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Penetrative turbulence, which occurs in a convectively unstable fluid layer and penetrates
into an adjacent, originally stably stratified layer, is numerically and theoretically analyzed.
As example we pick the canonical Rayleigh-Bénard geometry, but now with the bottom
plate temperature Tb > 4 ◦C, the top plate temperature Tt � 4 ◦C, and the density maximum
around Tm ≈ 4 ◦C in between, resulting in penetrative turbulence. Next to the Rayleigh
number Ra, the crucial new control parameter as compared to standard Rayleigh-Bénard
convection is the density inversion parameter θm ≡ (Tm − Tt )/(Tb − Tt ). The crucial re-
sponse parameters are the relative mean midheight temperature θc and the overall heat
transfer (i.e., the Nusselt number Nu). We numerically show (for Ra up to 1010) and
theoretically derive that θc(θm ) and Nu(θm )/Nu(0) are universally (i.e., independently of
Ra) determined only by the density inversion parameter θm and succeed to derive these
universal dependences. In particular, θc(θm ) = (1 + θ2

m )/2, which holds for θm below a
Ra-dependent critical value, beyond which θc(θm ) sharply decreases and drops down to
θc = 1/2 at θm = θm,c. This critical density inversion parameter θm,c can be precisely
predicted by a linear stability analysis. Finally, we numerically identify and discuss rare
transitions between different turbulent flow states for large θm.

DOI: 10.1103/PhysRevFluids.6.063502

I. INTRODUCTION

Turbulent Rayleigh-Bénard convection (RBC) [1–3], which occurs in a fluid layer due to a
temperature difference at its bottom and top surfaces, is the paradigmatic model system to study
thermally driven turbulence. Usually it is considered within the Oberbeck-Boussinesq (OB) ap-
proximation, in which all fluid properties are assumed to be constant, apart from the density in
the buoyancy term of the momentum equation, where it is assumed to be linearly dependent on
the temperature. However, in many cases in nature and technology, the density of many fluids is
strongly nonlinear and even nonmonotonic with the temperature, which significantly influences the
flow patterns and the heat transport properties in the system. The most famous and relevant example
is water, for which the density is maximal at Tm ≈ 4 ◦C. This density maximum has a dramatic
and pronounced influence on many natural phenomena like the freezing of lakes and estuaries, and
the survival of fauna in shallow waters in winter [4–7], as they do not freeze from the bottom to
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the top. It also strongly affects the melting of ice in water. However, also here RBC can be used
again as paradigmatic model system, namely, when Tm is in between the top and bottom plate
temperature. This is an example of so-called penetrative convection [8,9], where convection in a
thermally unstable layer penetrates into the adjacent stable layers. Penetrative convection is not only
important for water around 4 ◦C and freezing lakes, etc., but also in many astrophysical settings, for
example, in the tachocline of the Sun [10] and possibly in the liquid core of the Earth [11] and in
the Jupiter’s atmosphere [12].

The control parameters in this problem are the Prandtl number Pr ≡ ν/κ , where ν is the
kinematic viscosity and κ the thermal diffusivity of the fluid, the aspect ratio � ≡ W/H as ratio of
the width W and the height H of the domain, and the Rayleigh number Ra ≡ gα�qH3/νκ , where
H is the height of the cell and g the gravitational acceleration. Note that the nonlinear dependence
of Ra on the temperature difference � ≡ Tb − Tt between the hot bottom plate temperate Tb > Tm

and the cold top plate temperature Tt � Tm reflects the nonlinear relationship between the density
and the temperature around the density maximum, namely, ρ = ρm(1 − α|T − Tm|q) [13], where
ρm ≈ 1000 kg/m3 is the maximum density at the temperature Tm ≈ 4 ◦C. Here we take the measured
material properties for water, namely q = 1.895 and α = 9.30 × 10−6 (K)−q as isobaric thermal
expansion coefficient. Apart from the density, all other material properties of the fluid are assumed
to be constant. The crucial new control parameter in penetrative convection as compared to standard
RBC is the density inversion parameter θm ≡ (Tm − Tt )/�. We consider 0 � θm < 1, with the
limiting case θm = 0 (or Tt = Tm) without a stably stratified region and thus being closest to standard
RBC and the other limiting case θm = 1 (or Tb = Tm) being fully stably stratified.

The response parameters of the system are the Nusselt number Nu ≡ QH/(k�) and the Reynolds
number Re ≡ UH/ν, which indicate the nondimensional heat transport and flow strength in the
system, respectively. Here Q is the heat flux crossing the system, k the thermal conductivity, and
U ≡ 〈u2〉1/2

V, t the time and volume averaged root-mean-square velocity of the flow. The central new
response parameter in penetrative convection as compared to standard RBC is the mean temperature
Tc at midheight, or, when nondimensionalized, θc = (Tc − Tt )/�. Whereas in standard RBC θc =
1/2 for symmetry reasons, here in penetrative convection 1/2 � θc < 1, reflecting that the hot fluid
from the bottom unstably stratified region can more easily reach the center than the cold fluid from
top stably stratified region.

Early studies of penetrative RBC focused on the stability of the flows near the onset of
convection [8,9,14–17]. Recently, turbulent penetrative RBC attracted significant attention. These
studies considered either cold water near 4 ◦C [7,18–20] or other fluids with a density maximum
at certain conditions [21–27]. Much attention has been paid to mixing, the generation of internal
waves, mean flows, global heat and momentum transport, and so on. Reference [18] studied the
internal gravity wave excitation by convection of cold water near 4 ◦C using two-dimensional (2D)
direct numerical simulations (DNS). Ref. [22] found that oscillating mean flow spontaneously
develops from turbulently generated internal waves. Reference [7] studied coupling of icing and
turbulent convection of cold water near 4 ◦C, and found that the density maximum effect can
drastically change system behaviors. Very recently, Refs. [26,27] studied penetrative convection
in the background of subglacial lakes and found that dynamic flows create potentially habitable
conditions in Antarctic subglacial lakes.

Global heat and momentum in penetrative RBC of cold water near 4 ◦C were studied in
Ref. [19]. It was shown that for 0 � θm � 0.9, the mean central temperature θc, the normalized
Nusselt number Nu(θm)/Nu(0), and the normalized Reynolds number Re(θ )/Re(0) are almost
independent of Ra and thus to be claimed to be universal. However, in this study we will
show that when extending the range of the control parameter θm towards 1 (i.e., towards the
fully stably stratified case), the center temperature θc strongly depends on Ra. Moreover, we
propose a model for the dependence of this key response parameter θc on the density inversion
parameter θm and demonstrate its excellent agreement with the DNS data. Also the dependence
of the other central response parameter, namely, the Nusselt number, on θm is theoretically
explained.
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II. SIMULATION DETAILS

The dimensionless governing equations are the following:

∇ · u = 0, (1)

∂u/∂t + u · ∇u =
√

Pr/Ra∇2u − ∇p + |θ − θm|q�ez, (2)

∂θ/∂t + u · ∇θ = 1/
√

Ra Pr∇2θ, (3)

where u = (u,w), θ , and p are the velocity, temperature, and pressure, respectively. For nondi-
mensionalization, we choose H and Uf = (gα�qH )1/2 as the reference length and velocity. The
reference time is free-fall time t f = H/Uf . Temperature is nondimensionalized as θ = (T − Tt )/�.
We consider periodic boundary conditions (BCs) in the horizontal direction and no-slip isothermal
BCs at the top and bottom boundaries.

We perform 2D DNS in a broad Ra range, 107 � Ra � 1010, with fixed aspect ratio � = 2. Pr
is fixed to 11.57 in all simulations, which corresponds to the value for water at 4 ◦C. In addition,
we perform 3D DNS for Ra = 107 and � = 4. The governing equations are solved with the second-
order finite-difference code AFiD [28,29], which has already been extensively used to study RBC;
see, e.g., Refs. [30,31]. The used staggered grids satisfy the resolution requirements for DNS [32].
Details on the simulations can be found in Appendix A.

III. RESULTS

Figure 1 gives an idea of the flow organization. Figures 1(a)–1(c) show 2D instantaneous
temperature fields for different θm and Ra = 1010. For θm > 0, only the lower layer in the cell
can be convectively unstable. For not too large θm, convection penetrates from the lower layer
into the upper, gravitationally stable, layer, and this increases the bulk temperature. For θm = 0.5
[Fig. 1(a)], the convective flow occupies almost the whole domain, while for θm = 0.9 [Fig. 1(b)]
a stably stratified layer forms near the top plate. For even larger θm = 0.965 [Fig. 1(c)], the flow
stratification takes place nearly in the whole cell. A similar change of the global flow structure
with increasing θm is observed in the 3D DNS [Figs. 1(d)–1(f)]. For the penetrative convection with
θm > 0, an interface between the stratified and convective regions is identified, below which exists
vigorous turbulent convection, and above which the flow is stably stratified and generates internal
waves [18,20,22,23].

The height at which time- and horizontally averaged temperature reaches 4 ◦C is displayed in
Fig. 2. Again, it is seen that for relatively small θm � 0.5, the convection region occupies almost
the whole domain. In contrast, for large θm � 0.5, the area of the convective region significantly
decreases with increasing θm. Up to a critical θm = θm,c, the flow is in a conduction state without
penetrative convection, and therefore Hm/H = 1 − θm.

The intrusion of penetrating convection from the convectively unstable regions to convectively
stable ones resembles those observed in internally heated convection [33–35] and horizontal con-
vection [36–38], as well as in counterrotating Taylor-Couette flows, where stratified angular velocity
zones are located near the outer cylinder [39–41].

The time- and area-averaged temperature profiles and their dependences on θm for Ra = 1010

are presented in Fig. 3(a). It shows that for θm = 0, the profile is similar to that in the OB case,
with the mean central temperature θc being close to the arithmetic mean of the top and bottom
temperatures (θc = 1/2). One can see that with increasing θm, the temperature in the thermally
unstable, lower zone gradually increases. However, the mean temperature θc at midheight behaves
nonmonotonically. With increasing θm, it first increases as long as the half height location (z/H =
0.5) lies in the thermally unstable region, but then it starts to decrease back to the arithmetic mean of
the top and bottom temperatures, once the midheight location is swallowed up by the upper stably
stratified region.
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FIG. 1. Instantaneous temperature fields for different θm in (a–c) 2D DNS for Ra = 1010 and � = 2 and
(d–f) 3D DNS for Ra = 107 and � = 4: (a) θm = 0.5, (b) θm = 0.9, (c) θm = 0.965, (d) θm = 0.3, (e) θm = 0.7,
and (f) θm = 0.87.

Figure 3(b) shows the mean central temperature θc as function of θm, for both the 2D and the 3D
cases. We note that the collapse of the 3D data with the 2D data confirms the similarity between 2D
and 3D RBC for large Pr [42]. One can observe two different regimes: in regime I, for low-density

FIG. 2. The dimensionless height Hm/H at which the time- and horizontally averaged temperature is 4 ◦C,
namely, θ = θm. The dashed line denotes Hm/H when the flow is in a conduction state without penetrative
convection.
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FIG. 3. (a) Time- and horizontally averaged temperature profiles for different θm, as obtained in the 2D
DNS for Ra = 1010 and � = 2. (b) Time- and horizontally averaged temperature at midheight, θc, as function
of θm, in the 2D (open symbols) and 3D (closed symbols) cases for different Ra. The solid line shows the
theoretical prediction θc = (1 + θ2

m )/2, which is universal for all Ra. Predictions of the linear stability analysis
for the critical θm = θm,c, where θc drops back to 1/2, depend on Ra and are shown with the dashed vertical
lines of the colors that correspond to the DNS data. (c) The critical θm,c versus Ra, as obtained from the 2D
DNS (open symbols), linear stability analysis (closed symbols and their fit shown with the solid line), and the
theoretical model θm,c = 1 − (Rac/Ra)1/(3+q), with Rac = 1171 and q = 1.895 (dashed line).

inversion parameter 0 � θm 
 1, the central temperature θc monotonically increases with increasing
θm, and all the data collapse onto a single curve, independently of Ra. However, in regime II, for θm

close to 1, with increasing θm the central temperature θc extremely sharply drops to the value 1/2.
We denote the value of θm, at which θc reaches 1/2 in regime II, as θm,c, i.e., θc(θ = θm,c) = 1/2.
It is clear that θm,c increases with increasing Ra and approaches 1 for Ra → ∞, implying that for
strong enough thermal driving the whole cell is filled with penetrative turbulence, even for large
density inversion parameter close to 1.

We now set out to theoretically explain the universal dependence of the central temperature θc

on the control parameter θm in regime I. First, we notice that for θm = 0, the temperature of the
fluid is larger than Tm through the entire convection cell and therefore the situation is similar to the
OB case. Thus, the central temperature can be well approximated by the arithmetic mean of the
top and bottom temperatures, i.e., θc = 1/2. With increasing θm, the height, at which the time- and
area-averaged temperature equals Tm, gradually decreases from the top towards the bottom, and at a
certain moment arrives at the midheight, which indicates the end of regime I. Therefore, when θm →
1 within regime I, the central temperature θc tends to θm and limθm→1

1−θc
1−θm

= 1. Applying L’Hôpital’s

rule to this limit, we obtain that limθm→1
dθc
dθm

= 1. Thus, for θm → 1, one can take θc = θm and
dθc/dθm = 1. This together with θc = 1/2 at θm = 0 gives a simple polynomial approximation of
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the mean central temperature within the regime I,

θc = (
1 + θ2

m

)/
2. (4)

Figure 3(b) demonstrates that the model (4) accurately represents the 2D and 3D DNS data within
regime I.

Next we will explain the abrupt drop of the central temperature near θm,c as function of Ra.
Therefore, for any given Ra, we must find θm = θm,c, at which the central temperature θc drops back
to 1/2 in regime II; see Fig. 3(b). As discussed above, the lower layer of the cell is convectively
unstable for small θm. However, the situation changes dramatically for larger θm, when the Rayleigh
number Ra
 associated with this layer becomes as small as the critical Rayleigh number Rac for the
onset of convection in a domain with no-slip BCs at its lower surface and free-slip BCs at its top
surface, at which the temperature is kept equal to Tm. When at a certain θm = θm,c the value of Ra


becomes equal to Rac, the lower layer becomes convectively stable and stratified as the upper layer,
and therefore the central temperature in the whole cell becomes equal to the arithmetic mean of the
top and bottom temperatures of the cell, i.e., θc = 1/2.

The Rayleigh number Ra
 associated with such stratified lower layer is related to Ra as Ra
 =
(1 − θm,c)3+qRa. This is due to the reduction of the height of the layer to (1 − θm,c)H , compared to
the height H of the whole cell, and due to the reduction of the temperature difference between the
boundaries of the layer to (1 − θm,c)�, compared to the temperature difference � at the cell plates.
Equating Ra
 = Rac, we obtain the prediction

θm,c = 1 − (Rac/Ra)1/(3+q). (5)

The critical Rac for the onset of convection in an infinite layer of cold water with the top temperature
Tm, no-slip BCs at the bottom and free-slip BCs at the top equals Rac = 1171, as we calculated using
linear stability analysis (LSA); see also Appendix B for more information. The results produced by
the model (5) are plotted as dashed line in Fig. 3(c). The model prediction for the behavior of θm,c

as function of Ra is consistent with the DNS results (open symbols).
Even more accurate predictions of θm,c can be obtained with the LSA applied to a 2D convection

cell filled with cold water, for the cell aspect ratio � = 2, and periodic BC at the side walls. Thus, for
any given θm = θm,c, the LSA provides the critical Rayleigh number Ra for the onset of convection;
a relation between them is precisely described by θm,c = 1 − (1171/Ra)1/4.524; see Appendix B.
These predictions by the LSA are in a good agreement with the DNS data, as can be seen in Fig. 3(c).

We now focus on how the Nusselt number Nu depends on the control parameter θm and develop
a model for the reduced Nusselt number, Nu(θm)/Nu(θm = 0), based on our knowledge on the heat
transport properties in the OB case. Figure 4(a) shows that for all Ra, the absolute values of Nu(θm)
monotonically decrease with increasing θm. After normalization using Nu(θm = 0), the data well
collapse onto a single curve, as shown in Fig. 4(b).

How to account for this universal relationship? For θm = 0, the whole RBC cell can be considered
as an almost OB one, which is characterized by Ra and the corresponding critical Rayleigh number
Rac,0 for the onset of convection in this cell. For θm > 0, only the lower layer can be treated as an
OB cell. The temperature at this layer’s upper surface is Tm and the corresponding Rayleigh number
and critical Rayleigh number are Ra
 and Rac, respectively. From 2D OB DNS with Pr = 10 [30]
we know that in the considered Ra range, Nu scales as (Ra/Rac,0)γ with γ ≈ 0.27. Therefore
Nu(θm)/Nu(0) = (Ra
/Rac)γ (Rac,0/Ra)γ = (Ra
/Ra)γ (Rac,0/Rac)γ . Due to the reduced height
and the temperature drop in the lower layer compared to the whole RBC cell [by almost (1 − θm),
as a first approximation], the value of Ra
/Ra can be approximated as (1 − θm)4. The critical
Rayleigh numbers for the onset of convection can be approximated as Rac ∼ [1 + (1 − θm)2/�2]2

and Rac,0 ∼ [1 + 1/�2]2 (see more information in Appendix B), which altogether lead to

Nu(θm)

Nu(0)
≈

[
(1 + �2)(1 − θm)2

�2 + (1 − θm)2

]2γ

=
[

5(1 − θm)2

4 + (1 − θm)2

]0.54

. (6)

063502-6



UNIVERSAL PROPERTIES OF PENETRATIVE TURBULENT …

FIG. 4. Absolute and normalized Nusselt and Reynolds numbers as function of the density inversion
parameter θm for different Ra: (a) absolute Nusselt number Nu, (b) normalized Nusselt number Nu(θm )/Nu(0),
(c) absolute Reynolds number Re, (d) normalized Reynolds number Re(θm )/Re(0). Normalization was carried
out using the corresponding values for θm = 0. The black line in panel (b) shows the theoretical model, Eq. (6),
and the lines in panels (a) and (c) are used to guide the eye. Panels (a), (c), and (d) share the same legend as
that in panel (b).

This prediction is consistent with the general trend of the normalized Nusselt number, as can be
seen in Fig. 4(b).

Figure 4(c) shows the global Reynolds number as function of θm for both the 2D and 3D cases for
various Ra. It is seen that Re monotonically decreases with increasing θm. The normalized Reynolds
number Re(θm)/Re(0) also shows a universal dependence on θm (Fig. 4d), just as Nu(θm)/Nu(0)
shown in Fig. 4(b).

Finally, we address the (rare) transitions between different flow states for large θm. It was
found that the Reynolds number ratio Rez/Rex can well differentiate different convection roll
states [30,31]. Here Rez = 〈w2〉1/2

V,t H/ν is the volume averaged vertical Reynolds number and

Rex = 〈u2〉1/2
V,t H/ν the horizontal one. For Ra = 1010, Fig. 5(a) shows that the statistically stable

two-roll state, as shown in Fig. 1(b), can be found for up to θm = 0.93. However, once θm increases to
θm = 0.945, the two-roll state is not sustained all the time and rare transitions between two-roll and
four-roll states occur, which can be seen in the rare jumps of the Reynolds number ratio Rez/Rex in
Fig. 5(b). The temperature fields for the two-roll and four-roll states are shown in Figs. 5(d) and 5(e),
respectively. At even larger θm = 0.955, constant jumps between different states are observed, as
displayed in Fig. 5(c). The instantaneous temperature fields at two instants are shown in Figs. 5(f)
and 5(g). It can be seen that and the convection rolls are now not well organised. When θm reaches
0.97, the flow enters into the conduction state without any fluid motions.

Rare transitions between different turbulent states have been reported for many different
flows [43–46]. Similar phenomena are also important in many geophysical flows [47,48]. Here we
have thus found another example of such rare transition events in turbulent flows, which were not
identified for OB cases [30]. Similar to prior studies [45,46], such a phenomenon can be viewed as
flow mode competition between different states: for not very large θm, e.g., θm = 0.93, the effective
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FIG. 5. Time evolution of the Reynolds number ratio Rez/Rex for Ra = 1010 with (a) θm = 0.93, (b) θm =
0.945, and (c) θm = 0.955. Instantaneous temperature fields for θm = 0.945 and θm = 0.955 at different times
denoted by dashed lines in panels (b) and (c): (d) θm = 0.945, t/t f = 1.5 × 105, (e) θm = 0.945, t/t f = 1.8 ×
105, (f) θm = 0.955, t/t f = 1.1 × 105, and (g) θm = 0.955, t/t f = 2.4 × 105.

aspect ratio of the convection region is close to � = 2, therefore, it supports only a two-roll state.
At large θm close to θm = 1, the effective aspect ratio becomes much larger than 1, and therefore
it can support more convection rolls [30]. In between, the different convection roll states may have
comparable strength, and the competition of these states leads to the rare transitions between them.

IV. SUMMARY

In conclusion, based on our DNS of turbulent penetrative RBC in cold water, where the den-
sity anomaly temperature is achieved in the cell’s bulk, we have shown that the main response
parameters, namely, the mean central temperature θc and the normalized Nusselt number, are
universally determined by the density inversion parameter θm. For θm = 0, the convective system
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is similar to that in the Oberbeck-Boussinesq case. However, for θm approaching 1, the convection
vanishes at a certain θm = θm,c as soon as the Rayleigh number of the lower layer achieves the critical
Rayleigh number Rac for the onset of convection. We have demonstrated that Rac and hence θm,c

can be excellently predicted by a linear stability analysis. We have further shown that in the range
0 � θm � θm,c, the central temperature θc(θm) is independent of Ra and can be excellently predicted
by our model. Furthermore, we proposed a theoretical model for the normalized heat transport.

ACKNOWLEDGMENTS

R. Verzicco is gratefully acknowledged for continuous collaborations and discussions. We also
acknowledge the Twente Max-Planck Center and the Deutsche Forschungsgemeinschaft (Priority
Programme SPP 1881 “Turbulent Superstructures” and Grant No. Sh405/10). The simulations
were carried out on the national e-infrastructure of SURFsara, a subsidiary of SURF cooperation,
the collaborative ICT organization for Dutch education and research. Q.W. acknowledges financial
support from the China Scholarship Council (CSC) and the Natural Science Foundation of China
(NSFC) under Grant No. 11621202.

APPENDIX A: DETAILS OF DIRECT NUMERICAL SIMULATIONS

This section gives details about the 2D (Table I) and 3D (Table II) simulations.

TABLE I. Details of the 2D simulations. The columns from left to right indicate the Rayleigh number
Ra, the Prandtl number Pr, the density inversion parameter θm, aspect ratio �, grid resolutions Nx × Nz, Nusselt
number Nu, Reynolds number Re, central temperature θc, and the time tavg used to average Nu and Re. “Steady”
means that the flow is in a steady state, and “conductive” means that the flow is in a conductive state without
any fluid motions.

Ra Pr θm � Nx × Nz Nu Re θc tavg

107 11.57 0 2 256 × 128 14.97 104.96 0.5244 4000
107 11.57 0.1 2 256 × 128 14.14 94.63 0.5297 4000
107 11.57 0.2 2 256 × 128 13.17 82.67 0.5359 4000
107 11.57 0.3 2 256 × 128 11.97 70.04 0.5532 4000
107 11.57 0.4 2 256 × 128 10.12 54.95 0.5767 4000
107 11.57 0.5 2 256 × 128 7.82 40.01 0.6311 4000
107 11.57 0.6 2 256 × 128 5.50 28.12 0.7027 4000
107 11.57 0.7 2 256 × 128 3.57 18.06 0.7718 4000
107 11.57 0.8 2 256 × 128 2.19 8.78 0.8481 2000
107 11.57 0.81 2 256 × 128 2.11 8.25 0.8502 10 000
107 11.57 0.82 2 256 × 128 2.00 7.50 0.8524 Steady
107 11.57 0.83 2 256 × 128 1.84 6.45 0.8492 Steady
107 11.57 0.84 2 256 × 128 1.68 5.36 0.8282 Steady
107 11.57 0.85 2 256 × 128 1.56 4.23 0.7866 25 000
107 11.57 0.86 2 256 × 128 1.50 3.78 0.7578 Steady
107 11.57 0.865 2 256 × 128 1.43 3.30 0.7116 Steady
107 11.57 0.87 2 256 × 128 1.34 2.73 0.6690 Steady
107 11.57 0.872 2 256 × 128 1.29 2.42 0.6448 Steady
107 11.57 0.873 2 256 × 128 1.25 2.15 0.6225 Steady
107 11.57 0.8735 2 256 × 128 Conductive
108 11.57 0 2 512 × 256 27.72 384.92 0.5272 4000
108 11.57 0.1 2 512 × 256 26.32 347.48 0.5326 4000
108 11.57 0.2 2 512 × 256 24.52 305.80 0.5429 4000
108 11.57 0.3 2 512 × 256 22.22 260.52 0.5569 4000
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TABLE I. (Continued.)

Ra Pr θm � Nx × Nz Nu Re θc tavg

107 11.57 0.4 2 512 × 256 19.05 214.35 0.5892 4000
107 11.57 0.5 2 512 × 256 15.06 163.90 0.6347 4000
107 11.57 0.6 2 512 × 256 10.73 121.32 0.6987 4000
107 11.57 0.7 2 512 × 256 6.95 85.55 0.7743 3000
107 11.57 0.8 2 512 × 256 3.73 44.32 0.8514 3000
107 11.57 0.82 2 512 × 256 3.18 36.04 0.8665 15 000
107 11.57 0.84 2 512 × 256 2.68 28.00 0.8797 15 000
107 11.57 0.86 2 512 × 256 2.23 21.09 0.8921 35 000
107 11.57 0.88 2 512 × 256 1.81 14.40 0.8774 35 000
107 11.57 0.9 2 512 × 256 1.59 9.95 0.8000 10 000
107 11.57 0.91 2 256 × 128 1.42 7.10 0.7078 Steady
107 11.57 0.92 2 256 × 128 1.27 4.52 0.6352 Steady
107 11.57 0.925 2 256 × 128 1.20 3.38 0.6025 Steady
107 11.57 0.93 2 256 × 128 Conductive
109 11.57 0 2 1024 × 512 51.16 1515.45 0.5216 2000
109 11.57 0.1 2 1024 × 512 48.68 1346.21 0.5284 2000
109 11.57 0.2 2 1024 × 512 45.52 1184.81 0.5377 2000
109 11.57 0.3 2 1024 × 512 41.42 996.96 0.5565 2000
109 11.57 0.4 2 1024 × 512 35.66 811.87 0.5909 2000
109 11.57 0.5 2 1024 × 512 28.14 644.66 0.6401 2000
109 11.57 0.6 2 1024 × 512 19.76 486.75 0.6954 2000
109 11.57 0.7 2 1024 × 512 13.13 338.08 0.7717 2000
109 11.57 0.8 2 1024 × 512 7.25 199.97 0.8480 6000
109 11.57 0.9 2 1024 × 512 2.52 63.07 0.9242 4000
109 11.57 0.91 2 512 × 256 2.20 48.26 0.9326 30 000
109 11.57 0.92 2 512 × 256 1.87 34.34 0.9173 20 000
109 11.57 0.924 2 512 × 256 1.74 29.38 0.8765 10 000
109 11.57 0.926 2 512 × 256 1.68 26.98 0.8443 10 000
109 11.57 0.93 2 512 × 256 1.57 22.36 0.7859 20 000
109 11.57 0.94 2 512 × 256 1.34 13.04 0.6722 10 000
109 11.57 0.945 2 512 × 256 1.31 11.45 0.6544 Steady
109 11.57 0.95 2 512 × 256 Conductive
1010 11.57 0 2 2048 × 1024 97.84 5919.68 0.5168 1000
1010 11.57 0.1 2 2048 × 1024 92.26 5191.37 0.5250 1000
1010 11.57 0.2 2 2048 × 1024 85.51 4546.96 0.5336 2000
1010 11.57 0.3 2 2048 × 1024 76.76 3855.20 0.5524 2000
1010 11.57 0.4 2 2048 × 1024 65.06 3166.88 0.5851 2000
1010 11.57 0.5 2 2048 × 1024 51.53 2473.53 0.6302 2000
1010 11.57 0.6 2 2048 × 1024 37.36 1931.61 0.6905 4000
1010 11.57 0.7 2 2048 × 1024 24.15 1366.69 0.7676 3000
1010 11.57 0.8 2 2048 × 1024 13.20 821.26 0.8466 8000
1010 11.57 0.9 2 2048 × 1024 4.74 315.42 0.9242 2000
1010 11.57 0.91 2 512 × 256 4.10 269.86 0.9317 30 000
1010 11.57 0.92 2 512 × 256 3.43 221.30 0.9391 30 000
1010 11.57 0.93 2 512 × 256 2.82 172.40 0.9468 30 000
1010 11.57 0.94 2 512 × 256 2.24 120.80 0.9548 10 000
1010 11.57 0.945 2 512 × 256 2.02 97.73 0.9522 70 000
1010 11.57 0.95 2 512 × 256 1.80 75.19 0.9003 30 000
1010 11.57 0.955 2 512 × 256 1.55 50.57 0.7832 5000
1010 11.57 0.96 2 512 × 256 1.35 29.21 0.6743 30 000
1010 11.57 0.965 2 512 × 256 1.20 15.96 0.6037 10 000
1010 11.57 0.97 2 512 × 256 Conductive
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TABLE II. Details of the 3D simulations. The columns from left to right indicate the Rayleigh number
Ra, the Prandtl number Pr, the density inversion parameter θm, aspect ratio �, grid resolutions Nx × Ny × Nz,
Nusselt number Nu, Reynolds number Re, central temperature θc, and the time tavg used to average Nu and Re.
“Conductive” means that the flow is in a conductive state without any fluid motions.

Ra Pr θm � Nx × Ny × Nz Nu Re θc tavg

107 11.57 0 4 512 × 512×128 16.47 87.07 0.5221 600
107 11.57 0.1 4 512 × 512×128 15.56 79.03 0.5276 500
107 11.57 0.2 4 512 × 512×128 14.46 70.27 0.5369 500
107 11.57 0.3 4 512 × 512×128 13.04 60.25 0.5502 500
107 11.57 0.4 4 512 × 512×128 11.12 49.26 0.5808 1200
107 11.57 0.5 4 512 × 512×128 8.59 38.78 0.6374 1500
107 11.57 0.6 4 512 × 512×128 6.13 29.22 0.7108 800
107 11.57 0.7 4 256 × 256×64 3.88 20.02 0.7822 1000
107 11.57 0.75 4 256 × 256×64 2.94 14.91 0.8188 3000
107 11.57 0.8 4 256 × 256×64 2.04 8.99 0.8316 1000
107 11.57 0.81 4 256 × 256×64 1.93 7.82 0.8252 5000
107 11.57 0.82 4 256 × 256×64 1.81 6.78 0.8215 5000
107 11.57 0.83 4 256 × 256×64 1.71 5.85 0.8172 5000
107 11.57 0.84 4 256 × 256×64 1.60 4.87 0.8003 5000
107 11.57 0.85 4 256 × 256×64 1.49 4.05 0.7638 5000
107 11.57 0.86 4 256 × 256×64 1.40 3.25 0.7111 5000
107 11.57 0.87 4 256 × 256×64 1.28 2.37 0.6513 5000
107 11.57 0.88 4 256 × 256×64 Conductive

APPENDIX B: LINEAR STABILITY ANALYSIS FOR RAYLEIGH-BÉNARD CONVECTION IN
COLD WATER

1. Linearization of the buoyancy term

To conduct linear stability analysis, we linearize the governing equations in a standard way with
θ = � + θ ′, where � = �(z), 0 � � � 1, is the temperature profile in the steady case and θ ′ is
the deviation of the temperature from that in the steady case. The linearized buoyancy term follows
from the following approximation (that holds for small values of θ ′):

|θ − θm|q = |θ ′ + � − θm|q ≈ |� − θm|q + sign(� − θm)q θ ′|� − θm|q−1 + O(θ ′2).

TABLE III. Critical Rayleigh number for the onset of convection in an infinite layer of cold water, with
no-slip top and bottom boundary conditions.

θm Rac

0.0 1.68 × 103

0.1 2.06 × 103

0.2 2.66 × 103

0.3 3.82 × 103

0.4 6.75 × 103

0.5 1.68 × 104

0.6 5.17 × 104

0.7 2.08 × 105

0.8 1.52 × 106

0.9 4.47 × 107
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TABLE IV. Critical Rayleigh number for the onset of convection in an infinite layer of cold water, with
no-slip bottom and free-slip top boundary conditions.

θm Rac

0.0 1.17 × 103

0.1 1.46 × 103

0.2 1.97 × 103

0.3 3.05 × 103

0.4 6.26 × 103

0.5 1.71 × 104

0.6 5.08 × 104

0.7 2.07 × 105

0.8 1.52 × 106

0.9 4.48 × 107

TABLE V. Critical Rayleigh number for the onset of convection in a 2D domain with no-slip bottom and
top BCs and periodic BCs in the horizontal direction. The fluid properties are as in cold water.

θm Rac

0.0 1.70 × 103

0.1 2.15 × 103

0.2 2.71 × 103

0.3 3.83 × 103

0.4 6.83 × 103

0.5 1.89 × 104

0.6 5.48 × 104

0.7 2.07 × 105

0.8 1.53 × 106

0.9 3.92 × 107

TABLE VI. Critical Rayleigh number for the onset of convection in a 2D domain with no-slip bottom BC
and free-slip top BC and periodic BCs in the horizontal direction. The fluid properties are as in cold water.

θm Rac

0.000 1.21 × 103

0.100 1.52 × 103

0.200 2.04 × 103

0.300 3.12 × 103

0.400 6.30 × 103

0.500 1.89 × 104

0.600 5.40 × 104

0.700 2.07 × 105

0.800 1.43 × 106

0.850 6.22 × 106

0.875 1.50 × 107

0.900 3.92 × 107

0.925 1.78 × 108

0.950 1.30 × 109

0.970 1.57 × 1010
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TABLE VII. Critical Rayleigh number for the onset of convection in cold water for θm = 0 (the temperature
at the top equals the temperature of the density anomaly), in a 2D domain with no-slip top and bottom BCs and
periodic BCs at the side walls.

� Rac

0.1 7.84 × 106

0.2 6.37 × 105

0.5 2.74 × 104

1 3.72 × 103

2 1.68 × 103

5 1.77 × 103

10 1.68 × 103

Therefore the buoyancy term in the linearized momentum equation equals sgn(� − θm)q θ ′|� −
θm|q−1�ez,

In the case θm = 0, the buoyancy term can be simplified as sgn(� − θm)qθ ′|� − θm|q−1 =
qθ ′�q−1, with q = 1.895.

2. θm-dependence of the critical Rayleigh number for the onset of convection in an infinite layer of cold
water

Tables III and IV present the critical Rayleigh numbers for the case of no-slip BCs at both plates
(Table III) and for the case where the bottom BC is no-slip and the top BC is free-slip (Table IV).

3. θm-dependence of the critical Rayleigh number for the onset of convection in a 2D domain of the
aspect ratio � = 2, for periodic BCs in horizontal direction

Tables V and VI present the critical Rayleigh numbers for the onset of convection in a 2D domain,
for periodic BCs in the horizontal direction and for the case of no-slip BCs at both plates (Table V)
and the case where the bottom BC is no-slip and the top BC is free-slip (Table VI).

FIG. 6. Dependence of the critical Rayleigh number Rac for the onset of convection on aspect ratio � in a
2D domain with no-slip BCs at the plates and periodic BCs at the side walls, for θm = 0.
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4. Aspect ratio dependence of the critical Rayleigh number for the onset of convection, for θm = 0

Finally, in Table VII and Fig. 6 we present the dependence of the critical Rayleigh number on
the aspect ratio � of the 2D domain, for the case θm = 0.
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