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We perform a numerical analysis of Rayleigh-Bénard convection during solid-liquid
phase change in the presence of an electric field. The objective is to examine the effects
of the melting boundary and the electric field on the onset of flow motion and pattern
formation. We characterize the timescale separation between the dynamics of the flow and
that of the interface, which is dependent on the Rayleigh number Ra, the Prandtl number
Pr, the Stefan number St, and the Fourier number Fo. It is found that (i) the delay of onset
is a notable feature of the systems exhibiting phase transitions and convective instability
compared to the traditional Rayleigh-Bénard convection; (ii) in the absence of the electric
field, the critical Rayleigh number decreases monotonically with the timescale separation;
(iii) in the presence of the electric field, the critical Rayleigh number can be lower than the
classical value of Rac = 1707.76. For moderate Rayleigh number (Ra = 105), we predict
the robust “locked-in” effect of the topography on convection. When the electric field is
strong enough, this locked-in pattern will be broken and the system will evolve to a strong
nonlinear regime in an inherently time-dependent fashion.
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I. INTRODUCTION

Rayleigh-Bénard convection is one of the main heat transfer mechanisms in the natural sciences
and engineering processes, responsible for most of the dynamics of the atmosphere and ocean [1],
mantle formation [2], and the freezing or melting of material [3]. The two-way coupling between
a flow and an evolving boundary, be it due to melting or solidification, has recently received much
attention [4–8], because it is more relevant to the realistic natural configurations compared to the
idealized systems with horizontal surfaces being generally considered as subjected to no-slip or
free-slip boundary conditions. Focuses of flows over phase-change boundaries can be grouped into
the following two categories: morphological instability, which focuses on the influence of flow
on the topography’s evolution and stability, and buoyancy-driven instability, which focuses on the
hydrodynamic stability with horizontal boundary subjected to a phase-change condition.

Some of the studies to investigate the effects of flow on the stability of a solid-liquid interface
are those of Refs. [6,9,10]. Davis et al. [9] studied the systems in which thermal convection and
corrugations of a freezing interface are strongly coupled; they identified the pattern of convective
flow and interfacial corrugation, and determined the parametric ranges in which different pat-
terns occur. Toppaladoddi and Wettlaufer [6] studied the effects of externally imposed shear and
buoyancy-driven flow on the stability of a solid-liquid interface. With a linear stability analysis
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they found that the buoyancy is the only destabilizing factor and that the shear flow stabilizes
the system by inhibiting vertical motions and hence the upward heat flux. Sugawara et al. [10]
experimentally investigated the double diffusive convection of a 20 wt % calcium chloride aqueous
solution with horizontal ice plate melting from above. They detected the cellular polygonal patterns
of the phase-change interface, which has also been observed by Esfahani et al. [4] by means of
numerical simulations.

For Rayleigh-Bénard instability with a melting boundary, stabilities criteria based on nonlinear
asymptotic analysis have been given for small Stefan number limit by Vasil and Proctor [11]. It
is found that, compared to the classical Rayleigh-Bénard problem, the convection threshold can
be modified and a morphological mode grows as soon as Ra = 1295.78 is exceeded. The authors
have also analyzed the complex locked-in spatially inhomogeneous pattern and shown that it is not
so much a consequence of the nonautonomous nature of the dynamical system, but rather of the
presence of the feedback from the Stefan condition, i.e., the melting top boundary. Considering the
finite Stefan number, it is found that the delay of the onset of convection is one particularly notable
feature when the presence of topography is included, as compared to the classical Rayleigh-Bénard
system [4,7,12].

In addition to nontrivial topography dynamically generated by thermal convection, the modu-
lation of wall temperatures [13], the magnetic field [14], and the direct current (DC) electric field
[15] are also found to change the nature of convection both close to onset and in the supercritical
regime. Of particular interest to the present study is the effect of electric field on the stability of
thermal convection in a horizontal layer of fluid heated from below and with a melting top boundary.
Over the last several decades the combined effects of an electric field and a thermal gradient on
insulating liquids has been of great interest not only because of the interdisciplinary nature of
such an interaction but also because of the potential technological advantages that may result from
them [15–20]. Particularly, regarding a DC electric field, McCluskey et al. [18] gave experimental
results that demonstrate that electroconvection induced by unipolar injection increases heat transfer,
and that in certain circumstances, the convective heat transfer can be 10 times or more than that
without electric field. For a complete overview of the canonical problem see literature reviews by
Laohalertdecha et al. [21] and Rashidi et al. [22].

Compared to the well studied electrothermoconvection problem in single phase dielectric liquid
[15–18,20], few studies concern the influences of an external electric field on Rayleigh-Bénard
convection during the melting process. The works of Nakhla et al. [23,24] are a good start on the
intertwined nature of Stefan systems and electroconvective flow. One of the experimental studies
was designed to eliminate natural convection and to ensure conduction dominated the melting
environment to isolate the influence of the electric field [23]. A new phenomenon, the solid
extraction, was observed where the solid dendrites within the mushy zone were extracted toward
the liquid bulk due to the application of EHD (nonuniform electric field). It is well known that the
EHD body forces acting on a dielectric fluid could be expressed as [25]

f = qE − 1

2
E2∇ε + 1

2

[
ρE2

(
∂ε

∂ρ

)
θ

]
. (1)

The three terms on the right-hand side of Eq. (1) represent the Coulomb force, the dielectric force,
and the electrostrictive force, respectively. The later experiment with n-octadecane as phase-change
material (PCM) indicates that Coulomb force, instead of dielectric force or electrostrictive force, is
responsible for the main mechanism of heat transfer enhancement [24]. Specifically, the high voltage
electrodes produce free ions in the dielectric liquid around the electrode of the same polarity, which
in turn induces a jetlike structure initiated from the electrodes and moving toward the grounded
electrode, thus impinging on the solid-liquid interface. This act of jet impingement leads to the high
heat transfer enhancement in the regions around the electrodes.

Following the works of Nakhla et al. [23,24], Luo et al. [26] developed a numerical model based
on the lattice Boltzmann method (LBM) to simulate the melting in the presence of EHD in a square
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cavity; they found three kinds of instabilities arising during melting, corresponding to the small
perturbation at the initial stage, the oscillation associated with the evolution of circulation cells, and
the electroconvective instability in high driving parameters. Furthermore, by neglecting the effects
of buoyancy in the bulk melt, Luo et al. [27] investigated the effects of a fixed solid-liquid interface
on the stability of electroconvection in the liquid zone. They found that the solid phase over the
interface results in a useless voltage drop in the solid phase which increases the linear and nonlinear
stability threshold, although under these conditions the bifurcation of electroconvection is still of
subcritical type. Recently this study was extended by He et al. [28] to investigate the effects of a
conducting solid wall on the stability of electrothermoconvection, again using the lattice Boltzmann
method. It was found that (i) both the linear stability criterion and the finite-amplitude stability
criterion obtained for electrothermoconvection with a solid wall are higher than the corresponding
values without a solid wall; (ii) increasing the electric Rayleigh number leads to the system passing
from a steady state to an irregular unsteady one and then a reentrant stable state may arise; (iii) for
a sufficiently strong electric field, the flow shows a chaotic feature.

One crucial point that Luo et al. [26,27] and He et al. [28] evidently overlooked is that because
phase change occurs at boundaries, the convection melting system is intrinsically nonstationary,
which leads to the complex interaction between the flow in the melt and the topography. Indeed,
the topography of the top surface can affect the flow by creating flow patterns and coherent
thermal structure that can differ from those occurring between flat plates or plates with prescribed
roughness [4]. In addition, the complex coupling between solid and flow results in the evolution of
topography that tends to produce stereotyped forms, and this morphology offers important clues to
the history of a landscape and its development [29]. Here, motivated in part by Toppaladoddi and
Wettlaufer [6] and Nakhla et al. [24], we study the effects of buoyancy and Coulomb force on the
phase evolution of a pure melt by means of lattice Boltzmann numerical simulations employing an
enthalpy formulation of the governing equations. The reason for our choice of the enthalpy-based
method is to easily track the phase boundary by updating the total enthalpy [30] as compared with
the phase-field method [31]. On the other hand, in previous studies the lattice Boltzmann method
has been proved to be capable of accurately describing both the convective dynamics of solid-liquid
phase change [30,32,33] and a multifield coupling problem containing the charge density, electric
potential, electric field, flow field, and temperature distribution [26,27,34–38].

In the present work, we consider the effects of having a horizontal boundary at which a solid-
liquid phase change occurs on Rayleigh-Bénard convection in the dielectric pure liquid, which is
subjected to both temperature gradient and unipolar injection. The principle difference between the
pure substance and the binary mixture is that in a binary mixture the evolving morphology affects
the growth of disturbances at the mush-liquid interface through fluid flow in both the mushy layer
interior and the liquid phase. However, no such mechanism exists in the pure case [6]. Specifically,
we focused on (i) understanding how the melting interface and the electric field affect the Rayleigh-
Bénard convection instability, and (ii) understanding how the fluid flow induced by buoyancy and/or
charge injection affects the morphological instability. The present paper is organized as follows.
In Sec. II we present the formulation of the physical problem. Section III is devoted to a brief
presentation of the numerical method and code validation. The onset of flow motion in the presence
of a melting boundary and an electric field is described in Sec. IV. We show the “locked-in” behavior
of topography and how the locked-in patterns are destabilized due to the application of EHD in
Sec. V. And finally in Sec. VI we present our conclusions.

II. FORMULATION OF THE PROBLEM

A. Governing equations

Consider an incompressible dielectric substance of density ρ, electrical permittivity ε, charge
diffusivity D, kinematic viscosity ν, thermal diffusivity α, specific heat capacity cp, and latent
heat L f contained between two perfectly conducting rigid horizontal planar electrodes. These two
electrodes are separated by a distance of H and maintained constant though different temperatures
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FIG. 1. Diagram of the problem and boundary conditions. The wavy line separates the solid region and
liquid region. The dashed line corresponds to the average layer depth. θm is the melting temperature of the pure
dielectric substance. The solid is isothermal so that θ = θm. The lower emitter electrode is the source of ions
and the upper grounded electrode is the collector of ions.

and electrical potentials (see Fig. 1). The horizontal size of the electrodes is λH with λ defined as the
aspect ratio. The emitter electrode at the plane y = 0 is held at potential φ = 1 and is the source of
ions which are injected into the PCM and collected by another electrode at the plane y = H which is
held at potential φ = 0. The injection of unipolar charge of mobility K at the emitter is assumed to
be “homogeneous” and “autonomous.” We impose the temperature θh at the bottom injector and θc

at the top collector with θc = 0 < θh = 1. The melting temperature of the PCM is such that θm = θc;
this means that we focus on the particular case where the solid is isothermal.

In this paper, we consider the case of strong injection. For simplicity, we assume that permittivity
and mobility are constant and equal in both phases since it has been shown that the influence of
the variation in ε and K on the electrohydrodynamics is negligible under strong injection [16,17].
Also, as the residual conductivity of the substance is assumed to be very small, the currents are
small enough to neglect magnetic effects as well as Joule heating in the electrohydrodynamic
approximation [39]. Furthermore, we suppose that the density of the solid and the density of the
liquid are equal, the solid is impenetrable, and in the liquid phase the Boussinesq approximation
is applied. The resulting governing equations of this dynamical system, i.e., mechanical equations,
energy equation, and electrical equations, respectively, are given as [26,35]

∇ · u = 0, (2)

∂ (ρ0u)

∂t
+ ∇ · (ρ0uu) = −∇ p̂ + ∇ · (μ∇u) + qE + ρ0gβ(θ − θ0), (3)

∂θ

∂t
+ ∇ · (θu) = α∇2θ − L f

cp

∂ fl

∂t
, (4)

∇2φ = −1

ε
q, (5)

E = −∇φ, (6)

∂q

∂t
+ ∇ · [(KE + u) · q] = D∇2q. (7)

These equations can be written in dimensionless form with the following dimensionless quanti-
ties denoted with asterisks:

x∗
i = x

H
, u∗ = u

ν/H
, t∗ = t

H2/ν
, q∗ = q

q0
, φ∗ = φ

(φ0 − φ1)
,

E∗
i = Ei

(φ0 − φ1)/H
, θ∗ = θ

(θ0 − θ1)
, ρ∗ = ρ

ρ0
, p∗ = p

ρ0(ν/H )2 . (8)
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Thus we have the set of nondimensional equations, and the asterisks are omitted for clarity:

∇ · u = 0, (9)

∂u
∂t

+ ∇ · (uu) = −∇ p̂ + ∇2u + Ra

Pr
θez +

(
T

M

)2

qC · E, (10)

∂θ

∂t
+ ∇ · (θu) = 1

Pr
∇2θ − 1

St

∂ fl

∂t
, (11)

∇2φ = −Cq, (12)

E = −∇φ, (13)

∂q

∂t
+ ∇

[(
T

M2
E + u

)
q

]
= T

M2
χ∇2q, (14)

where p̂ and ez represent the dimensionless modified pressure including the extra electrostrictive
contribution and the unit vector in gravitational direction, respectively. The nondimensional param-
eters appearing in the equations are

Ra = gβ(θ0 − θ1)H3

να
, St = cp(θ0 − θ1)

L f
, Pr = ν

α
,

T = ε(φ0 − φ1)

μK
, C = q0H2

ε(φ0 − φ1)
, M = 1

K

(
ε

ρ0

)1/2

, χ = D

K (φ0 − φ1)
. (15)

The Rayleigh number Ra and electric Rayleigh number T represent the ratio of the buoyancy and
Coulomb forces to the viscous force, respectively. They are the driving parameters of the system.
The Stefan number St corresponds to the ratio between specific and latent heats. The Prandtl number
Pr denotes the ratio of momentum diffusivity to thermal diffusivity. The injection parameter C is the
dimensionless measure of the injection level. In particular, C � 1 corresponds to the strong injection
and C � 1 corresponds to the weak injection. The mobility parameter M is the ratio between the so-
called hydrodynamic mobility and the true mobility of ions. χ is the dimensionless charge diffusivity
coefficient. χ in conjunction with the electric Reynolds T/M2 is known as the Schmidt number
defined on the ions [40]. For typical dielectric liquids, we have M � 3 and χ = 10−3–10−4.

It is useful to define the effective Rayleigh number and effective electric Rayleigh number of the
fluid layer, based on the actual temperature gradient and actual potential difference across the depth
of the fluid layer,

Rae = Ra(1 − θm)h
3 = Rah

3
, Te = T h, (16)

where the averaged fluid height is defined as

h = 1

λ

∫ λ

0
h(x, t )dx. (17)

Here the aspect ratio λ represents the dimensionless horizontal extent. Note that in nondimen-
sional form, we have

0 � h ≈ fl � H = 1, (18)

where fl is the total liquid fraction and H is the dimensionless distance between the electrodes. It is
easy to derive the relationship of the effective Rayleigh number and the effective electric Rayleigh
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number:

Te = T

Ra

Rae

h
2 . (19)

One should note that during the definition of the effective electric Rayleigh number, an implicit
assumption is made that the electric potential varies linearly with the height. This is not exactly true
even at the hydrostatic base state. However, according to our verification, the values of the electric
potential φ along the height direction fall between two linear decreasing functions of the height; i.e.,
φ1 = φ0(1 − h) � φ � φ2 = φ0(1.15 − h). In this study, for simplicity we use the lower bound φ1

to replace the real electric potential φ to define the effective electric Rayleigh number. The error of
this approximation is less than 15%, and in the injector and the collector this approximation is most
accurate.

B. Non-Ohmic solid

According to Luo et al. [27], there are two typical kinds of solid, namely, the Ohmic solid and
the non-Ohmic solid, distinguished by the charge-transport mechanism in the solid region. Since
we consider the charge injection case here which does not obey Ohm’s law, a non-Ohmic solid is
considered in this study to keep consistent. In terms of the non-Ohmic solid, the charges in the solid
are mainly transported by mobility under the action of the electric field [27], and since we neglect
the differences of the electrical parameters between solid and liquid phase, the continuity of the
electric current at the interface is straightforward.

One should note that for actual materials the ion mobility of the solid phase would be much
smaller than that of the liquid phase. When considering the variation of the ion mobility between
solid and liquid phase, it is reasonable to expect some different results. Nevertheless, we explore
the EHD melting dynamics with the assumption of the equal electric parameters between the two
phases, since the effect of these parameters on the dynamics of the convective flow have been
analyzed in previous studies [26,27].

C. Boundary conditions

In this study it is assumed that the horizontal electrodes with no-slip conditions are electrically
and thermally perfectly conducting. On lateral walls we adopt symmetrical boundary conditions.
The associated boundary conditions on different physical fields are chosen as shown in Fig. 1. The
specificity of this configuration, compared to the classical electrothermoconvection problem, lies
in the Stefan conditions at the interface between solid and liquid phases. For detailed information,
readers can refer to the reference therein on Rayleigh-Bénard convection with a melting boundary
[7,11].

III. NUMERICAL METHOD AND VALIDATION

The set of coupled equations for velocity, temperature, charge density, and electric potential is
solved with a lattice Boltzmann method, and to calculate the electric field E, a second-order central
difference scheme is applied. The details on the lattice Boltzmann method used here have already
been described in Refs. [26,32,35]. To validate our LBM code, several test cases are performed and
compared with the analytical solutions and available numerical benchmarks.

The electrical equations have one-dimensional electrohydrodynamic equilibrium in which fluid
remains at rest. The analytical solutions in this case can be found in Ref. [41]. In Fig. 2 we plot the
comparison between the analytical solution and numerical results obtained in the case of a steady
hydrostatic state for various grid sizes: 100 × 100, 200 × 200, and 300 × 300. The numerical
results from the two-relaxation-time lattice Boltzmann method (TRT LBM) [35] are also shown for
comparison. A perfect agreement is found for the finest grid of 300 × 300. To verify the applicability
of our code for solid-liquid phase transition processes, the modeling of isothermal melting of pure tin
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FIG. 2. Electric field (left) and charge density (right) in the steady hydrostatic state for C = 10. Our results
with different grid sizes are compared with the analytical solutions [41] and other numerical results [36].

in a rectangular cavity is undertaken. Figure 3 gives the comparison of averaged Nusselt number and
total liquid fraction between our LBM results for grid size 150 × 150 and Mencinger’s [42] results
by using the control volume method (CVM) with an adaptive grid. Also, good consistency can be
seen, which demonstrates that the code we use is adequate for convective solid-liquid phase-change
problems.

IV. ONSET OF FLOW MOTION

Criteria for the onset of flow motion in such a dynamical system where phase change occurs
are much more complex compared to those in a single phase system, which is mainly due to the
interaction between the flow and the melting boundary. In fact, for such a dynamical system, there
is a timescale separation between the growth rate of the convection instability and the evolution of
the background state (e.g., phase interface) [11]. This separation is dependent on the Stefan number
which controls the rate of melting. In the asymptotic limit of the Stefan number tending to zero,
through nonlinear asymptotic analysis, Vasil and Proctor [11] found that the onset of convection
instability occurs at Rae = 1295.78 for a phase-change Rayleigh-Bénard convection system. Since
this regime of very small Stefan number is virtually impossible to reach numerically, most of the
present numerical experiments reported that the onset of Rayleigh-Bénard convection can occur
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FIG. 3. Comparisons of the total liquid fraction (left) and the average Nusselt number (right) with the
control volume method (CVM) with an adaptive grid [42].
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at any value of effective Rayleigh number [4,7,12]. In particular, for melting with a large Stefan
number which corresponds to a fast melting rate and a rapid evolution of interface, both stability
analysis [12] and numerical study [4,7] have found that the Rayleigh-Bénard melting system has
delayed onset events; that is, the critical Rayleigh number is larger than that in the traditional
Rayleigh-Bénard system with Rac = 1707.76 [43].

For the system considered in this paper which is subjected to both temperature gradient and
unipolar injection, in addition to the Stefan number, the criteria of instability are also expected to be
influenced by the electric Rayleigh number which plays the same important role as the Rayleigh
number. It is well known that the combined effects of an electric field and a thermal gradient
simultaneously applied to a horizontal dielectric liquid layer lead to the change of critical Rayleigh
number, and depending on the values of Pr and M, the bifurcation of the electrothermoconvection
can be subcritical or supercritical [15]. In this section, we numerically study the effects of melting
boundary and electric field on the onset of flow motion. We first characterize the timescale separation
of interface and convection in the absence of an electric field and study the effects of a melting
boundary on the onset of Rayleigh-Bénard convection, then we analyze the characteristic timescales
of the electrothermoconvection to compare the strength of the electric force and the buoyancy force,
and finally we investigate the effects of electric force on the onset of flow motion in the presence of
a melting interface.

A. Timescale separation

For the melting problem there is a particular timescale which is associated with the Stefan
number and therefore the evolution of the interface [11]. Since the effects of interface instability
on convection depend strongly on the timescale of interface evolution, it is of great importance to
characterize the separation of interface timescale and that of convection. Different from the weakly
nonlinear analyses which focus on the small Stefan number limit [11] or infinite Prandtl number
limit [5], for now we consider an arbitrary Stefan number and Prandtl number. We start from the
basic Stefan problem that the melting is one dimensional and purely governed by heat diffusion.
The solution to this problem reads (here we only focus on the interface position) [44]

h = 2k
√

αt . (20)

Here h is the location of the phase interface, and k is related to the Stefan number and is the root
of the following transcendental equation,

√
πkek2

erf (k) = St, (21)

where erf(k) is the error function given by

erf (k) = 2√
π

∫ k

0
e−η2

dη. (22)

We show in Fig. 4 the numerical solution of the transcendental relation for St ranging from 0 to
50. It is clear that k is a monotonically increasing function of St.

Differentiating Eq. (20) with respect to time, we obtain the interface evolution velocity for
diffusion-governed melting:

ui = dh

dt
= k

√
α

t
. (23)

From Eq. (23), it is clear that the interface evolution velocity decreases with time, and as expected
ui is an increasing function of St (note that k is an increasing function of St). Besides, the melting rate
of the interface is also dependent on the thermal diffusion coefficient α, which leads to the Prandtl
number dependence of timescale separation in the following. It should be noted that the above
relation still remains valid for the two-dimensional or three-dimensional phase-change process
before the onset of convection, in which the melting is still governed by diffusion.
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FIG. 4. The melting parameter k versus Stefan number St. Clearly, k is an increasing function of the Stefan
number. Such a feature will be very important for the following analysis.

We are mainly interested in the weakly nonlinear regime near the onset of flow motion, where the
melting is still controlled by diffusion, and convection is just setting in. In this situation the relation
Eq. (23) remains valid. We assume that at some moment t the system is in this regime, and the
height of the liquid layer (equal to the position of the interface) is h. In this sensitive regime, even a
tiny perturbation from the interface, i.e., the very small evolution distance of the interface, has great
influence on the convection instability. Without losing generality, we assume that this small distance
is �h. The time for interface evolution from h to h + �h is approximated by

ti = �h

ui
= �h

k

√
t

α
(24)

Corresponding to these small perturbations of the interface, the turnover time of the convection
t f is

t f = h

u f
, (25)

where u f is buoyancy-driven convection velocity, defined as [45]

u f =
√

gβ�θh. (26)

Without losing generality, here we assume that the convection is driven by buoyancy force, and
the effect of Coulomb force is neglected. Substituting the equations of buoyancy-driven convection
velocity, Eq. (26), and the height of the liquid layer, Eq. (20), into the above equation, gives

t f =
√

2k
√

αt

gβ�θ
. (27)

Now we can characterize the timescale separation between the convection and the interface by
the ratio of the two timescales (the timescale of interface evolution and the timescale of convection):

τ = ti
t f

= �h

k

√
gβ�θ

α

1

2k

√
t

α
. (28)
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By introducing the global Rayleigh number, Eq. (15), and the Fourier number, Fo = αt/H2, we
have

τ = �h

kH

√
1

2k
Ra Pr

√
Fo. (29)

The determination of �h is interesting in its own right, although we postpone this problem
to future studies. Since we only focus on the effects of dimensionless parameters on timescale
separation, here we assume that the ratio �h/H is a constant and is substituted by γ , i.e.,

τ = γ

k

√
1

2k
Ra Pr

√
Fo. (30)

We could also make another choice for simplification. Introducing the effective Rayleigh number,
Eq. (16), instead of the global Rayleigh number leads to

τ = γ ′

4k3

√
RaePr/Fo, (31)

where γ ′ = �h/h.
From Eq. (29) we find that the timescale separation of convection and interface is a function

of the Rayleigh number, the Prandtl number, and the Stefan number. Since only in the weakly
nonlinear regime near the onset of flow motion does this relationship remain valid, the Fourier
number in Eq. (29) indeed represents the critical time when convection sets in. It is clear that the
timescale separation and the critical time, as well as the critical Rayleigh number are the as yet
undetermined parameters, and therefore it is difficult to solve Eq. (30) by a mathematic analysis.
However, for a given Rayleigh-Bénard melting system with the set of parameters (i.e., Ra, Pr, and
St) predetermined, this problem is easily solved numerically. On the other hand, since no existing
theory completely accounts for the dependence of the timescale separation on Ra, Pr, and St, it is
instructive to examine how the stability criteria of a Rayleigh-Bénard melting system depend on the
timescale separation. And for the time being, the best method to provide insight into this problem is
through numerical simulation.

B. Dependence on Stefan number and Prandtl number

In the above section we provide the derivation of the timescale separation of the dynamics of the
thermal convection and that of the interface. However, the relationship between stability threshold
and the timescale separation is still questionable. In this section we present systematic numerical
solutions of Rayleigh-Bénard melting systems to investigate the onset of flow motion with different
dimensionless parameters and therefore the timescale separations. To highlight the effects of the
interface on convection instability, here the influence of the electric field is neglected. We introduce
the kinetic energy density in the system to capture the onset of flow motion, which is defined by [7]

eK = 1

Vf

∫
Vf

(
u2

x + u2
y

)
dV . (32)

Figure 5 shows the time evolution of the kinetic energy density as well as the liquid fraction ver-
sus time. Initially, the kinetic energy density of the system is very small (close to 0), and the growth
rate of the liquid fraction in the first phase (represented by I in Fig. 5) is equal to the conduction
melting rate. As time evolves, the system falls into zone II, as shown in Fig. 5, in which we first
observe a sudden jump growth of kinetic energy density associated with the nonlinear overshoot of
the instability, and simultaneously, a departure of convection melting from the conduction melting
occurs. The sharp increase of kinetic energy density is followed by the decreasing fluctuation, and
then the kinetic energy density tends to increase slowly with time. However, at the final stage, which
corresponds to zone III in Fig. 5, we surprisingly observe a clear decrease of kinetic energy density,
and the increase of the liquid fraction also slows down significantly. According to Favier et al.
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FIG. 5. The time evolution of kinetic energy density (blue solid line) and liquid fraction (orange solid line)
versus time. The case of conduction melting which corresponds to the dashed orange line is also shown for
comparison. The vertical dash-dotted lines, corresponding to Fo = 1.55 and 2.8, respectively, divide the figure
into three zones, denoted by I, II, and III.

[7], the departure from the prediction of a purely diffusive solution marks the onset of convection.
This provides a methodology to capture the critical (effective) Rayleigh number of this dynamical
system, which is significantly different from what it is in traditional Rayleigh-Bénard convection
without a melting top boundary [46].

Let us recall the determination of the instability threshold of buoyancy force or/and Coulomb
force driven convection in a single phase [15,46]. Close to the instability threshold, the perturbations
of every physical quantity f grow following an exponential law f = f0eσ t . The growth rate σ is
positive above the instability threshold and negative below it. One should note that under certain
circumstances, the growth rate σ may be complex, leading to the oscillatory behavior, i.e., the
overstability [47,48]. In such a dynamical system with a time-dependent interface and therefore a
continuously expanding liquid layer, we believe that the long-time periodic oscillation cannot occur
so that the discussion about the overstability is beyond the scope of this paper but would nevertheless
prove important in other situations.

Let the system evolve from rest. For given parameters that suffice to induce motion, an interval
of exponential growth will eventually appear, and one can easily determine the growth rate in this
interval. Then through a linear fit of the values of σ versus driving parameters (Ra or/and T) one can
obtain the instability threshold. It should be noted that before the exponential growth interval there
is an initial period of latency in which the velocity is very small and varies erratically. The length
of the period is related to the driving parameter, and a larger driving parameter corresponds to a
shorter duration. For classical buoyancy force or/and Coulomb force driven convection, the duration
of latency has no influence on the instability threshold since the set of parameters is predetermined.

When considering the presence of a melting interface, however, the situation gets more compli-
cated. First, since the interface evolves with time, the dynamical system produces superexponential
growth rather than exponential growth, which makes the traditional method described above invalid.
Second, it is clear that the duration of latency strongly influences the instability threshold since the
background state is time dependent, which makes it difficult to determine the intrinsic instability
threshold. In this situation, a methodology based on Satbhai and Roy [8] is introduced to deter-
mine the nominal instability threshold for the dynamical system exhibiting phase transitions and
convection instability. In Ref. [8] Satbhai and Roy normalized the kinetic energy density by the
transient thermal diffusion speed, and the time when the normalized kinetic energy density e∗

k equals
1 marks the onset of the convection. However, according to our tests this method would be invalid
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FIG. 6. Critical Rayleigh number as a function of Stefan number when Ra = 106 and Pr = 1. Circles
denote the results from the numerical simulations, and the solid line represents the result from nonlinear fitting
which corresponds to Rac = 28 000St0.54. For St = 0.02 we obtain the smallest critical Rayleigh number of
2601.

in a wider range of combinations (Ra, Pr, St) since e∗
k would be always smaller than 1 for weakly

nonlinear systems. To this end, we do not normalize ek and use
√

ek maxek min instead of 1 to mark
the transition from diffusion regime to convective regime.

We first discuss the Stefan number dependence of critical Rayleigh number. In Fig. 6 we plot the
critical Rayleigh number as a function of the Stefan number. The simulations are conducted with the
fixed global Rayleigh number and Prandtl number (Ra = 106, Pr = 1), and the Stefan number varies
from St = 2 × 10−2 to 50. From Eq. (30), it is clear that the main consequence of increasing the
Stefan number is the increase of timescale separation between the turnover time of the convective
cells and the typical timescale of the topography evolution [7]. With the decrease of the Stefan
number, the melting time of the interface increases due to the large amount of latent heat. In this
situation, there is enough time for convection instability to grow in a quasisteady equilibrium of the
interface position, and then we expect to see a clear decrease in the critical Rayleigh number, as
shown in Fig. 6. In the small Stefan number limit case where St = 0.02 which is still numerically
available, the smallest critical Rayleigh number is found to be 2601, larger than the classical value
of 1707.76 for traditional Rayleigh-Bénard convection [43], and larger than what it is for the weakly
nonlinear regime of Vasil and Proctor [11].

Figure 7 shows the critical Rayleigh number as a function of the Prandtl number for (Ra = 105,
St = 0.5). It can be seen from Eq. (30) that, contrary to the Stefan number, a high Prandtl number
corresponds to large timescale separation. As a result, as shown in Fig. 7, the critical Rayleigh
number tends to decrease with Prandtl number. However, there is little dependence of the critical
Rayleigh number on the Prandtl number for Pr > 1 where the critical Rayleigh number stabilizes at
Rac = 6100. Therefore, it is interesting to consider the solutions with a low Prandtl number. Taking
the limit of a very small Prandtl number, one could obtain relatively large value of thermal diffusivity
α; see Eq. (15). In this situation, the interface evolves with a relatively rapid rate so that the time
interval before the melting ends is insufficient to allow the buoyancy-driven instability. As a result,
the fluid still remains at rest until the critical time is reached, whereas at this stage the fluid layer
has already stopped deepening, and therefore the critical Rayleigh number is expected to reach
the global Rayleigh number. In Fig. 7 we show the critical Rayleigh number which is calculated
based on the critical time and corresponding layer depth in Eq. (20). As expected, for Pr = 0.02 and
Pr = 0.04 the critical Rayleigh number is larger than the given global Rayleigh number, as shown
in Fig. 7.
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FIG. 7. The dependence of critical Rayleigh number on Prandtl number for Ra = 105 and St = 0.5. Circles
correspond to the numerical simulations, and the dash-dot line corresponds to Rac = 5000/Pr + 6000. The
critical Rayleigh numbers for Pr = 0.02 and Pr = 0.04 are from the critical time and corresponding layer
depth in Eq. (20). For large Prandtl number we obtain the smallest critical Rayleigh number of 6100.

C. Effect of electric field

In this section, we study the effect of strong unipolar injection on the onset of Rayleigh-Bénard
convection. Since this effect has been well understood in traditional electrothermoconvection sys-
tems, we mainly focus here on the dynamical system where there is a melting boundary. We start
off with the analysis of different characteristic timescales since the bifurcation of electrothermo-
convection is strongly dependent on thermal properties and electrical properties [15]. The relevant
timescales of the problem considered here are the heat diffusion time, the viscous time, the thermal
buoyancy time, the charge diffusion time, the charge drift time, and the Coulomb repulsion time
[45,49]:

tν = H2/ν, tα = H2/α, tb =
√

H/gβ�θ, tχ = H2/D, td = H2/K�φ, tC = ε/Kq0.

(33)
It is easy to derive the following relationships between different timescales,

tα/tν = Pr, tb/tν = 1/ReT , tχ/td = 1/χ, td/tν = 1/ReE ,
(34)

tC/tν = 1/(ReEC), tC/td = 1/C,

where ReT and ReE are the thermal Reynolds number and the electric Reynolds number, respec-
tively, defined as

ReT =
√

gβ�θH3/ν =
√

Ra/Pr, ReE = K�φ/ν = T/M2. (35)

In this section, the following parameters are fixed: Pr = 10, χ = 10−3, C = 10, M = 10, and
ReT > 1, ReE > 1. In this case, the possible smallest timescale is the Coulomb repulsion time tC
or the thermal buoyancy time tb, depending on the values of ReT and ReE ; i.e.,

(i) when ReT � 10ReE , i.e., T �
√

10Ra, the smallest timescale is tb;
(ii) when ReT < 10ReE , i.e., T >

√
10Ra, the smallest timescale is tC .

Corresponding to the relevant timescales, there are also six velocity scales in this system (not
shown). Besides, it is clear that the smallest timescale corresponds to the largest velocity scale (vice
versa). In Fig. 8 we have plotted an equivalent line, the red solid diagonal, which corresponds to
T = (10Ra)0.5, i.e., ReT = 10ReE . Above this curve, we have ReT < 10ReE , and the electric force
is larger than the buoyancy force, while below this curve we have ReT > 10ReE , and the electric
force is smaller than the buoyancy force. One should note that for small values of Rayleigh number
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FIG. 8. The red solid curve corresponds to the equivalent line, T = (10Ra)0.5, which separates the buoy-
ancy force dominated regime and Coulomb force dominated regime. The red dashed curve shows the time
evolution of effective Rayleigh number and effective electric Rayleigh number for Ra = 105 and T = 103. The
black solid curve corresponds to the neutral curve of traditional electrothermoconvection for Pr = 10, M = 10,
C = 10, and χ = 3.

and electric Rayleigh number, the driving forces, e.g., the Coulomb force and buoyancy force, are
insufficient to overcome the viscous damping and put the liquid into motion [27]. As defined in
Eq. (16), the effective Rayleigh number Rae and the effective electric Rayleigh number Te of the
EHD melting system are the functions of the averaged height of the fluid layer which increases
with time. If we choose the set of global parameters (Ra = 105, T = 103) and let the system evolve
from a fluid layer of zero depth, we can obtain the time evolutions of effective Rayleigh number
and effective electric Rayleigh number. We show in Fig. 8 the growth of effective electric Rayleigh
number versus effective Rayleigh number (see the inclined dashed line). This relationship has also
been defined by Eq. (19). From Fig. 8 it is clear that during the melting process, the instantaneous
Coulomb force is always larger than the instantaneous buoyancy force for a fixed layer depth.

In Fig. 8 the neutral stability curve which separates the stable and unstable regions (correspond-
ing to the white and the gray zone, respectively) is also displayed. This neutral stability curve is
predicted for the same parameters with the stability analysis approach by Rodriguez-Luis et al.
[16], and it can also be reproduced by numerical methods [15,20,35]. For single-phase systems with
dielectric liquids, this stability criterion remains, of course, valid. However, for multiphase systems,
it fails. Considering the bifurcation of electroconvection with a solid-liquid interface, Luo et al.
[27] found that the linear stability threshold is larger than that of a single-phase electroconvection
problem due to the useless voltage drop at the solid phase. And for the EHD melting system
considered in this study which possesses both useless voltage drop and temperature gradient at
the solid phase, the stability criteria are expected to be different from the one in the single-phase
problem. In addition, the dynamical effects of the melt interface on convective instability are also
likely to have influence on the onset of flow motion. As discussed before, for the melting with a large
Stefan number which means a fast melting, the Rayleigh-Bénard melting system usually delays the
onset of flow [4,12]. When considering the coupled effects of the melting interface and unipolar
injection, the numerical solution of electrothermoconvection in an EHD melting system also bears
out this expectation, as shown in Fig. 8.

From Fig. 8, one observes that, starting with the initial period of latency when the kinetic energy
density is very small, the dynamical EHD system bifurcates to the first interval of rapid growth, and
following this period, the system enters the second interval with a smaller growth rate. It is clear
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FIG. 9. Critical Rayleigh number of the fluid layer as a function of the global electric Rayleigh number for
Ra = 104 and Ra = 2 × 104, respectively.

that the first interval of rapid growth corresponds to the onset of convective instability. However,
as shown in Fig. 8, this bifurcation of convection is far away from the neutral stability curve of the
traditional electrothermoconvection as expected and, particularly, it corresponds to a larger effective
Rayleigh number and effective electric Rayleigh number (see points A and B in the figure). This
means that, for electrothermoconvection, the delay of onset is also a notable feature when including
the presence of a melting interface.

For a more detailed analysis of unipolar injection dependence of the dynamical bifurcations of
Rayleigh-Bénard convection, we restrict our attention to two specific sets of numerical simulations
with Ra = 104 and 2 × 104 and electric Rayleigh number T varying from 100 to 2000. The results
are summarized in Fig. 9. One should note that the gravitational potential energy gradient, an
important driving factor in Rayleigh-Bénard systems, is constant in both space and time [50].
And since the development of the instability is very slow at near-critical Rayleigh numbers, the
computation has to be carried out for a long time before stable convection is fully developed [46].
This period of latency in which the instability is developing and the velocity is very small and
varies erratically is indeed the reason why the delay of onset is one particular notable feature of
Stefan-type systems. However, in the EHD case there is a highly nonlinear coupling between charge
distribution and electric field in space charge transport equation [see Eqs. (6) and (7)]. Hence, the
electrical potential energy gradient is no longer a constant in both space and time [50]. As shown in
Fig. 9, when considering the effects of EHD in the original system, we observe that as the electric
field strength increases, the critical Rayleigh number decreases significantly. For a lower Rayleigh
number, which corresponds to weaker buoyancy-driven instability, we observe a much sharper
decrease of convection threshold compared with the case having a higher Rayleigh number. And
particularly, when the Coulomb force is strong enough so that the system enters the Coulomb force
dominated regime, we see that the critical Rayleigh number is lower than the critical value 1707.76
[43] for the traditional Rayleigh-Bénard convection. Figure 10 shows the critical electric Rayleigh
number as a function of the global electric Rayleigh number. As can be seen, Tc is an increasing
function of T for small and moderate values of T. And interestingly, there is some dependence with
the Rayleigh number, except the conditions for the large enough global electric Rayleigh numbers.

V. PATTERN FORMATION

In the above section we study the onset of flow motion in the presence of melting boundary and
unipolar injection. In fact, in addition to the modification of convection instability, for the convection
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FIG. 10. Critical electric Rayleigh number of the fluid layer as a function of the global electric Rayleigh
number for Ra = 104 and Ra = 2 × 104, respectively.

with a melting top boundary there is another general feature, which is the robust locking in of
spatially complex patterns [11]. In this section we present two particular numerical solutions to
obtain insight into the interesting structure, and since not all possible locked-in patterns are equally
stable, we will show how they are reconstructed by the electric field.

A. Locked-in behavior

First, to highlight the presence of the feedback from the Stefan condition of melting top boundary,
we neglect the effect of the Coulomb force. In this case the simulation is carried out with the
parameters taken as Ra = 105, Pr = 10, and St = 1. We use a reasonably large aspect ratio λ = 8
to minimize the horizontal confinement effect associated with the periodic boundary conditions [7].
The number of grids is chosen as 2400 × 300. We show in Fig. 11 the interface position as a function
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FIG. 11. A series of plots showing the time evolution of topography for Ra = 105, Pr = 10, and St = 1.
The color of the curves corresponds to the curvature defined by Eq. (36). The topography begins with a planar
shape in the diffusive regime, then settles into regular locked-in patterns when convection sets in, and this
locked-in behavior persists until the melting ends.
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of the horizontal coordinate x at different times. The color of the curves corresponds to the local
signed curvature, i.e.,

k(x, Fo) = ∂xxh

[1 + (∂xh)2]
3/2 . (36)

The maximum value of the curvature corresponds to cusps joining two cavities of topography
and is represented by yellow.

As shown in Fig. 11, at early times when the solution is diffusive we observe the flat interface
which evolves upward. As time evolves, the solution would leave the diffusive regime and enter the
convective regime. Since the evolution of the topography is related to the inhomogeneous heat flux
from the underlying convection rolls, we observe in the convective regime the nonplanar shape of
the topography. We show in Fig. 12(a) the streamlines and isotherms at different times during the
simulation. It is clearly seen that when the liquid depth reaches its critical value the convection sets
in, with 28 convective cells across the whole domain. As the interface progresses, this initial set
of convective rolls is vertically stretched. One particularly interesting feature of Figs. 11 and 12(a)
is that the horizontal wave number of the topography is equal to that of the underlying convective
rolls, and this wave number remains constant as the fluid depth increases. The long-time behavior
of the wave number of the topography and the convection is surprising. Theoretically, this nonlinear
equilibrium state is potentially unstable because the continuous vertical stretching of the fluid layer
does not allow long-time equilibrium and the dynamical system will eventually evolve into an
inherently time-dependent fashion. The work of Favier et al. [7] bears out this prediction whereas
in our simulation we obtain different results. In fact, the long-time behavior of the wave number
shown in Figs. 11 and 12(a) corresponds to the locked-in behavior [11].

According to Vasil and Proctor [11], for a long time, the dynamical Rayleigh-Bénard system
grows algebraically in time, but with a locked-in spatial pattern that is determined by initial
conditions. As shown in Figs. 11 and 12(a), our simulation follows the prediction of Vasil and
Proctor [11]. In order to show that the locked-in behavior is a consequence of the upper boundary
not being exactly planar, we perform four additional simulations with exactly the same parameters
as above. The aspect ratios and the Rayleigh numbers are chosen based on the average layer depths
at different times shown in Fig. 12(a). The only difference is that in the additional cases we consider
the classical Rayleigh-Bénard convection which has a fixed and planar upper boundary. As shown in
Fig. 12(a), with the increases of the Rayleigh number and the cavity height, the values of convective
rolls decrease from 23 to 15, and the convective flow gradually loses its symmetry. This clearly
shows that the locked-in pattern of the dynamical system is a consequence of the presence of the
feedback of the top melting boundary, which is consistent with the conclusion of Vasil and Proctor
[11].

Here we discuss the reason why in the work of Favier et al. [7] the dynamically evolving set of
convective rolls cannot persist against the continuous vertical stretching of the fluid domain for a
long time. It should be noted that for larger timescale separation the convection rolls tend to be less
elongated, because the flow can quickly bifurcate to a new, more unstable set of convective rolls
without any significant change in the average fluid depth [7]. Although this conclusion is drawn by
reducing the Stefan number, it nevertheless remains valid when increasing the Rayleigh number to
increase timescale separation due to the Rayleigh number dependence on timescale separation; see
Eq. (30). In the simulation of Favier et al. [7] the Stefan number is identical with our simulation
(St = 1), while the Rayleigh number is chosen as Ra = 108, much larger than what it is in our
simulation (Ra = 105). It is clear that for Ra = 108 the evolution of the convection occurs on a
much faster timescale than that for Ra = 105. Therefore, the locked-in effects of topography on
convection are weaker, and the stronger instability of convection is expected to break the locked-in
patterns, resulting in the significant topography deformations. This further verifies the accuracy of
the analysis of the timescale separation in the previous section.
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FIG. 12. (a) Visualizations of the total numerical domain for Rayleigh-Bénard melting. The streamlines are
shown on the left while the isotherms are shown on the right (red and blue colors correspond to θ = 1 and 0,
respectively). From up to down, Fo = 1.5, 2, 2.5, 3, respectively. (b) Streamlines for classical Rayleigh-Bénard
convection with aspect ratios and effective Rayleigh numbers corresponding to (a).

Figures 13(a) and 13(b) show a three-dimensional view of the spatiotemporal evolution of the
fluid velocity and the spatiotemporal evolution of the temperature profile at the midheight of the
fluid domain, U (x, y = h/2, Fo) and θ (x, y = h/2, Fo), respectively. As shown in Fig. 13, at
early times the solution is simply diffusive and the velocity distribution is a plane layer, which
produces a uniform temperature profile; i.e.,

θ (y = h/2) ≈ (Th − Tc)/2 = 0.5. (37)

It is interesting that after the nonlinear overshoot of the instability, we observed the decreasing
fluctuation of the initial array convective rolls, which is consistent with the result shown in Fig. 5.
In addition, we observe that the number of the rising hot plumes is equal to the wave number of the
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FIG. 13. (a) Three-dimensional view of the spatiotemporal evolution of the fluid velocity. (b) Spatiotem-
poral evolution of the temperature at the middle of the fluid layer for Ra = 105, Pr = 10, and St = 1. The dark
blue color represents θ = 0 while the bright red color represents θ = 1. Time increases from bottom to top.

topography, which is a reflection of the impingement of the convective rolls on the interface that
drive the intense localized melting events with large melting rates. Since the system evolves with
a locked-in spatial pattern, as time evolves the thermal rising plumes and cold sinking plumes are
extremely stable and do not seem to move horizontally as they did in Ref. [7].
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FIG. 14. A series of plots showing the time evolution of topography for Ra = 105, Pr = 10, St = 1, T =
103, C = 10, M = 10, and χ = 10−3. The topography begins with the planar shape in the diffusive regime,
then settles into regular locked-in patterns when convection sets in, and eventually loses its symmetry due to
the presence of Coulomb force.

B. Second bifurcation under EHD

For now, we know that our system contains the potential to produce self-similarly growing
locked-in patterns. For moderate Rayleigh numbers (e.g., Ra = 105), due to the strong locked-in
effects (stabilization) of the topography, the wavelength of the topography and convection rolls
remains identical and constant; for large Rayleigh numbers, however, the dynamical system is
expected to exhibit inevitable transitions between steady, periodic, and chaotic solutions [7]. This
section’s goal is to examine the second bifurcation of convection for a moderate Rayleigh number
in the presence of an electric field which destabilizes the initial set of convection rolls. We show
this type of behavior in Figs. 14 and 15 with similar thermophysical parameters as considered in
the previous case but having electrical parameters of T = 103, M = 10, C = 10, and χ = 10−3.
We also choose λ = 8 and the number of grids of 2400 × 300 in this simulation. This solution
is somewhat similar to that with consideration of the large Rayleigh number dynamical system by
Favier et al. [7]. In Fig. 14 we clearly see the three different regimes in the simulation: The first
two share a strong analogy with the case described in Sec. V A, while the last one exhibits more
complex time-dependent dynamics.

The successive bifurcations between different roll sizes is clearly visible for large layer depth.
As shown in Figs. 14 and 15, at early times when Rae and Te are relative small, the stabilizing
effect that the topography exerts on the flow leads to the locked-in patterns which are similar to
those for the previous case with no EHD (see Fig. 13), but the wave number of the former is
larger. As time evolves, the nonlinear saturation of the secondary convection instability leads to
the second bifurcation which corresponds to the merging of thermal rising plumes. The detailed
nature of the second bifurcation is associated with the horizontally averaged mean flow, which has
been qualitatively understood by Favier et al. [7]. As shown in Fig. 15(b), the second bifurcation
corresponds to the merging of thermal rising plumes, and once the initial set of rolls is disrupted
by the horizontal mean flow, a new set of convection rolls sets in, which has a larger horizontal
wavelength; see Figs. 14 and Fig. 15(a). Since the buoyancy and Coulomb forces keep increasing
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FIG. 15. (a) Three-dimensional view of the spatiotemporal evolution of the fluid velocity. (b) Spatiotem-
poral evolution of the temperature at the middle of the fluid layer for Ra = 105, Pr = 10, St = 1, T = 103,
C = 10, M = 10, and χ = 10−3. The dark blue color represents q = 0 while the bright red color represents
q = 10. Time increases from bottom to top.

with time, this destabilization of convection rolls is expected to repeat itself and one might expect
its dynamic behavior to become more and more complex, transiting from stable to periodic and
eventually chaotic solutions.
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FIG. 16. Spatiotemporal evolution of the charge density at the middle of the fluid layer for Ra = 105,
Pr = 10, St = 1, T = 103, C = 10, M = 10, and χ = 10−3. The black color represents q = 0 while the bright
golden color represents q = 10. Time increases from bottom to top.

Here we discuss the underlying mechanism responsible for the complicated behaviors in the EHD
case shown in this section. As shown in Fig. 8, the instantaneous Coulomb force is always larger than
the instantaneous buoyancy force for given parameters. It is therefore believed that the complicated
behaviors of neighbor cells merging are due to the Coulomb force. This is indeed possible since the
complex electroconvective instability arises when the effective electric Rayleigh number exceeds
a certain stability threshold [51], and when considering the strong unipolar charge injection, it is
found that Rayleigh-Bénard secondary instability tends to be suppressed by EHD [52]. In detail,
for electroconvection in a cavity having an aspect ratio of 0.614 with the free boundary conditions
for lateral walls, at T = 213 (M = 10, C = 10) Hopf bifurcation occurs and the one-cell convective
flow tends to oscillate; then at T = 281 the convection bifurcates into a two-cell symmetric steady
state. If T is increased to T = 419 the reflection symmetry of the two-cell convection will be broken
by another Hopf bifurcation; furthermore, if T keeps increasing the chaotic convection becomes
present [51]. In comparison, classical Rayleigh-Bénard convection (with an aspect ratio of 2) does
not show the self-sustained periodic oscillation until the Rayleigh number reaches Ra = 105 for
Pr = 10 [52], and one should note that the present dynamical system is limited to Rae < 105 during
simulation. According to Li et al. [52], when strong unipolar injection from below is applied,
the secondary instability of Rayleigh-Bénard convection can be inhibited if the electric Rayleigh
number is smaller than 1000. In our simulation, the inevitable transitions between steady and chaotic
solution are clearly observed but just delayed by the presence of the topography. Compared with
the classical electrothermoconvection, the transitions reappear at much larger effective Rayleigh
numbers and effective electric Rayleigh numbers. Therefore, it is believed that the more and more
complex dynamics is not so much a consequence of the increasing buoyancy, but rather of the
presence of the electroconvective instability.

Finally, it is interesting to consider the spatiotemporal evolution of charge density which is shown
in Fig. 16. Before that, one should note that charge density may change via three mechanisms:
drift under the action of electric field, convection by the velocity field of the fluid, and charge
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diffusion [53]. Although it is common practice to neglect the charge diffusion due to the smallness
of the coefficient, we nevertheless consider this term in our simulation to keep the nature of the
charge conservation equation from a second-order elliptic partial-differential equation to a first-
order hyperbolic one [53]. As seen in Fig. 16, electroplumes are generated when convection rolls
set in, and with the appearance of unsteady convection, the distribution of charge density presents
chaotic characteristics, dependent on time and space. In addition to charged plumes, we also observe
in Fig. 16 that some certain regions cannot be reached by the ions, and hence are void of charge.
This is due to the fact that when Coulomb-driven convection sets in, it always takes place with a
maximum velocity greater than the ion drift velocity and therefore a region develops where ions
cannot enter [54]. The structure of the charge density contours with the region void of charge is a
characteristic feature of EHD problems, and many previous numerical simulations have predicted
this behavior [20,26,28,35].

VI. CONCLUSIONS

We have studied the influence of melting boundary and electric field on the onset and pattern
formation of Rayleigh-Bénard convection. Starting with the one-dimensional Stefan problem, we
have derived the equations that characterize the timescale separation between the turnover time
of the convective cells and the typical timescale of evolution of the topography. This separation
is dependent on the inherent dimensionless parameters of convective melting, i.e., Ra, Pr, and St.
By decreasing the Stefan number or increasing the Prandtl number to compare the dependence of
the onset of convection on separation, we found that the critical Rayleigh number is a decreasing
function of timescale separation. In the case of EHD melting, the onset of flow motion would be
advanced when increasing the electric field and, particularly, the critical Rayleigh number can be
smaller than the classical value (Rac = 1707.76) for traditional Rayleigh-Bénard convection [43] if
the electric field is strong enough.

For Ra = 105, Pr = 10, and St = 1, we have predicted the locked-in spatial pattern which was
derived by Vasil and Proctor through weakly nonlinear analysis [11]. Due to the locked-in effects
that topography imprints on convection, the wave number of the topography and the underlying
convection remain identical and constant for a long time once the flow motion sets in. However,
this locked-in pattern would be broken down when there is a strong enough electric field across
the domain inducing the strong electroconvective instability to destabilize the system. Finally,
we have shown the spatiotemporal evolution of charge density in the EHD case, in which we
observed interesting phenomena associated with the competition of the three different kinds of
charge-transport mechanisms.
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