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The objective in the present paper is to study binary fluids with phase field modeling
coupled with Navier-Stokes equations. An extended free energy is proposed to account for
the continuous path from immiscible to miscible states. We consider fluid pairs that are
immiscible for temperatures below the critical one (consolute temperature) and miscible
above it. Our extended phase field equation permits us to move from the immiscible state
(governed by the Cahn-Hilliard equation) to the miscible state (defined by the species
diffusion equation). The scaling of interface tension and interface width with the distance
to the critical point is highlighted. The whole system is mechanically excited showing
Faraday instability of a flat interface. A linear stability analysis is performed for the
stable case (interface waves) as well as for the unstable Faraday one. For the latter, a
Floquet analysis shows the well-known Arnold’s tongues as a function of the consolute
temperature and depth layer. Moreover, two-dimensional finite difference simulations
have been performed allowing us to model nonlinear flow patterns both in miscible and
immiscible phases. Linear theory and nonlinear simulations show interesting results such
as the diminishing of the wavelength of Faraday waves or a shift of the critical vibration
amplitude when the consolute temperature is approached.

DOI: 10.1103/PhysRevFluids.6.064002

I. INTRODUCTION

Faraday instability occurs when two fluid layers of different densities are parametrically ex-
cited with the imposed frequency in resonance with the system’s natural frequency. The natural
frequency depends on several parameters such as density difference, interfacial tension, viscosities,
and geometry. Consequently, this parametric instability in the direction normal to the interface is
commonly termed “Faraday instability”. While immiscible fluid systems have been intensively
studied in the literature, the case of miscible liquids, which is important to understand, for example
in the mixing process, has not received significant attention. For liquid systems with low interfacial
tension, gravitational force dominates the oscillatory convection and prevents gaining of insights
into the phenomenon of capillary force. It thus requires a gravity-free environment in order to draw
the different scenarios of instability with regard to these forces.

The motivation to study Faraday waves arises from several potential applications. One of the
direct applications is the extrication of droplets and air formation in capillary tubes during space
enabling operations. The generated waves are also widely utilized for fluid prototypes in order
to produce microscale materials such as cell spheroids and cell-seeded microcarriers [1]. Faraday
waves are also prevalent in natural phenomena such as in the intensification of seismic activity
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through slacker sediments, while in the field of quantum mechanics, Faraday waves have been
observed in Bose-Einstein condensates [2].

The phenomenon of the appearance of the remarkable array generated on a liquid surface near
a vibrating surface was first reported by Oersted in 1813, Wheatstone in 1825, and Weber in 1825.
Faraday [3] was the first to report the phenomenon in detail and deduced that the frequency of
excited waves is half of the applied frequency. Mathematically, the parametric oscillation was first
treated as a general phenomenon by Rayleigh [4,5]. He presented the argument for the existence
of subharmonic solution. The first clear and complete theoretical description of the phenomenon
was given by Benjamin and Ursell [6] who considered the instability in the inviscid limit. They
condensed the linearized inviscid fluid equations of motion in the classical form of a Mathieu
equation which is similar to parametric excitation of a linear harmonic oscillator.

Subsequent to inviscid hydrodynamic stability analysis by Benjamin and Ursell [6], Kumar and
Tuckerman [7] presented the stability of a bilayer subjected to parametric vibration, including
viscous effects in the Navier-Stokes equations. They performed a linear stability analysis for two
laterally infinite layers of immiscible fluids with a Fourier-Floquet analysis for the disturbed inter-
facial deflection. Marginal stability curves for critical amplitude (threshold value) as a function of
wave number were obtained. In the long wave approximation, reduced models have been derived by
Bestehorn [8] for single-layer fluids and by Bestehorn and Pototsky for two-layer fluids [9]. These
models were numerically verified by Richter and Bestehorn [10] by solving the full Navier-Stokes
equations.

While immiscible fluid systems have been intensively studied in the literature as described above,
the case of miscible liquids has not received significant attention. In miscible fluid systems, the
interface is diffused at the start of mixing (in contrast to a sharp interface in an immiscible system)
thus creating a gradient of density driving the instability. The instability grows with forced vibration
and ultimately destroys itself with the mixing of the liquids. Zoueshtiagh et al. [11], Amiroudine
et al. [12], and Diwakar et al. [13] presented results of experimental, numerical, and theoretical
models with good qualitative and quantitative agreements. They described the importance of the
waiting period before the vibration is set. As the waiting time is increased, diffusion in the system
weakens the driving potential and results in smaller wavelengths. One of the key observations in
these studies of miscible fluid systems is that they obtained similar dispersion relations as in [7] for
immiscible fluid systems. It was considered that the reasons of growth of instability are similar to
that of the immiscible case even if the factors leading to stabilization differ.

The question which has not been addressed thoroughly until now is the evolution of the instability
in terms of modes when a two-fluid system evolves continuously from an immiscible state to a
miscible one. Such fluids defined as binary fluids pose a very unique property of being soluble in
each other depending on the temperature and are completely miscible above a certain temperature,
called the consolute temperature or the critical temperature. The surface tension between the two
fluids tends to zero and the interface thickness diverges as the consolute temperature is approached
from below. Analyzing such a system requires the following two conditions to be satisfied. Firstly,
the consolute temperature must be below the boiling temperature of both the fluids. Secondly, the
interface must glide across the container wall thereby representing a minimization of the associated
sidewall stresses or any disturbance generated by wall effects (periodic conditions in the analytical
approach). In order to fulfill these conditions, a binary fluid system consisting of perfluorohexane
(FC-72), a dense and inert fluorinated hydrocarbon, and octamethyltrisiloxane (1.0 cS silicone oil)
can been chosen which produces an interface with very small negligible meniscus [14]. Low surface
tension (less than 3 dyn/cm corresponding to the experimental value) was observed to be useful in
reducing the sidewall stresses with a minimum meniscus and an almost not pinned triple contact
line at the walls. Silicone oil also forms a tiny film on sidewalls around FC-72, making the interface
floating almost stress free. The fluid consolute temperature is �42.5 ◦C which is well below the
boiling temperature of the more volatile (FC-72) component with boiling temperature of 56 °C.

The primary purpose of the present work is to study the evolution of the interface from an
immiscible fluid system to a miscible one (in a discrete manner as the critical point is singular)
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in order to pinpoint the effect of external vibration on wavelength when approaching the consolute
temperature. This is performed by a phase field approach. The advantage of using the phase field
approach is its inherent principle to consider the interface region as a diffused region which is
similar to what we expect when we approach the critical temperature. An exact repeatability carries
a demanding task in experimentations (by emptying and again filling the cell). The initial conditions
(immiscible system at start) could be the same for different parameters (frequency and amplitude
of vibration). By just increasing the temperature until the consolute temperature, we could bring
the system to the desired miscible state. In order to bring back the system to the same initial
immiscible state, it suffices to decrease the temperature and repeat the experiment for other vibration
parameters.

II. PHASE FIELD APPROACH FOR THE PATH FROM IMMISCIBLE TO MISCIBLE STATES

In the phase field method, the interface is described as a region of smooth transition of properties
from one fluid (or phase) to another. The idea was developed by Cahn and Hilliard [15,16] wherein
an expression for the total free energy of the inhomogeneous system was derived taking into account
the effects of local energy at the interface arising due to the gradient of concentration. The starting
point of the phase field method thus lies in identifying the system to be inhomogeneous with
respect to a certain intensive variable, termed the phase field variable (ϕ) followed by describing
the total free energy including the gradient terms. Among several possible states for which the
system could exist, the interface will move along the path toward minimizing the free energy for
which a nonlinear partial differential equation, well known in the literature as the Cahn-Hilliard
equation, was developed. The phase field equation is coupled to the momentum conservation in the
Navier-Stokes equation by defining the surface tension forces as the interface energy per unit area.
The coupled analysis of phase field with hydrodynamics, i.e., Navier-Stokes–Cahn-Hilliard, was
undertaken by Gurtin et al. [17] following which several pioneering works [18–21] have led to a
noteworthy advancement of the subject [22–25].

A. Cahn-Hilliard equation

As a starting point, we use an extension of the Cahn-Hillard equation [15,16] derived from the
variation of a free energy functional with respect to a real-valued phase field ϕ (see also Jacqmin
[26] and Ding et al. [27]). Herein we propose a modified free energy functional which can be written
as

F [ϕ] = 1

2

∫
V

[
Kθ (r)rp|∇ϕ|2 − r0rϕ2 + 1

2
r0θ (r)rqϕ4

]
dV, (1)

where K and r0 are related to surface tension and interface thickness, θ (r) denotes the Heaviside
function, and r is a control parameter vanishing at the consolute temperature. Taking r = 1 as a
reference point well below the critical temperature (immiscible state), one finds for the interface
width [3] ζ0 = √

K/r0, and for the surface tension σ0 = 2
3

√
2Kr0 (see details in Appendix A). For

example, for ζ0 = 10−8 m and σ0 = 0.014 N/m, K = 1.5 10−10 N and r0 = 1.5 106 N/m2.
As will be shown in Sec. II C, the two positive exponents p and q can be adjusted to the

experimentally observed behavior of surface tension, interface thickness, and mixing ratio when
the critical point is approached (r → 0+). Here, for r = 1, the original Cahn-Hilliard equation is
recovered. The key parameter in this sudy is the nondimensional parameter r allowing to model
the phase transition from the miscible state (r < 0) to the immiscible one (r > 0); see Fig. 1.
Further details and developments on this parameter will be described later. The advected form of
the Cahn-Hillard equation can be written as (see [15,16])

dϕ

dt
= ∇ · [M∇μ]. (2)
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FIG. 1. Left: sketch of the bulk potential free energy f = − 1
2 r0rϕ2 + 1

4 r0θ (r)rqϕ4 in the miscible phase
r < 0 (dashed), and in the immiscible phase r > 0 (solid). Right: phase field in the bulk as a function of r

for different values of q (ϕm = ±r
1−q

2 corresponds to the minimum values of the phase field for the two fluid
components, for r > 0).

Here and in the following, d/dt = ∂t + �V · ∇ denotes the material derivative with �V representing
the velocity vector, M is the mobility parameter, and μ the extended chemical potential given by
(see also the orginal expression in [28])

μ = δF

δϕ
= −Kθ (r)rp�ϕ − r0rϕ + r0θ (r)rqϕ3. (3)

Let the system have the depth d (see Fig. 2) and kinematic viscosity ν (for sake of simplicity, we
assume the same value for both components). Scaling all lengths with d and time with τ = d2/ν

(the notation of dimensionless variables is kept the same henceforth), Eq. (3) leads to

dϕ

dt
= M̃�[−K̃θ (r)rp�ϕ − rϕ + θ (r)rqϕ3], (4)

with M̃ = Mr0/ν and K̃ = K/(r0d2). Here and for the following we assume M and K are indepen-
dent from the phase field variable and are held constant. For M̃ = 1, we have M = ν/ r0.

B. Navier-Stokes equations and the corresponding complete model

A two-dimensional (2D) incompressible fluid coupled to the phase field is defined by the follow-
ing dimensional Navier-Stokes equations (the same notation of dimensional and nondimensional
variables will be used subsequently):

ρ
d �V
dt

= −∇P + η� �V + μ∇ϕ − ρg�ey, (5)

∇ · �V = 0, (6)

FIG. 2. Sketch of the geometry of the two-fluid layer.
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where P is the pressure field, η is the dynamic viscosity, and the term μ∇ϕ represents the surface
tension term, implicitily representing the Korteweg stress [24].

In order to eliminate the pressure in Eq. (5), we introduce the stream function ψ by Vx = ∂yψ ,
Vy = −∂xψ and Eq. (5) reduces thus to

d�ψ

dt
= �2ψ + G∂x

(
ρ

ρ0

)
− �θ (r)rp(∂y�ϕ∂xϕ − ∂x�ϕ∂yϕ), (7)

where �2 is the biharmonic operator and

G = gd3

ν2
, � = K

ν2ρ0
= 3

2
√

2

σ0ζ0d

ν2ρ0
. (8)

G and � are the Galileo and the inverse capillary numbers, respectively. Note that ζ0 is now
dimensionless with respect to d . The coupling from the phase field to the stream function is due
to normal and tangential forces at the interface (Korteweg stress [28]) and buoyancy.

Instead of considering the Lagrangian time derivative of the density for the mass conservation
equation [Eq. (6)] (Lowengrub and Truskinovsky [29]), the Boussinesq approximation has been
applied, assuming ρ = ρ0 is constant everywhere [Eqs. (5) and (6)] except in the buoyancy term,
where it depends on ϕ. In order to close the system, an equation of state of the form ρ = ρ(ϕ) is
required which is approximated here as a linear function, ρ = ρ0[1 + δρ(ϕ + 1)] with δρ = ρ1−ρ0

2ρ0
,

ρ1 being the density for fluid 1 represented by ϕ = 1 and ρ0 for fluid 2 with ϕ = −1 (see Fig. 2). It is
worth mentioning here that, in the Boussinesq approximation we do not consider density variations
in the continuity equation [Eq. (6)] and we therefore neglect terms of 0(δρ) in which δρ is small.
Our analysis is thus limited to cases where the density of the two components is of the same order
as also considered by Takagi and Matsumoto [30].

One of the major problems in phase field theory is that the physical width of the interface (which
is of the order of a few nanometers) is much smaller than the size of the cell and the wavelength of
the obtained patterns (some millimeters). We thus define the “numerical width” ζN = sζ0 which is
obtained from Eq. (4) by renormalizing KN = s2K and subsequently in Eq. (8), �N = KN

ν2ρ0
= s2K

ν2ρ0
=

3
2
√

2
sσ0ζN d
ν2ρ0

.
However, due to the larger interface width, the surface tension reflected by this �N also increases

by a factor of s. We thus renormalize �N by s and define �̄N = 3
2
√

2
σ0ζN d
ν2ρ0

which will be used in the
following numerical computations.

The complete scaled version of the model can thus be written as

d�ψ

dt
= �2ψ + δρG ∂xϕ − �̄Nθ (r)rp(∂y�ϕ∂xϕ − ∂x�ϕ∂yϕ), (9)

dϕ

dt
= �[−KNθ (r)rp�ϕ − rϕ + θ (r)rqϕ3]. (10)

Note that for r = 1 the dimensionless width ζN is related to KN via ζ 2
N = KN .

The set of Eqs. (9) and (10) is complemented by the no-slip conditions for ψ , which can be
written as

ψ = ∂yψ = 0 at y = 0, 1. (11)

The conditions of impermeable walls and therefore the vanishing mass flux through the bound-
aries yield one boundary condition for μ:

∂yμ = 0. (12)

Using, Eq. (3), Eq. (12) can be written in terms of ϕ as

∂yϕ = ∂3
yyyϕ = 0 at y = 0, 1. (13)

064002-5



BESTEHORN, SHARMA, BORCIA, AND AMIROUDINE

FIG. 3. Function r(ϑ ) for a = 10 and Sc = 10.

The choice in Eq. (13) is not unique and one could also use Eq. (12) as one condition along with
a relation between ϕ, ∂yϕ with the contact angle (wetting property of the walls). Our current choice
fixes the contact angle of drops for both liquids at the walls as 90 ° (see Fig. 9 below). A detailed
discussion on boundary conditions on surfaces where concentration affects the wetting conditions
can be found in Thiele et al. [31].

C. Critical exponents

Our extended Cahn-Hilliard equation is constructed in such a way that below the critical temper-
ature, the two fluids are immiscible and Eqs. (9) and (10) are solved (Navier-Stokes with extended
phase field equations); on the other hand, above the critical temperature, there is no interface and
Eq. (10) is transformed into a concentration equation of species with a vanishing Korteweg term in
Eq. (9); i.e.,

d�ψ

dt
= �2ψ + δρG ∂xϕ, (14)

dϕ

dt
= −r�ϕ. (15)

For this case the boundary conditions in Eq. (12) reduce to the no-diffusive flux condition given
by ∂yϕ = 0 at y = 0, 1. In order to study these conditions, r is defined as r = r(ϑ ), r(0) =
0, dr

dϑ
< 0 with the reduced temperature ϑ = T −Tc

Tc
. In order to cover the asymptotic behav-

ior below and above the critical temperature, the following constraints must hold: r(ϑ � 0) =
1, r(ϑ � 0) = −1/Sc, where Sc = ν/D is the Schmidt number and D is the mass diffusion
coefficient. A possible “r” function that could be used is the following: r(ϑ ) = e−aϑ−eaϑ

e−aϑ+Sceaϑ with
a > 0 (the factor a can be determined from the variation of the temperature in experiments). Figure
3 shows the evolution of the parameter r as a function of ϑ for a = 10 and Sc = 10. As can be seen
in this figure, the asymptotes r = 1, r = −1/Sc are reached for ϑ → ±∞.
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FIG. 4. (a) Densities of the two phases (solid lines) adjusted to experimental data (circles) by chosing
values for a, Sc, and q [32]; (b) surface tension as a function of T for the same parameters and p = 1/7.

Computing the r-dependent surface tension and interface width from Eq. (9) yields, for r > 0,

σ (r) = σ0rα, ζ (r) = ζ0rβ, (16)

with the exponents α = p+3
2 − q, β = p−1

2 (see Appendix A). These exponents can be adjusted to
experimental data or microscopic theories. Here, ζ0 = ζ (1) = √

K/r0 and σ0 = σ (1) = 2
3

√
2Kr0.

For r → 0+, one expects ζ → ∞, σ → 0 leading to the conditions α > 0, β < 0, or p <

1, q <
p+3

2 . Further, the parameter q can be used to adjust the bulk density behavior ρ(ϕm)

with ϕm = ±r
1−q

2 as a function of the temperature to experimental data [32]. Figure 4(a) shows
the situation for a = 10, Tc ≈ 42 ◦C, Sc = 100, q = 3/4 and the two asymptotic densities ρo =
880 kg/m3 (silicone oil), ρ1 = 1580 kg/m3 (FC72), (δρ = 0.39). In the same way, surface tension
(no experimental data are available for this set of fluids) as a function of T is found wherein we
have used p = 1/7 in Fig. 4(b). This value of p = 1/7 is justified by the fact that the surface tension
smoothly decreases as a function of temperature in order to reach a zero value at the consolute
temperature defined for the given set of fluids (silicon oil, FC72).

III. LINEAR STABILITY ANALYSIS BELOW THE CRITICAL TEMPERATURE

A linear stability analysis of a phase field model coupled to hydrodynamics was performed earlier
in [33,34] for a free surface and Marangoni convection. Here we shall consider the stability of
our extended model [Eqs. (9) and (10)], firstly for the undriven case followed by a periodically
modulated gravity force (Faraday instability). Since no stationary inhomogeneous state exists in the
miscible regime, we will limit our study to the immiscible case r > 0 for the stability analysis. A
gravitationally stable solution of Eqs. (9) and (10) for δρ > 0 is given by the stationary state:

ψ0 = 0, ϕ0(y) = −r
1−q

2 tanh

[
y − 1/2√

2K̃N

r
1−p

2

]
, (17)

where the lighter fluid is positioned on top of the heavier one. Linearization of Eqs. (9) and
(10) according to ϕ(x, y, t ) = ϕ0(y) + φ̂(y) e ikx+λt , ψ (x, y, t ) = ψ̂ (y) e ikx+λt yields the following
linear ordinary system (primes denote derivatives with respect to y):

λŵ = ŵ′′ − k2ŵ + ikδρGφ̂ − ik�̄N rp[(ϕ′′′
0 + k2ϕ′

0)φ̂ − ϕ′
0φ̂

′′], (18)

λφ̂ = −K̃N rp(k4φ̂ − 2k2φ̂′′ + φ̂′′′′) + r(k2φ̂ − φ̂′′),

+ 3rq
[(

2ϕ0ϕ
′′

02ϕ2′
0 − ϕ2

0k2
)
φ̂ + 4ϕ0ϕ

′
0φ̂

′ + ϕ2
0 φ̂

′′] + ikϕ′
0ψ̂, (19)
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with an auxilary vorticity function defined by

ŵ = ψ̂ ′′ − k2ψ̂. (20)

The system of Eqs. (18)–(20) will be studied numerically in the following section.

A. Formulation as an algebraic eigenvalue problem

We apply finite differences for the y derivatives of order �y2, with the following discretization
for ŵ, ŵ j = ŵ(y j ), y j = j�y, j = 1 · · · N, �y = 1/(N + 1), and the same for φ̂ and ψ̂ with N
representing the number of mesh points. Then the set of Eqs. (18)–(20) is transformed to an algebraic
system of equations:

λ �Q = M− �Q, (21)

where M is a real-valued 2N × 2N matrix and the vector �Q comprises the unknown variables:

Qj = iŵ j, QN+ j = φ̂ j, j = 1 · · · N,

(here, i stands for
√−1). The N variables ψ̂l are eliminated by discretizing Eq. (20):

ψ̂l =
N∑
j

A−1
l j ŵ j, j = 1 · · · N, (22)

where A−1 is the inverse of a N × N tridiagonal matrix of the following form:

All = −2/�y2 − k2, Al,l+1 = Al,l−1 = 1/�y2. (23)

The elements of M are listed in Appendix C. From Eq. (22), the N inner nodes of ψ̂ are
determined. The values for ψ̂0 and ψ̂N+1 must be zero due to the no-slip condition Vx = Vy = 0
which implies ψ̂ = ψ̂ ′ = 0 at y = 0, 1. The second condition, ψ̂ ′ = 0, is transformed into the
conditions needed for w and reads (for details, see [35,36])

ŵ0 = 2ψ̂1

�y2
, ŵN+1 = 2ψ̂N

�y2
.

The analytical solution [Eq. (17)] differs by the discretization error from a numerically computed
stationary solution of Eq. (10). Taking Eq. (17) as the base state yields a small but positive growth
rate. Thus, it is consistent to compute the stationary base state numerically with the same finite
differences discretization used to obtain Eq. (21); this base state ϕ0 is then numerically stable and
computed iteratively by solving the discretized form of Eq. (10),

0 = rϕ0 j + KN rp ϕ0 j+1 − 2ϕ0 j + ϕ0 j−1

�y2
− rqϕ3

0 j, (24)

until a completely steady solution is found. From there, the derivatives of ϕ0 are computed using
finite differences again.

The boundary conditions (at y = 0, 1) applied in Eqs. (19) and (24) are

φ̂ = φ̂′ = 0, ϕ0 = ±r
1−q

2 . (25)

For simplicity we may use here Eq. (25) instead of Eq. (13) since the instability occurs at the
edge of the front around y = 1/2. Note also that the solution of Eq. (17) satisfies Eq. (25) up to an
accuracy of ∼ exp(−48) for the smallest r = 0.1 used in the current work.
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FIG. 5. Frequency of the least stable modes (largest real part) over k for r = 1. Parameters: At = 0.26,
σ = 0.001 N/m, ρ0 = 103 kg/m3, ν = 10−6 m2/s; (a): d = 1 cm, (b): d = 1 mm. The dashed lines show the
exact results for an inviscid liquid, Eq. (26). The insets show the eigenvalues with the largest real part for the
viscous case computed by our analysis. In (b), a real-valued eigenvalue crosses a complex one at k ≈ 500/m.

B. Dispersion relation of interface waves: The unforced system

We first show results for N = 400 and KN = 0.7 × 10−4, corresponding to an interface width
of ζN ≈ 0.0084. Thus the interface is resolved with up to three to four mesh points. A two-fluid
system (with properties close to the binary mixture, FC72-silicone oil) has been considered in this
study in order to see the effect of transition from immiscible to miscible states with the following
physical parameters, ν = 10−6 m2/s, ρ0 = 103 kg/m3, σ0 = 0.001 N/m, δρ = 0.35, and d = 1 cm
which gives G ≈ 9.81 × 106, �̄N ≈ 89.

In Fig. 5, the frequencies ω = Im (λ) are shown for the eigenvalue with the largest real part. The
results are compared with the analytical results for an inviscid layer (ωI ), given as ([37])

ωI =
√(

Atgk + σ0k3

ρ0 + ρ1

)
tanh (kd/2), (26)

with the Atwood number, At = ρ1−ρ0

ρ1+ρ0
= δρ

δρ+1 .
In order to see the effect of depth (which is related to the effect of viscosity), two cases have been

computed: d = 1 cm and d = 1 mm. As the surface tension coefficient is very small for the case
considered in this study, the second term in Eq. (26) is negligible at least for small values of k. For
small values of k, tanh(kd/2) ≈ kd/2 and consequently ω ∼ k (shallow water). For larger values of
k, tanh(k d/2) ≈ 1 and ω ∼ √

k. These two effects are clearly seen in Fig. 5. The agreement with
the inviscid liquids is very good, especially for thicker layers in which the influence of viscosity is
less important than in the case of thinner layers.

C. Faraday instability

A central point of the present paper is to submit an external force (vibration) to the two-fluid
system described in the previous section. The originality of the present work is to set up Faraday
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FIG. 6. Stability diagram of the Faraday instability for ω0 = 50 rad/s and with the same parameters as
Fig. 5(a); solid line r = 1, dashed line r = 0.5, and dashed-dotted line r = 0.1.

instability from the immiscible system for which the temperature is below the critical temperature to
the miscible system where the temperature is above the critical temperature. The goal is to analyze
the evolution of Faraday instability during this transition. The main hypothesis in this system is to
consider the temperature homogeneous so that the system of equations does not consider any energy
equation.

The two-fluid system is harmonically vibrated in the vertical direction, leading to an effective
gravity acceleration in the comoving frame of the form ge(t ) = g[1 + a cos(ω0t )] with the two new
control parameters a (dimensionless acceleration) and frequency ω0. Consequently, the effective
dimensionless gravity in Eq. (9) can be written as

Ge(t ) = G [1 + a cos (ω0t )]. (27)

The linear analysis now leads to a set of 2n ordinary differential equations (ODEs):

d �Q(t )

dt
= M− (t ) �Q(t ), (28)

with M(t ) identical to the one in Eq. (21) except that G is replaced by Ge(t ).
Integrating numerically Eq. (28) for 2N orthonormal initial conditions (see details in Appendix

D) with Q j
i (0) = δi j over one period T0 = 2π/ω0, the 2N × 2N monodromy matrix X is found as

Xi j = Q j
i (T0). The real parts of the Floquet exponents are given as λi = 1

T0
ln |αi|, where αi are the

eigenvalues of X . According to Floquet’s theorem, λ > 0 denotes an instability of the flat surface.
Plotting the zero lines of the largest λi in the (ak) plane yields the typical tongues shown in Figs. 6
and 8.

Figure 6 illustrates the stability diagram for the immiscible region with different values of r.
Inside the tongues, the flat surface is unstable due to the Faraday instability. The tongues on the left
belong to the subharmonic mode (the pattern oscillates with a frequency of ω0/2) and the right ones
correspond to the harmonic branch. With decreasing r, the locations of the minima change, the wave
number increases, and the wavelength thus decreases. This will be shown and highlighted in Sec. IV
through direct numerical simulations (DNS) calculations. In addition, we observe that the minima
do not change much with varying r. In order that the surface tension plays a role, the wavelength

must be of the order of the capillary length, i.e., 2π
k ∼

√
σ0
gρ0

� 0.3 mm, which gives k � 20 mm−1.
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FIG. 7. Minimum values of acceleration for which the Faraday instability emerges with k = kmin (insets).
Top: as a function of the depth d for fixed frequency ω0 = 100 rad/s; bottom: as a function of ω0 for fixed
depth d = 1 cm. Same parameters as in Fig. 5.

This value is far from the values shown in Fig. 6 which proves that the effect of surface tension is
indeed negligible in the range of our given parameters.

Figure 7 shows the theshold (minimum) value of the amplitude of acceleration amin as a function
of the depth d [Fig. 7(a)] and the frequency ω0 for the same parameters as in Fig. 5(a). In the insets
of these figures, the critical value of the wave number kmin is also shown as a function of d and ω0.
One can see that amin and kmin both decrease with depth d and saturate at higher values of d due
to the viscous damping. As d increases the system is more unstable. Moreover, as the frequency of
the system is increased, the critical acceleration increases meaning that it is more and more stable
which has also been observed experimentally by Zoueshtiagh et al. [11] (see Fig. 9 in their paper).

Figure 8 shows the stability diagram for a higher frequency than in Fig. 6 and different depths.
The instability is shifted toward smaller wavelengths and larger critical acceleration if ω is increased
or if d is decreased.
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FIG. 8. First tongues for ω0 = 100 rad/s and several layer depths. All curves are for r = 1 except for the
dashed-dotted one which is for r = 0.1.

IV. NUMERICAL RESULTS OF THE NONLINEAR SYSTEM

The analysis presented in the previous section provides a glimpse of the effect of changing the
distance from the consolute temperature further motivating the exploration of the problem to gain
insight into the physical behavior involved. We thus peform a numerical analysis of the full set of
governing equations [Eqs. (9) and (10)] with the same physical parameters as defined in Sec. III B,
i.e., ν = 10−6 m2/s, ρ0 = 103 kg/m3, σ0 = 0.001 N/m, δρ = 0.35 and d = 1 cm. The results are
presented in the folowing sections. We applied a semi-implicit pseudospectral method where parts
of the system are computed in lateral Fourier space. For the vertical direction, a finite difference
method is applied (for details see Appendix B).

The primary objective of the current work is to model transition from a two-phase to a monophase
region in incompressible fluids and analyze its effect on some canonical cases, i.e., Faraday and
Rayleigh-Taylor instabilities. Further, we have refrained from carrying out any extensive parameter
study and have only focused attention on certain distances (in terms of temperature) from the critical
temperature and have thus considered r as the control parameter. We therefore assume the values
p = q = 1/2 as explained above, leading to the exponents α = 5/4, β = −1/4 for all the following
analysis. Further, by taking KN = 0.7 × 10−4, the dimensionless interface thickness is ≈ 0.84 ×
10−2. The dimensionless time step considered in all the simulations is in the range of 0.4−1.5 ×
10−6. Finally, for better visualization for the reader, we have provided the time series videos in the
form of movies in the Supplemental Material [38] for the reader.

A. Phase separation in the unforced system of two fluids

All runs in this section have been initialized with a random-dot distribution of the phase field
with vanishing mean, ϕ(x, y, t = 0) = ξ (x, y), and equally distributed random numbers in −0.1 <

ξ < 0.1. Below the critical point (r > 0) the heavier component sinks and accumulates in the lower
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FIG. 9. Time series for r = 1; length is in cm. Different colors correspond to the values of the phase
field. The FD mesh has the size 1024 × 400, corresponding to an aspect ratio of 2.56. See the movie in the
Supplemental Material [38] for the time evolution of the phase field for the unforced system from a random-dot
initial distribution of the phase field and below the critical temperature (immiscible state at r = 1).

half of the layer due to gravitation (Figs. 9 and 11). If the layer is turned upside down, the system
is unstable with respect to the Rayleigh-Taylor instability. After a short time the two fluid layers
exchange their positions and a gravitationally stable configuration is approached as a steady state
solution (Fig. 10).

On comparing Figs. 9 and 11, one can see that as soon as the value of r diminishes (from 1 to 0.1,
which means that the critical temperature is approached), the pattern formation is more and more
diffusion dominated, while the role of convection is significantly reduced (see Fig. 11) and there
still exists a clear diffused interface between the two fluids. One can also notice that the two fluids
are more or less mixed during a long transient phase. Further, it is obvious that the time needed to
finally establish a sharp interface increases with decreasing r. This is due to the fact that the typical
evolution time scales with 1/Mr (critical slowing down). This is clearly shown in Figs. 9 and 11 in
which it takes by a factor 1/r ≈ 10 longer until the sharp interface occurs. Our computations show
that this can be compensated by adjusting the mobility by a factor of 1/r (not shown here).
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FIG. 10. Run for the initial condition from Fig. 9 last frame (t = 10s), but mirrored on the y = 1/2 plane.
Now the heavier fluid is placed on top of the lighter one and the system is gravitationally unstable (Rayleigh-
Taylor instability). All parameters are the same as in Fig. 9. See the movie in the Supplemental Material [38]
for time evolution of the phase field in Rayleigh-Taylor configuration (heavier fluid placed above the lighter
one) far from the critical temperature (at r = 1).
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FIG. 11. Time series for r = 0.1, closer to the critical temperature. Due to the critical slowing down, it
takes by a factor 1/r = 10 longer until the sharp interface occurs. See the movie in the Supplemental Material
[38] for time evolution of the phase field for the unforced system from a random-dot initial distribution of the
phase field, closer to but below the critical temperature at r = 0.1.

Above Tc (when the two fluids are miscible and r < 0), as expected, the diffusion plays its role:
The two fluids are completely mixed and there is no clear interface between them (see Fig. 12).
Moreover, the value of ϕ → 0 is expected in the long time limit as can also be seen in Fig. 1(a).

B. Forced system of two fluids (Faraday instability)

The previous section presented insights into the effect of phase separation dynamics when we
approach the consolute temperature. In this section we subject the system to harmonic excitation to
obtain Faraday instability which is investigated by DNS by solving the full nonlinear problem. The
code and the parameters are the same as used before in Sec. IV A but now G is replaced by Ge(t ).
The initial conditions correspond to a slightly disturbed flat interface, ϕ(t = 0) = − tanh[ y−0.75

b ] +
ξ (x, y), with b = 0.1 and equally distributed numbers ξ in [−1/4, 1/4]. All the simulations have
been performed with an angular frequency ω0 = 100 rad/s. The evolution is started with a = 0
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FIG. 12. Time series for r = −0.1, above the critical temperature. The fluids are now miscible. In the
long-time limit the mixture becomes homogeneous and ϕ → 0 as expected. See the movie in the Supplemental
Material at [38] for time evolution of the phase field for the unforced system from a random-dot initial
distribution of the phase field, above the critical temperature (miscible state) at r = −0.1.

up to t = 0.1 s when a sharp interface of width ζN has been formed. Then the vibration force
is switched on with a = 0.35 above the critical point for ω0 = 100 rad/s; see Fig. 8. The time
series is shown in Fig. 13 for r = 1 where after an exponentially and oscillating growth of velocity
and interface deformation, the pattern oscillates subharmonically with a measured angular velocity

FIG. 13. Initial condition and snapshot at later time for a vibrating layer, ω0 = 100 rad/s, a = 0.35 above
Faraday threshold and with immiscible fluids r = 1.
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FIG. 14. Phase field at x = 1.28 cm, y = 0.5 cm (middle of the layer) over time for the parameters of
Fig. 13.

FIG. 15. Phase field contour plots for different values of acceleration parameter a which has been increased
in steps after the times t = 3.3, 4.0, 5.3, 5.6, 6.0 s, r = 1. See the movie in the Supplemental Material at [38]
for time evolution of the phase field with different values of the acceleration a = 0.5, 1, 2, 3, 4, 5, 6 at time
t = 3.3, 4.0, 5.3, 5.6, 6.0 s.
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FIG. 16. Phase field at x = 1.28 cm, y = 0.5 cm (middle of the layer) over time for the case of increasing
the amplitude of acceleration a as shown in Fig. 15.

of ω = 49.5 rad/s, corresponding indeed to the half of the imposed frequency and showing the
signature of Faraday instability (see also Fig. 14).

Figure 15 shows that if the amplitude of acceleration a is increased, patterns become more and
more irregular and chaotic. After a standing wave for a = 0.5 (same as in Fig. 13), the interface
deforms upon increasing the acceleration to a = 1. These deformations lead to the release of bubbles
and chaotic behavior with dislocation of the interface. This chaotic behavior is clearly illustrated in
Fig. 16 at one point (middle of the cavity) as a function of time.

In order to understand the effect of continuous transition we further investigate the case when
we switch from the immiscible to the miscible system. Figure 17 shows the time series of the
phase field for a = 0.5 and a case from an initial immiscible state to the miscible state. The fluid is
immiscible (r = 1) up to t = 5.72s. This time represents the time when a saturated Faraday pattern
is established. Then r is switched in the form of a step to r = −0.1, the miscible region. Pattern
formation changes to smaller wavelengths and its amplitude decreases. In the long time limit, the
mixture becomes homogeneous.

In Fig. 18, it is clear that when r is decreased at t = 5.72 s, the amplitude decreases and the
interface tries to split in smaller wavelength. Then after t ≈ 8 s, the amplitude of the oscillations
decreases further and the instability terminates with the onset of diffusion causing the mixing of the
two fluids. These results are in agreement with the results of linear stability analysis as presented in
Fig. 6 (the wavelength decreases as we approach the critical temperature, i.e., when r decreases).

Figure 19 shows the time evolution of the phase field for a = 0.5 with r changing in form of
a step from r = 1 to r = 0.1 after a time t = 5.72 s. A cascade of standing waves is found with
increasing wave numbers, also in agreement with the linear results shown in Fig. 6.

Figure 20 shows the dimensionless kinetic energy over time for the sequence shown in Fig. 19,
computed by averaging over space and over two periods of the external vibrations in time:

Ek (t ) = 1

2T

∫ t

t−2T
dt ′

∫
A
{1 + δρ[ϕ(x, y, t ′) + 1]}[∇ψ (x, y, t ′)]2dxdy,

with A being the dimensionless area of the layer in the xy plane. In Fig. 20, the numbers denote
the number of surface waves along the interface after changing r. From the temporal behavior of
Ek , one may detect how the evolution process to shorter waves takes place after decreasing r, i.e.,
moving closer to the critical point. As long as r = 1, Ek is more or less constant and three waves are
seen. Then the structure rearranges itself and the mean kinetic energy decreases until five waves are
selected by the system. The energy increases again but decreases thereafter when the transformation
to six waves occurs. This is repeated several times until the final pattern (eight waves) stabilizes.
During the whole transformation process, the amplitude of the energy decreases exponentially due
to friction on the typical viscous timescale tν = d2/ν = 100 s (for d = 1 cm). For t � tν , Ek reaches
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FIG. 17. Time evolution of the phase field for Faraday instability for a = 0.5. The fluid is immiscible
(r = 1) up to t = 5.72 s; then r is switched to r = −0.1. See the movie in the Supplemental Material at [38]
for time evolution of the phase field for Faraday instability, and time evolution from an immiscible state (r = 1)
to a miscible state (r = −0.1).

asymptotically a constant finite value where the energy loss due to friction is in balance with that
supplied by external forcing.

V. CONCLUSION

A phase field approach has been proposed in order to study a binary mixture evolving from
an immiscible state to a miscible one. We consider the Navier-Stokes equations coupled with an
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FIG. 18. Phase field at x = 1.28 cm, y = 0.5 cm (middle of the layer) over time for the series of Fig. 17.

extended phase field equation through the Korteweg stresses, buoyancy, and convection terms. The
free energy has been modified in order to take into account the continuous path from a phase field
equation for an immiscible set of fluids to a species equation for a miscible set. For the undriven
case and an immiscible set of fluids, a linear stability analysis has been performed and results
from this analysis have been compared with analytical results issued from inviscid theory. We
found good agreement in the frequency–wave number stability diagram with a perturbed interface
which was set to an initial stable configuration. Due to external vibrations, this system can become
parametrically unstable and the Faraday instability emerges. The effect of the distance to the critical
temperature and the effect of the depth of the cell (or the effect of viscosity) have been adressed. Our
computations showed that the wavelength decreases when the critical temperature is approached.
This is also correctly reflected in the DNS with the homemade finite difference code. From these
DNS results, three main results can be highlighted: (i) As the distance to the critical temperature
decreases (from r = 1 to r = 0.1), the two fluids are demixed from a random initial phase field, and
the one with smaller r takes much longer time for the demixing; (ii) in the case of an acceleration
amplitude much larger than the critical one, the simulations show that the initial Faraday waves
are split in droplets and then emerge into chaotic behavior for an acceleration as high as 6g; (iii)
when the critical point is crossed (above the critical temperature in the miscible regime), the initial
Faraday standing wave is split into smaller wavelengths in concordance with the analytical results
from the linear stability analysis.

A straightforward but challenging task would be to perform computer simulations for real
experimental properties and parameters of the fluids and to investigate linear stability diagrams and
fully nonlinear developments of the Faraday instability for different fluid viscosities and without the
assumption of a Boussinesq fluid. The stability diagrams and the nonlinear solutions established in
the present work will pave the way for several interesting upcoming studies.
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FIG. 19. Time evolution of the phase field for a = 0.5 with r changing from r = 1 to r = 0.1 after time
t = 5.72 s.

FIG. 20. Kinetic energy (dimensionless) over time for the sequence shown in Fig. 19.
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APPENDIX A: STATIONARY KINK SOLUTION

For r > 0 a stationary solution of (2,3) gives

ϕs(y) = r
1−q

2 tanh

[
y − y0√

2ζ

]
. (A1)

This corresponds to a kink located at y = y0 with an interface width of

ζ =
√

K

r0
r

p−1
2 . (A2)

The kink separates the two immiscible fluids. Here we assumed infinitely deep layers, which is a
good approximation as long as ζ is much smaller than the depth of the layers.

The additional free energy per surface element compared to the uniform solution ϕ0 = r
1−q

2 is
equal to the surface tension of the kink and is computed from (A1) as

σ = F [ϕs] − F [ϕ0]

A
= K

∫ ∞

−∞
dy

(
dϕs

dy

)2

= 2

3

√
2Kr0r

p+3
2 −q, (A3)

where A is the surface element. From (A2) and (A3) one finds ζ0, σ0 as well as α, β from Sec. II C,
Eq. (16).

APPENDIX B: NUMERICAL METHOD

We discretize time with the constant time step �t as t = n�t and write

ψ (x, y, n�t ) ≡ ψ (n)(x, y), ϕ(x, y, n�t ) ≡ ϕ(n)(x, y).

1. Semi-implicit time scheme

To iterate Eqs. (9) and (10) numerically, we apply a semi-implicit method in time where all linear
parts of these equations, except the buoyancy term, are treated implicitly:[

1

�t
− �

]
�ψ (n+1) = R(n),

[
1

�t
+ r + � − KNθ (r)rp�2

]
ϕ(n+1) = S(n), (B1)

with

R(n) = �ψ (n)

�t
− J (ψ (n), �ψ (n) ) + δρG∂xϕ

(n) − �̄Nθ (r)rpJ (ϕ(n), �ϕ(n) ),

S(n) = ϕ(n)

�t
− J (ψ (n), ϕ(n) ) + θ (r)rq�(ϕ(n) )3, (B2)

and the Jacobi product is defined as J (g, h) = ∂xg∂yh − ∂yg∂xh.
The functions ψ, ϕ, R, S are discretized in y with y = j�y and their derivatives are expressed

by finite differences (FDs). On the right-hand sides, derivatives with respect to x were also computed
with FD; for the convection terms a first-order upwind scheme is applied for stability reasons. After
Fourier transforms in x for � according to

ψ (x, y) = 1√
2π

∫
dkψ̃ j (k)eikx,
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and the same for ϕ, R, S, Eq. (B1) turns into a large algebraic system of the form

∑
j

M (1)
i j (k)ψ̃ (n+1)

j (k) = R̃(n)
i (k),

∑
j

M (2)
i j (k)ϕ̃(n+1)

j (k) = S̃(n)
i (k), (B3)

where M (1,2) are band matrices with a bandwidth of 5 and with the elements

M (1)
ii = − 1

�t
(2/�y2 + k2) − 6/�y4 − 4k2/�y2 − k4,

M (1)
i,i+1 = M (1)

i,i−1 = 1

�t
1/�y2 + 4/�y4 + 2k2/�y2,

M (1)
i,i+2 = M (1)

i,i−2 = −1/�y4,

M (2)
ii = 1

�t
+ KNθ (r)rp(6/�y4 + 4k2/�y2 + k4) − r(2/�y2 + k2),

M (2)
i,i+1 = M (2)

i,i−1 = KNθ (r)rp(−4/�y4 − 2k2/�y2) − r/�y2,

M (2)
i,i+2 = M (2)

i,i−2 = KNθ (r)rp/�y4.

2. Boundary conditions

At y = 0, 1 we assume no-slip boundary conditions, Eq. (11), and impermeability of the walls,
Eq. (13).

If �y = 1/N with N mesh points in the y direction, the boundaries correspond to j = 0, N . The
functions ψ j and ϕ j are computed only for i = 1 · · · N−1 and the values at the horizontal walls
follow from [Eqs. (11)–(13)]

ψ0 = ψN = 0, ϕ0 = ϕ1, ϕN = ϕN−1.

To fulfill the two additional conditions the matrix elements for i = 1, 2 and i = N−1, N are
modified according to

M (1)
11 = M (1)

NN = − 1

�t
(2/�y2 + k2) − 7/�y4 − 4k2/�y2 − k4,

M (2)
11 = M (2)

NN = 1

�t
+ KNθ (r)rp(2/�y4 + 2k2/�y2 + k4) − r(3/�y2 + k2),

M (2)
12 = M (2)

21 = M (2)
N,N−1 = M (2)

N−1,N = KNθ (r)rp(−3/�y4 − 2k2/�y2) − r/�y2.

3. Implementation

The equations in system (B3) are solved by a standard band system solver (LAPACK) followed by
a Fourier back transform of ψ̃

(n+1)
j (k) and ϕ̃

(n+1)
j (k). The Fourier transforms are performed applying

FFTPACK. The code is written in FORTRAN95 (Intel) and runs with double precision. The time step is
restricted due to numerical instability given by the explicit terms and accuracy. In most of our runs
we fixed it with �t = 1.5 × 10−6 in dimensionless units, corresponding to �t = 1.5 × 10−4 s. In
Fig. 15 where a is rather large we used �t = 0.4 × 10−6.

For N = 400 mesh points the CPU times to compute the presented series are in the range of
hours on a desktop PC.
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APPENDIX C: MATRIX ELEMENTS

We list the elements of the finite difference matrix M introduced in (21)

M11 = − 2

�y2
− k2 + 2

�y4
A−1

11 , M12 = 1

�y2
+ 2

�y4
A−1

12 ,

M1 j = 2

�y4
A−1

1 j , j = 3 · · · N, MNN = − 2

�y2
− k2 + 2

�y4
A−1

NN ,

MN,N−1 = 1

�y2
+ 2

�y4
A−1

N,N−1, MN j = 2

�y4
A−1

N j , j = 3 · · · N,

Mii = − 2

�y2
− k2, i = 2 · · · N − 1,

Mi,i−1 = Mi,i+1 = 1

�y2
, i = 2 · · · N − 1,

Mi,N+i = −�N rpk

(
ϕ0i

′′′ + k2ϕ′
0i + 2

ϕ′
0i

�y2

)
+ Gδρk, i = 1 N,

Mi,N+i+1 = �N rpk
ϕ′

0i

�y2
, i = 1 · · · N − 1,

Mi,N+i−1 = �N rpk
ϕ′

0i

�y2
, i = 2 · · · N,

MN+i, j = −kϕ′
0iA

−1
i j , i, j = 1 · · · N,

MN+1,N+1 = −K̃N rp

(
k4 + 4k2

�y2
+ 7

�y4

)
+ (

r − ϕ2
01

)(
k2 + 2

�y2

)

+ 3rq

[
2ϕ01ϕ

′′
01 + 2ϕ′2

01 − ϕ2
01

(
k2 + 2

�y2

)]
,

M2N,2N = −K̃N rp

(
k4 + 4k2

�y2
+ 7

�y4

)
+ (

r − ϕ2
0N

)(
k2 + 2

�y2

)

+ 3rq

[
2ϕ0Nϕ′′

0N + 2ϕ′2
0N − ϕ2

0N

(
k2 + 2

�y2

)]
,

MN+i,N+i = −K̃N rp

(
k4 + 4k2

�y2
+ 6

�y4

)
+ (

r − ϕ2
0i

)(
k2 + 2

�y2

)

+ 3rq

[
2ϕ0iϕ

′′
0i + 2ϕ′2

0i − ϕ2
0i

(
k2 + 2

�y2

)]
, i = 2 · · · N − 1,

MN+i,N+i+1 = −K̃N rp

(
− 2k2

�y2
− 4

�y4

)
− r

�y2
+ 3rq

(
2ϕ0iϕ

′
0i

�y
+ ϕ2

0i

�y2

)
, i = 1 · · · N − 1,

MN+i,N+i−1 = −K̃N rp

(
− 2k2

�y2
− 4

�y4

)
− r

�y2
+ 3rq

(
−2ϕ0iϕ

′
0i

�y
+ ϕ2

0i

�y2

)
, i = 2 · · · N,

MN+i,N+i+2 = − K̃N rp

�y4
, i = 1 · · · N − 2,

MN+i,N+i−2 = − K̃N rp

�y4
, i = 3 · · · N.
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All other elements are zero. Note that due to the boundary conditions (25) the relations

φ̂0 = φ̂N = 0, φ̂−1 = φ̂1, φ̂N+1 = φ̂N−1,

have been implemented.

APPENDIX D: NUMERICAL METHOD FOR FLOQUET ANALYSIS

Due to numerical stability restrictions it is important for the integration of Eq. (28) to invoke a
(semi-) implicit method. We split M into

M(t ) = M (1) + Ge(t ) M (2),

with the time-constant matrices M (1) = M with Ge = 0 and M (2)
i j = kδρ δi, j−n. Now only the time-

dependent part is treated explicitly, leading to the semi-implicit scheme:(
M (1) − 1

�t
1

)
�Q(t + �t ) = −

[
Ge(t )M (2) + 1

�t
1

]
�Q(t ).

The advantage of the splitting method is that the matrix in the brackets on the left-hand side has
to be inverted only once and not for each time step. Due to the high stability of the method, the time
step is only restricted by accuracy and could be chosen quite large as �t = T0/20.
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