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profiles with experimental validation

Ankur Gupta ,1,3 Andrew R. Konicek,2 Mark A. King,2 Azmaine Iqtidar ,3

Mohsen S. Yeganeh,2 and Howard A. Stone3

1Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
2ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, USA

3Department of Mechanical and Aerospace Engineering, Princeton University,
Princeton, New Jersey 08544, USA

(Received 22 February 2021; accepted 3 June 2021; published 21 June 2021)

We study the effect of gravity on barrel-shaped droplets on fibers using theoretical
analyses, numerical simulations, and experiments. By performing a perturbation analysis in
the limit of small Bond numbers and small dimensionless droplet volumes, we formulate a
nearly axisymmetric solution that describes the shape of the droplet. The leading-order
solution yields the axisymmetric profile and the first-order correction incorporates the
effect of gravity. Thus, we report the droplet shape as a function of dimensionless droplet
volume, contact angle, and Bond number. We find that, due to gravity, the contact line
position varies sinusoidally with the azimuthal angle around the fiber. We validate our
solution by comparing droplet shape and contact line predictions with experiments and
numerical simulations.
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I. INTRODUCTION

Droplets on fibers are present in a variety of physical systems. In nature, water droplets are
commonly observed on tree branches and spider webs. In engineering applications, droplets on
fibers are found in filtration, textile, and paper industries. More recently, droplet-on-fiber systems
have also been exploited in wire-based microfluidic devices [1–3]. Fundamentally, droplets on fibers
are distinct from those on planar surfaces because the presence of an additional length scale (i.e.,
the fiber radius) impacts the shapes.

Several reports, both experimental and theoretical, have investigated the shape of a single droplet
on a fiber. Depending on the contact angle, the fiber radius, and the volume of the droplet, two
different fluid morphologies compete with each other: an axisymmetric barrel and an asymmetric
clam shell [4,5]. In the limit of negligible gravitational effects, Carroll derived an equation to
determine the barrel shape [6] and also proposed a stability criterion [7] to predict the transition
between the barrel and clam-shell shapes. Building on Carroll’s work, McHale et al. [8] and
McHale and Newton [9] proposed an improved stability criterion to predict the transition between
the two shapes. More recently, by combining experiments and numerical modeling, and by using
electrowetting to increase or decrease the in situ contact angle, Eral et al. [10] showed that the barrel
to clam shell and clam shell to barrel transitions, respectively, are governed by different mechanisms.
They also developed a detailed phase diagram to identify barrel only, clam shell only, and bistable
regions. Chou et al. [11] and de Ruiter et al. [12] investigated the effect of gravity on the shape of
a droplet on a fiber. Specifically, de Ruiter et al. [12] studied the effect of gravity on the transition
between the two shapes and improved upon the phase diagram proposed by Eral et al. [10]. We also
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FIG. 1. The barrel-like shape of a drop on a fiber is described as r = f (z, θ ), where z is the axial direction,
r is the radial direction, and θ is the azimuthal direction. (a) The front view of the droplet. z = 0 plane divides
the drop into two symmetric halves. We denote the axial wetted half-length as L(θ ). (b) The end-on view of the
droplet. The azimuthal angle −π � θ � π , such that −π � θ � 0 and 0 � θ � π denote the bottom portion
and top portion of the drop, respectively.

highlight the work by Lorenceau et al. where the authors studied the maximal volume of a drop on
a horizontal fiber and proposed the condition for detachment of a droplet from a wire [13].

While the aforementioned studies provide a comprehensive understanding of the barrel and the
clam-shell shapes, the analyses are focused on the shapes determining the phase space where each
conformation exists as a function of dimensionless droplet volume, Bond number, and contact
angle. Numerical analyses of the droplet-fiber systems [9–12] are typically achieved using SURFACE

EVOLVER [14] simulations. Although numerical simulations provided a better parameter-dependent
visualization of the system, the underlying physics of the clam-shell-to-barrel shape transition is
still lacking. Therefore, in this research, we make an advancement in the theory to derive the droplet
shape and contact line position for a barrel-like droplet in the limit of small Bond numbers and
small dimensionless droplet volumes, where the droplet adopts a nearly axisymmetric solution. We
note that our approach is similar to the work by Kralchevsky et al. [15,16] that focused on the
perturbations in the interfacial shape due to interaction with various posts or particles. We validate
our results through experiments as well as SURFACE EVOLVER simulations by directly comparing
droplet profiles as well as the contact line positions. There are several advantages of our theoretical
approach. First, while our analysis focuses on a single droplet and a single fiber, our approach can
be useful for more complex physical systems consisting of multiple droplets and fibers [17,18].
Second, the analysis provides a theoretical framework to investigate stability criteria for droplets on
fibers while also including the effect of gravity. Finally, our analysis and results can also be adapted
for out-of-equilibrium problems dominated by interfacial tension.

II. GENERAL FORMULATION

We use cylindrical coordinates to describe the barrel-shape morphology with r, θ , and z denoting,
respectively, the radial, azimuthal, and axial directions. For simplicity, we assume that all the lengths
are scaled by the fiber radius a. A plane perpendicular to the z axis, defined here as the z = 0
plane, divides the drop into two symmetric halves; see Fig. 1(a). We define the front view to be the
projection in the y-z plane. We also define L(θ ) to be the axial wetted half-length; i.e., the surface of
the droplet wets the fiber at a distance L(θ ) away to both sides of z = 0. We denote the end-on view
to be the projection in the x-y plane; see Fig. 1(b). The azimuthal angle −π � θ � π , such that
−π � θ � 0 and 0 � θ � π denote the bottom portion and top portion of the drop, respectively.
In addition, β = �ρga2

γ
is the Bond number, where �ρ is the density difference between the drop

and the surrounding fluid, g is the gravitational constant, and γ is the surface tension. We denote V
as dimensionless volume (i.e., dimensional volume v scaled such that V = v

a3 ) and α as the contact
angle.
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EFFECT OF GRAVITY ON THE SHAPE OF A DROPLET …

We assume that surface of the barrel-shape droplet is described by r = f (z, θ ), where f is
referred to as the shape function. The goal is to determine f (z, θ ) for a given V , α, and β. The
mechanical equilibrium is obtained by balancing Laplace pressure and hydrostatic pressure, and the
dimensionless form is given by [19]

2H + β f sin θ = K, (1)

where K is a constant that needs to be determined and H is the dimensionless mean curvature.
By definition, H = 1

2∇ · n, where n = nrer + nθeθ + nzez is the unit normal vector and can be
calculated through the gradient of the shape function,

nr = 1

S
, (2a)

nθ = −1

r

∂ f /∂θ

S
, (2b)

nz = −∂ f /∂z

S
, (2c)

where S =
√

1 + 1
r2 ( ∂ f

∂θ
)2 + ( ∂ f

∂z )2 . The above leads to

2H = nr

r
+ ∂nr

∂r
+ 1

r

∂nθ

∂θ
+ ∂nz

∂z
, (3)

which along r = f (z, θ ) can be simplified to obtain

2H = 1

f 

−

[
∂2 f
∂z2

(
1 + 1

f 2

(
∂ f
∂θ

)2) + 1
f 2

∂2 f
∂θ2

(
1 + (

∂ f
∂z

)2) − 2
f 2

∂ f
∂θ

∂ f
∂z

∂2 f
∂θ∂z − 1

f 3

(
∂ f
∂θ

)2]

3

, (4)

where 
 =
√

1 + 1
f 2 ( ∂ f

∂θ
)2 + ( ∂ f

∂z )2 . Equations (1) and (4) can be combined to obtain a partial
differential equation for f (z, θ ). The symmetry boundary conditions are

∂ f

∂z

∣∣∣∣
z=0

= 0, for all θ, (5)

∂ f

∂θ

∣∣∣∣
θ=−π/2,π/2

= 0, for all z. (6)

The contact line boundary condition is stated as

f (z = L(θ )) = 1, for all θ. (7)

Additional constraints are needed to determine K and L(θ ). First, we invoke the contact angle
boundary condition, or

n · er |z=L(θ ) = nr |z=L(θ ) = 1




∣∣∣∣
z=L(θ )

= cos α, for all θ. (8)

Finally, to complete the formulation, we require a (dimensionless) constant volume constraint, or

V = 2
∫ π/2

−π/2

∫ L(θ )

0
( f 2 − 1)dzdθ. (9)

The above set of equations can be evaluated numerically to determine the shape function f (z, θ ).
However, given the numerical complexity in solving the aforementioned equations for any set of
parameters, we instead focus on the limit of small Bond numbers, or β � 1.
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III. THE NEARLY AXISYMMETRIC SOLUTION

Since the condition β = 0 results in an axisymmetric solution, we seek a nearly axisymmetric
solution in the limit β � 1. In this limit, we assume the following expansions:

f (z, θ ) = f0(z) + β f1(z) sin θ + O(β2), (10a)


(z, θ ) = 
0(z) + β
1(z) sin θ + O(β2), (10b)

K = K0 + O(β2), (10c)

L(θ ) = L0 + βL1 sin θ + O(β2), (10d)

H(z, θ ) = H0(z) + βH1(z) sin θ + O(β2), (10e)

where we have assumed that the azimuthal dependence in the first-order correction is proportional to
sin θ . This assumption is motivated by the fact that the gravitational term in Eq. (1) is proportional
to sin θ . Also, to make the first-order balance O(β ) homogeneous, we assume that K does not
have an O(β ) term. We note that Eq. (10) is valid for V = O(1). However, as we show later, this
approximation yields a reasonably accurate result even for larger volumes.

Substituting Eq. (10) into Eqs. (1) and (4) yields the following leading-order, i.e., O(1), balance:

1

f0
0
− d2 f0/dz2


3
0

= K0, (11)

where 
0 =
√

1 + (df0/dz)2. Physically, the first term on the left-hand side in Eq. (11) is the out-
of-plane curvature whereas the second term is the in-plane curvature. These terms are equivalent to
the equations derived by Carroll et al. [6] and McHale et al. [8].

The first-order balance, i.e., O(β ), reveals (see the Appendix for the derivation)

−
df0

dz
df1

dz

f0

3
0

−
d2 f1

dz2


3
0

+ 3
d2 f0

dz2
df0

dz
df1

dz


5
0

+ f0 = 0. (12)

The boundary condition at z = 0 are simply

df0

dz

∣∣∣∣
z=0

= 0, (13a)

df1

dz

∣∣∣∣
z=0

= 0. (13b)

The boundary condition at the contact line, i.e., f (L(θ )) = 1, can be written as

f (L0 + βL1 sin θ ) = 1. (14)

After applying a Taylor series expansion, Eq. (14) becomes

f (L0) + βL1 sin θ
df0

dz

∣∣∣∣
z=L0

= f0(L0) + β

(
f1(L0) sin θ + L1

df0

dz

∣∣∣∣
z=L0

sin θ

)
= 1, (15)

and, applying the balances at O(1) and O(β ), these boundary conditions become

f0(L0) = 1, (16a)

f1(L0) + L1
df0

dz

∣∣∣∣
z=L0

= 0. (16b)

Similarly, the contact angle boundary condition, Eq. (8), i.e., 1



|L(θ ) = cos α, becomes

∂ f

∂z

∣∣∣∣
z=(L0+βL1 )

= − tan α. (17)
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TABLE I. Summary of O(1) and O(β ) equations and boundary conditions for the nearly axisymmetric
solution.

O(1) balance O(β ) balance
solve f0(z), L0, and K0 solve f1(z) and L1

1
f0
0

− d2 f0/dz2


3
0

= K0; 
0 = √
1 + (df0/dz)2 −

df0
dz

df1
dz

f0
3
0

−
d2 f1
dz2


3
0

+ 3
d2 f0
dz2

df0
dz

df1
dz


5
0

+ f0 = 0
df0
dz |z=0 = 0 df1

dz |z=0 = 0
f0(L0) = 1 f1(L0) + L1

df0
dz |z=L0 = 0

df0
dz |L0 = − tan α

df1
dz |z=L0 + L1

d2 f0
dz2 |z=L0 = 0

V = 2π
∫ L0

0 ( f 2
0 − 1)dz

Again applying a Taylor series expansion to Eq. (17) and applying the balances at O(1) and O(β )
yield

df0

dz

∣∣∣∣
L0

= − tan α, (18a)

df1

dz

∣∣∣∣
z=L0

+ L1
d2 f0

dz2

∣∣∣∣
z=L0

= 0. (18b)

The volume conservation equation can be stated as

V = 2
∫ π/2

−π/2

∫ L0+βL1 sin θ

0
( f 2 − 1)dzdθ, (19)

which can be shown to lead to

V = 2π

∫ L0

0

(
f 2
0 − 1

)
dz + O(β2). (20)

We summarize the final equations and boundary conditions for O(1) and O(β ) in Table I.

IV. RESULTS FROM THE NEARLY AXISYMMETRIC SOLUTION

For given V and α, the ordinary differential equations in Table I are solved numerically to evalu-
ate f0(z), f1(z), L0, L1, and K . The shape function is evaluated as f (z, θ ) = f0(z) + β f1(z) sin θ and
the contact line position is evaluated as (r, θ, z) = (1, θ, L0 + βL1 sin θ ). We summarize the results
in Fig. 2 for V = 125 and α = π

12 .
The results demonstrate the effect of gravity on the droplet shape; see Figs. 2(a)–2(c). When

viewed from the front (y-z plane) and end-on (x-y plane), our results shows that the asymmetry due
to the effect of gravity increases as β increases, as would be expected on physical grounds. It is also
useful to view the changes in contact line position due to gravity. Without gravity (β = 0 case), the
contact line position does not depend on θ and the contact line is a circle with the same radius as
that of fiber. Therefore, when viewed from the top looking in the direction of gravity, the contact
line appears to a straight line; see Fig. 2(a). However, when gravitational effects are included, the
contact lines shorten on the upper side and lengthen on the lower portion of the fiber; see Figs. 2(b)
and 2(c). As per our model, the dependence of this movement is proportional to β and is sinusoidal
with θ ; see Fig. 2(d).

V. EXPERIMENTAL AND SIMULATION DETAILS

Experiments were conducted to validate the theoretical results. A custom-built apparatus was
designed that would hold a cylindrical glass fiber at the eucentric point of a camera attached to
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FIG. 2. The nearly axisymmetric solution as described in Table I. Front (x-y plane) and end-on views (y-z
plane) of the droplet for V = 125, α = π

12 , and (a) β = 0, (b) β = 5 × 10−3, and (c) β = 10−2. The contact
line as viewed from the top looking in the direction of gravity is also provided. (d) The axial wetted half length,
i.e., L = L0 + βL1 sin θ for V = 125 and α = π

12 .

a goniometer; see Fig. 6. The fiber is held horizontally with the length running orthogonal to
gravity. Next, the fiber is carefully aligned as any slight tilt of the fiber can cause the droplet to
skew or even move. Also mounted to the goniometer, on the opposite side of the camera, is a
2′′ × 2′′ white collimated LED backlight (Metaphase Technologies, part 14-270). This backlight
floods the camera’s contrast and produces a two-dimensional shadow-cast image of the fiber and
droplet profile.

The fibers in these experiments are glass microcapillaries of various diameters (128, 221,
600 μm). Each fiber has the diameter measured with a caliper before each experiment. Fibers were
plasma treated to achieve a 0-deg contact angle with the wetting fluid, polyalphaolefin (PAO4) with
density 819 kg/m3 and surface tension 28 mN/m. PAO4 droplets were added using a micropipette
on the lowest volume setting (VWR Ultra High-Performance). A small amount of volume was
produced by partially depressing the pipette plunger and that fractional volume was transferred to
the microcapillary by contact. This was in an attempt to deposit volumes less than 1.0 μL and as
low as 0.1 μL. While this method does not control how much volume is deposited, the amount that
does wet the fiber can be calculated from the subsequent data analysis. After the droplet is placed,
the goniometer is rotated and images are taken every 5 deg.

Raw images are first analyzed to align them with the center of the fiber and center of the droplet.
An edge detection routine is used to obtain the entire profile of the fiber-air and liquid-air interfaces
for all images. The edge of the fiber-air interface is used to rotate, align, and center all images.
This rotation and translation is performed on the raw image data and then the edge detection is
run again (to avoid propagating any errors) to generate a final stack of images. The pixel width
of the unwetted fiber is determined by taking the mode of all diameters from all images. That
value, along with the caliper measurement of the fiber, is used to calculate the distance per pixel in
the image series and then generate the three-dimensional data set of the entire fiber and droplet
surface. From that data set, the droplet volume, contact line position, and droplet profiles are
generated.

In addition, we utilize SURFACE EVOLVER to perform numerical simulations. We modify the code
provided in Chapter 8 of Ref. [20] to obtain shape profiles. To ensure that our simulation setup is
accurate, we benchmark our results in the absence of gravity using the analytical results of Carrol
[6] and the experimental data of Eral et al. [10].

063602-6



EFFECT OF GRAVITY ON THE SHAPE OF A DROPLET …

FIG. 3. Comparison of nearly axisymmetric solution with SURFACE EVOLVER simulations for V = 27, α =
π

12 , and [(a)–(c)] β = 10−3 and [(d)–(f)] β = 10−2. The black lines represent the nearly axisymmetric solution
and the red lines represent the SURFACE EVOLVER simulations. Comparisons of the front view (y-z plane),
end-on view (x-y plane), and contact line position [L(θ ) − L(0)] are provided.

VI. VALIDATION WITH SURFACE EVOLVER SIMULATIONS

We first validate our results with SURFACE EVOLVER simulations; see Fig. 3. Here, we compare
the results for α = π

12 , V = 27, and β = 10−3 [Figs. 3(a)–3(c)] and β = 10−2 [Figs. 3(d)–3(f)]. We
find that the proposed nearly axisymmetric solution is in excellent agreement with the SURFACE

EVOLVER simulations for both these conditions and is able to reproduce the front view, the end-on
view, and the contact line position. We highlight that even though our model was developed for
V = O(1), it works reasonably well for V = 27. However, we note that for β = 10−2, SURFACE

EVOLVER simulations display a minor asymmetry in the contact line position [see Fig. 3(f)], an
effect that is not captured in the nearly axisymmetric solution.

VII. VALIDATION WITH EXPERIMENTS

We summarize the direct comparisons of shape profiles and contact lines in Fig 4. In Figs. 4(a)–
4(c), the experimental data relates to the condition where the droplet volume is 1.3 μL, fiber
radius a = 110.5 μm, and contact angle α = 0. Therefore, V = 962 and β = 3.5 × 10−3, which
were used for the nearly axisymmetric calculations and SURFACE EVOLVER simulations. The results
display a good quantitative agreement between the three approaches, as evident from the front
and end-on view comparisons; see Figs. 4(a) and 4(b). The contact line position data is also in
qualitative agreement and shows a sinusoidal behavior with θ , consistent with our prediction. To
further validate our results, we also compared a system with droplet volume 0.92 μL, a = 300 μm,
and α = 0; see Figs. 4(d)–4(f). Therefore, V = 34 and β = 2.49 × 10−2. Similar to the previous
result, we observe good quantitative agreement for the front and end-on views between the three
approaches, and the contact line displays a sinusoidal dependence with θ .

We emphasize that while our perturbation result has been derived for V = O(1), it is able to pre-
dict the front and end-on views with reasonable quantitative accuracy. However, there is quantitative

063602-7



ANKUR GUPTA et al.

FIG. 4. Validation of nearly axisymmetric solution with experiments and SURFACE EVOLVER simulations.
(a) Front view (y-z plane), (b) end-on view (x-y plane), and (c) the half-wetted length, i.e., L(θ ) − L(0) for
V = 962, α = 0, and β = 3.5 × 10−3. (d) Front view, (e) end-on view, and (f) L(θ ) − L(0) for V = 34, α = 0,
and β = 2.49 × 10−2. Black circles are experimental data, the black lines are nearly axisymmetric solutions,
and the red lines are SURFACE EVOLVER simulations.

disagreement between experiments and the models in predicting contact line position, especially for
L(θ ) when θ > 0. To a lesser extent, this disagreement is also seen in SURFACE EVOLVER simulations.
To check whether this trend is consistent, we conducted additional experiments with a = 64 μm
(β = 1.16 × 10−3), droplet volumes 0.59 μL (V = 2274) and 0.97 μL (V = 3695), and α = 0; see
Fig. 5. The disagreement between experiments and the nearly axisymmetric solutions for θ > 0 is
also observed for these additional conditions.

One of the factors that leads to a greater disagreement in contact line positions for larger
Bond numbers and volumes is the tendency of the droplet to adopt a clam-shell-like shape and
eventually detach from the fiber. As detailed by de Ruiter et al. [12], the physical mechanism

FIG. 5. Comparison of contact line from experiments (circular data points) and nearly axisymmetric
solution (solid line) for (a) V = 2274 and (b) V = 3695. β = 1.16 × 10−3, and α = 0.
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that results in these transitions is the liquid neck that forms on top of the fiber and subsequently
ruptures. The condition for droplet detachment roughly follows βv = �ρgv2/3

γ
= O(1); see Fig. 3 in

Ref. [12]. The experimental data provided represents βv = 0.34 [Figs. 4(a)–4(c)], βv = 0.26 [Figs. 4
(d)–4(f)], βv = 0.20 [Fig. 5(a)], and βv = 0.28 [Fig. 5(b)]. While these conditions do not result in
detachment, the volumes are large enough for the asymmetry to appear in L(θ ) for θ > 0. In fact, the
experimental data in Figs. 4 and 5 support this assessment since the contact line shapes resemble a
neck. The nearly axisymmetric solution is unable to capture the necking instability since the former
assumes a small deviation from the axisymmetric solution. Mathematically, the expansions listed
in Eq. (10) are no longer sufficient to capture this asymmetry. We note that while the SURFACE

EVOLVER simulations presented here predict asymmetry in the contact line [see Fig. 4(f)], they are
also unable to completely capture the necking feature. This disagreement occurs because to achieve
necking in the SURFACE EVOLVER simulations, it is crucial to perturb the system parameters such as
contact angle and center-of-mass position, as has been discussed in Refs. [10,11,20].

In addition, while the models use α = 0 based on planar contact angle measurements, the exper-
imental images of the fiber suggest that the apparent contact angle might be nonzero. Nonetheless,
the solution is still able to reproduce the front and end-on views observed in experiments. More
importantly, it provides insights into the movement of the contact line position and the effect of
gravity that are otherwise difficult to infer from numerical simulations.

VIII. CONCLUSION

In this research, we conducted a regular perturbation analysis for a single drop wetting a fiber
to capture the effect of gravity on barrel-like droplet shapes and the contact line position. The final
equations for the nearly axisymmetric solution are summarized in Table I. Our equations are able to
capture the effect of gravity on droplet shape and suggest that the contact line position is sinusoidal
with azimuthal angle θ . We validated our results with equivalent experiments and SURFACE EVOLVER

simulations, and obtained qualitative agreement with the experiments and quantitative agreement
with the simulations.

While the results in this research describe the scenario of a single droplet on a fiber, the approach
can be extended to more complicated wetted systems. For instance, our approach is applicable to
a droplet wetting multiple fibers, where the structure of the perturbation expansion will be similar
but the boundary conditions and the volume conservation equations will need to be appropriately
modified. In addition, our approach can also be useful for droplet-fiber systems that are out of
equilibrium and where the effect of gravity may be important.
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APPENDIX

1. Derivation of O(β) balance

Here, we present the derivation O(β ) balance provided in Eq. (12). We start by recalling that

f (z, θ ) = f0(z) + β f1(z) sin θ + O(β2). (A1)

Substituting Eq. (A1) in the expression of 
 =
√

1 + 1
f 2 ( ∂ f

∂θ
)2 + ( ∂ f

∂z )2 , we write


 =
√

1 +
(

df0

dz

)2

+ 2β
df0

dz

df1

dz
sin θ + O(β2). (A2)
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FIG. 6. Image of our experimental setup.

By applying binomial approximation on Eq. (A2), we obtain


 = 
0 + β
1 sin θ + · · · , (A3)

where


0 =
√

1 +
(

df0

dz

)2

, (A4a)


1 =
df0

dz
df1

dz


0
. (A4b)

Substituting Eqs. (A1) and (A3) in the first term of the right-hand side of Eq. (4) and utilizing
the binomial expansion, we get

1

f 

= 1

f0
0
− β sin θ

(
f1

f 2
0 
0

+ 
1

f0

2
0

)
+ O(β2). (A5)

Similarly, substituting Eqs. (A1) and (A3) in the second term of the right-hand side of Eq. (4) and
utilizing the binomial expansion, we get

−
[

∂2 f
∂z2

(
1 + 1

f 2

(
∂ f
∂θ

)2
)

+ 1
f 2

∂2 f
∂θ2

(
1 + (

∂ f
∂z

)2
)

− 2
f 2

∂ f
∂θ

∂ f
∂z

∂2 f
∂θ∂z − 1

f 3

(
∂ f
∂θ

)2
]


3

= −
d2 f0

dz2


3
0

− β sin θ

(
d2 f1

dz2


3
0

− f1

f 2
0 
0

− 3
1
d2 f0

dz2


4
0

)
+ O(β )2.

(A6)

Combining Eqs. (4), (A5), and (A6) yields

2H = 2H0 + 2βH1 sin θ + O(β2), (A7)

where

2H0 = 1

f0
0
−

d2 f0

dz2


3
0

(A8)

and

2H1 = − 
1

f0

2
0

−
d2 f1

dz2


3
0

+ 3
1
d2 f0

dz2


4
0

. (A9)
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By utilizing Eq. (A4b), we can write

2H1 = −
df0

dz
df1

dz

f0

3
0

−
d2 f1

dz2


3
0

+ 3
d2 f0

dz2
df0

dz
df1

dz


5
0

. (A10)

To obtain the result described in Eq. (12), we note that 2H1 + f0 = 0.

2. Experimental setup

An image of our experimental set up is provided in Fig. 6.
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