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We study the Rayleigh-Taylor instability of gravity-driven viscous liquid films flow-
ing under a uniformly heated or cooled inclined substrate. The long-wave assumption
is adopted to derive the evolution equation of the film, which is characterized by five
dimensionless parameters including Marangoni number Ma, Biot number Bi, Reynolds
number Re, Weber number We, and the inclination angle α of the substrate. Based
on the long-wave equation, we systematically examine the temporal and spatiotemporal
stability of the system. Temporal stability analysis shows that the thermocapillary stress
reinforces the Rayleigh-Taylor instability of a heated film but counteracts the instability of
a cooled film, as verified by the numerical solutions of linearized Navier-Stokes equation.
In particular, this instability can be completely inhibited if a composite Marangoni number
Ma∗ is below a critical value Ma∗

1. We further perform a spatiotemporal stability analysis
to delineate the absolute and convective nature of the temporally unstable system. We
find that the thermocapillary stress in the heated film enhances the absolute instability and
suppresses the convective instability. The trend reverses for a cooled film that is featured by
suppressed absolute instability and enhanced convective instability. More importantly, the
transition between the absolute and convective instability can be characterized by another
critical value, Ma∗

2, beyond which the flow stability will be triggered from the convectively
into the absolutely unstable. The predictions from linear stability analysis are confirmed
by numerical solutions of the full long-wave evolution equation.

DOI: 10.1103/PhysRevFluids.6.064001

I. INTRODUCTION

Rayleigh-Taylor (RT) instability occurs when a fluid rests above a lighter one in a gravitational
field or in a system which is accelerating in the direction from the lighter to the denser fluid [1–3]. As
a fundamental interfacial phenomenon, the RT instability is ubiquitous in our everyday life, such as
the dripping of droplets from condensed vapor under bathroom ceilings, as well as in nature, such as
the formation of mushroom clouds from volcanic eruptions and fingerlike patterns in granular flows
[4]. In certain engineering applications, however, this instability is undesired and detrimental. For in-
stance, the RT instability emerging in coating processes may result in the irregular coating of paints
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and even lead to droplet detachments in the case of thick coatings [5]. Another example is related
to the nuclear fusion reaction, where instability-induced droplets falling into the high-temperature
plasma could quench the processes of fuel compression and confinement [6,7]. Therefore, control-
ling and suppressing RT instability is critically important in a variety of engineering applications.
To achieve this goal, a growing number of approaches have been proposed, e.g., by utilizing an
electric field [8–10], a high-frequency mechanical oscillation [11–14], a rotating magnetic field
[15–17], and recently proposed geometric features such as substrate curvature [18,19] and spatial
confinement [20]. Apart from these strategies, exploiting the thermocapillary stress developed by
heating or cooling the film represents another important and facile method to control this instability.

In a canonical scenario, a liquid film is coated beneath a planar substrate [21,22]. Without
additional complexities, the instability of the film is determined by the competition between the
destabilizing gravitational force that pulls the liquids down, and the stabilizing capillary force
that flattens the liquid-gas interface [23]. The surface-tension gradient brought by temperature
variations at the interface can induce an unbalanced tangential stress, known as thermocapillary
or Marangoni stress, that is capable of modulating RT instability [24,25]. As such, suppression of
this instability has been achieved by applying a temperature gradient perpendicular to a horizontal
film. For instance, Deissler and Oron theoretically found that cooling the substrate could produce a
steady, nonruptured suspending film, which was explained by minimizing an appropriate Lyapunov
functional of the system [26]. Afterwards, Burgess et al. experimentally demonstrated that heating
the liquid-gas interface could also prevent the liquid droplets dripping from the ceiling when the
produced temperature gradient was above a critical value [27]. More recently, the experimental
finding of Burgess et al. [27] was theoretically explained by Alexeev and Oron [28], where the
time-dependent Navier-Stokes (NS) and long-wave evolution equations in both two-dimensional
and three-dimensional situations were solved and analyzed. In the above-mentioned studies [26–28],
the substrate was horizontally placed. However, how the thermocapillary stress controls or modifies
the RT instability for the situation of an inclined substrate remains unclear.

Unlike a horizontal substrate, the fluid gravity in the inclined case has not only a component
perpendicular to the surface but also a tangent component that is responsible for the spatiotemporal
stability of the liquid film. Recent studies on the isothermal film have shown that when the
inclination from the horizontal direction is increased beyond a critical angle, the flow will transit
from absolute into convective instability. This transition is found to be a crucial factor to determine
whether the droplet will detach from the substrate or not. For instance, Brun et al . [5] demonstrated
that droplet dripping could be suppressed for a sufficiently inclined substrate; this phenomenon
cannot be explained by traditional temporal linear stability analysis but can be rationalized as a
transition from an absolute to a convective instability in the context of spatiotemporal analysis
[5,29]. These studies highlight the necessity of considering absolute and convective instability when
dealing with the RT instability of liquid films beneath an inclined substrate. In this paper we revisit
the role of thermocapillary stress on the RT instability of nonisothermal films under a substrate
with varying temperature but focus on the case of an inclined substrate (see Fig. 1), where the
spatiotemporal stability is comprehensively investigated.

The rest of the paper is organized as follows. In Sec. II we present the physical model and derive
the long-wave evolution equation for the thickness of the liquid film. In Sec. III we perform linear
stability analysis, including both temporal and spatiotemporal analysis. Numerical solutions of the
full evolution equation are presented in Sec. IV. In Sec. V, we give the conclusions and discussion
of this work.

II. PROBLEM FORMULATION

A. Governing equations

We consider the dynamics of a Newtonian viscous liquid film with constant dynamic viscosity
μ and density ρ beneath an inclined substrate with a uniform and constant temperature Ts. Here

064001-2



RAYLEIGH-TAYLOR INSTABILITY OF VISCOUS LIQUID …

FIG. 1. A viscous liquid film of initial thickness h0 under a temperature-controlled (uniformly heated or
cooled) substrate that is tilted from the horizontal direction by an angle α. The temperature maintained at the
substrate and of the gas is denoted by Ts and Tg, respectively.

Ts is generally not equal to the ambient gas temperature Tg. The inclination angle of the substrate
from the horizontal is defined as α, where α = 0 corresponds to the horizontal case, as shown in
Fig. 1. The flow is described in a two-dimensional Cartesian coordinate system (x, z), where x and
z coordinates are in the directions along and normal to the solid substrate, respectively. The ambient
gas is passive and inviscid so that its motion is neglected. The instantaneous location of the film
interface is denoted by h(x, t ), with an unperturbed thickness of h0. The dynamics of the flow are
governed by the incompressible NS and the energy equations,

ux + wz = 0, (1a)

ut + uux + wuz = − 1

ρ
px + μ

ρ
(uxx + uzz ) + g sin α, (1b)

wt + uwx + wwz = − 1

ρ
pz + μ

ρ
(wxx + wzz ) + gcos α, (1c)

Tt + uTx + wTz = κ (Txx + Tzz ), (1d)

where u and w represent the velocities in the x and z directions, respectively. Here, p, T , and g =
(g sin α, gcos α) indicate the pressure, temperature, and gravitational acceleration, respectively; κ =
λ/ρcp is the thermal diffusivity of the liquid, with λ and cp denoting the thermal conductivity and
the specific heat capacity of the liquid, respectively. Without any further specification, all indices in
the variables indicate the associated partial derivatives.

At the substrate surface (z = 0), a no-slip, no-penetration condition and a constant surface
temperature are applied:

u = 0, w = 0, T = Ts. (2)

When the substrate is uniformly heated, Ts > Tg, and when the substrate is uniformly cooled,
Ts < Tg.

The balances of normal stresses and of tangential shear stresses at the liquid-air interface (z = h)
yield, respectively,

−p + 2μ

1 + h2
x

[
ux

(
h2

x − 1
) − hx(uz + wx )

] = σ(
1 + h2

x

)3/2 hxx, (3a)

μ(
1 + h2

x

)1/2

[(
1 − h2

x

)
(uz + wx ) + 2hx(wz − ux )

] = ∂σ

∂T
(Tx + hxTz ), (3b)

where σ is the surface tension of the liquid-air interface. Normally, the tension σ of most fluids is
assumed to decrease linearly with the increase of temperature [30] as

σ = σ0 − σT (T − Tg), (4)
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where σ0 is the surface tension at the reference point Tg, chosen as the temperature of the ambient
gas far away from the film, and σT = −(dσ/dT ) > 0 is the surface-tension parameter.

At the liquid-air interface (z = h), the heat transfer between the liquid and the ambient gas is
given by the Newton’s law of cooling [31],

− λ(
1 + h2

x

)1/2 (−hxTx + Tz ) = hg(T − Tg), (5)

where hg is the rate of convective heat transfer from the liquid to the ambient gas. The system is
closed by imposing the kinematic boundary condition at z = h, which reads

ht + uhx − w = 0. (6)

B. Nondimensionalization

To nondimensionalize the above governing system, we apply the following set of scalings:

(u,w) = U0(U,W ), (x, z, h) = h0(X, Z, H ),

p = μU0

h0
P, t = h0

U0
τ, T − Tg = (Ts − Tg)θ, (7)

where U0 = ρgh2
0 sin α/μ is the characteristic velocity scale, given by the balance between the x

component of gravity and the viscous force, and Ts − Tg is the characteristic temperature scale,
defined as the temperature difference between the substrate surface and the ambient gas.

After substituting the dimensionless variables in Eq. (7) into Eqs. (1)–(6), the nondimensional-
ized governing equations are obtained:

UX + WZ = 0, (8a)

Re(Uτ + UUX + WUZ ) = −PX + UXX + UZZ + 1, (8b)

Re(Wτ + UWX + WWZ ) = −PZ + WXX + WZZ + cotα, (8c)

Pe(θτ + UθX + W θZ ) = θXX + θZZ , (8d)

where the Reynolds number, Re = ρU0h0/μ, determines the ratio of inertial to viscous forces, and
the Péclet number, Pe = RePr, characterizes the ratio of convection to diffusion, with the Prandtl
number Pr = μ/ρκ measuring the ratio of momentum to thermal diffusivities.

The dimensionless boundary conditions at Z = 0 are

U = 0, W = 0, θ = 1. (9)

At Z = H , the dimensionless forms of normal and tangential stresses balance, the energy balance,
and the kinematic boundary conditions are

−P + 2

1 + H2
X

[
UX

(
H2

X − 1
) − HX (UZ + WX )

] = We
(
1 − Ma

We θ
)

(
1 + H2

X

)3/2 HXX , (10a)

1(
1 + H2

X

)1/2

[
(UZ + WX )

(
1 − H2

X

) − 4HXUX
] = −Ma(θX + HX θZ ), (10b)

1(
1 + H2

X

)1/2 (θZ − HX θX ) = −Biθ, (10c)

Hτ + UHX − W = 0, (10d)

where the Weber number We = σ0/μU0 quantifies the ratio of capillary to viscous forces, the
Marangoni number Ma = σT (Ts − Tg)/μU0 determines the ratio of thermocapillary to viscous
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TABLE I. Dimensionless parameters that determine the nonisothermal thin-film dynamics.

Parameter Formula Physical meaning

Ma σT (Ts − Tg)/μU0 Ratio of thermocapillary to viscous forces
Bi hgh0/λ Ratio of the conduction resistance of the liquid film

to the interfacial resistance
Re ρU0h0/μ Ratio of inertial to viscous forces
We σ0/μU0 Ratio of capillary to viscous forces

forces, with Ma > 0 corresponding to the heated substrate and Ma < 0 corresponding to the cooled
substrate, and the Biot number Bi = hgh0/λ indicates the ratio of the conduction resistance of the
liquid film to the interfacial resistance. These parameters are summarized in Table I.

C. Long-wave approximation

Using the long-wave theory and following the work of Kalliadasis et al . [30], we assume
that the temporal and spatial variations of the interfacial slope are very slow and thus introduce
a corresponding film parameter, ε ∼ ∂τ ∼ ∂X � 1. Based on this assumption, we introduce the
following transformations:

(∂τ ,∂X ) → ε(∂τ ,∂X ), ∂XX → ε2∂XX , W → εW. (11)

After substituting Eq. (11) into Eqs. (8)–(10), the governing equations along with the associated
boundary conditions become

UX + WZ = 0, (12a)

εRe(Uτ + UUX + WUZ ) = −εPX + ε2UXX + UZZ + 1, (12b)

ε2Re(Wτ + UWX + WWZ ) = −PZ + ε3WXX + εWZZ + cotα, (12c)

εPe(θτ + UθX + W θZ ) = ε2θXX + θZZ . (12d)

At Z = 0,

U = 0, W = 0, θ = 1, (13)

and at Z = H ,

P = −2εHX (UZ + ε2WX ) + 2εWZ − ε2We

(
1 − Ma

We
θ

)
HXX , (14a)

UZ + ε2WX − 2ε2UX HX + 2ε2WZHX = −εMaθX , (14b)

ε2HX θX − θZ − Biθ = 0, (14c)

Hτ + UHX − W = 0, (14d)

where all the nonlinear terms of H2
X are neglected, as we only consider the first-order long-wave

model in this work. To simplify, the convective heat transfer term is neglected in the energy
Eq. (12d) by assuming εPe � 1. In addition, as we consider a small temperature difference,
Ts − Tg ∼ O(10) K, the term of Ma

We � 1 in Eq. (14a), and it is also neglected. For instance, taking
200-cSt silicone oil at room temperature as an example [28], its dynamic viscosity μ ≈ 0.2 Pa s,
surface tension σ0 = 2.1 × 10−2 N/m, and surface-tension parameter σT = 6.8 × 10−5 N/mK.
Given by the temperature difference of Ts − Tg ≈ 10 K and the characteristic velocity U0 of 10−2 ∼
10−3 m/s, we can estimate that Ma ∼ O(10−1 ∼ 1), We ∼ O(10 ∼ 102), and Ma

We ∼ O(10−2).
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To get the asymptotic solutions of Eqs. (12)–(14), we further expand all variables in power series
of ε in the form of

[U,V, P, θ ] = [U (0),V (0), P(0), θ (0)] + ε[U (1),V (1), P(1), θ (1)] + O(ε2), (15)

where [U (0),V (0), P(0), θ (0)] and [U (1),V (1), P(1), θ (1)] are the leading-order and the first-order
solutions, respectively. It should be noted that we consider up to the first-order O(ε) flow dynamics,
and higher-order terms O(ε2) in Eq. (15) will be neglected in the following analysis [32].

After inserting Eq. (15) into Eqs. (12)–(14) and making some calculations, we obtain the leading-
order solution U (0), V (0), P(0), and θ (0):

U (0) = −1

2
Z2 + HZ, (16a)

W (0) = −1

2
HX Z2, (16b)

P(0) = cotα(Z − H ) − ε2WeHXX , (16c)

θ (0) = 1 − BiZ

1 + BiZ
, (16d)

where the leading-order interfacial temperature is therefore obtained as θ i,(0) = θ (0)|Z=H = 1
1+BiH .

The first-order solutions U (1) and P(1) are calculated as

U (1) = (−cotαHX − ε2WeHXXX )

(
Z2

2
− HZ

)
+ MaBiHX

(1 + BiH )2
Z

+ Re

[(
Z4

24
− H3Z

6

)
HHX +

(
Z3

6
− H2Z

2

)
Hτ

]
, (17a)

P(1) = −(Z − H )HX − 2HHX . (17b)

The detailed calculations of the above leading-order and first-order solutions are illustrated in
Appendix A.

We then substitute the streamwise velocity profile, U = U (0) + εU (1), into the kinematic condi-
tion Eq. (14d), which is now written in its mass conservation form,

Hτ + ∂X

∫ H

0
UdZ = 0, (18)

and we can obtain

Hτ + H2HX + ε

[
H3

3
(cotαHX + ε2WeHXXX ) + MaBiH2HX

2(1 + BiH )2
− Re

(
3H6HX

40
+ 5H4

24
Hτ

)]
X

= 0.

(19)
To eliminate the term of Hτ in Eq. (19), we apply Hτ = −H2HX + O(ε), and in addition, to

compare the results of linear stability analysis from the long-wave model with those from the
linearized NS equation, we further make the following transformations:

ε(∂τ , ∂X ) → (∂τ , ∂X ). (20)

To this end, we eventually obtain the first-order long-wave model describing the dynamics of a
nonisothermal liquid film flowing under an inclined substrate as follows:

Hτ + H2HX︸ ︷︷ ︸
I

+

⎡
⎢⎢⎣1

3
cotαH3HX︸ ︷︷ ︸

II

+ 1

3
WeH3HXXX︸ ︷︷ ︸

III

+ MaBi

2(1 + BiH )2
H2HX︸ ︷︷ ︸

IV

+ 2

15
ReH6HX︸ ︷︷ ︸

V

⎤
⎥⎥⎦

X

= 0,

(21)
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where term I represents the convective term due to mean flow under the gravity component parallel
to the substrate, term II denotes the gravity component perpendicular to the substrate, term III
corresponds to the surface-tension effect, term IV accounts for the thermocapillary stress due to
the interfacial temperature gradient, and term V is the fluid inertia. The expressions and physical
meanings of dimensionless parameters that appear in Eq. (21) are listed in Table I. It should be
noted that the prefactor of term V involving fluid inertia is 2/15, rather than 2/5 in Ref. [30].
This mismatch results from different characteristic length and timescales, and the definition of the
Reynolds number. For the extreme limit of Ma → 0, the thermocapillary stress term in Eq. (21)
vanishes and the first-order model presented in the work of Scheid et al. [29] can be recovered.
By further considering the limit of negligible inertia (Re → 0) and representing Eq. (21) with
dimensional terms, the lubrication model derived by Brun et al. [5] can also be recovered. In this
work we concentrate on the effects of the thermocapillarity Ma and the inclination angle α of the
substrate on the RT instability, and therefore we consider a wide range of these two parameters, i.e.,
Ma ∈ [−5, 5] and α ∈ (0, π/2). Furthermore, to avoid the finite-time blowup during the numerical
simulations of Eq. (21) [33], a small Reynolds number, Re ∈ [0, 2], is considered and the classical
Kapitza instability [34] is not taken into consideration.

III. LINEAR STABILITY ANALYSIS

The linear stability of the base state is examined by decomposing the film thickness H into its
spatial base solution H̄ = 1 with a small space-dependent perturbation H ′, which reads

H = 1 + H ′. (22)

After injecting Eq. (22) into Eq. (21) and collecting all the linearized terms of H ′, we obtain the
following linear equation for the perturbation:

H ′
τ + H ′

X +
[

1

3
cotαH ′

X + 1

3
WeH ′

XXX + MaBi

2(1 + Bi)2
H ′

X + 2

15
ReH ′

X

]
X

= 0. (23)

We perform a standard normal-mode analysis by employing

H ′ = Ĥexp(ikX + ωτ ), (24)

where i = √−1, and k, ω, and Ĥ denote the complex wave number, complex wave frequency,
and amplitude of the perturbation, respectively. By applying this normal-mode decomposition to
Eq. (23) and linearizing the system based on Ĥ � 1, we derive the general dispersion relation ω(k)

ω = −ik + 1

3
k2cotα − 1

3
Wek4 + MaBi

2(1 + Bi)2
k2 + 2

15
Rek2. (25)

The imaginary part ωi and real part ωr of ω quantify the advection of the perturbed wave and the
temporal growth of the perturbation, respectively.

A. Temporal stability analysis

Based on Eq. (25), we obtain

ωr = 1

3
k2cotα − 1

3
Wek4 + MaBi

2(1 + Bi)2
k2 + 2

15
Rek2. (26)

Note that the flow is temporally unstable, marginally stable, and stable when ωr > 0, ωr = 0, and
ωr < 0, respectively. By setting ωr = 0, we derive the cutoff wave number kc that divides the stable
and unstable regions,

kc =
√

1

We

(
cotα + Ma∗ + 2

5
Re

)
, (27)
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FIG. 2. Temporal growth rates ωr vs wave number k for a film under: (a) a heated substrate with Ma = 1,
3, and 5; (b) a cooled substrate with Ma = −1, −3, and −5. The cutoff wave number kc and maximal growth
rate ωm when Ma = 5 are marked by red stars in (a). The results for an isothermal film (Ma = 0) are also
depicted for reference. Solid and dashed lines correspond to the results from the linearized long-wave model
and the linearized NS equation, respectively. Here, α = π/4, We = 10, Bi = 1, and Re = 1.

where Ma∗ = 3MaBi
2(1+Bi)2 is introduced as a composite Marangoni number. The wave number of the

most unstable mode km can be yielded by letting the derivative dωr/dk = 0:

km =
√

1

We

(
1

2
cotα + 3

2
Ma∗ + 1

5
Re

)
. (28)

From Eqs. (26) and (28), we can clearly see that in the absence of substrate heating or cooling,
i.e., Ma = 0 or equivalently, Ma∗ = 0, kc and km are strictly positive, indicating the flow is always
temporally unstable under an inclined plane (0 < α < π/2). This unconditional instability is due to
the amplification of long waves by the gravity component perpendicular to the substrate, namely,
gcos α, triggering the well-known RT instability [1,2].

The temporal growth rates ωr as a function of wave number k for a heated and a cooled substrate
when α = π/4 are shown in Figs. 2(a) and 2(b), respectively. The isothermal cases with Ma = 0
are also illustrated in Fig. 2 for reference. When the film is heated by the substrate, i.e., Ma > 0,
the thermocapillary stress destabilizes the system compared to the isothermal case, as indicated by
the increased cutoff wave number kc and maximal growth rate ωm [Fig. 2(a)]. However, when the
film is cooled by the substrate, i.e., Ma < 0, a totally different phenomenon can be observed, where
the thermocapillary stress stabilizes the film, as reflected by the decreased kc and ωm [Fig. 2(b)].
In particular, strong cooling such as Ma = −5 can totally suppress the temporal RT instability, in
which all eigenvalues are in the stable complex half-plane [ωr < 0, see Fig. 2(b)]. The temporal
stability analysis of the long-wave evolution equation is further compared with the numerical
solutions of the linearized NS equation (see the details in Appendix B). We observe that the cutoff
wave number kc and the most unstable mode km obtained from the long-wave theory qualitatively
agree with those from the linearized NS equation [see dashed lines in Figs. 2(a) and Fig. 2(b)]. This
agreement holds evidently for a cooled substrate [Fig. 2(b)], or when the capillary effect indicated
by We is strong, as shown in Fig. 9 in Appendix B. The discrepancy in dispersion curves between
the long-wave model and the linearized NS equation can be improved by employing the method of
weighted residuals [35,36], as also discussed recently by Scheid et al. [29]. In this work, however,
we simply use the first-order long-wave evolution equation to capture the main flow characteristics.

We further show in Figs. 3(a) and 3(b), respectively, the marginal stability curves dividing the
linearly stable and unstable regions in the parameter space Ma − kc for a heated and a cooled
substrate, where α = π/12, π/6, and π/3. For a given Ma, the linearly unstable region shrinks with
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FIG. 3. Marginal stability curves demarcating the stable and unstable regions in the Ma − kc plane when
α = π/12, π/6, and π/3 for a film under (a) a heated substrate (Ma > 0) and (b) a cooled substrate (Ma < 0).
In (b), the cutoff Marangoni number for the case of α = π/3 is also marked (red star). Here, We = 10, Bi = 1,
and Re = 1.

increasing α, indicating that a larger inclination angle stabilizes the film more strongly. Notably, for
a cooled substrate, when the composite Marangoni number Ma∗ is below a critical value Ma∗

1,

Ma∗
1 = −(

cotα + 2
5 Re

)
, (29)

and the temporal RT instability is completely inhibited [see Eq. (27)]. In other words, Ma∗
1 de-

marcates the temporally stable and unstable regions. This result is consistent with an earlier study
[26] on the thermocapillary liquid film suspending under a cooled horizontal substrate (α = 0),
which showed that the RT instability can be suppressed by a sufficiently large vertical temperature
difference. The physical mechanism underlying the thermocapillary effect on the flow dynamics can
be qualitatively elaborated as follows: If an externally random perturbation with a small amplitude
is imposed on the liquid-air interface, thick parts (crests) and thin parts (troughs) on the interface
can be formed. As mentioned before, the surface tension decreases with temperature. Therefore,
when the film is heated by the substrate (Ts > Tg), the liquid at the trough is hotter than that
in the crest and thus has a lower surface tension, giving rise to a local surface-tension gradient.
This surface-tension gradient will pull the liquid from the hot trough into the cold crest. This
means that the resulting thermocapillary stress reinforces the gravitational RT mechanism to further
destabilize the flow. The reverse argument holds true when the film is cooled by the substrate
(Ts < Tg), where the liquid is pulled from the crest into the trough and the thermocapillary stress
competes with the gravitational RT mechanism, stabilizing the flow.

For a liquid film much thinner than the capillary length, the RT instability is varied from a
horizontal substrate to a tilted counterpart [5,29]. The tangential component of the gravity induces a
flow that can advect the perturbation so that the instability is partially changed for a small inclination
angle but might be entirely annihilated for a large inclination angle. The transition between these
two regimes for the isothermal liquid film has been rationalized using the absolute and convective
instability analysis, which well accounts for whether drops can form or not [5,29]. However,
the thermocapillary effect on the spatiotemporal stability of a nonisothermal liquid film remains
unexplored. Compared to existing studies on isothermal films [5,29], the addition of a positive or
negative thermocapillary contribution term in the evolution Eq. (21) and dispersion relation Eq. (25)
might largely modify the competition between instability growth and its advection and thus change
the absolute/convective transition. The temporal stability analysis presented in Sec. III A determines
whether the flow is temporally stable or not but fails to provide information on the nature of the
unstable flow, i.e., the absolutely or the convectively unstable. Therefore, in the following section
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FIG. 4. Contour maps of ωr in the complex plane (kr, ki). (a) An isothermal film (Ma = 0) where a saddle
point locates at (kr, ki ) = (0.44, −0.17) (red star) with real growth rate ωr = −0.07. (b) A heated film (Ma =
5) where a saddle point (kr, ki ) = (0.51, −0.14) (red star) locates in the fourth quadrant with the real growth
rate ωr = 0.06. Here, α = π/6, We = 10, Bi = 1, and Re = 1.

we examine the thermocapillary effect on the absolute and convective instability of the temporally
unstable film via a spatiotemporal analysis.

B. Spatiotemporal stability analysis

The concept of convective and absolute stability is firstly developed in plasma instabilities
[37,38] and was recently extended to the problems of hydrodynamics [39]. The convective/absolute
stability property of a given flow is determined by the long-time behavior of an impulsive response
by a localized excitation. If the amplified perturbation propagates both upstream and downstream
of the source and invades the entire spatial domain, the flow is absolutely unstable; however, if the
amplified perturbation moves away from the source while it grows in amplitude but eventually leaves
the spatial domain, the flow is convectively unstable. The type of convective/absolute instability can
be distinguished by the most amplified wave of zero group velocity, i.e., the temporal growth rate
at a saddle point in the complex plane (kr, ki ). The saddle point should be from the collision of two
spatial branches coming from the opposite sides of the horizontal axis [39].

To determine the convective and absolute instability, we first obtain the implicit expression of
saddle points in the complex k plane by setting ∂ω/∂k|k=k0 = 0, namely,

−i + 2

3
cotαk − 4

3
Wek3 + MaBi

(1 + Bi)2
k + 4

15
Rek = 0, (30)

where k0 is the saddle point with the corresponding absolute frequency ω0 = ω|k=k0 . At the saddle
point, the real part of ω0, ω0,r marks the boundary between an absolutely unstable flow and a
convectively unstable flow: the flow is absolutely unstable when ω0,r > 0 and convectively unstable
when ω0,r < 0.

A typical contour plot of the temporal growth rate ωr for an isothermal liquid film with α = π/6
in the complex k plane, (kr, ki ), is shown in Fig. 4(a). We can identify three saddle points in this
complex plane, including one in the upper half-plane and another two in the lower half-plane. How-
ever, the upper saddle point does not satisfy the Briggs-Bers collision criterion [37,38]. Although
both saddle points in the lower half-plane are applicable, we here adopt the saddle point in the
fourth quadrant to determine the absolute/convective instability [40]. For this isothermal film, at the
saddle point k = 0.44 − 0.17i, the real part of the temporal frequency ω0,r = −0.07 < 0, indicating
the flow is convectively unstable [Fig. 4(a)]. However, when the substrate is heated, for instance,
Ma = 5, at its saddle point k = 0.51 − 0.14i, the real part of the temporal frequency is positive
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FIG. 5. Marginal stability curves in the Ma − α plane when Re = 0, 1, and 2 for a film under (a) a heated
substrate and (b) a cooled substrate. The inset of (b) shows the marginal stability curve demarcating the
(temporally) stable and unstable regions in the Ma − α plane when Re = 0. Here, We = 10 and Bi = 1.

[ω0,r = 0.06, see Fig. 4(b)], indicating that the flow becomes absolutely unstable. For a cooled
substrate such as Ma = −5 with the same angle α = π/6, at its saddle point k = 0.37 − 0.21i the
real part of the temporal frequency is negative (ω0,r = −0.15), indicating a convectively unstable
flow. In this case the absolute value of ω0,r becomes larger, implying that the flow behaves much
more convectively than the isothermal case. These preliminary findings suggest that the thermocap-
illary stress can largely modify the transition between the absolute and convective instability for a
prescribed inclination angle.

To better understand how the thermocapillary stress affects the transition boundary between the
absolute and convective instability, we refer to the marginal curve that divides these two unstable
regions. First we multiply the dispersion relation Eq. (25) by i to obtain the following rescaled form:

ω̃ = k̃ + ik̃2

3
(b − k̃2), (31)

where

iω = We− 1
3 ω̃, k = We− 1

3 k̃, b =
[

cotα + 3MaBi

2(1 + Bi)2
+ 2

5
Re

]
We− 1

3 .

This form has also been similarly derived by Duprat et al. [41], Ding et al. [42], and Khanum and
Tiwari [43] for the Rayleigh-Plateau instability in liquid films falling down a cylindrical substrate.
By equating the absolute growth rate ω̃r at the saddle point in Eq. (31) with zero, we derive the
marginal curves characterized by the critical value, bc = [ 9

4 (−17 + 7
√

7)]1/3 
 1.507 [41]. The
sign of bc determines the nature of the instability, which is absolute when b > bc but convective
when b < bc. In other words, the absolute and convective instability region can be distinguished by
another critical value Ma∗

2,

Ma∗
2 = [

9
4 (−17 + 7

√
7)We

] 1
3 − (

cotα + 2
5 Re

)
, (32)

where the flow is absolutely unstable when Ma∗ > Ma∗
2 and convectively unstable when Ma∗

1 <

Ma∗ < Ma∗
2. Interestingly, we note that for arbitrary combinations of Re and cotα (0 < α < π/2 of

the suspending film in this work), Ma∗
2 is less than [ 9

4 (−17 + 7
√

7)We]
1
3 [see Eq. (32)]. This means

an absolutely unstable flow always emerges when Ma∗ > [ 9
4 (−17 + 7

√
7)We]

1
3 .

The marginal stability curves in the parameter space (Ma, α) for Ma > 0 and Ma < 0 with
various Re are plotted in Figs. 5(a) and 5(b), respectively. When Ma > 0, increasing Ma can switch
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the flow from being convectively unstable to being absolutely unstable at a given α. This transition
indicates that the heating-induced thermocapillary stress can promote the absolute instability for
an enhanced formation of suspending droplets. Furthermore, by increasing Re from 0 to 2, the
absolutely unstable regime expands counterclockwise in the Ma − α plane, suggesting that the fluid
inertia can accelerate the absolute instability. When Ma < 0, a totally opposite tendency is revealed.
As shown in Fig. 5(b), increasing |Ma| allows the flow to transit from the absolute instability to
the convective instability and finally to temporal stability. This transition suggests that when the
Marangoni number is above a threshold, the cooling-induced thermocapillary stress suppresses the
absolute instability and hence impedes the droplet formation. In this Ma − α plane [Fig. 5(b)], with
increasing Re from 0 to 2, the convectively unstable region shrinks and the absolutely unstable
region expands counterclockwise as well. To this end, for either Ma > 0 or Ma < 0, the flow is
prone to be absolutely unstable when strong fluid inertia (higher Re) is present.

To apply the derived stability thresholds, i.e., Eqs. (29) and (32), into real systems, we again
consider the 200-cSt silicone oil as the working fluid. Its physical properties at room temperature
Tg of 20 ◦C are ρ = 0.969 g/cm3, μ = 0.2 Pa s, σ0 = 2.1 × 10−2 N/m, σT = 6.8 × 10−5 N/mK,
λ = 0.155 W/mK, and hg ≈ 250 W/m2 K [27,28,30]. If the film thickness h0 = 0.2 mm and the
inclination angle of substrate α = π/4, the dimensionless parameters Bi, Re, and We in Table I are
estimated to be 0.3, 0.001, and 80, respectively. Therefore, without applying wall heating/cooling
(Ma = 0), b = 0.23 < bc, leading to a convectively unstable film. To stabilize the film, the substrate
temperature Ts should be maintained below 5.7 ◦C, according to Eq. (29); to trigger the absolutely
unstable flow, Ts should be above 98 ◦C, calculated from Eq. (32).

IV. TRANSIENT NUMERICAL SIMULATIONS

To further demonstrate how the thermocapillary stress affects the absolute and convective flow
patterns, we need to numerically solve the full nonlinear evolution, Eq. (21). The simulations are
carried out in a periodic domain with X ∈ [0, L], where L is the length of domain. The Fourier
spectral method [44] is used for space discretization as

H (X, τ ) =
N/2∑

m=−N/2

Ĥm(τ )exp

(
im

2π

L
X

)
, (33)

where Ĥm(τ ) and N are the time-dependent Fourier coefficient and the number of Fourier modes,
respectively. Gear’s method [45] is adopted for time marching with a relative error below 10−8 of
the solutions [46].

A. Numerical solutions for the temporal evolution

We first perform transient numerical simulations to solve Eq. (21) and examine the temporal
stability analysis conducted in Sec. III A. A sinusoidal perturbation with the optimal wave number,
i.e., the most unstable mode km given by Eq. (28), is applied as the initial condition. The length of
the computational domain is set as L = 2π/km, and the number of Fourier modes is N = 256. The
temporal growth A of the perturbation is defined as [43]

A = ln

[‖H (X, τ ) − H̄‖2

‖H (X, 0) − H̄‖2

]
, (34)

where ‖(·)‖2 and H̄ = 1 represent the 2-norm and the base state, respectively. The temporal
evolution of A for four different Marangoni numbers, Ma = −1, 0, 1, and 3, are shown in
Fig. 6(a). Similar to Sec. III A, other parameters are fixed: α = π/4, We = 10, Bi = 1, and
Re = 1. Figure 6(a) indicates the exponential growth of the perturbation at the early stage and
its nonlinear saturation at the later stage, as reflected by the temporal evolution of film thickness
H . For instance, in the case of Ma = 3, at the early stage (τ < 60), the amplitude of perturbation
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FIG. 6. (a) Temporal growth A of the perturbations from the transient numerical solutions (TNS, solid lines)
of the full evolution equation and that based on linear stability analysis (LSA, dashed lines) when Ma = −1,
0, 1, and 3. (b1), (b2) The temporal evolution of the initial sinusoidal perturbations at the early, exponentially
growing stage (b1) and the later, nonlinear saturation stage (b2) with Ma = 3. Here, α = π/4, We = 10,
Bi = 1, and Re = 1.

wave rapidly grows with time [see Fig. 6(b1)], and at a later interval (τ > 100), the amplitude
reaches a plateau due to nonlinear saturation [Fig. 6(b2)]. As we here choose perturbations with
the optimal mode as the initial condition, the slop in the regime of exponential growth represents
the maximal temporal growth rate. For comparison, we also depict the growth rates from the
linear stability analysis as dashed lines in Fig. 6(a), which quantitatively agree with the numerical
results.

B. Numerical solutions for the spatiotemporal evolution

We now proceed to performing transient numerical simulations to examine the spatiotemporal
stability analysis conducted in Sec. III B. A localized impulse disturbance at X = 100 is initially
seeded into the flat film in the form of

H = 1 + 0.1exp
[ − 1

2 (X − 100)2
]
. (35)

Commonly, for a convective instability, both the leading (V +
f ) and receding (V −

f ) front velocities
of the impulse response are positive, and therefore the instability will be convected away from the
disturbed position. In contrast, an absolute instability is characterized with positive V +

f and negative
V −

f , in which the entire domain will be contaminated by the initial disturbance. This concept can
be well illustrated by observing the spatiotemporal evolution of the wave packet emerging from the
initial localized excitation [5].

We here consider two representative scenarios: (i) Ma = 0 and Ma = 5 with a large angle
α = π/6, and (ii) Ma = 0 and Ma = −5 with a small angle α = π/12. Other parameters are fixed:
We = 10, Bi = 1, and Re = 1. As inferred by the spatiotemporal stability analysis in Sec. III B,
the following applies: (i) When α = π/6, the isothermal film is linearly unstable with a con-
vective nature; however, in the presence of strong substrate heating (Ma = 5), the flow will
become absolutely unstable [see Fig. 5(a)]. (ii) When α = π/12, the isothermal flow is also
linearly unstable but with an absolute nature; however, in the presence of strong substrate cool-
ing (Ma = −5), the flow will be convectively unstable [Fig. 5(b)]. During the simulations, an
extended domain length L = 400 and an increased number N = 512 of Fourier modes are applied
to accurately capture the spatial evolution of the imposed disturbance. Furthermore, to avoid the
fouling of disturbance at the upstream, especially for the situation of convectively unstable flows, we
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FIG. 7. Spatiotemporal evolution of a local disturbance by numerical simulations of the full evolution
equation when α = π/6. (a1) A convectively unstable flow forms at Ma = 0. (b1) An absolutely unstable
flow forms at Ma = 5. The black straight lines in (a1) and (b1) depict the edges of the wave packet. (a2), (b2)
The temporal evolution of the disturbance at its origin X = 100, corresponding to (a1), (b1), respectively. Here,
We = 10, Bi = 1, and Re = 1.

terminate the simulation before the disturbance periodically enters the computational domain from
the upstream.

To clearly identify the signs of V +
f and V −

f , the spatiotemporal evolutions of the seeded
disturbance are presented in the form of waterfall curves, where the film thickness profile H (X ) is
sketched at different time instants τ . The corresponding plots of the seeded disturbance for α = π/6
with Ma = 0 and Ma = 5 from the numerical solutions of Eq. (21) are shown in Figs. 7(a1) and
7(b1), respectively. For the set of α = π/6 and Ma = 0, as time evolves, the imposed localized
excitation increases and sweeps towards downstream (V +

f > 0 and V −
f > 0), with a flat, stable

interface being left in the upstream region, demonstrating the flow is convectively unstable [see
Fig. 7(a1)]. This observation is qualitatively in agreement with the recent experimental finding
and theoretical modeling of an isothermal film flow under an inclined plane, where the flow is
convectively unstable and no drops form in the laboratory frame for a large inclination angle [5,29].
When the substrate is heated, as time evolves, the imposed localized excitation is rapidly amplified
and the disturbance not only propagates downstream (V +

f > 0) but also upstream (V −
f < 0),

as shown in Fig. 7(b1). Such a phenomenon demonstrates the flow is absolutely unstable. In
addition, to further distinguish the absolute and convective nature of the instability, we resort
to the time-dependent amplitudes of the imposed impulse, as shown in Figs. 7(a2) and 7(b2).
When Ma = 0, the initial disturbance imposed at its origin (X = 100) decays with time, becoming
negligible at τ ≈ 40, further suggesting that the instability is convective [Fig. 7(a2)]. Conversely,
when Ma = 5, the growing disturbance despite the presence of the mean flow in the laboratory
frame indicates the absolute nature of the instability [Fig. 7(b2)].

For a weak inclination with α = π/12, Figs. 8(a1) and 8(a2) show the absolute instability of
the isothermal film flow with V +

f > 0, V −
f < 0 and the accompanying time-dependent growing

amplitude at the origin, respectively. On the contrary, for a strongly cooled film with Ma = −5,
the thermocapillary stress drives the absolute instability towards the convective instability (V +

f > 0,
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FIG. 8. Similar to Fig. 7 but for an inclination angle α = π/12 rather than α = π/6. (a) An absolutely
unstable flow when Ma = 0 and (b) a convectively unstable flow when Ma = −5.

V −
f > 0, and the time-dependant decaying amplitude at its origin), as shown in Figs. 8(b1) and

8(b2).
To briefly conclude, the thermocapillary stress developed in a heated film enhances the absolute

instability and suppresses the convective instability. In contrast, the developed stress in a cooled film
acts oppositely by suppressing the absolute instability and enhancing the convective instability. The
numerical solutions to the full nonlinear evolution Eq. (21) agree with the predictions from linear
stability analysis for both isothermal and nonisothermal cases. More importantly, the demonstrated
ability of the thermocapillary stress to modulate the spatiotemporal stability of the RT instability
emphasizes the possibility of manipulating the formation of suspending droplets for industrial
applications. Note that our study using the long-wave assumption do not intend to capture droplets
pinching off from the substrate [47,48].

V. CONCLUSIONS AND DISCUSSION

In summary, we have systematically investigated the thermocapillary effect on the RT instability
of viscous liquid films under a temperature-controlled (uniformly heated or cooled) inclined sub-
strate. A long-wave model applicable for small Reynolds number Re is used to derive the evolution
equation for the flow dynamics. Based on the evolution equation, we examine the temporal and
spatiotemporal stability of the system for heated and cooled substrates, aiming to identify the
absolute and convective instability. Temporal stability analysis shows the persisting existence of
the RT instability in the absence of the thermocapillary stress. This inherent instability is further
augmented by the thermocapillary stress for a heated substrate. The scenario reverses on a cooled
substrate, where the thermocapillary stress stabilizes the film and suppresses the RT instability. This
observation is consistent with an earlier work on liquid films under a cooled, horizontal plane [26].
In particular, the RT instability can be completely suppressed when a composite Marangoni number,
Ma∗ = 3MaBi

2(1+Bi)2 , is less than a critical value Ma∗
1 = −(cotα + 2

5 Re). The fair agreement between the
results from the long-wave evolution equation and those from the linearized NS equation further
validates the long-wave model used in the present study.

The absolute and convective nature of the temporal instability is further characterized in the
laboratory frame of reference by performing the spatiotemporal stability analysis. By rescaling the
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involved variables, we obtain a convenient form of the dispersion relation to evaluate the transition
from the convective to absolute instability in the Ma − α parameter space. For a given inclination
angle α, we show that thermocapillary stress promotes the absolute instability and suppresses the
convective instability when the film is heated, which, however, suppresses the absolute instability
and promotes the convective instability when the film is cooled. More importantly, an exact
expression for a threshold value of the composite Marangoni number Ma∗ is derived in the form of
Ma∗

2 = [ 9
4 (−17 + 7

√
7)We]

1
3 − (cotα + 2

5 Re), beyond which the thermocapillarity will drive the
flow to transit from the convective instability to the absolute instability. In the end, we perform
transient numerical simulations of the full evolution equation. The numerical results agree well
with the predictions from the temporal and spatiotemporal stability analysis.

Our work derives analytically two critical composite Marangoni numbers, Ma∗
1 and Ma∗

2, which
delineate the stable, the convectively unstable, and the absolutely unstable regions for a non-
isothermal film flowing under an inclined substrate. These results provide theoretical guidance for
controlling or utilizing the RT instability in industrial applications, such as in designing complex
soft materials of a particular pattern [49].

It is worth noting that the first-order long-wave model, the Benny-type equation we derive, can
describe the main characteristics of the low-Reynolds-number flows in this work, as confirmed by
the numerical solutions to the linearized NS equation. However, to extend this study into flows with
large inertia effect, we need to resort to higher-order models, such as the second-order model, i.e.,
the well-known weighted residual integral boundary layer model [35,36] as demonstrated by Scheid
et al [29]. As a final remark, we would also like to note that the thin liquid film considered in this
work is two dimensional. Recently, some remarkable patterns arising from the three-dimensional
effects have been reported for isothermal films [50–52], such as the emergence of rivulets in
response to streamwise-invariant sinusoidal initial conditions [52]. Therefore, it would be interesting
to explore in future how the thermocapillary effect influences the three-dimensional RT instability
of flowing liquid films.
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APPENDIX A: DERIVATION OF LEADING-ORDER AND FIRST-ORDER SOLUTIONS

In this work, we only consider the first-order O(ε) model, where the governing equations,
Eq. (12), and the associated boundary conditions, Eqs. (13) and (14), become

UX + WZ = 0, (A1a)

εRe(Uτ + UUX + WUZ ) = −εPX + UZZ + 1, (A1b)

−Pz + εWZZ + cotα = 0, (A1c)

θZZ = 0. (A1d)

At Z = 0,

U = 0, W = 0, θ = 1, (A2)

and at Z = H ,

P = −2εHXUZ + 2εWZ − ε2WeHXX , (A3a)

UZ = −εMaθX , (A3b)

θZ + Biθ = 0. (A3c)
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As mentioned, all variables [U,V, P, θ ] are expanded in power series of ε,

[U,V, P, θ ] = [U (0),V (0), P(0), θ (0)] + ε[U (1),V (1), P(1), θ (1)] + O(ε2), (A4)

which are inserted into Eqs. (A1)–(A3) to yield the leading-order and the first-order governing
equations.

1. The leading-order solution

The leading-order governing equations are

U (0)
X + W (0)

Z = 0, U (0)
ZZ = −1, P(0)

Z = cotα, θ
(0)
ZZ = 0, (A5)

with the following boundary conditions: at Z = 0,

U (0) = 0, W (0) = 0, θ (0) = 1, (A6)

and at Z = H ,

P(0) = −ε2WeHXX , U (0)
Z = 0, θ

(0)
Z + Biθ (0) = 0. (A7)

After solving the above equations, we can get the leading-order velocities [U (0),W (0)], pressure
P(0), and temperature θ (0):

U (0) = −1

2
Z2 + HZ, (A8a)

W (0) = −1

2
HX Z2, (A8b)

P(0) = cotα(Z − H ) − ε2WeHXX , (A8c)

θ (0) = 1 − BiZ

1 + BiH
, (A8d)

where the leading-order interfacial temperature θ i,(0) = θ (0)|Z=H = 1
1+BiH .

2. The first-order solution

Similarly, the first-order governing equations are

U (1)
X + W (1)

Z = 0, (A9a)

U (1)
ZZ = Re

(
U (0)

τ + U (0)U (0)
X + W (0)U (0)

Z

) + P(0)
X , (A9b)

P(1)
Z = W (0)

ZZ , (A9c)

θ
(1)
ZZ = 0. (A9d)

The boundary conditions are, at Z = 0,

U (1) = 0, W (1) = 0, θ (1) = 0, (A10)

and at Z = H ,

P(1) = −2HXU (0)
Z + 2W (0)

Z , (A11a)

U (1)
Z = −Maθ (0)

X , (A11b)

θ
(1)
Z + Biθ (1) = 0. (A11c)
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By solving the above equations, we derive the first-order streamwise velocity U (1) and pressure P(1):

U (1) = (−cotαHX − ε2WeHXXX )

(
Z2

2
− HZ

)
+ MaBiHX

(1 + BiH )2
Z

+Re

[(
Z4

24
− H3Z

6

)
HHX +

(
Z3

6
− H2Z

2

)
Hτ

]
, (A12a)

P(1) = −(Z − H )HX − 2HHX . (A12b)

APPENDIX B: THE LINEARIZED NS EQUATIONS

We here present the details of deriving and solving the linearized NS equations. Following the
long-wave analysis, Pe and Ma

We in Eqs. (8d) and (10a) are assumed to be small and not considered.
Accordingly, the interfacial temperature θ i can be separately solved as

θ i = 1

1 + BiH
. (B1)

The standard normal-mode decomposition is applied, and all variables [U,W, P, H] are perturbed
by infinitesimal harmonic perturbations in the form of

[U,W, P, H] = [Ū ,W̄ , P̄, H̄ ] + [Û ,Ŵ , P̂, Ĥ ]exp(ikX + ωτ ), (B2)

where [Ū ,W̄ , P̄, H̄ ] represent the base states, and [Û ,Ŵ , P̂, Ĥ ] denote the Fourier amplitudes of
the perturbation. Here k is the wave number and ω is the complex growth rate. The base states of
the velocity and pressure are

Ū = − 1
2 Z2 + Z, W̄ = 0, P̄ = −cotα(1 − Z ). (B3)

By linearizing the governing system Eqs. (8a)–(8c) with respect to the base states [Eq. (B3)], we
obtain the following eigenvalue system:

ikÛ + DŴ = 0, (B4a)

Re(ωÛ + ikŪÛ + DŪŴ ) = −ikP̂ + (D2 − k2)Û , (B4b)

Re(ωŴ + ikŪŴ ) = −DP̂ + (D2 − k2)Ŵ , (B4c)

where the operator D = d/dZ . At the substrate surface (Z = 0), the linearized boundary conditions,
Eq. (9), become

Û = 0, Ŵ = 0. (B5)

At the liquid-air interface (Z = H), the linearized boundary conditions, Eqs. (10a), (10b), and (10d),
are projected to Z = 1 by Taylor expansions, yielding

P̂ + cotαĤ + 2ikDŪ Ĥ − 2DŴ − k2WeĤ = 0, (B6a)

DÛ + ikŴ = ik
MaBi

(1 + Bi)2
Ĥ + Ĥ , (B6b)

ωĤ + ikŪ Ĥ = Ŵ , (B6c)

where all O(H2
X ) terms are omitted for simplification. The above eigenvalue problem is solved by

a Chebyshev collocation method [53,54], leading to the dispersion relation curves shown in Fig. 2.
Moreover, we examine an additional case with a high Weber number, i.e., We = 100, as illustrated
in Fig. 9. It indicates that when the capillary effect is strong, the cutoff wave number kc and the most
unstable mode km calculated from the long-wave equation quantitatively agree with those from the
linearized NS equation.
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FIG. 9. Temporal growth rates ωr vs wave number k for a strong capillary effect (We = 100) with different
Ma values. Solid and dashed lines denote the results from the linearized long-wave model and the linearized
NS equations, respectively. It should be noted that the solid and dashed lines almost overlap with each other
for the cases of Ma = −1, −3, and −5. Here, α = π/4, Bi = 1, and Re = 1.
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