−eλ[L+X (ζ )], ζ on C+

0 ∪ CL

�+eλ[L−X (ζ )], ζ on C+
0 ∪ CR.

(B8)

Together (B5) and (B8) imply that

Re[H(ζ )] =
{
�−eλ[L+X (ζ )], ζ on CL

�+eλ[L−X (ζ )], ζ on CR.
(B9)

Since CL ∪ CR makes up the entire unit ζ circle, the mathematical problem for H(ζ ) has thus been
reduced to a standard boundary value problem known as the Schwarz problem in the unit disk
[32,35]: that of finding a function H(ζ ) analytic in |ζ | < 1 given its real part everywhere on the
boundary |ζ | = 1. The solution is furnished by the Poisson integral formula [32,34,35]

H(ζ ) = 1

2π i

∫
CL

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
�−eλ[L+X (ζ ′ )] + 1

2π i

∫
CR

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
�+eλ[L−X (ζ ′ )], (B10)

where a possible additive imaginary constant has been set to zero to ensure that (B4) holds. With the
use of (B2) and (16) the integral expression (B10) leads to the result (3) reported earlier. For values
of ζ on the unit circle evaluation of the Cauchy-type integrals (B10) can be performed in the usual
way (e.g., with the use of the Plemelj formulas [34]).

To find the speed U0 of the boat (29) can be used. It implies that

U0

2
= lim

y→−∞ Re[ f (z)] = β

4μ
lim

ζ→−i
Im[H(ζ )], (B11)

where we have used (B2) and (B3) and the fact that ζ = −i is the preimage of infinity in the lower-
half z plane. From (B10), and the Plemelj formula [34], it follows that

H(−i) = �−eλL

2π i

∫
−CL

dζ ′

ζ ′
ζ ′ − i

ζ ′ + i
eλX (ζ ′ ) + �+eλL

2π i

∫
−CR

dζ ′

ζ ′
ζ ′ − i

ζ ′ + i
e−λX (ζ ′ ), (B12)

where
∫− refers to a principal part integral. Owing to the exponential decay of the integrand as

ζ ′ → −i these principal part integrals require no special treatment. On setting ζ ′ = eiθ it can be
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shown that

ζ ′ − i

ζ ′ + i
= eiθ − i

eiθ + i
= − i cos θ

1 + sin θ
, X (ζ ′) = L sec θ. (B13)

The use of these in (B12) leads to

H(−i) = − i

2π

[
�+eλL

∫ π/2

−π/2

cos θ

1 + sin θ
e−λL sec θdθ + �−eλL

∫ 3π/2

π/2

cos θ

1 + sin θ
e+λL sec θdθ

]
. (B14)

With use of the substitution θ = π − φ in its second integral (B14) simplifies to

H(−i) = − i

2π
(�+eλL − �−eλL )I (λL), I (λL) ≡

∫ π/2

−π/2

cos θ

1 + sin θ
e−λL sec θdθ. (B15)

Combining this with (B11) yields

U0 = �σ

4πμ
eλLI (λL), (B16)

where, in the last equality, we have used (13). The quantity I (λL) can be identified with a modified
Bessel function. To see this, note that

I (λL) =
∫ π/2

−π/2

cos θ (1 − sin θ )

1 − sin2 θ
e−λL sec θdθ =

∫ π/2

−π/2

(1 − sin θ )

cos θ
e−λL sec θdθ (B17)

or, since the odd part of the integrand will give zero contribution to the integral,

I (λL) =
∫ π/2

−π/2

e−λL sec θ

cos θ
dθ = 2

∫ π/2

0

e−λL sec θ

cos θ
dθ = 2

∫ ∞

1

e−λLu

√
u2 − 1

du, (B18)

where we have introduced the change of variable u = sec θ . Another change of integration variable
u = cosh w leads to

I (λL) = 2
∫ ∞

0
e−λL cosh wdw = 2K0(λL), (B19)

where, in the second equality, we have recognized an integral representation of the zeroth-order
modified Bessel function K0(λL) [26]. The speed of the boat is therefore (1) where we have used
the fact, following from (1) and (16), that λL = √

Da.

APPENDIX C: DERIVATION OF PROPULSION SPEED FORMULA (50)

If D is a two-dimensional fluid domain and ∂D its boundary, then the reciprocal theorem says∫
∂D

uiσ̂i jn jds =
∫

∂D
ûiσi jn jds, (C1)

where {ui, σi j} and {ûi, σ̂i j} are two solutions of the Stokes equations in D and ds denotes the
arc-length element around the boundary. Let {ui, σi j} be the solution of the Da �= 0 Marangoni boat
problem in the lower-half plane considered here and let {ûi, σ̂i j} be the Stokes flow in the same
domain associated with the functions

f̂ (z) = log

(
z − √

z2 − L2

L

)
, ĝ(z) = −z f̂ (z), (C2)

where log is the complex logarithm function.
To apply the reciprocal theorem (C1) to the Marangoni boat problem we want to pick D to be the

lower-half plane. We will consider this as a limit of a set of domains DR with boundary ∂DR taken
to be CR ∪ (−R, R) where CR is a semicircle of radius R in the lower-half plane meeting the real axis
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at (±R, 0); the lower-half plane is approached in the limit R → ∞. In this section we will work in a
fixed frame of reference in which the boat instantaneously occupies the interval [−L, L] and moves
with speed U0.

In complex variable notation, for any R > 0, (C1) becomes∫
∂DR

Re

[
(u − iv)

(
−2μi

dĤ

ds

)]
ds =

∫
∂DR

Re

[
(û − iv̂)

(
−2μi

dH

ds

)]
ds, (C3)

where

H = f (z) + z f ′(z) + g′(z), Ĥ = f̂ (z) + z f̂ ′(z) + ĝ′(z). (C4)

On letting R → ∞ it can be checked using the far-field conditions on the Marangoni boat problem
that any contributions to the integrals in (C3) from CR vanish leading to∫ ∞

−∞
Re

[
(u − iv)

(−2μidĤ
)] =

∫ ∞

−∞
Re[(û − iv̂)(−2μidH )]. (C5)

It is known from (27) and (35) that any Stokes flow for which g(z) = −z f (z) satisfies, on y = 0,

u − iv = −2 Re[ f (z)], H = 2i Im[ f (z)] (C6)

and similar relations hold for the hatted flow associated with the choice (C2). Thus (C5) can be
written as ∫ ∞

−∞
Re[ f (x)]d Im

[
f̂ (x)

] =
∫ ∞

−∞
Re

[
f̂ (x)

]
d Im[ f (x)]. (C7)

Now the convenient properties of the special choice (C2) appear. It is easy to verify, directly from
(C2), that

Im[ f̂ (x)] =
{

0, x � L
−π, x � −L,

(C8)

while

Re[ f̂ (x)] = 0, |x| � L. (C9)

The integral on the left-hand side of (C7) therefore reduces to∫ L

−L
Re[ f (x)]d Im

[
f̂ (x)

] = −U0

2

∫ L

−L
d Im

[
f̂ (x)

] = −U0π

2
(C10)

so that (C7) gives the result

U0 = − 2

π

[∫ −L

−∞
Re

[
f̂ (x)

]d Im[ f (x)]

dx
dx +

∫ ∞

L
Re

[
f̂ (x)

]d Im[ f (x)]

dx
dx

]
. (C11)

But it follows from (30) and (35) that

d

dx
Im[ f (x)] = 1

4μ

∂σ

∂x
, (C12)

therefore

U0 = − 1

2πμ

[∫ −L

−∞
Re

[
f̂ (z)

]∂σ

∂x
dx +

∫ ∞

L
Re

[
f̂ (z)

]∂σ

∂x
dx

]
. (C13)

This is the required formula.
The general result (50), or equivalently (C11), can be used to check the result for U0 obtained

by solving the full boundary value problem. Performing integration by parts on the integral on the
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right-hand side of (C11), and use of (C2), leads to

U0 = 2

π

[∫ −L

−∞
Im[ f (z)]d Re

[
f̂ (z)

] +
∫ ∞

L
Im[ f (z)]d Re

[
f̂ (z)

]]
. (C14)

For |x| > L it also follows from (C2) that

d f̂ = − dx√
x2 − L2

(C15)

so the boat speed is

U0 = − 2

π

∫ −L

−∞
Im[ f (z)]

dx√
x2 − L2

+
∫ ∞

L
Im[ f (z)]

dx√
x2 − L2

. (C16)

Now (36) can be used:

U0π

2
= β

4μ

[∫ −L

−∞
�−eλ(L+x) dx√

x2 − L2
+

∫ ∞

L
�+eλ(L−x) dx√

x2 − L2

]
. (C17)

On rearrangement this gives

U0 = β(�− − �+)eλL

2πμ

∫ ∞

L
e−λx dx√

x2 − L2
= β(�− − �+)eλL

2πμ

∫ ∞

1
e−λLu du√

u2 − 1
. (C18)

Use of (13) and a result on an integral representation of the zeroth-order Bessel function already
invoked in (B18) and (B19) of Appendix B leads to

U0 = �σeλL

2πμ
K0(λL), (C19)

which coincides with our earlier result (1).
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