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One of the crucial aspects in the case of describing flow through a fluid-porous double
layer configuration is the quantification of the flow behavior near the fluid-porous interface.
Both theoretical as well as experimental studies indicate that in the case of real-life
fluid-porous geometries, the shift from the fluid layer to the porous layer is not sharp and
immediate. Instead, there exists a transition layer in between the fluid and the porous layers.
In order to get a realistic picture of flow transition characteristics for such systems, it is im-
perative that this transition layer be taken into consideration in the hydrodynamic stability
analysis. The same has been carried out in the present study, and the effect of the transition
layer on the stability characteristics has been assessed. The current study has investigated
the effect of the transition layer on the flow of a power-law fluid overlying a porous layer
in a channel flow configuration, as the earlier studies were restricted to Newtonian fluids
only. A rigorous three-dimensional perturbation framework has been adopted, as Squire’s
theorem is not applicable for the power-law rheology unlike Newtonian rheology. Both
modal and nonmodal analyses are attempted in order to reveal the long-time response
as well as short-time amplifications of the system to external disturbances. The intricate
interaction between the non-Newtonian rheology of the fluid and the thin transition layer
is found to affect the transient amplifications of the flow system significantly.
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I. INTRODUCTION

Fluid flow over a porous layer has several important applications in numerous geological,
biological, and industrial circumstances [1–6]. Owing to its practical relevance, there is a large
volume of studies dedicated to throwing light on various aspects of this flow situation. The earliest
reported study can be traced back to the time of Darcy [7], who dealt with the flow of water over a
sand bed.

Traditionally, the modeling of combined porous-fluid flows has been carried out by either
one-domain or two-domain approaches [8]. In the one-domain method, there is a single equation
modeling the entire flow region (both the fluid and the porous regions). On the contrary, a two-
domain approach advocates the use of separate momentum equations to model the fluid and the
porous zones, and the two zones are connected by a suitable condition at the interface. Both these
approaches have been widely adopted by researchers to model the flow behavior.

Vafai and Tien [9] stressed the need to consider the boundary and inertia effects in convective
flow and heat transfer in the case of fluid-porous systems with a constant porosity. A quantification
of these effects was carried out in terms of associated governing parameters. Consequently, a
fundamental characterization scheme was constituted for assessing the relevance of Darcy’s law
toward describing several problems of flow and heat transfer in fluid-porous systems.
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A traditional yet fairly successful way to model flow in porous media is the continuum approach.
In the continuum approach, it is assumed that there is a continuous spatial distribution of the
pertinent characterizing properties of flow, such as pressure, temperature, velocity, etc. This macro-
scopic approach is particularly suited for flow in porous media, due to the computational difficulties
associated with the consideration of a geometrically complex porous media at a microscopic level.
Within the framework of the continuum approach, a popular methodology is the technique of volume
averaging, wherein the measurable quantities are obtained by averaging over volumes [10]. In this
technique, a macroscopic variable (it can be velocity, pressure, etc.) is assumed to have a value over
the smallest admissible functional volume, known as the representative elementary volume (REV).
It is further assumed that the REV is sufficiently large, so that there is an insignificant fluctuation of
the spatially averaged properties.

The finite-volume method (FVM) is another important tool for modeling porous flows. The study
by Das, Nassehi, and Wakeman [11] adopted the FVM to carry out the numerical simulation for
investigating subsurface water (groundwater) flows. They highlighted the necessity of modeling
flow in the combined “free” (i.e., fluid) and porous layers, instead of flow modeling in the porous
domain alone. Hanspal et al. [12] developed a model for simulating the hydrodynamics (flow and
pressure drop) of combined free and porous flows in the context of industrial (both cross-flow and
dead-end) filtration processes. A power-law fluid rheology was considered for the purpose. A two-
domain formulation was adopted, modeling the flow in the free (fluid) and the porous domains by
the Cauchy momentum and Darcy equations, respectively. The shear-thickening fluids were shown
to yield a higher pressure drop compared to the Newtonian and shear-thinning fluids.

The studies by Bruneau and Mortazavi [13,14] have advocated the use of the “penalization
method” (which is essentially based on the Brinkman-Navier-Stokes equations) for modeling bluff
body flows involving porous media, wherein they have adopted a Brinkman-based formulation to
describe the entire fluid and porous regions. While doing so, the fluid layer is assumed to have
a permeability of infinity, while a permeability of zero is considered for the solid (impermeable)
region. On the other hand, the porous layer has a permeability in between zero and infinity.

However, a majority of the fluid-porous systems encountered in a practical setting involves
non-Newtonian fluids [15–17]. In fact, there are two principal aspects for a proper mathematical
description of the flow in fluid-porous systems. The first one is the selection of an appropriate model
that quantifies the fluid rheology. Second, one needs to have a realistic mathematical description of
the porous layer. In this regard, a major aspect in the case of describing flow through a fluid-porous
double layer configuration is the quantification of the flow behavior near the fluid-porous interface.
A number of theoretical, numerical, and experimental studies are devoted to address this critical
issue [1,2]. These studies reveal that in the case of real-life fluid-porous geometries, there is no
sudden shift from the fluid layer to the porous layer as predicted by the Darcy model. In reality, there
exists a thin transition layer in between the fluid and the porous layers. A major advantage in the
consideration of a transition layer is that it takes into account the fluid-fluid viscous interaction that
becomes significant in the proximity of the fluid-porous interface. Thus, if one wishes to conduct a
hydrodynamic stability analysis for such a system to comprehend the flow transition characteristics,
it would not be prudent to neglect the effect of this transition layer. The same has been carried out
in the present study, and the effect of the transition layer on the stability characteristics has been
assessed in the context of a non-Newtonian fluid-porous system.

A power-law fluid has been considered in the present study to represent the non-Newtonian
rheology. Flow of a non-Newtonian fluid over a porous layer exhibits numerous occurrences in
bio-fluid dynamics, petroleum engineering, polymer processing, etc. Thus, it is crucial to gain a
fundamental understanding regarding the flow transition characteristics of the same. The present
study is probably the first account of hydrodynamic stability analysis of a non-Newtonian fluid-
porous system involving a transition porous layer. There are reported studies in the literature dealing
with the thermal convective instabilities of a power-law fluid-porous system [18,19]. However, to
the best of our knowledge, no analysis of shear instability for such a configuration exists in the
literature.
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Additionally, it is essential to elucidate the reason for consideration of a three-layer system (i.e.,
a fluid layer and a porous Darcy layer with a Brinkman transition layer in between) instead of con-
sidering a two-layer (a fluid layer and a single Darcy-Brinkman layer throughout the porous media)
configuration. Such a choice is attributed to the fact that the Brinkman term (i.e., the Laplacian term)
is simply not valid in a location away from the fluid-porous interface, as demonstrated in several
analytical and experimental studies (see Nield and Bejan [20], and references therein). In other
words, the Darcy-Brinkman equation is valid only within the transition layer [21]. In the case of a
horizontal channel flow of a fluid overlying a porous layer, there seems to be a long-standing debate
on the applicability of various porous models (Brinkman, Darcy, Forchheimer) in describing flow
through the porous layer [21–24]. The Darcy model, being the simplest of the three, has naturally
been the first choice. The same has been used in the case of stability studies as well [25–32]. On
the other hand, there seems to be a consensus that for a porous layer having high porosity (> 0.7),
the Brinkman model is a more appropriate consideration [20,33,34]. As a result, there have been
stability analyses for highly porous media (e.g., Foametal), modeling the entire porous layer by
Brinkman equations [35–37]. However, for low-porosity media, the application of the Brinkman
model throughout the porous layer is not suitable. In fact, Liu et al. [36] have observed that for a
porous material having low porosity, the stability analyses yield substantially different results for
Darcy and Brinkman models. For realistic description of a dense porous layer, several studies (both
theoretical and experimental) have advocated the use of a porous transition layer in between the
fluid and the Darcy layer [1,2,38–46]. In fact, the experimental determination of the transition layer
thickness [2,40,43] has resulted in an important revelation: the depth of the transition layer (dT L) is
much higher than

√
K , where K is the permeability of the porous media (in fact, dT L/

√
K = O(50),

as reported by Goharzadeh, Khalili, and Jorgensen [2]). This is in stark contrast to many earlier
studies estimating dT L/

√
K = O(1), thereby considering the transition layer to be of negligible

thickness (see Kaviany [47], and references therein). The above observation clearly indicates that the
consideration of a transition layer is vital for a holistic description of the fluid-porous configuration.
In addition, from a mathematical perspective, an important utility of the transition layer is that it
serves as a regularization in between the Navier-Stokes and the Darcy equations, which do not have
identical orders. Thus, it is evident that for modeling a dense or moderately porous medium (which
constitutes the bulk proportion of different porous media encountered in various applications; highly
porous media are few in proportion), neither Darcy nor Brinkman equation alone is sufficient
for a proper representation of the porous layer. In spite of this, it is surprising that only a few
studies have explored the role of this transition Brinkman porous layer in influencing the stability
characteristics [48,49]. Hill et al. [48] carried out the analysis for a three-layer system (fluid layer,
Brinkman transition layer, and Darcy layer), with homogeneous properties within each layer. On
the other hand, Hill [49] considered a fluid layer, a heterogeneous Brinkman transition layer (with
variable porosity and permeability), and a homogeneous Darcy layer (with constant porosity and
permeability). These studies revealed that the depth of the transition layer is indeed an important
parameter in affecting the stability characteristics of the flow system.

Apart from the analysis of transition to turbulence, the investigation of turbulent flow in porous
media is also gaining the attention of the research community. Since this study is focused on the
transition of flow to turbulence, a comprehensive review of the literature associated with the analysis
of turbulent flow has not been undertaken. However, to illustrate an example, the readers are referred
to the study conducted by Jimenez et al. [50]. They employed the eddy viscosity model in their direct
numerical simulations for investigating the turbulent structures observed in a porous-walled channel
characterized by an unstable mean velocity profile. It was revealed that coherent vortices originate
at the interface of a porous layer owing to a Kelvin-Helmholtz (K-H) type shear instability.

A major limitation of all the aforementioned studies dealing with the transition layer is that they
are confined to Newtonian fluids only, even though a majority of fluids encountered in real-life fluid-
porous applications are non-Newtonian in nature. The appearance of the parameter characterizing
the transition layer in the case of a non-Newtonian fluid is quite different from that of a Newtonian
fluid (as would be later evident in the problem formulation part). Thus, it is essential to explore the
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FIG. 1. Schematic for plane Poiseuille flow of a fluid overlying a porous layer: depiction of the three-layer
flow configuration incorporating the porous transition layer (Brinkman layer) in between the unobstructed fluid
layer and the porous layer (Darcy layer). u, ub, um respectively refer to the velocities in the fluid layer, transition
layer, and Darcy layer. Additionally, z = z0 denotes the location where d u

d z changes its sign.

role of the transition porous layer in the case of non-Newtonian fluids. This is the major motivation
behind the current study. Thus, in other words, it may be mentioned that most of the studies
(dealing with fluid-porous combined flows) in the literature are limited to the selection of either
the appropriate condition at the fluid-porous interface, or the appropriate governing equation for the
porous layer. Furthermore, the studies concerned with the analysis of transition (hydrodynamic
stability) for combined fluid-porous systems in channel flows are mostly limited to Newtonian
fluids and the investigation of long-time (modal) flow transition characteristics. In this regard, the
principal novelty of the present study lies in the fact that it attempts to capture the flow transition
characteristics for a non-Newtonian fluid in the short-time (nonmodal) region, which is of great
significance for bounded shear flows.

To begin with, the governing and the constitutive equations describing the flow are presented, and
the basic velocity profiles are obtained in the three layers. Thereafter, modal analysis is carried out
to assess the long-time behavior of the system. In addition to solving the non-Newtonian (power-law
fluid) problem, the corresponding Newtonian problem for this flow configuration is also revisited.
In doing so, a limitation of the earlier studies in assessing the true role of the transition layer on the
flow transition characteristics is unveiled. In addition, nonmodal analysis is also attempted in order
to estimate the short-time amplifications. An effort is made to identify the physical mechanism
through which the criticality sets in.

II. PROBLEM FORMULATION

Figure 1 depicts a schematic of the flow configuration. A non-Newtonian fluid (modeled using
power-law rheology) flows under an applied constant pressure gradient in a plane channel over
a porous layer saturated with the same fluid. The porous layer consists of two zones: the layer
at the bottom of the channel, and the transition layer existing in between the fluid layer and the
bottom porous layer. The fluid layer is of thickness d (extending from z = 0 to z = d), whereas the
porous layer (including the bottom layer and the transition layer) is of thickness dm. The transition
layer extends from z = 0 to z = −βT Ldm, while the bottom layer extends from z = −βT Ldm to
z = −dm. Here, βT L is a dimensionless parameter representing the depth of the transition layer. It
is essentially the ratio of the transition layer depth to the total depth of the porous layer. It may be
noted that 0 < βT L < 1, which takes care of all possible thicknesses of the transition layer relative
to the porous layer beneath it. In fact, βT L is typically in the range of 0.001–0.3 [48].
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A. Governing equations

The governing Cauchy momentum equations in the fluid layer (0 � z � d) may be represented
as

∇ · u = 0, (2.1a)

ρ
Du
Dt

= −∇p + ∇ · τ , (2.1b)

where ρ is the density of the fluid, p is the pressure, and u ≡ (u, v,w) is the velocity vector. The
deviatoric stress tensor τ for a power-law fluid is given as

τ = μγ̇ =
(

μ∗
∣∣∣∣∣
√

1

2
(γ̇ : γ̇ )

∣∣∣∣∣
n−1)

γ̇, (2.2)

γ̇ being the rate of strain tensor, γ̇ = ∇u + (∇u)T , and μ is the power-law viscosity, μ =
μ∗|

√
1
2 (γ̇ : γ̇ )|n−1.μ∗ and n are, respectively, the flow consistency and the flow behavior indices

of the power-law fluid. Thus, by incorporating the rheology of the power-law fluid [from Eq. (2.2)],
Eq. (2.1) may be expressed in scalar notation as

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (2.3)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= −∂ p

∂x
+ μ∗

[
∂

∂x

{
M

(
2
∂u

∂x

)}
+ ∂

∂y

{
M

(
∂v

∂x
+ ∂u

∂y

)}
+ ∂

∂z

{
M

(
∂u

∂z
+ ∂w

∂x

)}]
, (2.4)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= −∂ p

∂y
+ μ∗

[
∂

∂x

{
M

(
∂u

∂y
+ ∂v

∂x

)}
+ ∂

∂y

{
M

(
2
∂v

∂y

)}
+ ∂

∂z

{
M

(
∂v

∂z
+ ∂w

∂y

)}]
, (2.5)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= −∂ p

∂z
+ μ∗

[
∂

∂x

{
M

(
∂u

∂z
+ ∂w

∂x

)}
+ ∂

∂y

{
M

(
∂v

∂z
+ ∂w

∂y

)}
+ ∂

∂z

{
M

(
2
∂w

∂z

)}]
, (2.6)

where M = |2{( ∂u
∂x )

2 + ( ∂v
∂y )

2 + ( ∂w
∂z )

2} + {( ∂u
∂y + ∂v

∂x )
2 + ( ∂u

∂z + ∂w
∂x )

2 + ( ∂v
∂z + ∂w

∂y )
2}| (n−1)

2 .
In the above equations, (u, v, w) denotes the velocity components in the fluid layer. It may

be noted that although the above set of scalar equations, Eqs. (2.3)–(2.6), can be simplified
while obtaining the base profile, it is necessary to consider the entire form in the derivation of
the perturbation equations to be used in the stability analysis. Now, in the dense porous layer
(−dm � z � −βT Ldm), the velocity is governed by the modified Darcy law for power-law fluids
[51–53]:

∇ · um = 0,(ρ

ε

)∂um

∂t
= −∇pm −

(
μ∗|um|n−1

K∗

)
um

⎫⎬
⎭, (2.7)

where um is the seepage velocity vector. In scalar representation, the corresponding equations are

∂um

∂x
+ ∂vm

∂y
+ ∂wm

∂z
= 0, (2.8)
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(ρ

ε

)∂um

∂t
= −∂ pm

∂x
−

⎡
⎣μ∗(u2

m + v2
m + w2

m

) n−1
2

K∗

⎤
⎦um, (2.9)

(ρ

ε

)∂vm

∂t
= −∂ pm

∂y
−

⎡
⎣μ∗(u2

m + v2
m + w2

m

) n−1
2

K∗

⎤
⎦vm, (2.10)

(ρ

ε

)∂wm

∂t
= −∂ pm

∂z
−

⎡
⎣μ∗(u2

m + v2
m + w2

m

) n−1
2

K∗

⎤
⎦wm . (2.11)

In Eqs. (2.9)–(2.11), ε denotes the porosity in the porous layer. pm and (um, vm, wm) respectively
denote the pressure and velocity components in the Darcy layer, and K∗ is the modified permeability,
defined as

K∗ = 1

2Ct

( nε

3n + 1

)n
(

50K

3ε

) n+1
2

. (2.12a)

The above equation may be expressed as

K∗ = Pn K
n+1

2 , (2.12b)

where

Pn = 1

2Ct

(
nε

3n + 1

)n(50

3ε

) n+1
2

. (2.12c)

In Eq. (2.12a), K is the intrinsic permeability of the porous media and is independent of the fluid
rheology. In addition, Ct is the tortuosity factor, defined as [53]

Ct = 2

3

(
8n

9n + 3

)n(10n − 3

6n + 1

)(
75

16

) 3(10n−3)
(10n+11)

. (2.12d)

The Brinkman model (also known as the Darcy-Brinkman model) is employed to model the flow
in the porous transition layer (−βT Ldm � z � 0). The modified form of the Brinkman model for
power-law fluids may be given as [17]

∇ · ub = 0,(ρ

ε

)∂ub

∂t
= −∇pb −

(
μ∗|ub|n−1

K∗

)
ub + μ∗

εn
∇

{∣∣∣∣∣
√

1

2
(� : �)

∣∣∣∣∣
n−1

�

} ⎫⎪⎬
⎪⎭, (2.13)

where � is the rate of deformation tensor, defined as � = 1
2 [(∇ub) + (∇ub)T ]. In scalar notation,

the corresponding equations are

∂ub

∂x
+ ∂vb

∂y
+ ∂wb

∂z
= 0, (2.14)

(ρ

ε

)∂ub

∂t
= −∂ pb

∂x
−

⎡
⎣μ∗(u2

b + v2
b + w2

b

) n−1
2

K∗

⎤
⎦ub

+ μ∗

εn

[
∂

∂x

{
Mb

(
2
∂ub

∂x

)}
+ ∂

∂y

{
Mb

(
∂vb

∂x
+ ∂ub

∂y

)}
+ ∂

∂z

{
Mb

(
∂ub

∂z
+ ∂wb

∂x

)}]
,

(2.15)
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(ρ

ε

)∂vb

∂t
= −∂ pb

∂y
−

[
μ∗(u2

b + v2
b + w2

b )
n−1

2

K∗

]
vb

+ μ∗

εn

[
∂

∂x

{
Mb

(
∂ub

∂y
+ ∂vb

∂x

)}
+ ∂

∂y

{
Mb

(
2
∂vb

∂y

)}
+ ∂

∂z

{
Mb

(
∂vb

∂z
+ ∂wb

∂y

)}]
,

(2.16)(ρ

ε

)∂wb

∂t
= −∂ pb

∂z
−

⎡
⎣μ∗(u2

b + v2
b + w2

b

) n−1
2

K∗

⎤
⎦wb

+ μ∗

εn

[
∂

∂x

{
Mb

(
∂ub

∂z
+ ∂wb

∂x

)}
+ ∂

∂y

{
Mb

(
∂vb

∂z
+ ∂wb

∂y

)}
+ ∂

∂z

{
Mb

(
2
∂wb

∂z

)}]
,

(2.17)

where

Mb =
∣∣∣∣2

{(
∂ub

∂x

)2

+
(

∂vb

∂y

)2

+
(

∂wb

∂z

)2}
+

{(
∂ub

∂y
+ ∂vb

∂x

)2

+
(

∂ub

∂z
+ ∂wb

∂x

)2

+
(

∂vb

∂z
+ ∂wb

∂y

)2}∣∣∣∣
(n−1)

2

. (2.18)

In addition, pb and (ub, vb, wb) denote the pressure and the velocity components in the
Brinkman transition layer.

B. Boundary conditions

Upon observing Eq. (2.4), it is easy to understand that the final form of the momentum equation
will depend on the sign of ∂u

∂z . This is where the behavior of a power-law fluid is fundamentally
different from that of a Newtonian fluid. z = z0 is the location where ∂u

∂z undergoes a change in sign.
Now, the various applicable boundary conditions are to be listed. To begin with, the continuity of
normal stresses is assumed at the two interfaces (at z = 0 and z = −βT Ldm), leading to the following
conditions at the interfaces:

at z = 0, −p + 2μ∗M

(
∂w

∂z

)
= −pb + 2

(
μ∗

εn

)
Mb

(
∂wb

∂z

)
, (2.19a)

at z = −βT Ldm, −pm = −pb + 2

(
μ∗

εn

)
Mb

(
∂wb

∂z

)
. (2.19b)

It is worthwhile to mention that Eqs. (2.19a) and (2.19b) do not imply that there is a discontinuity
of pressure at the two interfaces. Essentially, the pressure is interpreted as a pore-averaged pressure
in the porous medium. Hence, Eqs. (2.19a) and (2.19b) are consistent with the notion of continuity of
pressure at the microscopic level. A similar approach has also been followed by Hill and Straughan
[48]. To formulate the other boundary conditions, the upper wall of the channel is considered.
Assuming no-slip at the upper wall,

at z = d, u = 0, v = 0, w = 0. (2.20)

Next, the boundary conditions valid at the fluid layer–transition layer interface need to be listed.
The continuity of velocities is applicable at the interface between the fluid layer and the transition
layer, i.e.,

at z = 0, u = ub, v = vb, w = wb. (2.21)
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In addition to the continuity of velocities, the continuity of tangential stresses is maintained at
the interface between the fluid layer and the transition Brinkman layer. In mathematical terms,

at z = 0,

⎧⎪⎪⎨
⎪⎪⎩

μ∗[M(
∂u
∂z + ∂w

∂x

)] = (
μ∗
εn

)[
Mb

(
∂ub
∂z + ∂wb

∂x

)]
,

μ∗[M(
∂v
∂z + ∂w

∂y

)] = (
μ∗
εn

)[
Mb

(
∂vb
∂z + ∂wb

∂y

)]
,

μ∗[M(
∂u
∂y + ∂v

∂x

)] = (
μ∗
εn

)[
Mb

(
∂ub
∂y + ∂vb

∂x

)]
.

(2.22)

The Beavers-Joseph condition prevails at the interface between the transition Brinkman layer
and the Darcy layer for the streamwise and the spanwise velocities [48,54]. For a power-law fluid,
it assumes the form [55,56]

at z = −βT Ldm,

⎧⎨
⎩

(
∂ub
∂z

) = αBJ (ub−um )

K∗ 1
n+1

,(
∂vb
∂z

) = αBJ (vb−vm )

K∗ 1
n+1

,

where αBJ is the Beavers-Joseph constant. Physically, αBJ signifies the slip coefficient at the
interface. Upon substituting the expression of K∗ [using Eq. (2.12b)],

at z = −βT Ldm,

⎧⎨
⎩

( ∂ub
∂z ) = αBJ (ub−um )

P
1

n+1
n

√
K

,

( ∂vb
∂z ) = αBJ (vb−vm )

P
1

n+1
n

√
K

.
(2.23a)

As far as the normal velocity is concerned, continuity is maintained. Mathematically, this translates
to

at z = −βT Ldm, wb = wm. (2.23b)

Finally, at the bottom wall (end of the porous layer), impermeability is assumed, i.e.,

at z = −dm, vm = 0, wm = 0. (2.24)

III. ANALYSIS OF THE BASE VELOCITY PROFILE

A. Base velocity profile

The base flow is assumed to be laminar, steady, fully developed, and unidirectional (it is a
function of z only). The base velocities in the three layers are obtained by the solution of the
governing equations subject to the above boundary conditions. The following length scales are
used for nondimensionalization: d in the fluid layer and dm in the porous layer, i.e., z̄ = z/d for
0 � z � d , and z̄m = z/dm for −dm � z � 0. In addition, the velocity scale used for nondimension-
alization is the maximum velocity in the fluid layer, umax. Therefore, in the fluid layer (0 � z̄ � 1),
the nondimensional velocity profiles may be expressed as

ū = 1 −
( |z̄0 − z̄|

1 − z̄0

) n+1
n

, for 0 � z̄ � 1;

v̄ = 0, w̄ = 0, for 0 � z̄ � 1. (3.1)

In the Brinkman transition layer (−βT L � z̄m � 0), the corresponding expressions are

d2ūb

d z̄2
m

− A

(
d ūb

d z̄m

)1−n

ūn
b + B

(
d ūb

d z̄m

)1−n

= 0, for − βT L � z̄m � 0;

(3.2)
v̄b = 0, w̄b = 0, for − βT L � z̄m � 0,

where

A =
(

εn

n

)[
1

Pn δn+1

]
, B =

(
n + 1

n

)n(
εn

n

)(
1

d̂n+1

)[
1

(1 − z̄0)n+1

]
. (3.3)
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It may be noted that it is not possible to obtain an explicit algebraic expression for ūb, unlike the
case of the fluid layer velocity ū. Finally, in the porous Darcy layer situated at the bottom of the
channel (−1 � z̄m � −βT L), the velocity profiles may be expressed as

ūm =
[(

δ

d̂

)n+1(n + 1

n

)n( 1

(1 − z̄0)n+1

)
Pn

] 1
n

, for − 1 � z̄m � −βT L;

v̄m = 0, w̄m = 0, for − 1 � z̄m � −βT L. (3.4)

In the above nondimensional forms, several important nondimensional parameters emerge. One
of such important parameters is the depth ratio d̂ = (d/dm), signifying the relative thicknesses of
the fluid and the porous layers. Also, δ = √

K/dm is the Darcy number, being a nondimensional
measure of permeability of the porous layer. It is evident that an exact analytical solution of the
velocity profile is not possible in the present problem, unlike that for a Newtonian fluid. Thus,
numerical methods are employed for the purpose. The numerical scheme used for obtaining the
velocity profiles is outlined in Appendix A.

B. Results and discussion

1. Newtonian rheology (n = 1)

Throughout the current study, the following values are assumed for describing the porous media
(unless otherwise explicitly stated): αBJ = 0.1, ε = 0.3, d̂ = 0.1, δ = 10−5. These values are well
within the range prescribed in earlier studies [25,29,48]. Initially, the flow configuration studied by
Hill and Straughan [48] involving a Newtonian fluid is revisited. In the beginning, the base velocity
profiles are analyzed. Figure 2 depicts the impact of the depth of the transition layer (quantified by
βT L) on the base velocity profile. Three representative values of βT L have been considered. Out of
these, the case corresponding to βT L = 0.1 has been explicitly considered by Hill and Straughan
[48]. The same has been shown in Fig. 2(a) (rectangular data points refer to the results by Hill
and Straughan [48]), and it matches with our computation, thereby serving as a validation of the
present approach as well. Hill and Straughan [48] and Hill [49] opined that one of the major reasons
for considering a three-layer configuration (involving a transition layer) instead of the traditional
two-layer approach (adopted by Chang, Chen, and Straughan [25], and many others thereafter) is to
eradicate the discontinuity of velocity at the interface. It is indeed observable from their plot (refer
to Fig. 2 of Hill and Straughan [48]) that there is no significant velocity discontinuity at the interface
of the Brinkman transition layer and the Darcy layer. However, the velocity profile was plotted by
them [48] only for βT L = 0.1 (despite the fact that the neutral stability curves were plotted for a
wide spectrum of βT L values ranging from 0.001 to 0.3). For a better understanding of the impact
of βT L, two more values of βT L (0.001 and 0.05) have been considered in the present work. It is
interesting to notice from Fig. 2(c) that for βT L = 0.001, there is a significant velocity discontinuity
at the interface of the Darcy layer and the Brinkman layer [i.e., at z̄m = −βT L = −0.001; this is
clearly depicted in the inset in Fig. 2(c)]. Thus, the continuity of velocities is valid only when the
depth of the transition layer is comparatively larger. Therefore, the simplistic assumption made by
them [48] that the velocity discontinuity can be removed effectively by considering a transition
layer is not entirely correct. Here, it may be worthwhile to clarify that no velocity discontinuity is
obtained at z = 0 for any value of βT L, in coherence with Eq. (2.21).

Moreover, it may be noticed that there is no decay of velocity within the bottom porous layer,
which is contradictory to the results of Bruneau and Mortazavi [13,14]. The reason for the same
is attributed to the difference in the model equations used to describe the porous layer. Since the
entire porous layer is modeled using the Brinkman equation (which has a viscous diffusion term in
the formulation) in their studies [13,14], there is a decay between the channel wall (at z̄m = −1)
and the Brinkman-Darcy interface (at z̄m = −βT L). On the other hand, only the transition layer is
modeled by the Brinkman equation in the present analysis. The rest of the porous layer is modeled
by the Darcy equation, where the aforementioned decay cannot be present owing to the constant
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FIG. 2. Nondimensional velocity profiles in the three layers as a function of the depth of the transition
layer βT L for the flow of a Newtonian fluid (n = 1). (a), (b), and (c) are plotted for βT L = 0.1, 0.05, and
0.001, respectively. In (a), a comparison is also made with the velocity profile obtained by Hill and Straughan
[48], depicted by rectangular symbols. A significant velocity discontinuity is visible at the Darcy-Brinkman
interface for (c). The inset in (c) depicts the point of discontinuity. Other parameters are d̂ = 0.1, ε = 0.3,
δ = 2.5 × 10−5, αBJ = 0.1.

velocity in the porous layer. The Brinkman equation could not be employed throughout the porous
matrix, as a porous layer of low porosity (<0.4) has been assumed, while the Brinkman equation is
applicable only when the porosity is close to unity (as considered by [13,14] in their investigations).
Other researchers whose approach is analogous to the present study also did not observe any such
decay [48].

2. Power-law rheology (n �= 1)

Now, the velocity profiles for the power-law rheology are demonstrated in Fig. 3. Figure 3(a)
depicts the effect of βT L for a shear-thinning fluid (n = 0.3), while Fig. 3(b) does the same for a
shear-thickening fluid (n = 1.5). It may be observed that akin to Newtonian fluids, there is a gradual
reduction in the velocity discontinuity with βT L, for both shear-thinning and shear-thickening fluids.
In other words, as the depth of the transition layer increases, the effect of the velocity discontinuity
is gradually diminished. The reason behind the same has already been elucidated while discussing
the case of Newtonian fluids. One interesting observation is that for a shear-thinning fluid, the effect
of βT L on the porous layer velocity is more prominent in comparison to that of a shear-thickening
fluid. At the chosen scale of the plots, it is even difficult to distinguish between different porous layer
velocities in Fig. 3(b). Therefore, it may be said that the shear-thinning rheology better amplifies
the effect of the transition layer on the flow behavior in the porous layer. This interplay between
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FIG. 3. Nondimensional velocity profiles in the three layers to illustrate the effect of the depth of the
transition layer βT L for a (a) shear-thinning fluid (n = 0.3), (b) shear-thickening fluid (n = 1.5). The following
values of βT L are considered in each case: βT L = 0.001, 0.01, 0.05.

the shear-thinning rheology and the transition layer depth will be explored in more detail in the
succeeding sections while analyzing the flow stability.

IV. STABILITY ANALYSIS

A. Theoretical framework

After analyzing the base profiles, an analysis of hydrodynamic stability is undertaken as it is the
principal motive of the present study. It is known that an equivalent of Squire’s theorem does not
exist for a fluid with nonlinear viscosity (as is the case for power-law and other similar classes of
non-Newtonian fluids) [57]. Therefore, there is a need to undertake a rigorous three-dimensional
stability analysis. In the beginning, an infinitesimal disturbance (u′, ub

′, um
′, p′) is imparted to

the base flow (ū, ūb, ūm, p̄), where u′ = (u′, v′,w′), ub
′ = (ub

′, vb
′,wb

′), um
′ = (um

′, vm
′,wm

′), etc.
Thereafter, the governing equations for the base state are subtracted from those for the perturbed
state, and the perturbation equations are made nondimensional. The approach followed for nondi-
mensionalization is analogous to the one adopted by Hill and Straughan [48]. As a result, the
following initial value problem is obtained for the fluid layer:

i(αû + βv̂) + Dŵ = 0, (4.1a)

∂ û

∂t
= −iαū û − ŵDū − iα p̂ + 1

Re
[μ̄(D2 − α2 − β2)û + Dμt (Dû + iαŵ)

+ (μt − μ̄)(D2û + iαDŵ)], (4.1b)

∂ v̂

∂t
= −iαū v̂ − iβ p̂ + 1

Re
[μ̄(D2 − α2 − β2)v̂ + Dμ̄(Dv̂ + iβŵ)], (4.1c)

∂ŵ

∂t
= −iαūŵ − Dp̂ + 1

Re
[μ̄(D2 − α2 − β2)ŵ+2Dμ̄Dŵ + (μt−μ̄)iα(Dû+iαŵ)],

(4.1d)

where, D =d/d z, and the Reynolds number Re is expressed as Re= ρu2−n
max dn

μ∗ . α and β denote the
streamwise and the spanwise wave numbers of the perturbation waves. In the above equations, the
tangent viscosity μt is defined as [58]

μt = μ̄ + dμ

d γ̇ zx

∣∣∣∣
u=ū

¯̇γzx. (4.2)
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Essentially, the departure of the viscosity of a non-Newtonian fluid from the Newtonian counter-
part is quantified by (μt − μ̄). For a power-law fluid,

μt − μ̄ = (n − 1) ¯̇γ n−1. (4.3)

Proceeding in a similar fashion, the initial value problem for the Brinkman porous layer is
obtained as

i(αbûb + βbv̂b) + Dbŵb = 0, (4.4a)

∂ ûb

∂tb
= −

(
ε

Reb

)[
iαb p̂b + n

Pn
· ūn−1

b

δn+1
· ûb

− 1

εn
{	 ûb + Dbμtb(Dbûb + iαbŵb) + Db 
b}

]
, (4.4b)

∂ v̂b

∂tb
= −

(
ε

Reb

)[
iβb p̂b + 1

Pn
· ūn−1

b

δn+1
· v̂b − 1

εn
{	v̂b + Dbμ̄b(Dbv̂b + iβbŵb)}

]
,

(4.4c)

∂ŵb

∂tb
= −

(
ε

Reb

)[
Db p̂b + 1

Pn
· ūn−1

b

δn+1
· ŵb − 1

εn
{	ŵb + 2Dbμ̄bDbŵb + iαb
b}

]
,

(4.4d)

where 	b = μ̄b(Db
2 − αb

2 − βb
2), 
b = (μtb − μ̄b)(Dbûb + iαbŵb). Lastly, the initial value prob-

lem for the Darcy layer is presented as

i(αmûm + βmv̂m) + Dmŵm = 0, (4.5a)

∂ ûm

∂tm
= −

(
ε

Rem

)(
iαm p̂m + n

Pn
· ūn−1

m

δn+1
· ûm

)
, (4.5b)

∂ v̂m

∂tm
= −

(
ε

Rem

)(
iβm p̂m + 1

Pn
· ūn−1

m

δn+1
· v̂m

)
, (4.5c)

∂ŵm

∂tm
= −

(
ε

Rem

)(
Dm p̂m + 1

Pn
· ūn−1

m

δn+1
· ŵm

)
, (4.5d)

where the Reynolds number in the Darcy layer Rem is defined as Rem= ρu2−n
m dn

m
μ∗ .

B. Numerical methodology

The disturbance equations and the boundary conditions corresponding to the modal analysis
have been provided in Appendix B. In order to undertake modal analysis, the resultant eigenvalue
problem AX = cBX is solved in MATLAB via the Chebyshev spectral collocation method. Here,
X = (u, v,w, p), and A, B are the matrices involving the Chebyshev derivative terms. The associ-
ated detailed numerical methodology regarding the same may be found in Schmid and Henningson
[59]. The results obtained for this work have been computed with N = 160, where N is the number
of Chebyshev polynomials. With this value of N , the eigenvalues could be obtained with an accuracy
of five digits.

Now, the methodology for carrying out nonmodal analysis is outlined. Nonmodal analysis is an
indispensable tool to obtain insights into the transient amplifications of a flow configuration that is
not unveiled by modal analysis, which aims at capturing only the long-time characteristics. This is
especially important in the context of viscous channel flows, for which the results obtained from
modal analysis often fail to predict experimental findings owing to the non-normal characteristic of
the corresponding Orr-Sommerfeld operator [60]. For undertaking nonmodal analysis, a solution to
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FIG. 4. Neutral stability curves for a streamwise perturbation (β = 0) in the case of a Newtonian fluid
(n = 1) for different values of the transition layer depth βT L . The values of βT L are shown against the respective
curves in each case. A comparison with the existing literature is carried out for βT L = 0.001, where the solid
circles refer to the data points obtained from Hill and Straughan [48].

the following linear initial value problem is sought:

∂

∂t
q = −iLq. (4.6)

In the above problem, q = (û, v̂, ŵ, p̂)T , L = −iB−1A. Thus, the solution may be expressed as
q(t ) = exp( − iLt ) q(0), where q(0) refers to the initial value of the perturbation variables. With
regard to Eq. (4.6), growth function G(t ) quantifies the maximum possible amplification of q(0),
i.e., the initial condition. Mathematically, it may be expressed as

G(t ) = max
q(0)�=0

‖q(t )‖2

‖q(0)‖2 = ‖e−iLt‖2, (4.7)

where ‖ · ‖ is the norm [60]. In this regard, the maximum growth Gmax is basically the growth
function maximized over time, and the corresponding time at which Gmax is attained is referred to
as tmax. Therefore, in mathematical terms,

Gmax = G(tmax) = max G(t ), t � 0. (4.8)

C. Results and discussion

1. Newtonian rheology

As a follow-up to the analysis of base velocity profiles (carried out in Sec. III), the impact of βT L

on the flow stability is analyzed now. The neutral stability curves are constructed for the purpose,
where the critical Reynolds number is plotted against the wave number of a streamwise perturbation
(i.e., the spanwise wave number β = 0) (refer to Fig. 4). It is found that βT L has a significant
effect on the criticality only when it is small (βT L < 0.01). A comparison of our results with the
literature [48] corresponding to βT L = 0.001 is also carried out, so as to validate our methodology
and computation. A satisfactory match between the two is observed. For βT L = 0.1 and beyond (at
which the velocity discontinuity is effectively removed, as observed in Fig. 2), there is no significant
impact of βT L on the flow criticality. Although this effect was visible in one of the plots in Hill
and Straughan [48], no concrete discussion or insight on the same was available. However, this
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is important in order to understand the role played by the transition layer. Thus, in the case of a
Newtonian fluid, the argument that the transition layer is able to eradicate the velocity discontinuity
and influence the flow stability simultaneously is not justified. When the transition layer is able to
influence flow stability, a discontinuity prevails in the velocity profile. On the other hand, when the
discontinuity is curbed, there is no significant influence of the transition layer on the flow transition
behavior. This is probably due to the fact that in a fluid-porous system, the flow stability is influenced
significantly by the porous modes at the interface [25]. A suppression of the velocity discontinuity
(via a choice of high βT L) reduces the influence of the porous modes to a large extent, thereby
imparting a negligible effect on the neutral stability curve. Thus, while dealing with a practical
configuration involving a Newtonian fluid-porous system, it is vital to realize that the transition layer
will influence flow stability only when its thickness is small. If the thickness of the transition layer
increases beyond 10% of the total thickness of the porous layer, any further variation in its thickness
would not dictate the flow transition. The actual depth of the transition layer for a flow system
depends on the fluid and the porous medium. It is a complex function of several hydrodynamic
parameters, and no exact quantification of the same exists in the literature to date. However, once
the depth of the transition layer is measured (as is normally done through experiments), it would be
possible to comment whether flow stability is affected by that depending on its magnitude relative
to the total depth of the porous layer.

2. Power-law rheology: Long-time characteristics

Having realized the role of the transition layer in the case of a Newtonian fluid, the attention
is now shifted to power-law rheology. At first, neutral stability curves are constructed to depict
the mutual interaction between the transition layer and the power-law rheology in dictating the
long-time linear stability characteristics. Figures 5(a)–5(d) depict the role played by the depth of the
transition layer βT L on the critical Reynolds number for a streamwise perturbation (i.e., for which
the spanwise wave number β = 0), while Figs. 6(a)–6(d) demonstrate the same for a spanwise
perturbation (i.e., for which the streamwise wave number α = 0). In Fig. 5(a), it is found that with
an increase in the flow behavior index n from 0.3 to 1.5 (i.e., as the fluid turns from shear-thinning
to shear-thickening), there is a monotonic increase in the magnitude of critical Re. This indicates
that the flow turns stable as we proceed from shear-thinning to shear-thickening characteristics.
The same behavior is observed even for higher values of βT L up to 0.08 [in Figs. 5(a)–5(d)]. It
has been found that as βT L is increased beyond 0.08, there is no appreciable change in either the
magnitude or the nature of the plots (not depicted here). The multimodal nature of the neutral curves
is attributed to the interplay of the fluid and the porous modes. An interesting observation is that
although there is a monotonic lowering of both the short-wave (high wave number) fluid modes
and the long-wave (small wave number) porous modes with increasing shear-thinning behavior in
Fig. 5(a), the same trend is not replicated in the rest of the cases [Figs. 5(b)–5(d)]. In other words,
as the depth of the transition layer increases, there is a complex interplay between the power-law
rheology (characterized by n) and the transition layer, owing to which the porous mode does not
follow a monotonic pattern of criticality. The same, however, is not reflected in the fluid mode,
which shows a monotonic lowering with decreasing n irrespective of the magnitude of depth of the
transition layer. This occurs because the critical disturbance waves originating in the fluid layer do
not become dominated by the transition layer. However, the shearing (quantified by the rheology,
and consequently, by the flow behavior index n) action is the influencing factor.

An analogous trend is demonstrated even in the case of spanwise perturbations [in Figs. 6(a)–
6(d)], although a lower critical Re is observed for the corresponding values of n and βT L in each case.
This shows that a spanwise perturbation triggers criticality faster than a streamwise perturbation.

Figure 7 depicts the values of critical Reynolds number Recr [in Fig. 7(a)] and critical spanwise
wave number βcr [in Fig. 7(b)] versus n in each case over a range of permeability values. Darcy
number δ, which is a nondimensional measure of permeability, varies from 5 × 10−5 to 5 × 10−4

(for more details on the typical range of δ, one may refer to Hill and Straughan [48]). It is observed

063902-14



EFFECT OF THE TRANSITION LAYER ON THE …

FIG. 5. Neutral stability curves for a streamwise perturbation (β = 0) depicting the effect of the flow
behavior index n on the critical Reynolds number for different values of the transition layer depth βT L . (a)
βT L = 0.001, (b) βT L = 0.01, (c) βT L = 0.05, (d) βT L = 0.08. The value of the critical Reynolds number Recr

corresponding to the dominant mode of instability is also mentioned against the curves in each case.

that Recr decreases monotonically with δ, signifying the destabilizing role of the permeability. This
is possibly because of the fact that an increased permeability enhances the fluid movement in the
porous layer, thereby triggering the porous modes to initiate flow transition [25]. On the other hand,
the critical wave number βcr is found to increase with δ (for a fixed n), thereby indicating the
dominance of short waves in dictating the flow transition. The effect of n on Recr is reverse to
that exhibited by δ, thereby signifying that as we proceed from shear-thinning to shear-thickening
behavior, the flow is gradually stabilized. These conflicting trends exhibited by the Darcy number
and the flow behavior index are indeed interesting, as this feature can be suitably exploited to either
trigger or delay flow transition in the designing of a fluid-porous system. A judicious selection of
appropriate values of δ and n can either trigger the onset of flow transition (large δ, small n), or
delay the transition (small δ, large n). In fact, it is possible to tune the system by deciding upon the
Re (based on what one desires to achieve), and then appropriately select δ and n based on whether
it is required to maintain laminar flow or not. For example, if mixing is desirable in an industrial
application, one would like to trigger the flow transition to enhance the convective heat and mass
transport. A large value of δ and small n are selected in such a scenario.

It may be noted that Fig. 7 shows only the critical values of Re and wave number. It does not
exhibit the interaction of fluid and porous modes by depicting the multimodal neutral curves, unlike
Figs. 5 and 6. This is because in the current study, our focus has been to develop a fundamental
understanding of the role played by the transition layer in altering the flow transition characteristics.
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FIG. 6. Neutral stability curves for a spanwise perturbation (α = 0) depicting the effect of the flow behavior
index n on the critical Reynolds number for different values of the transition layer depth βT L . (a) βT L = 0.001,
(b) βT L = 0.01, (c) βT L = 0.05, (d) βT L = 0.08. The value of the critical Reynolds number Recr corresponding
to the dominant mode of instability is also mentioned against the curves in each case.

FIG. 7. Effect of the flow behavior index n on the modal stability for different values of Darcy number δ.
A spanwise perturbation (α = 0) has been considered for the purpose. (a) Plot of critical Reynolds number
Recr versus n. (b) Plot of critical spanwise wave number βcr versus n. The values of δ are specified against the
respective plots in each case. βT L = 0.08 is taken for all the plots.
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FIG. 8. Growth rate curves for a streamwise perturbation with α = 1, Re = 200 depicting the effect of the
flow behavior index n for different values of the transition layer depth βT L . (a) βT L = 0.001, (b) βT L = 0.08.

We aim to do so by thoroughly analyzing the effect of the transition layer on various aspects of
modal and nonmodal growth. Owing to this, showing the effects of other important parameters
of the porous layer like porosity, permeability, depth ratio, etc., is not the motive in this work.
Nevertheless, a small study is incorporated (as illustrated in Fig. 7) regarding the interplay between
the Darcy number δ (which is a nondimensional measure of permeability) and the power-law
rheology (through n), to demonstrate the benefits that may be derived out of a fluid-porous system
by the pertinent tuning of relevant parameters. However, a detailed analysis involving all the
aforementioned porous layer parameters would be accommodated in a future study.

3. Power-law rheology: Short -time characteristics

Now, it would be interesting to observe the nonmodal transient growth behavior and the impacts
of the transition layer and the fluid rheology on the same. Figure 8 depicts the growth rate curves for
a streamwise perturbation. From Fig. 8(a), for βT L = 0.001, it is found that the initial growth rate
(i.e., dG

dt |t=0) does not depend significantly on the magnitude of n. However, the growth is amplified
as the fluid becomes strongly shear-thinning and in fact, this trend is monotonic. In addition, the time
at which the maximum growth is realized increases with decrease in n (i.e., as the fluid becomes
more shear-thinning). In other words, a shear-thinning fluid has to be weakly shear-thinning if
the transient amplifications arising from streamwise disturbances need to be reduced. As βT L is
increased to 0.08 in Fig. 8(b), the streamwise disturbances cause greater amplifications, leading to
an augmentation in G(t ). The monotonic behavior with n is restored here as well.

Figure 9 depicts the transient growth characteristics for a spanwise perturbation. Greater am-
plifications are observed here compared to the case of streamwise perturbations, hinting at the
dominant role played by the spanwise perturbations in transient growth. Physically, it indicates that
a spanwise perturbation wave would cause greater energy amplifications at finite time, triggering
chances of secondary instability in viscous boundary layer flows, causing augmented turbulence
and hence mixing [61]. In addition, a significant deviation from Fig. 8 is revealed here. It is
observed that the effect of flow behavior index on the transient growth is not always monotonic
as the fluid turns strongly shear-thinning. While the variation with n is strictly monotonic for
low depth of the transition layer [βT L = 0.001 in Fig. 9(a)], the scenario is reversed as the depth
increases [βT L = 0.08 in Fig. 9(b)] for the cases n = 0.3 and n = 0.8. This hints at a competitive
interplay between the transition layer and the fluid rheology in deciding the fate of the spanwise
amplifications.

In order to obtain a holistic understanding of the features of transient growth and to have a
possible explanation of the nonmonotonic behavior observed in the case of shear-thinning fluids at
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FIG. 9. Growth rate curves for a spanwise perturbation with β = 2, Re = 200 depicting the effect of the
flow behavior index n for different values of the transition layer depth βT L . (a) βT L = 0.001, (b) βT L = 0.08.

high βT L, the contours of maximum growth Gmax are depicted in Figs. 10 (corresponding to the case
of n = 0.3) and 11 (corresponding to n = 0.8) for a vast range of wave numbers on the (α, β ) plane.
In this regard, the optimal energy growth is defined as

Gopt = max
α, β

Gmax(α, β ), at t = topt. (4.9)

The corresponding perturbation (quantified by the values of α and β) achieving Gopt is known as
the optimal perturbation. Figure 10(a) depicts that for n = 0.3, the optimal perturbation corresponds
to a spanwise disturbance when the transition layer is thin, while it becomes oblique (albeit with
a low α) at a large βT L in Fig. 10(b). As the degree of shear-thinning decreases (n increases) in
Fig. 11, the optimal perturbations are found to be spanwise for both low and high βT L. In other
words, when the transition layer is of small depth, the nature of optimal perturbations is similar
(spanwise) across different degrees of shear-thinning. However, as the transition layer thickness
grows to a higher magnitude, the optimal perturbation turns from oblique to spanwise with n.
As spanwise perturbations are known to cause greater amplifications, a purely spanwise optimal
perturbation [in Fig. 11(b)] exceeds an oblique perturbation [in Fig. 10(b)] in dominating the
transient amplifications. The same gets manifested in the form of a higher magnitude of nonmodal
growth for the former. From the perspective of flow physics, this increases chances of subcritical

FIG. 10. Contours of maximum growth Gmax on the (α, β ) plane for n = 0.3 for (a) βT L = 0.001,
(b) βT L = 0.08. Re = 200 in both cases.

063902-18



EFFECT OF THE TRANSITION LAYER ON THE …

FIG. 11. Contours of maximum growth Gmax on the (α, β ) plane for n = 0.8 for (a) βT L = 0.001,
(b) βT L = 0.08. Re = 200 in both cases.

transition in bounded shear flows even though long-time modal instability may be absent [60]. This
differential response to a variation in βT L depending on the intensity of shear-thinning indicates the
need for determination of the order of magnitude of transition layer thickness. It is possible to obtain
drastically different flow transition behavior for the same shear-thinning fluid in a fluid-porous
system, depending on the depth of the transition layer. Thus, in a suitable industrial application
where there may be avenues to engineer the porous media to obtain the desired flow transition
behavior (either advance or delay flow transition), one of the important parameters while selecting
the porous medium should be the thickness of the transition layer that is formed when the process
fluid comes in contact with the medium. The above consideration would aid strategic designing of
flow parameters in a fluid-porous industrial system based on the requirement of either triggering or
delaying flow transition.

When the fluid is shear-thickening, as considered in Fig. 12 for n = 1.5, the optimal perturbation
remains spanwise irrespective of whether the transition layer depth βT L is small [as in Fig. 12(a)]
or large [Fig. 12(b)]. Thus, there is no qualitative impact on the nature of optimal perturbation
waves, even though the magnitude of nonmodal growth varies, as is expected. Computations with
even higher values of n (up to n = 1.8; plots are not supplied here to avoid repetition) have been
carried out, but the same trend has been observed throughout. Thus, for shear-thickening fluids,
the nonmodal response (quantified as energy growth) to change in transition layer depth is always

FIG. 12. Contours of maximum growth Gmax on the (α, β ) plane for n = 1.5 for (a) βT L = 0.001,
(b) βT L = 0.08. Re = 200 in both cases.
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FIG. 13. Flow patterns for the optimal perturbation in the case of a shear-thinning fluid (n = 0.5). (a), (b),
(c) correspond to βT L = 0.001, while (d), (e), (f) correspond to βT L = 0.08. (a), (d) represent the flow field at
initial time (t = 0); (b), (e) represent the flow field at optimal time (t = topt); (c), (f) represent the flow field at
t = 1.3topt. The contour levels from outer to inner represent the values of u in the following order: 0.1, 0.3, 0.5,
0.7, 0.9. Re = 200 throughout.

monotonic, unlike its shear-thinning counterpart. From a design perspective, this revelation has sig-
nificant implications in deciding the flow transition characteristics of a fluid-porous configuration.
Therefore, if the fluid under consideration is shear thickening in nature, one can conveniently an-
ticipate that the flow would be monotonically destabilizing with transition layer depth, irrespective
of the intensity of shear thickening. On the contrary, when the fluid is shear-thinning, the flow
transition behavior is not monotonic with transition layer depth, owing to the complex interplay
between the shear-thinning characteristics and the transition layer. Thus, in such a scenario, the
degree of shear-thinning has a prominent effect on the resultant flow transition characteristics.

4. Physical mechanism dictating flow transition

In order to comprehend the fundamental physical mechanism governing the nonmodal growth
behavior, the temporal evolution of the perturbation flow field is explored in Figs. 13 (shear-
thinning) and 14 (shear-thickening). Figures 13(a)–13(c) depict the case when βT L = 0.001, while
Figs. 13(d)–13(f) represent the case when βT L = 0.08. The flow patterns exhibit a streaklike shape.
It is observed from Fig. 13(a) that at initial time, the flow field is tilted in a direction opposite
to that of the mean shear flow. This can be explained by the Reynolds stress mechanism. The
opposite orientation (tilting) is because the disturbance wave extracts energy from the mean shear
flow. Physically, this energy extraction leads to a rise in the magnitude of nonmodal growth, as
already demonstrated in Figs. 8 and 9. At optimal time [Figs. 13(b)], there is an upright orientation
owing to no further extraction of energy from the mean shear flow. As the thickness of the transition
layer is increased in Fig. 13(d), there is a visibly greater degree of tilting of the perturbation flow
field compared to that in Fig. 13(a). This behavior is probably because an increase in the transition
layer thickness makes the fluid-fluid viscous interaction more significant, thereby augmenting the
available energy pool in the mean shear flow for the disturbance to extract from. If we observe the
behavior of the disturbance fields after the optimal time [in Figs. 13(c) and 13(f)], they are found
to tilt toward the streamwise direction. This contrasting orientation (as compared to the behavior at
t = 0) signifies the release of energy to the mean shear flow.
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FIG. 14. Flow patterns for the optimal perturbation in the case of a shear-thickening fluid (n = 1.3).
(a), (b), (c) correspond to βT L = 0.001, while (d), (e), (f) correspond to βT L = 0.08. (a), (d) represent the
flow field at initial time (t = 0); (b), (e) represent the flow field at optimal time (t = topt); (c), (f) represent the
flow field at t = 1.3topt. The contour levels from outer to inner represent the values of u in the following order:
0.1, 0.3, 0.5, 0.7, 0.9. Re = 200 throughout.

Although the flow patterns for the temporal evolution of the disturbance field in the case of a
shear-thickening fluid (in Fig. 14) are found to exhibit qualitative similarities (for example, tilting
opposite to the mean shear flow at t = 0) to that of a shear-thinning fluid, there are two notable
differences. The first one is that there is less protrusion of the disturbance into the porous layer. A
reduced protrusion hints at a drop in the fluid-fluid viscous interactions within the transition layer,
consequently explaining the reduction in transient growth as compared to the shear-thinning case
(as was observed in Figs. 8 and 9). The second contrast is that there is a significant increase in
the spacing between the streaks, compared to the shear-thinning case. The enhancement in streak
spacing may be attributed to coalescence between neighboring streaks, leading to a reduction in
transient energy [62]. Thus, the synergistic effects of these two contrasting factors explain the
significant variations between the transient growths of shear-thickening and shear-thinning fluids
in the context of a fluid-porous channel flow configuration. Consequently, shear-thickening fluids
exhibit a lower magnitude of transient energy growth compared to the shear-thinning one.

V. CRITICAL ASSESSMENT BASED ON EXISTING LITERATURE, AND FUTURE PROSPECTS

The authors would like to state that while both the current work as well as the ones by Hill
and Straughan [48] and Hill [49] deal with a transition layer in a fluid-porous configuration, there
are significant differences among these. The principal difference between the present study and
the earlier studies [48,49] is that the present study deals with nonmodal analysis in addition to
the traditional eigenvalue analysis (modal analysis), while the earlier ones [48,49] were limited to
classical modal analysis. Nonmodal analysis is extremely crucial for investigating the short-time
amplifications (that might lead to subcritical transition) in shear flows, as the associated operator
is non-normal in nature [59,60]. Modal analysis fails to anticipate such possibilities of subcritical
transition in shear flows; hence nonmodal analysis is known to predict experimental observations of
flow transition better under such circumstances [59].
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Therefore, the novelty in the current study (as compared to the earlier ones [48,49]) is not limited
to the consideration of a power-law fluid. In fact, the major highlight of the current work is that it
attempts to capture the role of the transition layer toward dictating the nonmodal flow transition
characteristics, which is important in shear flow configurations (like the one considered in the
present study), and this issue was not addressed by earlier studies [48,49]. A power-law fluid is
considered for a more accurate simulation of real-life non-Newtonian flow rheology frequently
observed in natural and industrial applications. To the best of our knowledge, no study has been
reported in the literature (either for a Newtonian or a non-Newtonian fluid) that investigates the
effect of the transition layer toward influencing the nonmodal flow stability characteristics.

While a porous layer involves several important parameters such as porosity, permeability
(Darcy number), relative thickness (depth ratio), etc., the objective of the current study has been
to understand the interplay between the fluid rheology (quantified by n) and the relative thickness of
the transition layer (quantified by βT L). Therefore, with the help of modal and nonmodal analyses,
an attempt is made to unveil the intricate interplay between n and βT L.

However, the authors still felt that it may be worthwhile to throw some light on the influence
of at least another porous layer parameter in the context of non-Newtonian rheology, in order to
appreciate the significant influence of the porous layer on flow stability. Due to this, Fig. 7 has been
incorporated to exhibit the interplay between permeability (Darcy number) and flow rheology (n)
in the context of modal analysis only. We did not attempt nonmodal analysis for investigating the
effect of permeability, so as to remain focused on the objective of this study, i.e., the effects of the
transition layer on flow stability.

As far as the depth ratio is concerned, its effect has not been analyzed at all in this study, as depth
ratio has been one of the most studied parameters in the literature in the context of hydrodynamic
stability of Newtonian fluid-porous systems. However, it is acknowledged that the effects of the
depth ratio and other parameters (like porosity and permeability) on the flow stability of a non-
Newtonian fluid is largely unexplored, particularly in the context of nonmodal analysis. We plan to
incorporate these in a future study.

It has already been highlighted that a crucial aspect regarding the modeling of fluid-porous flow
is the appropriate selection of the governing equations corresponding to each of fluid and porous
domains, and the choice of a suitable interface condition for connecting the two domains. In this
regard, Ochoa-Tapia and Whitaker [63] proposed an interfacial jump condition (also known as the
OTW condition) based on the nonlocal form of the volume-averaged Stokes equation. An adjustable
parameter is present in their model that requires experimental determination. The OTW condition
deviates from the Beavers-Joseph condition (that has been considered in the present study), as
it assumes stress jump and velocity continuity, while the latter assumes a velocity jump and a
stress continuity. The major advantage of the approach suggested by [63] is that it allows us to
use the classical partial differential equations for both the fluid (Cauchy momentum equation) and
the porous (Brinkman equation) domains. However, the Brinkman equation is typically suited for
porous media with a very high porosity (close to unity) [20]. Since the present study is concerned
with porous media of low to moderate density (less than 0.4), a combination of the Darcy layer
(for the bottom porous layer) and the Beavers-Joseph condition (for describing the interface of the
transition layer and the bottom porous layer) has been adopted. A future study involving a highly
porous media can possibly consider the Brinkman equation throughout the entire porous layer along
with the OTW condition at the fluid-porous interface.

On another front, it may be noted that the base velocity fields have been analyzed in detail toward
the beginning of this article. As far as the base pressure fields are concerned, it is worthwhile to
highlight that we have considered a constant applied pressure gradient in the current study. Owing
to this, the base pressure profile would be linear. As a result, the base pressure profile is not expected
to have a significant influence on the hydrodynamic stability of Poiseuille flows, and thus has not
been explored frequently in such scenarios [25,27,29,48,59,64,65]. Hence, the plots of pressure
fields have not been included in the present study. However, the authors acknowledge that this
assumption is simplistic, as a linear pressure profile cannot be maintained in several applications of
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practical interest involving fluid-porous systems. Taking this into consideration, we aim to pursue
an analysis in future where the pressure profile varies nonlinearly along the channel length. The
plots of pressure fields would possibly provide better understanding of the flow transition behavior
in such a scenario.

VI. CONCLUSION

The present work entailed two important objectives. The first objective is related to the revisit
of the Newtonian problem in the chosen flow configuration. Although Hill and Straughan [48] and
Hill [49] claimed in their studies that the nondimensional Brinkman layer depth parameter βT L has
a significant effect on the instability of the flow configuration, the statement is perhaps not entirely
correct in absolute terms. A small value of βT L leads to velocity discontinuity at the Darcy-Brinkman
interface. Hill and Straughan [48] advocated a βT L of 0.1 and above, as this forces the discontinuity
of the velocity profile at the interface of the transition (Brinkman) layer and the porous (Darcy)
layer to become numerically insignificant. However, even though Hill and Straughan [48] advocated
a choice of βT L > 0.1 for ensuring continuity of velocity at the interface of the transition layer and
the Darcy layer, there is no significant effect on the neutral stability curves for βT L > 0.1 for a
Newtonian fluid. Since βT L has a visible effect on the neutral stability curves only for small values
(when it lies in the range [0.001, 0.05]), it is perhaps not correct to consider the transition layer as a
parameter that simultaneously enforces continuity of velocity at the interface and controls the flow
stability characteristics. Thus, one interesting revelation of the current work is that the effect of βT L

on the flow transition characteristics is not that significant when the discontinuity of the velocity
profile disappears. In fact, the variation in transition layer depth is able to influence the criticality
only when there is a numerical discontinuity in the velocity profile at the interface. This reinforces
the statement that the onset of criticality is heavily dictated by the discontinuity at the fluid-porous
interface, and it is difficult to avoid the same by consideration of a transition layer. Nevertheless,
this may turn out to be a boon, and one can make suitable exploitation of this phenomenon to
tune criticality based on the requirements (for example, enhanced mixing for facilitating convective
transport in certain industrial applications).

The second objective is related to the consideration of a power-law rheology. A need was felt
to explore the effect of the transition layer in the case of a non-Newtonian fluid, as a majority of
the fluids that are encountered in fluid-porous systems in natural and industrial scenario exhibit non-
Newtonian flow characteristics. The governing equations describing the flow in the transition porous
layer are highly nonlinear for a power-law fluid, thereby yielding no possibility of an analytical
solution. Thus, in the current study, a somewhat semianalytical approach had to be adopted to obtain
the velocity profiles in the three layers (fluid layer, transition layer, and porous layer). The inherent
nonlinear rheology of a power-law fluid leads to several complexities, which also affect the fluid-
porous interface characteristics and, consequently, the flow physics of the system. Analogously to a
Newtonian fluid, it is observed that there exists a threshold βT L = 0.08, beyond which there is no
appreciable change in flow transition characteristics. The shear-thinning behavior is always found
to impart flow destabilization in the exponential (long-time) domain. In the short-time (zone of
algebraic growth) domain, however, the situation is not monotonic. For a shear-thinning fluid, when
the transition layer is thin (low βT L), shear-thinning is monotonically destabilizing. However, when
βT L is large, it is not so. A possible explanation for the same is derived from the contours of Gmax,
wherein the optimal perturbations are found to be streamwise-independent at low βT L, while they
turn oblique at high βT L. The shear-thickening fluids, however, exhibit monotonic behavior with the
flow behavior index n. The transient behavior is explained by tracking the temporal evolution of the
disturbance flow fields and comprehending the underlying physical mechanism responsible for the
same. All these insights are important from design considerations, as already discussed.

Thus, in a nutshell, the current study attempted to demonstrate the necessity to consider a
transition layer while modeling the fluid-porous flow configuration (especially in the contexts of
hydrodynamic stability and non-Newtonian rheology), by highlighting its dominant effect via the
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development of a fundamental framework. The findings from the study will possibly encourage
further investigations in this area.

APPENDIX A: NUMERICAL METHODOLOGY FOR THE CALCULATION
OF THE VELOCITY PROFILES

It has already been stated in the main article that an exact analytical solution is not possible in
the case of the present flow configuration. Although it may seem that exact analytical expressions
are provided for fluid layer velocity ū and Darcy velocity ūm [in Eqs. (3.1) and (3.4), respectively],
it may be observed that both of these contain z̄0, which is an unknown parameter. Moreover, no
such explicit expression exists for Brinkman velocity ūb; it is represented via a differential equation
[Eq. (3.2)].

In this context, it is important to highlight the nondimensional boundary conditions (BCs) used
for obtaining the velocity profiles:

(i) at z̄ = 1, ū = 0, (A1)

(ii) at z̄ = z̄m = 0, ū = ūb, (A2)

(iii) at z̄ = z̄m = 0,
d ū

d z̄
=

(
d̂

ε

)(
d ūb

d z̄m

)
, (A3)

(iv) at z̄m = −βT L,
d ūb

d z̄m
= αBJ (ūb − ūm)

P
1

n+1
n δ

. (A4)

It may be noted that the BC given by Eq. (A1) has already been used while evaluating the
expression of the velocity profile in the fluid layer ū; therefore the same cannot be used any
further. Thus, we focus our attention on the rest of the boundary conditions [Eqs. (A2)–(A4)]. From
Eqs. (A2) and (A3), we obtain

ūb|z̄m=0 = 1 −
(

z̄0

1 − z̄0

) n+1
n

, (A5)

d ūb

d z̄m

∣∣∣∣
z̄m=0

=
(

ε

d̂

)(
n + 1

n

)(
1

1 − z̄0

)(
z̄0

1 − z̄0

) 1
n

. (A6)

Thus, the first line of Eq. (3.2), together with BCs given by Eqs. (A5) and (A6), constitute
an initial value problem of an ordinary differential equation (ODE-IVP), that may be solved by
numerical techniques (an implicit algorithm based on the Adams-Moulton method has been adopted
for the purpose in this study). But, that too requires a knowledge of z̄0. Thus, the following scheme
is outlined for the evaluation of the velocity profiles in the three layers:

(i) Assume a value of z̄0 (0 < z̄0 < 1).

(ii) Calculate ū and ūm using the first lines of Eq. (3.1) and Eq. (3.4), respectively, and solve the
initial value problem [first line of Eq. (3.2) together with Eqs. (A5) and (A6)] to obtain ūb.

(iii) Check whether Eq. (A4) is satisfied (i.e., the left and the right hand sides of the equation
match) within an acceptable accuracy limit (10–5). If not, go to step (i) and re-choose a value
of z̄0. Otherwise, stop and report the values of ū, ūb, ūm.

APPENDIX B: DISTURBANCE EQUATIONS AND BOUNDARY CONDITIONS
FOR THE MODAL ANALYSIS

The approach is similar to the one followed by Hill and Straughan [48]. This leads to the
constitution of the following eigenvalue problem in the three layers [Eqs. (B1)–(B4) correspond to
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the fluid layer, Eqs. (B5)–(B8) correspond to the transition Brinkman layer, while Eqs. (B9)–(B12)
refer to the Darcy layer]:

i(αû + βv̂) + Dŵ = 0, (B1)

i(c−αū)û−ŵDū−iα p̂+ 1

Re
[μ̄(D2−α2−β2)û+Dμt (Dû+iαŵ) + (μt − μ̄)(D2û + iαDŵ)] = 0,

(B2)

i(c − αū )v̂ − iβ p̂ + 1

Re
[μ̄(D2 − α2 − β2)v̂ + Dμ̄(Dv̂ + iβŵ)] = 0, (B3)

i(c − αū)ŵ − Dp̂ + 1

Re
[μ̄(D2 − α2 − β2)ŵ + 2Dμ̄Dŵ + (μt − μ̄)iα(Dû + iαŵ)] = 0, (B4)

i(αbûb + βbv̂b) + Dbŵb = 0, (B5)

icbûb −
(

ε

Reb

)[
iαb p̂b + n

Pn
· ūn−1

b

δn+1
· ûb − 1

εn
{	 ûb + Dbμtb(Dbûb + iαbŵb) + Db 
b}

]
= 0,

(B6)

icbv̂b −
(

ε

Reb

)[
iβb p̂b + 1

Pn
· ūn−1

b

δn+1
· v̂b − 1

εn
{	v̂b + Dbμ̄b(Dbv̂b + iβbŵb)}

]
= 0, (B7)

icbŵb −
(

ε

Reb

)[
Db p̂b + 1

Pn
· ūn−1

b

δn+1
· ŵb − 1

εn
{	ŵb + 2Dbμ̄bDbŵb + iαb
b}

]
= 0, (B8)

i(αmûm + βmv̂m) + Dmŵm = 0, (B9)

icmûm −
(

ε

Rem

)(
iαm p̂m + n

Pn
· ūn−1

m

δn+1
· ûm

)
= 0, (B10)

icmv̂m −
(

ε

Rem

)(
iβm p̂m + 1

Pn
· ūn−1

m

δn+1
· v̂m

)
= 0, (B11)

icmŵm −
(

ε

Rem

)(
Dm p̂m + 1

Pn
· ūn−1

m

δn+1
· ŵm

)
= 0. (B12)

Equations (B1)–(B12) constitute a fifteenth-order problem. To solve the same, the boundary
conditions are as follows:

At the upper wall (i.e., z̄ = 1),

û = 0, v̂ = 0, ŵ = 0 . (B13)

At the interface of the fluid and the Brinkman layers (i.e., z̄ = 0),

û = d̂
1
n Reb

Re

[(
n

n+1

)
(1 − z̄0)

n+1
n

(Pn δn+1)
1
n

]1−n

ûb, v̂ = d̂
1
n Reb

Re

[(
n

n+1

)
(1 − z̄0)

n+1
n

(Pn δn+1)
1
n

]1−n

v̂b, (B14)

ŵ = d̂
1
n Reb

Re

[(
n

n+1

)
(1 − z̄0)

n+1
n

(Pn δn+1)
1
n

]1−n

ŵb, Dû = Reb

Re

(
d̂ (n+ 1

n )

εn

)[
Pn δn+1(

n
n+1

)n
(1 − z̄0)n+1

]
Dbûb,

(B15)

Dv̂ = Reb

Re

(
d̂ (n+ 1

n )

εn

)[
Pn δn+1(

n
n+1

)n
(1 − z̄0)n+1

]
Dbv̂b,

p̂ = Dŵ +
(

Reb

Re

)(
d̂ (n+ 1

n )

εn

)[
p̂b − Pn δn+1(

n
n+1

)n
(1 − z̄0)n+1

Dbŵb

]
. (B16)
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At the interface of the Brinkman and the Darcy layers (i.e., z̄m = −βT L),

Dûb = αBJ d̂

P
1

n+1
n δ

[
ûb − d̂

1
n Rem

Reb
ûm

]
, Dv̂b = αBJ d̂

P
1

n+1
n δ

[
v̂b − d̂

1
n Rem

Reb
v̂m

]
, (B17)

p̂b = Rem

Reb

[(
d̂ (n+ 1

n )

εn

)
p̂m + P2

n δ2(n+1)Dbŵb

]
, ŵb = d̂

1
n Rem

Reb
ŵm. (B18)

Finally, at the bottom of the porous layer (i.e., z̄m = −1), the conditions are

v̂m = 0, ŵm = 0. (B19)

[1] B. Goyeau, D. Lhuillier, D. Gobin, and M. G. Velarde, Momentum transport at a fluid-porous interface,
Int. J. Heat Mass Transfer 46, 4071 (2003).

[2] A. Goharzadeh, A. Khalili, and B. B. Jorgensen, Transition layer thickness at a fluid-porous interface,
Phys. Fluids 17, 057102 (2005).

[3] M. B. Allen, A. Behie, and J. A. Trangenstein, Multiphase Flow in Porous Media: Mechanics, Mathemat-
ics, and Numerics (Springer, 1988).

[4] B. Chen, A. Cunningham, R. Ewing, R. Peralta, and E. Visser, Two-dimensional modeling of microscale
transport and biotransformation in porous media, Numer. Methods Partial Differ. Equ. 10, 65 (1994).

[5] R. E. Ewing and S. Weekes, Numerical methods for contaminant transport in porous media, Comput.
Math. 202, 75 (1998).

[6] B. J. Suchomel, B. M. Chen, and M. B. Allen, Network model of flow, transport and biofilm effects in
porous media, Transp. Porous Media 30, 1 (1998).

[7] H. Darcy, Les Fontaines Publiques de la Ville de Dijon (Dalmont, Paris, 1856).
[8] D. Jamet, M. Chandesris, and B. Goyeau, On the equivalence of the discontinuous one- and two-domain

approaches for the modelling of transport phenomena at a fluid/porous interface, Transp. Porous Media
78, 403 (2009).

[9] K. Vafai and C. L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int. J.
Heat Mass Transfer 24, 195 (1981).

[10] S. Whitaker, The Method of Volume Averaging (Springer, Netherlands, 1999).
[11] D. B. Das, V. Nassehi, and R. J. Wakeman, A finite volume model for the hydrodynamics of combined

free and porous flow in sub-surface regions, Adv. Environ. Res. 7, 35 (2002).
[12] N. S. Hanspal, A. N. Waghode, V. Nassehi, and R. J. Wakeman, Numerical analysis of coupled

Stokes/Darcy flows in industrial filtrations, Transp. Porous Media 64, 73 (2006).
[13] C.-H. Bruneau and I. Mortazavi, Passive control of the flow around a square cylinder using porous media,

Int. J. Numer. Methods Fluids 46, 415 (2004).
[14] C.-H. Bruneau and I. Mortazavi, Numerical modelling and passive flow control using porous media,

Comput. Fluids 37, 488 (2008).
[15] T. J. Sadowski, Non-Newtonian flow through porous media. II. Experimental, Trans. Soc. Rheol. 9, 251

(1965).
[16] T. J. Sadowski and R. B. Bird, Non-Newtonian flow through porous media. I. Theoretical, Trans. Soc.

Rheol. 9, 243 (1965).
[17] A. V. Shenoy, Non-Newtonian fluid heat transfer in porous media, Adv. Heat Transfer 24, 101 (1994).
[18] N. B. Khelifa, Z. Alloui, H. Beji, and P. Vasseur, Natural convection in a horizontal porous cavity filled

with a non-Newtonian binary fluid of power-law type, J. Non-Newtonian Fluid Mech. 169-170, 15 (2012).
[19] C. Chahtour, H. B. Hamed, H. Beji, A. Guizani, and W. Alimi, Convective hydromagnetic instabilities of

a power-law liquid saturating a porous medium: Flux conditions, Phys. Fluids 30, 013101 (2018).

063902-26

https://doi.org/10.1016/S0017-9310(03)00241-2
https://doi.org/10.1063/1.1894796
https://doi.org/10.1002/num.1690100105
https://doi.org/10.1023/A:1006560705680
https://doi.org/10.1007/s11242-008-9314-9
https://doi.org/10.1016/0017-9310(81)90027-2
https://doi.org/10.1016/S1093-0191(01)00108-3
https://doi.org/10.1007/s11242-005-1457-3
https://doi.org/10.1002/fld.756
https://doi.org/10.1016/j.compfluid.2007.07.001
https://doi.org/10.1122/1.549023
https://doi.org/10.1122/1.549000
https://doi.org/10.1016/S0065-2717(08)70233-8
https://doi.org/10.1016/j.jnnfm.2011.11.002
https://doi.org/10.1063/1.5017996


EFFECT OF THE TRANSITION LAYER ON THE …

[20] D. A. Nield and A. Bejan, Convection in Porous Media, 3rd ed. (Springer, New York, 2006).
[21] D. A. Nield, The boundary correction for the Rayleigh-Darcy problem: Limitations of the Brinkman

equation, J. Fluid Mech. 128, 37 (1983).
[22] D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous

medium and at an interface, Int. J. Heat Fluid Flow 12, 269 (1991).
[23] D. A. Nield, Modelling the effect of surface tension on the onset of natural convection in a saturated

porous medium, Transp. Porous Media 31, 365 (1998).
[24] J. W. Lu and F. Chen, Assessment of mathematical models for the flow in directional solidification,

J. Crystal Growth 171, 601 (1997).
[25] M. H. Chang, F. Chen, and B. Straughan, Instability of Poiseuille flow in a fluid overlying a porous layer,

J. Fluid Mech. 564, 287 (2006).
[26] P. Deepu, S. Dawande, and S. Basu, Instabilities in a fluid overlying an inclined anisotropic and inhomo-

geneous porous layer, J. Fluid Mech. 762, R2 (2015).
[27] P. Deepu, P. Anand, and S. Basu, Stability of Poiseuille flow in a fluid overlying an anisotropic and

inhomogeneous porous layer, Phys. Rev. E 92, 023009 (2015).
[28] P. Deepu, S. Kallurkar, P. Anand, and S. Basu, Stability of a liquid film flowing down an inclined

anisotropic and inhomogeneous porous layer: An analytical description, J. Fluid Mech. 807, 135 (2016).
[29] T. Y. Chang, F. Chen, and M. H. Chang, Stability of plane Poiseuille-Couette flow in a fluid layer overlying

a porous layer, J. Fluid Mech. 826, 376 (2017).
[30] A. Samanta, Role of slip on the linear stability of a liquid flow through a porous channel, Phys. Fluids 29,

094103 (2017).
[31] S. Sengupta and S. De, Stability of Poiseuille flow of a Bingham fluid overlying an anisotropic and

inhomogeneous porous layer, J. Fluid Mech. 874, 573 (2019).
[32] S. Sengupta and S. De, Effect of Couette component on the stability of Poiseuille flow of a Bingham

fluid-porous system: Modal and non-modal approaches, Phys. Fluids 32, 064103 (2020).
[33] L. Durlofsky and J. F. Brady, Analysis of the Brinkman equation as a model for flow in porous media,

Phys. Fluids 30, 3329 (1987).
[34] J. L. Auriault, On the domain of validity of Brinkman’s equation, Trans. Porous Media 79, 215 (2009).
[35] A. A. Hill and B. Straughan, Poiseuille flow in a fluid overlying a highly porous material, Adv. Water

Resour. 32, 1609 (2009).
[36] R. Liu, Q. S. Liu, and S. C. Zhao, Instability of plane Poiseuille flow in a fluid-porous system, Phys.

Fluids 20, 104105 (2008).
[37] Z. Wu and P. Mirbod, Instability analysis of the flow between two parallel plates where the bottom one

coated with porous media, Adv. Water Resour. 130, 221 (2019).
[38] C. Y. Choi and P. M. Waller, Momentum transport mechanism for water flow over porous media,

J. Environ. Eng. 123, 792 (1997).
[39] S. K. Gupte and S. G. Advani, Flow near the permeable boundary of porous medium: An experimental

investigation using LDA, Exp. Fluids 22, 408 (1997).
[40] A. Goharzadeh, A. Saidi, D. Wang, W. Merzkirch, and A. Khalili, An experimental investigation of the

Brinkman layer thickness at a fluid-porous interface, in One Hundred Years of Boundary Layer Research,
edited by G. E. A. Meier and K. R. Sreenivasan (Springer, New York, 2006), pp. 445–454.

063902-27

https://doi.org/10.1017/S0022112083000361
https://doi.org/10.1016/0142-727X(91)90062-Z
https://doi.org/10.1023/A:1006598423126
https://doi.org/10.1016/S0022-0248(96)00683-5
https://doi.org/10.1017/S0022112006001583
https://doi.org/10.1017/jfm.2014.644
https://doi.org/10.1103/PhysRevE.92.023009
https://doi.org/10.1017/jfm.2016.613
https://doi.org/10.1017/jfm.2017.442
https://doi.org/10.1063/1.4993818
https://doi.org/10.1017/jfm.2019.464
https://doi.org/10.1063/5.0010865
https://doi.org/10.1063/1.866465
https://doi.org/10.1007/s11242-008-9308-7
https://doi.org/10.1016/j.advwatres.2009.08.007
https://doi.org/10.1063/1.3000643
https://doi.org/10.1016/j.advwatres.2019.06.002
https://doi.org/10.1061/(ASCE)0733-9372(1997)123:8(792)
https://doi.org/10.1007/s003480050067


SOURAV SENGUPTA AND SIRSHENDU DE

[41] M. Parvazinia, V. Nassehi, R. J. Wakeman, and M. H. R. Ghoreishy, Finite element modelling of flow
through a porous medium between two parallel plates using the Brinkman equation, Transp. Porous Media
63, 71 (2006).

[42] M. Chandesris and D. Jamet, Jump conditions and surface-excess quantities at a fluid-porous interface: A
multi-scale approach, Transp. Porous Media 78, 419 (2009).

[43] M. R. Morad and A. Khalili, Transition layer thickness in a fluid-porous medium of multi-sized spherical
beads, Exp. Fluids 46, 323 (2009).

[44] D. A. Nield and A. V. Kuznetsov, The effect of a transition layer between a fluid and a porous medium:
Shear flow in a channel, Transp. Porous Media 78, 477 (2009).

[45] K. Tao, J. Yao, and Z. Huang, Analysis of the laminar flow in a transition layer with variable permeability
between a free-fluid and a porous medium, Acta Mech. 224, 1943 (2013).

[46] R. Usha and S. Naire, A thin film on a porous substrate: A two-sided model, dynamics and stability,
Chem. Eng. Sci. 89, 72 (2013).

[47] M. Kaviany, Principles of Heat Transfer in Porous Media (Springer, New York, 1995).
[48] A. A. Hill and B. Straughan, Poiseuille flow in a fluid overlying a porous medium, J. Fluid Mech. 603,

137 (2008).
[49] A. A. Hill, Instability of Poiseuille flow in a fluid overlying a glass bead packed porous layer, Acta Mech.

206, 95 (2009).
[50] J. Jiménez, M. Uhlmann, A. Pinelli, and G. Kawahara, Turbulent shear flow over active and passive porous

surfaces, J. Fluid Mech. 442, 89 (2001).
[51] R. H. Christopher and S. Middleman, Power-law flow through a packed tube, Ind. Eng. Chem. Fundam.

4, 422 (1965).
[52] Z. Kemblowski and M. Michniewicz, A new look at the laminar flow of power-law fluids through granular

beds, Rheol. Acta 18, 730 (1979).
[53] R. V. Dharmadhikari and D. D. Kale, Flow of non-Newtonian fluids through porous media, Chem. Eng.

Sci. 40, 527 (1985).
[54] G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech. 30,

197 (1967).
[55] A. R. Rao and M. Mishra, Peristaltic transport of a power-law fluid in a porous tube, J. Non-Newtonian

Fluid Mech. 121, 163 (2004).
[56] J. P. Pascal, Instability of power-law fluid down a porous incline, J. Non-Newtonian Fluid Mech. 133, 109

(2006).
[57] C. Nouar, A. Bottaro, and J. P. Brancher, Delaying transition to turbulence in channel flow: Revisiting the

stability of shear-thinning fluids, J. Fluid Mech. 592, 177 (2007).
[58] R. Liu and Q. S. Liu, Non-modal instability in plane Couette flow of a power-law fluid, J. Fluid Mech.

676, 145 (2011).
[59] P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows (Springer, New York, 2001).
[60] S. C. Reddy and D. S. Henningson, Energy growth in viscous channel flows, J. Fluid Mech. 252, 209

(1993).
[61] T. Herbert, Secondary instability of boundary layers, Ann. Rev. Fluid Mech. 20, 487 (1988).
[62] G. Iuso, G. M. Di Cicca, M. Onorato, P. G. Spazzini, and R. Malvano, Velocity streak structure modifica-

tions induced by flow manipulation, Phys. Fluids 15, 2602 (2003).
[63] J. A. Ochoa-Tapia and S. Whitaker, Momentum transfer at the boundary between a porous medium and a

homogeneous fluid—I. Theoretical development, Int. J. Heat Mass Transfer 38, 2635 (1995).
[64] P. G. Drazin and W. H. Reid, Hydrodynamic Stability, 2nd ed. (Cambridge University Press, 2004).
[65] B. Straughan, Stability and Wave Motion in Porous Media (Springer, New York, 2008).

063902-28

https://doi.org/10.1007/s11242-005-2721-2
https://doi.org/10.1007/s11242-008-9302-0
https://doi.org/10.1007/s00348-008-0562-9
https://doi.org/10.1007/s11242-009-9342-0
https://doi.org/10.1007/s00707-013-0852-z
https://doi.org/10.1016/j.ces.2012.12.008
https://doi.org/10.1017/S0022112008000852
https://doi.org/10.1007/s00707-008-0099-2
https://doi.org/10.1017/S0022112001004888
https://doi.org/10.1021/i160016a011
https://doi.org/10.1007/BF01533348
https://doi.org/10.1016/0009-2509(85)85113-7
https://doi.org/10.1017/S0022112067001375
https://doi.org/10.1016/j.jnnfm.2004.06.006
https://doi.org/10.1016/j.jnnfm.2005.11.007
https://doi.org/10.1017/S0022112007008439
https://doi.org/10.1017/jfm.2011.36
https://doi.org/10.1017/S0022112093003738
https://doi.org/10.1146/annurev.fl.20.010188.002415
https://doi.org/10.1063/1.1597680
https://doi.org/10.1016/0017-9310(94)00346-W

