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A short focused laser pulse can generate a hot plasma, which expands then contracts and
can eject a hot jet, the speed and direction of which is sensitive to the details of the plasma
kernel. The coupling of thermal and chemical nonequilibrium plasma mechanisms with this
hydrodynamic development is assessed with detailed simulations of a two-temperature,
three-species plasma model. Time scales for electron recombination, thermal relaxation,
and diffusion are compared to that of the plasma expansion to anticipate conditions in
which these mechanisms might affect the vorticity generation that leads to the ultimate
flow pattern. The effect of these mechanisms are analyzed through comparison with cor-
responding inert-gas and equilibrium models. Thermal-nonequilibrium effects are found
to be weak due to rapid relaxation of the heavy-particle and electronic temperatures. In
contrast, chemical equilibration occurs at a rate comparable to the expansion and thereby
enhance both it and subsequent hydrodynamic mechanisms as the energy stored in ion
formation during the preceding breakdown is released by electron recombination. Thermal
conduction, enhanced by high-temperature free electrons, weakens the ejection.

DOI: 10.1103/PhysRevFluids.6.063403

I. INTRODUCTION

Optical breakdown of a gas [1] by a ∼10–100 mJ focused laser generates an elongated millimeter-
scale, high-temperature plasma kernel that in turn generates a complex vortical flow region [2,3].
The heating causes a rapid expansion, followed by asymmetric contraction and sometimes ejections
of hot gas, which can travel many times the length of the initial plasma kernel [3]. The specific
flow characteristics can depend qualitatively on gas conditions: for example, for otherwise identical
conditions, ejections towards the laser source for p = 1 atm [4,5] reverse for higher pressures [6].
This late-time (t � 100 μs) ejecting flow pattern results primarily from hydrodynamic processes
and that are sensitive to the geometry of the plasma kernel, which in turn induce differences in
the vorticity generated during the t � 10 μs plasma expansion [7–9]. In a combustible mixture,
the resulting distribution of relaxing hot plasma remnants, rich in radical species, can subsequently
affect ignition and flame growth in a combustible mixture [10–12]. Figure 1 illustrates an evolution
leading to a hydrodynamic ejection.

This flow sensitivity warrants an assessment of how the hydrodynamic development couples
with chemical- and thermal-nonequilibrium mechanisms of the plasma, which was neglected in the
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FIG. 1. Schematic of a typical post-breakdown evolution. (a) The focused laser generates a plasma kernel
that (b) expands and generates vorticity ω by baroclinic torque (∇ρ × ∇p)/ρ2 (azimuthal component shown)
resulting from misaligned density gradients ∇ρ (due to low kernel density) and pressure gradients ∇p (in the
postshock rarefaction). (c) This vorticity advects and forms the ejected vortex ring. These stages are also shown
in images from experiments (J. E. Retter and G. S. Elliott, personal communication; see also a related study
[13]); the green dot indicates the nominal laser focus.

simpler models of previous flow studies [9,14]. Nonequilibrium is understood to be significant in
laser-induced plasmas and has been studied extensively [15–17], though typically for spectroscopy
applications. Inert, perfect-gas models [9,18,19] reproduce the primary mechanisms of the ob-
served ejection but preclude analysis of nonequilibrium-plasma effects. Extending these perfect-gas
models to include equilibrium chemistry and appropriate transport properties for plasmas yields
qualitatively similar flow [18], though details of how this affects the ejection remain unclear.
Two-temperature and finite-rate chemistry nonequilibrium models are available [20,21] and have
been applied to blunt-body drag reduction using laser-induced plasma, but were not used for detailed
study of the breakdown-generated flow. Highly detailed models, with up to three temperatures and
19 species for air, have been used to describe the laser-plasma coupling and the early t � 10 ns
breakdown [22–24], though they are computationally expensive and have not been extended to the
longer times (t � 10 μs) of the eventual gas-dynamic ejection.

The goal here is to explicitly include plasma-transport and thermal- and chemical-nonequilibrium
mechanisms in order to isolate their influence on post-breakdown hydrodynamics, particularly the
ultimate ejection of hot gases from the plasma kernel. It will be confirmed that these models
reproduce observed phenomena, which is an important validation, but we focus on the flow
mechanisms rather than maximizing fidelity of the plasma representation that would be needed to
precisely describe early times [22]. An axisymmetric simulation model of a two-temperature, singly
ionized plasma with three-species finite-rate chemistry is introduced in Sec. II. It is parameterized
to represent argon. To isolate plasma effects, results are compared to a corresponding two-species,
inert-gas model, also introduced in Sec. II. To anticipate when the nonequilibrium plasma might
influence the ejection, in Sec. III we quantify timescales of heavy-species and electron diffusion,
electron recombination, and thermal relaxation in spherical simulations for ambient pressures from
0.1 atm to 10 atm. These suggest conditions for timescale overlap with the plasma expansion, during
which the vorticity that mediates the subsequent hydrodynamic development is generated. Electron
recombination, which occurs at a rate comparable to or faster than this expansion, is studied in
Sec. IV. In Sec. V detailed comparison with the inert-gas model for p∞ = 0.5 atm shows how
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high thermal conductivity, enhanced by free electrons, can weaken the ejection. Conclusions are
summarized in Sec. VI.

II. SIMULATION METHODOLOGY AND MODELS

A. Nonequilibrium plasma model

1. Physical model

For simplicity, the plasma is taken to be singly ionized and monatomic with neutral species A and
its ion A+. These share a single heavy-particle temperature Th, and the out-of-equilibrium electron
temperature is Te. The flow is governed by

∂ρ

∂t
+ ∇ · ρu = 0, (1)

∂ρu
∂t

+ ∇ · ρuu + ∇ · (pI − τ ) = 0, (2)

∂ρ(e + |u|2/2)

∂t
+ ∇ · [ρ(e + |u|2/2)u] + ∇ · [(pI − τ )u] + ∇ · q = 0, (3)

∂ρee

∂t
+ ∇ · ρeeu + ∇ · peu + ∇ · qe = u · ∇pe + 3

2
nekb(Th − Te)

(
1

τeA+
+ 1

τeA

)
− IAṅe,1, (4)

∂ρYA+

∂t
+ ∇ · ρYA+u + ∇ · ρYA+V A+ = mA+ ṅA+ , (5)

with ideal-gas state relation

p = ρkb

( Ye

me
Te + YA+

mA+
Th + YA

mA
Th

)
, (6)

where kb is the Boltzmann constant, e is the internal energy, p is the pressure, ρ is the mass density,
u is the velocity, nk is the species-k number density, Yk is its mass fraction, mk is its atomic mass, and
ṅk is its production rate [25–27]. The electronic energy ee (A1) is computed with a single excited
level for both A and A+. The electron pressure is pe = ρYekbTe/me, and IA is the ionization potential
of A. For specificity, argon properties are used throughout for mA, IA, and all other gas properties.
Charge separation effects are not expected to be significant, particularly after the laser pulse when
there is no external electric field. Even for plasma kernel initially at 30 000 K in ambient pressure
0.1 atm, the Debye length is 0.1 μm, which is much smaller than the grid resolution and the length
scales relevant to the present analysis, and so local charge neutrality (ne = nA+ ) is assumed.

The viscous stress tensor in (2) and heat flux vectors in (3) and (4) are

τ = μ(∇u + ∇uT ) +
(
B − 2

3
μ

)
(∇ · u)I, (7)

q = −λh∇Th − λel∇Te + ρ
∑

k

YkhkV k, (8)

qe = −λel∇Te + ρ
∑

k

Ykhe,kV k, (9)

where μ is the dynamic viscosity, λh and λel are the heavy-particle and free-electron thermal
conductivities, and hk and he,k are the total and electronic enthalpies. Bulk viscosity B in (7) is
zero for an ideal monatomic gas [28], though we use (and validate) an artificial-viscosity model
for shocks [29,30]; details are given in Sec. II D. The diffusion velocity V k is modeled assuming
an ambipolar mechanism [31,32]. All transport properties are computed with standard models and
mixture rules [33–35]. The thermal relaxation times τeA+ and τeA in (4) are modeled with established
cross sections that have been used to model hypersonic boundary layers and shocks in argon [33,36].
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The specifics of these plasma model components are intricate but standard and are provided in
Appendix A.

The kinetics model includes two ionization-recombination processes:

A + e− � A+ + e− + e−, (10)

A + A � A+ + e− + A, (11)

which respectively have rates of progress

R1 = k f ,1(Te)

(
nenA − 1

Keq(Te)
n2

enA+

)
, (12)

R2 = k f ,2(Th)

(
n2

A − 1

Keq(Th)
nAnenA+

)
, (13)

where the rate constants k f ,1 and k f ,2 are based on those developed by Hoffert and Lien [37],
and Keq(T ) is the Saha equilibrium constant [38]. The production rates in (4) and (5) are
ṅA+ = ṅe = −ṅA = R1 + R2; ṅe,1 in (4) corresponds to the free-electron production by electron-
impact ionization in (10) [37]. Resonant charge-exchange reactions such as A + A+ � A+ + A,
while typically having a large cross section, are not included in the chemistry model as they would
not alter ṅk in (4) and (5), though their effect on transport coefficients is included (Appendix A).

Although this relatively simple plasma description is selected to facilitate our analysis, it is also
quantitatively accurate. For example, it reproduces key features of a Mach 15.9 shock in argon,
including its relaxation length and unsteady character (Appendix B). This confirms that it provides
a reasonable model for key timescales in such a plasma. Radiation can be an important factor in
some plasma regimes but is shown in Appendix C to be insignificant for the present results.

B. Two-species model

The plasma model is compared to a corresponding two-species, inert-gas model. One species
(labeled I) represents the ionized gas, and the other species (labeled A) represents the neutral gas.
Of course, it is not possible to match all the properties of the plasma with an inert-gas model, so
some choices are made to make comparisons conclusive. In particular, choosing the atomic weight
of I to be half that of A allows it to match both the peak temperature T0/T∞ and pressure p0/p∞
of the nonequilibrium model. Without this, there is little hope for any quantitative comparison;
for example, a single-species model with deposited energy adjusted to match T0/T∞ would have
a peak pressure only half that of the nonequilibrium model, which in turn would directly alter the
hydrodynamics. As will be shown in Secs. IV and V, this choice to match the temperature and
pressure, rather than total energy, facilitates analysis of the pressure-driven expansion and vorticity
generation.

For this model the flow is governed by (1)–(3) in addition to a transport equation, expressed here
for the neutral species as

∂ρYA

∂t
+ ∇ · ρYAu + ∇ · ρYAV A = 0, (14)

and the equation of state is

p = ρ
R

W
T, (15)

where W = (YA/WA + YI/WI )−1 is the mean molecular weight, with WA = 2WI = 40 g/mol for
argon, and YA and YI = 1 − YA are the mass fractions of the neutral and ionized gas. The specific heat
cp,k = 5R/2Wk is assumed constant. Both species are modeled with the same temperature-dependent
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FIG. 2. Energy of the model post-breakdown plasma kernel with peak temperature T0.

viscosity:

μ

μ∞
=

( T

T∞

)0.7

. (16)

The thermal conductivity λ = cp,Aμ/Pr and diffusion coefficient D = λ/ρ∞cp,ALe are computed
assuming constant Prandtl number Pr = 0.66 (except in Sec. V) and Lewis number Le = 1, with
μ∞ = 2.24 × 10−5 Pa s for argon. The stress tensor, heat flux, and diffusion velocity are

τ = μ

[
(∇u + ∇uT ) − 2

3
(∇ · u)I

]
+ B(∇ · u)I, (17)

q = λ∇T, (18)

V k = − D

Yk
∇Yk. (19)

This two-species model describes a single-temperature, chemically frozen gas and facili-
tates comparison with similar models reported previously [9,14,18,19]. A single-temperature
equilibrium-plasma model, which matches the nonequilibrium model of Sec. II A but assumes
Te = Th and an equilibrium composition, will be used to further isolate nonequilibrium effects in
Sec. IV.

C. Breakdown model

Because the laser-energy deposition is much faster (t � 10 ns) than the dynamics of interest
(t � 1 μs), the flow is simply initialized at t = 0 with the energy distribution visualized in Fig. 2.
Its shape is based on images of plasma kernels after the laser pulse [3,39–42], and this particular
parametrization has been shown to be able to reproduce key features of the post-breakdown
hydrodynamic evolution when the geometry is varied [9,14]. The internal energy,

e − e∞ = �e0 f (n), (20)

is taken to vary only in the direction normal to the kernel boundary, where f (n) ≡ 1
2 [1 − tanh(σn)]

and σ is set so that f (w/2) = 0.1 and f (−w/2) = 0.9. The energy distribution blends smoothly to
the T∞ = 298 K ambient gas over local length scale w ∈ [R2, R1], which varies tangentially in the
conical section, and �e0 is specified based on the initial peak temperature T0.

063403-5



WANG, PANESI, AND FREUND

The overall aspect ratio α and ratio of the end radii β are

α ≡ L

2R1
and β ≡ R1

R2
. (21)

Neither the prepulse density ρ∞ nor the quiescent flow u = 0 are modified. The total energy de-
posited is E0 = ∫

ρ∞(e − e∞) d3x. The dynamics—particularly the timescales—of a corresponding
diameter-L spherically symmetric kernel with the same volume will be analyzed in Secs. III and IV.

Although nonequilibrium mechanisms are fundamental during absorption of the laser pulse
[23], the resulting plasma is thought to achieve local thermodynamic equilibrium (LTE) before
its subsequent expansion, based on temperature and electron number density measurements [43].
It is also anticipated that, for the pressures of interest, collisions dominate radiative processes in
establishing LTE [15,44]. Though additional conditions [17,45] may be necessary to fully achieve
LTE, it is a well-defined starting point and sufficient for the present goals. The kernel is thus
initialized with Th = Te, such that the internal energy e has the distribution shown in Fig. 2, and
the ionization degree φ = ne/(nA + nA+ ) = Xe/(1 − Xe) satisfies

φ2

1 − φ
= mA

ρ

2g0
A+

g0
A

(
2πmekbTe

h2

)3/2

exp
(
− IA

kbTe

)
, (22)

based on the Saha equilibrium relation [28]. Similar approaches for equilibrium initialization have
been employed previously [46,47].

To quantify any sensitivity to this initialization, auxiliary simulations of a spherically symmetric
kernel are initialized with two alternative approaches, keeping total energy fixed: (1) in thermal
nonequilibrium in which Te,0 = 2Th,0, and (2) in chemical nonequilibrium with an “over-ionized”
plasma for which the electron concentration is elevated to correspond to (22) at a temperature Ts,0 =
2Te,0 that is twice the electron temperature, where Ts is the Saha temperature (25) to be discussed
in Sec. III. These initializations are based on the fact that the laser radiation interacts primarily
with free electrons [22]. Even at p∞ = 0.1 atm, selected to accentuate any possible sensitivity, the
evolution of both cases matches that of the equilibrium initialization. As will be shown in Sec. III,
thermal equilibration occurs faster than all transport or chemical processes considered, and so Te ≈
Th before any significant flow develops. Because the high-temperature kernel is almost fully ionized
(Xe ≈ 0.5) even in equilibrium, increasing the electron concentration alters the initial composition
and subsequent evolution only marginally.

The baseline two-species model of Sec. II B is also initialized using (22), with the distribution of
XI determined from XI = 2φ/(1 + φ) = Xe + XA+ .

D. Numerical methods

In all cases, the governing equations are discretized with an explicit fourth-order Runge-Kutta
time-integration scheme and nine-point, eighth-order, centered finite-difference stencils for first and
second spatial derivatives. Artificial bulk viscosity is used to model the localized shock dissipation:

B = Cρ|D4(∇ · u)H (−∇ · u)|, (23)

where C = 7.0 is a parameter, H is the Heaviside step function, D4 is a mesh-dependent biharmonic-
like operator, and the overbar denotes Gaussian filtering [29,30]. The shock leaves the area of
interest early in the simulations, so there is no expected sensitivity of results to this approach. Third-
and fourth-order derivatives are computed with sixth-order, seven-point, centered finite-difference
stencils. A nine-point, eighth-order, compact filter (D3) [48] is used when the shock is strong
(t � 2 μs), after which a nine-point, eighth-order, explicit filter (D2) is used.

At the r = 0 coordinate singularity, the governing equations are evaluated in their r → 0 limit
with

ur = 0,
∂ρ

∂r
= 0,

∂Th

∂r
= 0,

∂Te

∂r
= 0,

∂ux

∂r
= 0,

∂2ur

∂r2
= 0, and

∂Yk

∂r
= 0.
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TABLE I. Summary of meshes. For stretched meshes, the listed mesh spacing is for �xmin = �rmin.

Model Type Mesh spacing Full domain Uniform region Mesh points

Nonequilibrium Uniform 1.4 μm 6.05 mm × 2.38 mm 6.05 mm × 2.38 mm 4320 × 1700
(t < 1.1 μs)
Nonequilibrium Stretched 1.6 μm 18 mm × 9 mm 8.4 mm × 4.2 mm 5760 × 2880
Two-species Stretched 6 μm 40 mm × 20 mm 18.6 mm × 9.4 mm 3600 × 1800

All discretization stencils are modified to preserve spatial order of accuracy at r = 0. At the outer
boundaries, outflow conditions are specified using a characteristic formulation for reacting flows
[49] with Te = Th.

For the nonequilibrium model, the kernel is simulated first on a uniform mesh until the shock
nearly reaches the boundary, which occurs at t = 1.1 μs for the primary case introduced in Sec. IV.
After this, the solution is interpolated using bicubic splines onto the nearly uniform region of a
stretched, coarser mesh (Table I), where the mesh spacings �x and �r are both within 1% of their
minima �xmin = �rmin; details are reported elsewhere [9]. All analyses are conducted in this nearly
uniform region. In the stretched outer region, a damping term is added to the governing equations
to suppress reflections [50,51]. For the two-species model, the solution is computed with a single
simulation on a stretched mesh.

Electron thermal conduction ∇ · (λel∇Te) typically imposed the greatest time-step restriction,
with numerical stability requiring �t < 10−12 s in some cases for the mesh resolutions in Table I.
Given the long timescale on which the hydrodynamic ejection forms (t ∼ 10−5 s), we apply a three-
point, second-order, explicit filter to ∇ · (λel∇Te) when computing the electronic heat flux ∇ · qe
in (4) to narrow its represented wave-number spectrum and reduce its time-step restriction. This
intentionally aggressive filter is consecutively applied four times for each evaluation of ∇ · (λel∇Te).
Insensitivity to this filter, which plays a role similar to what an implicit time integration would, is
confirmed with spherically symmetric simulations (Appendix D).

The time step is adjusted to maintain numerical stability. For the primary p∞ = 0.5 atm,
L = 2 mm case in Sec. V, this required �t ∈ [10 ps, 70 ps]. A broader range of condi-
tions (L ∈ [0.29 mm, 4.62 mm], p∞ ∈ [0.1 atm, 10 atm]) is analyzed in Sec. III, for which
�t ∈ [1 ps, 100 ps] is used; this is limited by chemistry for high pressures and by diffusion for
low pressures and small kernels. Insensitivity to the time step is confirmed in Appendix E.

For convenience, the mole fraction of electrons in the ambient gas was set to Xe,∞ = 10−8, which
is high relative to equilibrium but extremely small relative to the plasma kernel values. Doing this
avoids calculation of spurious electron temperatures Te where both the electronic energy ee and
electron concentration Ye are small (e.g., Te = 2meee/3kbYe for an unexcited gas). It also relaxes
the spatial resolution required to resolve the rapid decrease of free electrons at the perimeter of the
kernel. Insensitivity to this choice of Xe,∞ is demonstrated in Appendix D.

A passive scalar ξ is used to define and track the evolving kernel shape, particularly its ξ = 0
boundary as labeled in Fig. 2. It is initialized with the signed distance ξ (t = 0) = n from the n = 0
boundary and subsequently advects:

∂ρξ

∂t
+ ∇ · ρξu = 0. (24)

III. TIMESCALES

A. Overview

To anticipate conditions in which chemical or thermal mechanisms might couple with the hy-
drodynamic development, plasma timescales are compared to that of the expansion. Corresponding
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FIG. 3. Spherically symmetric case with p∞ = 0.1 atm and initial diameter L = 1.16 mm: (a) temperatures
Th, Te, and Ts, and (b) kernel volume V and the electron mole fraction Xe at r = 0. V0 is the initial kernel volume.

perfect-gas simulations [9] suggest that this expansion phase is when the vortical structures form
that will subsequently lead to the most prominent flow features.

Because the flow and plasma conditions evolve significantly in this expansion phase, it is
challenging to a priori ascribe relevant timescales. It is expected that the plasma density and
temperature decrease during the expansion, which in turn affects all collisional rates. Multiple
mechanisms can be anticipated to couple. For example, as a strongly exothermic process, electron
recombination alters the transport properties and, as will be shown, enhances the plasma expansion
by its heat release. Thermal diffusion counteracts this heating and, if sufficiently rapid, is anticipated
to weaken the expansion and accelerate cooling. The specifics of the nonlinear dynamics are
expected to depend on the evolving plasma state, particularly the free-electron concentration. The
rates underlying many of these mechanisms will depend on the initial gas density, and acoustic and
flow speeds introduce additional timescales that depend on the initial kernel size.

Due to these complexities, and in order to analyze a range of conditions, we first consider the
expansion of a spherically symmetric kernel. The timescales of the multiple mechanisms involved
will guide analysis of the corresponding axisymmetric configuration and its vorticity generation
(Secs. IV and V).

B. Spherical configuration

The spherically symmetric kernel is initialized with T0 = 30 000 K, as described in Sec. II C;
this temperature is comparable to those observed after the laser pulse in experiments [41,52] and
simulations [22,53]. The evolution for an example case with diameter L = 1.16 mm and p∞ =
0.1 atm, corresponding to E0 = 11.5 mJ energy deposited, is shown in Fig. 3. To quantify the degree
of chemical nonequilibrium, we define a Saha temperature Ts [54] based on (A14) such that

nenA+

nA
= 2

g0
A+

g0
A

(
2πmekbTs

h2

)3/2

exp
(
− IA

kbTs

)
. (25)

This temperature provides a measure of the amount of ionization relative to Ts = Te equilibrium,
with Ts > Te corresponding to ne greater than the Saha equilibrium concentration.

The kernel is initialized with Th = Te = Ts and peak Xe = 0.5 [Fig. 3(a)], after which the
temperatures Th and Te decrease due to the expansion. The resulting Ts > Te triggers recombination,
which decreases Xe [Fig. 3(b)] and counteracts the falling Te by the electron-heating −IAṅe,1 term
in (4), which reflects to the rate of energy gained by the free electron in (10). This recombination
results in decreasing Ts according to (25). For the parameters of this particular case, recombination
occurs slower than the expansion, leading to Ts > Te [Fig. 3(a)] with ionization significantly above
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TABLE II. Timescales for relevant mechanisms.

Electron diffusion τD = R2W

π 2WADamb

Heavy-particle thermal conduction τλh = R2ρ ct
p

π 2λh

Electron thermal conduction τλel = R2ρ ce
p

π 2λel

Electron recombination τrec = ne

R1,b + R2,b

Thermal relaxation τrel =
(

1

τ eA
+ 1

τ eA+

)−1

equilibrium. Even after tVmax , thermal conduction continues to lower Te at a rate sufficient to
maintain Te < Ts. In contrast, Th and Te do not deviate significantly due to rapid thermal relaxation;
this behavior will be similar over a range of p∞ and L (Sec. III D). The increase in Th and Te

at t = 9 × 10−7 s results from rarefaction-initiated inward flow compressing gas at the origin,
resembling observations of spherical blasts [55,56], though this transient will not have a significant
cumulative effect for the timescale analysis in Sec. III D. This particular kernel attains its maximum
volume at tVmax = 9.3 μs, after which the expansion reverses and the kernel contracts [Fig. 3(b)].

C. Evolving timescales

To quantify the relative rates of various processes, we formulate timescales based on evolving
volume-averaged kernel properties. Diffusion rates and both thermal and chemical relaxation rates
are considered. In Sec. III D these scales will be integrated over the period of the plasma expansion
to estimate their potential cumulative role for a range of initial conditions.

Mean kernel temperatures T h and T e are defined such that

ρeh = 3

2

(
ρYA

mA
+ ρYA+

mA+

)
kbT h (26)

and

ρee = 3

2

ρYe

me
kbT e +

∑
k∈{A,A+}

ρYk

g1
k exp

(− εk

kbT e

)
g0

k + g1
k exp

(− εk

kbT e

) εk

mk
, (27)

where

ρYk = 1

V

∫
V

ρYk d3x, ρeh = 1

V

∫
V

ρeh d3x, and ρee = 1

V

∫
V

ρee d3x, (28)

for the volume-V region V enclosed by the ξ = 0 surface (24). These definitions are such that
a volume-V kernel with uniform T h, T e, and ρYk would have ρehV heavy-particle energy, ρeeV
electronic energy, and ρYkV species-k mass. Specific timescales are summarized in Table II, where
( · ) represents properties computed with the mean kernel properties in (26)–(28). The details of their
formulation are given in Appendix F.

Figure 4 shows how each timescale in Table II evolves. Consistent with expectation, these change
significantly. For example, the decreasing kernel density ρ [by a factor of Vmax/V0 = 44; Fig. 3(b)]
increases diffusion rates (τD, τλh , τλel ) but slows collisional processes (τrec, τrel), while decreasing Th

and Te [by a factor of 3; Fig. 3(a)] alters all collisional cross sections and transport properties. These
timescale variations will be averaged in order to define a representative scale for the cumulative
effect of each process throughout the post-breakdown plasma expansion.
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FIG. 4. Evolution of the timescales (Table II) for L = 1.16 mm and p∞ = 0.1 atm, corresponding to the
case in Fig. 3. The straight reference lines indicate possible overlap of mechanisms for this particular case with
tVmax = 9.3 μs.

D. Accumulated timescale estimates

To estimate net influences, we accumulate timescales τ in Table II over t ∈ [0, tVmax ] by time
integration:

τ acc =
[

1

tVmax

∫ tVmax

0

1

τ
dt

]−1

. (29)

This provides an estimate of the relative importance of their corresponding processes and motivate
the more detailed study in Sec. V.

The analysis focuses on kernel diameters L ∈ [0.29 mm, 4.62 mm] and ambient pressures
p∞ ∈ [0.1 atm, 10 atm] based on conditions in which laser-induced gaseous breakdown is ob-
served. While obviously gas-dependent, p∞ = 0.1 atm represents an approximate lower threshold
for typical lasers [41,52,57], and kernels as small as L ≈ 0.5 mm have been generated [3,58].
Though still lower pressures or smaller kernels would accentuate certain nonequilibrium effects,
as will be discussed, viscosity and diffusion are also anticipated to suppress the flow of interest
in this limit; for example, for L = 0.5 mm, p∞ = 0.1 atm, and parameters otherwise matching the
subsequent two-species axisymmetric configuration (Sec. V), the ejection fails to form.

The main concern here is the conditions under which the plasma timescales τ acc overlap with the
hydrodynamic expansion time tVmax . Figure 5 illustrates this. The expansion time tVmax increases with
diameter L, and for nearly all cases it is well approximated by 3L/a∞, where a∞ is the ambient
speed of sound. This correspondence between tVmax and L/a∞ is consistent with the expected role of
an acoustic timescale [9]. The time tVmax is largely insensitive to p∞, though for small kernels [e.g.,
L = 0.29 mm; Fig. 5(c)] rapid dissipation of energy at low p∞ slows the expansion and leads to a
modestly earlier contraction.

Thermal relaxation τ acc
rel is the most rapid process considered, with a trend in Fig. 5 that is

consistent with the expected proportionality to n−1
∞ based on (A11). While disparity between Te

and Th can occur at p∞ = 0.1 atm [Fig. 6(c)] due to slow collision rates, Te − Th is relatively small
(Te − Th � 100 K) for most cases. Thermal nonequilibrium effects are therefore not anticipated to
directly alter the flow significantly (Sec. V), except possibly at low pressure (p∞ � 0.01 atm) or for
small kernels (L � 0.1 mm).

Free-electron thermal conduction (τ acc
λel

) is the fastest among the diffusion timescales τ acc
D , τ acc

λh
,

and τ acc
λel

. Because these all increase as τ acc ∝ n∞ = p∞/kbT∞ and become slower for larger L
kernels, they are not directly important for higher pressures (p = 10 atm) or larger kernels. However,
they can overlap with tVmax for lower pressures and will be central to subsequent considerations
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FIG. 5. Timescales from Table II accumulated according to (29) for T0 = 30 000 K and initial diameter
(a) L = 4.62 mm, (b) L = 1.16 mm, and (c) L = 0.29 mm. The expansion time tVmax is also shown above on a
linear scale. The L = 1.16 mm kernel in (b) has initial volume matching that of all cases in Sec. V.

(Sec. V). The greater decrease in temperature for smaller kernels is also consistent with more rapid
diffusion (e.g., Fig. 6).

Recombination is fast at higher pressures but slows with decreasing pressure as collision rates
decrease. Although exact scaling is not expected due to temporal and spatial averaging and coupling
between processes, it is approximately τ acc

rec ∝ n−2
∞ ∝ ne/R1 from (12) [e.g., Fig. 5(a)]. The heat

released by electron recombination is expected to influence the expansion when τ acc
rec � tVmax , with

its effect more pronounced for faster τ acc
rec ; this is discussed in detail in Sec. IV. The value of τ acc

rec
decreases modestly with decreasing L because the recombination chemistry couples with electron
thermal conduction, which is stronger for smaller L: rapid Te decrease by diffusion drives the plasma
further from Ts = Te chemical equilibrium (Fig. 6), which in turn accelerates recombination.

IV. EFFECT OF RECOMBINATION ON THE PLASMA EXPANSION

Based on the timescale analysis of the spherical case, we analyze the plasma expansion and
subsequent hydrodynamic development for an asymmetric L = 2 mm kernel [matching an L =
1.16 mm spherical volume; Fig. 5(b)] with p∞ = 0.5 atm. At these conditions, electron recom-
bination is faster than the expansion, so the thermal energy released is anticipated to couple with it.

FIG. 6. Temperatures Te, Ts − Te (25), and Te − Th at t = tVmax and r = 0 for (a) L = 4.62 mm, (b) L =
1.16 mm, and (c) L = 0.29 mm, corresponding to the cases shown in Fig. 5. The electron temperature Te is
also shown on a linear scale.
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FIG. 7. An L = 2 mm, T0 = 30 000 K deposition in p∞ = 0.5 atm argon at (a) its initial state, (b) t =
1.1 μs, and (c) t = 7.6 μs, computed using the nonequilibrium and two-species models as labeled. Dashed
lines denote the kernel boundary, defined by ξ = 0 (24). Note the change in temperature scale.

This stage of the development will be shown in Sec. V to go on to produce the vortical structures
that constitute the late-time ejection.

Matching the parameters in Sec. III, the post-breakdown plasma kernel has initial peak tempera-
ture T0 = 30 000 K and electron mole fraction Xe = 0.489. Its total energy is E0 = 48.5 mJ, which
is similar to experiments [3]. Its geometry α = 2 and β = 3 (21) produced a pronounced ejection in
previous inert-gas studies [9], also similar to that observed in experiments (e.g., Fig. 1).

A significant difference between the nonequilibrium and two-species cases, seen in the visual-
izations of Figs. 7(b) and 7(c) and in the time trace in Fig. 8(a), is that the temperature for the
nonequilibrium model decays more slowly than for the two-species model. Another difference
is that the plasma kernel expands to 2.8 times greater volume [Fig. 8(c)]. The main cause of
these differences is heat release by electron recombination. The net formation energy of ions
E f = ∫

ρe f d3x is 58% of total energy deposited. Recombination recovers this ionization energy
by converting it to the translational energy of free electrons via the −IAṅe,1 term in (4). A portion
of this is also subsequently transferred to heavy particles through elastic collisions. This increase in
translational energy corresponds to the elevated kernel pressure and temperature seen in Figs. 8(a)
and 8(b). Thus recombination is the primary cause of the enhanced plasma expansion. Sharp
distortion of the kernel boundary [Fig. 7(c)] is due to a rotational flow being established at the
smaller R2 end of the kernel. In a single-fluid model this is observed to occur at the small R2 end
before the corresponding opposite-sign vorticity is generated near the larger R1 end [9].

The effect of recombination on the expanded volume is quantified in Fig. 9 for
T0 ∈ [15 000 K, 61 000 K] for a spherically symmetric kernel with initial diameter L = 1.16 mm,
matching the volume of that in Fig. 7(a). The expansion is driven by the high kernel pressure, which
we quantify with

p = kb

(
ρYe

me
T e + ρYA+

mA+
T h + ρYA

mA
T h

)
(30)
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FIG. 8. Evolving kernel properties for the case shown in Fig. 7. V0 is the initial volume of the kernel, and
“max” refers to the peak value inside the kernel. Increases in T max, pmax, and X max

I result from transient kernel
dynamics.

FIG. 9. Maximum volume Vmax attained by a spherically symmetric L = 1.16 mm kernel for (a) p∞ =
1 atm and (b) p∞ = 0.1 atm for a range of scaled ṅ∗

k � ṅk . The range of p0/pVmax
corresponds to initial peak

temperatures T0 ∈ [15 000 K, 61 000 K].
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based on mean kernel properties T h (26), T e (27), and ρYk (28). For each T0, the kernel pressure at its
maximum volume Vmax is denoted by pVmax

, and p0 is its initial pressure. In all cases, pVmax
< p∞ due

to this radial expansion [7,9,56,59]; this is also seen in the Fig. 8(b) inset for the axisymmetric case.
Dependence on the recombination rate is assessed by replacing the chemical source term ṅk in (4)
and (5) with a scaled ṅ∗

k � ṅk (Fig. 9). For ṅ∗
k = ṅk , the kernel expands to a volume greater than that

predicted by the two-species model. This enhancement is more pronounced at larger pressure ratio
p0/pVmax

due to the greater initial electron concentration at higher T0. It is weaker for p∞ = 0.1 atm
[Fig. 9(b)] due to the decreased collision rate at lower number densities, consistent with the slower
τ acc

rec overlapping with tVmax in Fig. 5(b). A similar enhancing effect has been reported for solid-surface
laser ablation, but for much lower pressure (40 Pa) and resulting from metal rather than gaseous ions
[46].

For p∞ = 1 atm, ṅ∗
k = 0 results in an essentially adiabatic expansion from the initial kernel state

to its maximum volume:

Vmax

V0
=

(
p0

pVmax

)1/γ

with γ = 5/3. This matches the behavior of the two-species model. A similar trend occurs for p∞ =
0.1 atm [Fig. 9(b)], though both the nonequilibrium model with ṅ∗

k = 0 and the two-species model
depart slightly from adiabaticity due to enhanced thermal diffusivity in lower-density gas. The close
match in Vmax with the two-species model, which does not include electron thermal conduction,
further suggests that heavy-particle thermal conduction, rather than that of electrons, primarily leads
to this mild suppressing effect on the expansion. This is consistent with the overlap of τ acc

λh
and tVmax

at p∞ = 0.1 atm in Fig. 5.
These results are also compared to that of an equilibrium model, corresponding to the limiting

case in which thermal and chemical equilibration are assumed to occur infinitely fast. In this single-
temperature model with Te = Th, the composition is determined by the Saha relation (25) with Ts =
Te. The equilibrium kernel attains a greater expanded volume for nearly all cases in Fig. 9 because
the recombining electrons instantly adjust to the decreasing T and ρ, thereby heating the gas at a
rate faster than any of the finite-ṅk cases. The slightly smaller volume for the low-energy p∞ =
1 atm case, for which recombination plays a comparatively smaller role, is due to hydrodynamic-
driven fluctuations in the instantaneous values of V and p. The data in Fig. 9 indicate that finite-rate
chemistry is necessary for quantitative prediction of the plasma expansion.

V. EFFECT ON EJECTION

To examine how these plasma mechanisms during the expansion affect the subsequent hydro-
dynamic ejection, we focus on vorticity generation [9]. As shown in Fig. 10, this occurs primarily
during the plasma expansion; the net circulation

� =
∫ ∫

ω dx dr, where ω = ∂ur

∂x
− ∂ux

∂r
, (31)

varies only slowly after tVmax . Both models predict the most intense vorticity at the smaller R2 end
[Fig. 11(a)]. While there is greater negative circulation for the nonequilibrium case at tVmax (Fig. 10),
the vorticity is more diffuse and distributed over a larger volume [Fig. 11(a)]. The baroclinic torque
[Fig. 11(c)] that generates it results from misalignment between the density gradient at the kernel
boundary (due to low density of the expanding plasma) and the decreasing pressure that manifests
as a gradient in the postshock rarefaction. This is the primary vorticity-generating mechanism for
both models [Fig. 11(c)] and corresponds to the schematic in Fig. 1(b); detailed analysis of this
hydrodynamic mechanism is reported elsewhere [9]. In contrast to the simple μ ∝ T 0.7 viscosity of
the two-species model (16), the viscosity for the nonequilibrium case [Fig. 11(b)] is low inside the
kernel due to free electrons. While high viscosity along its perimeter contributes to the diffuse ω

distribution seen in Fig. 11(a), it will be shown insufficient by itself to cause this.
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FIG. 10. Circulation (31) time evolution for the nonequilibrium and two-species models, with T0 =
30 000 K and tVmax as indicated.

The negative vorticity auto-advects subsonically in the negative-x direction and penetrates the hot
plasma (Fig. 12). For the two-species model this vorticity is concentrated near r = 0 and breaches
the opposite side of the kernel by t = 52 μs [Fig. 12(b)]. In contrast, for the nonequilibrium model
the more diffuse vorticity is located at a greater r distance and advects slowly [Fig. 12(a)].

To analyze mechanisms that lead to the weakened, diffuse ejection seen in Fig. 12(a), we seek to
isolate the effects of plasma-expansion enhancement, viscosity, and thermal conduction. First, the
initial temperature for the two-species model is elevated to T0 = 155 000 K so that the peak kernel
volume matches (to within 8%) that of the nonequilibrium model. As seen in Fig. 13(b), the vorticity
is still concentrated near the centerline and advects rapidly, similar to that in Fig. 12(b), indicating
the recombination-enhanced expansion alone is insufficient to weaken the ejection.

To assess the effect of viscosity, the μ ∝ T 0.7 model (16) is replaced by a uniform μ = 6μ∞ to
match the peak viscosity of the nonequilibrium model at tVmax [Fig. 11(c)]. As shown in Fig. 13(c),
even this large increase does not reproduce the slowly advecting, diffuse vorticity of the nonequi-
librium model, which occurs despite the low viscosity inside the plasma kernel [Fig. 11(b)]. The
similar vorticity distributions [Figs. 13(b) and 13(c)] and circulation time traces (Pr = 0.66 curves;
Fig. 14) also indicate that using an appropriately selected uniform viscosity instead of μ ∝ T 0.7

does not significantly alter the ejection during this early formation stage.

FIG. 11. (a) Vorticity and (b) viscosity at tVmax for the nonequilibrium model (tVmax = 11.7 μs) and the two-
species model (tVmax = 7.6 μs), corresponding to the cases shown in Fig. 7. (c) Azimuthal baroclinic torque
overlaid with p/p∞ ∈ [0.85, 1.26] and ρ/ρ∞ ∈ [0.02, 0.90] contours, averaged over t/tVmax ∈ [0.3, 1.0]. The
kernel boundary in (a) is defined by ξ = 0 (24).
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FIG. 12. Flow at t = 52 μs for the (a) nonequilibrium model and (b) two-species model for T0 = 30 000 K,
corresponding to cases shown in Fig. 7. The velocity vector scale is given in terms of the ambient speed of
sound. The initial kernel is shown in gray in (a).

Due to the high thermal conductivity and low viscosity of electrons, the Prandtl number of the
plasma can differ significantly from the constant Pr = 0.66 approximation used for the two-species
model. For example, at tVmax = 11.7 μs the thermal conductivity λh + λel is 32 times higher at the
kernel center than in the ambient gas, and the Prandtl number of the plasma varies significantly:
Pr = cpμ/(λh + λel ) ∈ [0.04, 0.66]. To assess the effect of this enhanced conductivity, a uniform
Pr = 0.17 is used for the two-species model. As shown in Fig. 13(d), this leads to weaker, more

FIG. 13. Flow at t = 52 μs for (a) the nonequilibrium model with T0 = 30 000 K, and the two-species
model with T0 = 155 000 K and various transport models: (b) μ ∝ T 0.7 viscosity (16), (c) uniform μ = 6μ∞,
and (d) uniform μ = 6μ∞ with Pr = 0.17.
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FIG. 14. Circulation (31) for the nonequilibrium model with T0 = 30 000 K and the two-species model
with T0 = 155 000K and various transport models, corresponding to cases shown in Fig. 13.

diffuse vorticity located farther from the centerline, suggesting that the similar distribution seen in
the nonequilibrium case [Fig. 13(a)] also results in part from large thermal conductivity.

Coupling between thermal conduction and the plasma expansion would be consistent with the
timescales of Fig. 5(b), which indicates that for p∞ = 0.5 atm, both τ acc

λh
and τ acc

λel
are comparable

to tVmax . Decreasing Pr = 0.66 to Pr = 0.17 does not significantly change the net circulation (31)
generated during the expansion (μ = 6μ∞ curves for t � tVmax ; Fig. 14), but it can alter the
distribution due to thickening of temperature, and thus density gradients, which in turn weakens
baroclinic torque. Following the expansion, the (negative) circulation for Pr = 0.17 diverges from
Pr = 0.66 and decreases as the vorticity advects into the plasma, consistent with the weaker
penetration seen at t = 52 μs [Fig. 13(d)]. This indicates that suppression of the ejection results
from mechanisms occurring during both the expansion and subsequent vortex-advection stages. The
low Prandtl number alone, however, is insufficient to suppress the ejection; μ = μ∞, Pr = 0.17 does
not reproduce the distribution seen in Fig. 13(d). This indicates that the observed weakened ejection
in a plasma is due to the combined diffusive effects of both viscosity and thermal conduction.

VI. CONCLUSIONS

A two-temperature, three-species argon-plasma model is used to quantify post-breakdown
timescales for diffusion, thermal relaxation, and electron recombination to determine conditions for
which these might couple with the hydrodynamics. Direct thermal-nonequilibrium effects are found
to be weak because of their fast relaxation timescales and would seem to require lower pressures
(p∞ � 0.01 atm) or smaller kernels (L � 0.1 mm) than reported, and even then the breakdown-
induced flow would be suppressed by viscosity and diffusion. In contrast, chemical nonequilibrium
plays an important role: recombination enhances the plasma expansion by heating the gas with the
stored ionization energy. This occurs for p∞ ∈ [0.1 atm, 10 atm] and is more pronounced at higher
pressure due to rapid collision rates. At low pressure thermal conduction is shown to mildly suppress
the expansion. Comparison with inert-gas simulations confirm that thermal conduction, enhanced
by free electrons, also leads to a more diffuse vorticity distribution, which slows its penetration into
the plasma kernel and weakens the ultimate ejection. These results point to important mechanisms
to consider and means of tailoring breakdowns for different purposes. They are also a first step
toward including models for more complex chemistry and intersections with particles, droplets, or
interfaces.
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APPENDIX A: NONEQUILIBRIUM PLASMA MODEL

The submodels used to close the governing equations (1)–(6) are presented here. The internal
energy e = e f + eh + ee in (3) includes the formation, heavy-particle, and electronic energies:

e f = Y +
A

IA

mA+
, eh = 3

2

(
YA

mA
+ YA+

mA+

)
kbTh, and ee =

∑
k

Ykee,k . (A1)

The electronic energy ee includes both translation energies of free electrons and the excitation of
heavy species to a single energy level εk , so the electronic energy ee,k of the kth species is [28]

ee,e = 3

2

kbTe

me
and ee,k = g1

k exp
(− εk

kbTe

)
g0

k + g1
k exp

(− εk
kbTe

) εk

mk
for k ∈ {A, A+}, (A2)

where gl
k is the degeneracy of the lth energy level for the kth species (see Table III for argon values

used).
For A and A+ the electronic enthalpy he,k is equal to ee,k (A2), and for electrons

he,e = ee,e + kbTe/me [27]. The Wilke mixture rule is used to compute the dynamic viscosity μ

in (7) [61]. The heavy-particle thermal conductivity λh in (8) is computed assuming no electron-ion
interaction, resulting in λh = XAλA [34]. Similarly, only the free-electron contribution is included
in λel = Xeλe. The species viscosity, species thermal conductivity, and binary diffusion coefficients
are represented with established models [35]:

μk = 5

16

√
πmkkbT

Q
(2,2)
kk

, λk = 15

4

kb

mk
μk, and Dkl = 3

8

kbT

p

√
πkbT (mk + ml )

2mkml

1

Q
(1,1)
kl

, (A3)

where T = Te for electron properties and electron-heavy interactions, and T = Th otherwise. Rapid
diffusion of free electrons, which would produce charge separation, is counteracted by a locally
induced electric field, resulting in electrons and ions diffusing in tandem [32]. This ambipolar
diffusion, which suppresses free-electron diffusion and enhances ion diffusion, is modeled with
standard expressions, appropriately simplified for a three-component mixture [31]:

V e = V A+ =
[
− 1

Xe

WA

W
Damb + W 2

A

W 2
(Damb − Dneut )

]
∇Xe, (A4)

V A =
[

1

XA

WA

W
Dneut + W 2

A

W 2
(Damb − Dneut )

]
∇Xe, (A5)

TABLE III. Degeneracies and energy levels for argon, grouped approximately [60].

g0
k g1

k εk Ik

A 1 12 11.5 eV 15.8 eV
A+ 6 2 13.5 eV ∞
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where

Damb = 2DAA+ , Dneut = 2DAA+

(
1 − DAA+

DeA+

)
(A6)

and

Di j = Di j

[
1 + nk (Dikmk/mj − Di j )

niD jk + n jDik + nkDi j

]
, for i, j, k ∈ {A, A+, e−} and i �= j �= k.

As crafted, the diffusion velocities (A4)–(A5) ensure mass conservation (
∑

k ρYkV k = 0) and
are consistent with charge neutrality (nA+V A+ = neV e).

The collision integrals in (A3) are

Q
(l,s)
i j = 4(l + 1)

(s + 1)! [2l + 1 − (−1)l ]

∫ ∞

0
z2s+3e−z2

Ql
i j (z) dz, (A7)

where Ql
i j (z) ≡ 2π

∫ ∞
0 (1 − cosl χ ) σi j (z, χ ) sin χ dχ is the momentum-transfer cross section for

l = 1 and viscosity cross section for l = 2 [22,28,35]; χ , g, and σi j (z, χ ) correspond respectively
to the collision scattering angle, relative velocity magnitude, and differential cross section, and

z2 = mimjg2

2kbT (mi + mj )
.

A constant, representative value is used for Q
(1,1)
AA+ = 87.0 Å2, which is based on Chapman-Enskog

calculations at T = 10 000 K by Devoto [62] and includes the effect of charge-exchange reactions,
and Q

(1,1)
eA is approximated by an established fit [63],

Q
(1,1)
eA =

{[
0.713 − (4.5 × 10−4 K−1)Te + (1.5 × 10−7 K−2)T 2

e

] × Å2, Te < 3000 K

[−0.488 + (3.96 × 10−4 K−1)Te] × Å2, Te � 3000 K.
(A8)

For interactions between electrons and ions, we use

Q
(1,1)
eA+ = 2πε4

9(kbTe)2
log

[
9k3

bT 3
e

4πε6ne

]
, (A9)

where ε2 ≡ keq2
e , with ke = 8.987 × 109 Nm2/C2 the Coulomb constant and qe = 1.602 × 10−19 C

the electron charge [36]. For the neutral-particle interactions, we use an established fit [33]

Q
(2,2)
AA = (170 K1/4) T −1/4

h × Å2. (A10)

These integrated cross sections (A8)–(A10) have been used to model hypersonic boundary
layers and shocks in argon [33,36] and closely match detailed calculations by Devoto [62]. For
charged particles, Q

(2,2)
A+A+ = 1.36Qc and Q

(2,2)
ee = 1.29Qc include constants calibrated [35,64] to

match theoretical calculations of transport properties in a fully ionized gas [65], where

Qc = ε4

(kbTe)2
log

[
9(kbTe)3

4πε6ne
+ 16(kbTe)2

ε4n2/3
e

]1/2

.

The thermal relaxation time τek in (4) due to elastic collisions between free electrons and heavy
species k is [22]

1

τek
= 8

3

me

mk
nk

√
8kbTe

πme
Q

(1,1)
ek (Te). (A11)
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FIG. 15. Comparison of (a) temperatures, (b) density, and (c) electron number density for the present
plasma model with the detailed model of Kapper and Cambier [54] for a Mach 15.9 shock in argon.

For the kinetics model, the rate constants k f ,1 and k f ,2 in (12) and (13) are based on those
developed by Hoffert and Lien [37]:

k f ,1 = (3.75 × 10−16 K−3/2)T 3/2
e

( εA

kbTe
+ 2

)
exp

(
− εA

kbTe

)
× cm3/s, (A12)

k f ,2 = (1.68 × 10−20 K−3/2)T 3/2
h

( εA

kbTh
+ 2

)
exp

(
− εA

kbTh

)
× cm3/s. (A13)

The Saha equilibrium constant Keq(T ) in (12) and (13) is approximated with the first term of the
electronic partition functions of A and A+ [28,38], corresponding to their ground states:

Keq(T ) = 2
g0

A+

g0
A

(
2πmekbT

h2

)3/2

exp
(
− IA

kbT

)
. (A14)

Because (A12) and (A13) assume excitation of the neutral particle A to be rate-controlling and is
expected to be valid only for T � 3000 K [37], we use Tmodified = max(T, 3000 K) when computing
(A12) and (A13); a similar approach was taken by Liu et al. [33] to avoid large recombination rates
at low temperatures. In the present analysis, recombination occurs predominantly by (10) in hot
plasma where Te > 3000 K, so it is unaffected by this choice.

APPENDIX B: VALIDATION: A MACH 15.9 SHOCK IN ARGON

The nonequilibrium model used is compared with the detailed two-temperature model of
Kapper and Cambier [54], which, in addition to the physics included here, includes 31 atomic
energy levels, photoionization, bound-bound electronic transitions, and bremsstrahlung emission.
Figure 15 shows the Mach 15.9 shock structure in T∞ = 293.6 K, p∞ = 685.3 Pa argon. There is
good agreement in the length of the relaxation region behind the shock front [Fig. 15(a)], which
results from a competition between thermal relaxation and electron-impact ionization. The electron
avalanche in the relaxation zone produces a free-electron spatial distribution which also agrees
well [Fig. 15(c)]. Coupling between gas-dynamic rarefaction waves and the temperature-sensitive
ionization avalanche causes an oscillation with period 31 μs, matching well the 32.5 μs predicted
by Kapper and Cambier [66].

APPENDIX C: EFFECT OF RADIATION

Emissions due to free-free and bound-bound electronic transitions are modeled as

A+ + e → A+ + e + hν, (C1)

A( j) → A(i) + hν, (C2)
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where ν is the frequency of the emitted photon. Free-bound radiation is anticipated to be weak
based the calculations of Kapper and Cambier [54] and therefore not included here. For free-free
transitions, or bremsstrahlung, all emitted radiation is assumed to escape the plasma, so the radiated
power is [54,67]

Q̇FF = 64ε6π3/2

3
√

6m3/2
e hc3

gZ2
effn

2
e

√
kbTe, (C3)

where c is the speed of light in vacuum, g = 1 is the Gaunt factor, and Z2
eff = 1.67 [68] is the

effective nuclear charge.
Among bound-bound transitions, 4s–4p emissions by the neutral particle is anticipated to be

strongest [69]; consistent with this, Kapper and Cambier [54] showed that including additional
transitions results in only minor changes to the electron concentration behind a Mach 15.9 shock.
Resonant emissions are assumed to be locally absorbed, whereas 4s–4p emissions are assumed to
escape. The radiated power is modeled as [70]

Q̇BB =
∑

j

n j
Ahν jA j, j−1, (C4)

where Aj is the Einstein coefficient for the jth transition, ν j is its emitted frequency, and n j
A is the

number density for the higher energy level of the transition assuming a Boltzmann distribution and
nA = ∑

j n j
A:

n j
A = nA

g̃ j
A exp

( − ε̃
j

A/kbTe
)

∑
i g̃ i

A exp
( − ε̃ i

A/kbTe
) .

The excited energy level ε̃
j

A is distinct from the approximately grouped εA of the thermody-
namic model (Table III). Grouping is not employed for the radiation model due to variation of
Aj, j−1 ∈ [103 s−1, 4.5×107 s−1] and hν j ∈ [1.08 eV, 1.86 eV], based on data by Wiese et al. [71],
so all 30 reported 4s – 4p transitions are used, and ε̃

j
A is taken from Kramida et al. [60].

The total radiated power Q̇rad = Q̇FF + Q̇BB is included in the governing equations for total and
electronic energy as follows:

∂ρ(e + |u|2/2)

∂t
+ ∇ · [ρ(e + |u|2/2)u] + ∇ · [(pI − τ)u] + ∇ · q = −Q̇rad,

∂ρee

∂t
+ ∇ · ρeeu + ∇ · peu + ∇ · qe = u · ∇pe + 3

2
nekb(Th − Te)

(
1

τeA+
+ 1

τeA

)
− IAṅe,1 − Q̇rad.

Figure 16 shows the effect of radiation on the plasma expansion. Radiative loss is most pro-
nounced at p∞ = 10 atm, due in part to greater electron number density, and decreases Vmax by 15%
[Fig. 16(c)]. The electron mole fraction Xe at tVmax is also 49% lower due to the lower temperature.
Though the radiation directly affects only Te, deviation between Th and Te remains negligible due to
rapid thermal relaxation at high pressure.

For conditions of primary interest (p∞ � 1 atm), the effect of radiation is negligible, as seen in
Figs. 16(a) and 16(b). Even at p∞ = 10 atm, the radiation-driven decrease in temperature and Xe is
verified to have a negligible effect on the timescales in Fig. 5.

APPENDIX D: VALIDATION: Te-FILTER AND Xe,∞ INSENSITIVITY

The stabilizing filter for electron thermal conduction and X0,∞ modeling choices are shown here
to leave results essentially unchanged. The Te filter is second-order:

f̂ j = 1
2 f j + 1

4 ( f j+1 + f j−1). (D1)
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FIG. 16. Effect of radiation on kernel volume V , temperatures Th and Te, and electron mole fraction Xe,
taken at r = 0, for an L = 1.16 mm spherical kernel with (a) p∞ = 0.1 atm, (b) p∞ = 1 atm, and (c) p∞ =
10 atm. Note that Th ≈ Te for these cases.

It is applied four times to ∇ · (λel∇Te) for each evaluation; the corresponding transfer function
[48] is compared in Fig. 17 to those of the eighth-order explicit filter

f̂ j = 93
128 f j + 7

32 ( f j+1 + f j−1) − 7
64 ( f j+2 + f j−2) + 1

32 ( f j+3 + f j−3) − 1
256 ( f j+4 + f j−4) (D2)

and implicit filter [72]

f̂ j + α f ( f̂ j+1 + f̂ j−1) = 93 + 70α f

128
f j + 7 + 18α f

32
( f j+1 + f j−1) + −7 + 14α f

64
( f j+2 + f j−2)

+ 1 − 2α f

32
( f j+3 + f j−3) + −1 + 2α f

256
( f j+4 + f j−4), (D3)

FIG. 17. Filter transfer function for eighth-order explicit (D2) and implicit (D3) filters, and four applica-
tions of a second-order explicit filter (D1).
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TABLE IV. Cases used to test sensitivity to the filter and Xe,∞. For all cases, the mesh spacing is �r =
1.4 μm.

Case ∇ · (λel∇Te) filter Xe,∞

1 Yes 10−8

2 No 10−8

3 No 10−12

with α f = 0.495, which are applied to the solution variables (see Sec. II D).
Insensitivity to this intentionally aggressive second-order filter as well as choice of

Xe,∞ = 10−8 is verified with one-dimensional simulations of a spherically symmetric L = 1.16 mm,
T0 = 30 000 K kernel with p∞ = 0.5 atm, which present similar resolution challenges as all the
cases considered herein. Table IV summarizes the parameters used, and Fig. 18 compares the results
at tVmax = 11.5 μs. The data for cases 1 and 2 collapse to plotting accuracy.

Case 3 with Xe,∞ = 10−12 exhibits minor departure from cases 1 and 2 at the perimeter of the
kernel, where there is a small peak in Te. The feature itself does not result from the filter or Xe,∞, and
it does not depend on mesh resolution. It occurs in a region where both the electron concentration
[Fig. 18(c)] and electronic energy are small (Fig. 19), and where thermal relaxation with heavy
particles is very slow. It is unclear whether this feature would manifest at these conditions using
a more detailed plasma model, though seemingly similar thermal nonequilibrium in cold gas can
occur in plasma-arc simulations [73,74]. An artificial increase in relaxation rate was employed in
those cases to suppress this nonequilibrium, though for this work the relaxation rates in (A11) are
unmodified. It is unlikely this small feature affects results: despite the apparent change in Te, it
is energetically weak, as only trace electrons are available to carry the electronic energy, which
monotonically decreases (Fig. 19).

APPENDIX E: VALIDATION: �t INSENSITIVITY

Insensitivity to �t is confirmed using spherically symmetric simulations for the range of p∞ and
L analyzed in Sec. III. Table V shows the relative change, such as �Th/Th, in relevant quantities for
simulations in which the time step �t is decrease by a factor of 4 relative to that use in the analysis.
In all cases, this has a negligible effect on results.

APPENDIX F: TIMESCALE FORMULATIONS

The timescales listed in Table II are formulated based on mean kernel properties (26)–(28). For
the electron diffusion timescale τD, the kernel radius R is chosen as the relevant length, and Damb =

FIG. 18. Comparison at tVmax = 11.5 μs of (a) Th, (b) Te, and (c) Xe for a spherically symmetric L =
1.16 mm kernel for T0 = 30 000 K and p∞ = 0.5 atm; cases are described in Table IV.
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FIG. 19. Comparison at tVmax = 11.5 μs of ρee for the cases in Table IV.

Damb(T h) (A6) is the ambipolar diffusion coefficient evaluated with T h (26). The nominal kernel
mean molecular weight W = ρ/C is calculated from

ρ = 1

V

∫
V

ρ d3x and C = 1

V

∫
V

n

N d3x, (F1)

where N is the Avogadro constant. As R, W , and Damb evolve, the timescale τD is an estimate of the
evolving rate of electron diffusion. For a constant-R, constant-coefficient, linear diffusion system
[75] with diffusion velocity V e (A4), τD is the time scale for all gradients to be smoothed.

Thermal diffusion scales τλh and τλel (Table II) are analogously defined and based on the heavy-
particle-translational and free-electron thermal diffusivities, λh/ρ ct

p and λel/ρ ce
p, respectively. For

these estimates, the conductivities λh = λh(T h, X A) and λel = λel (T e, X e) are evaluated with mean
kernel temperatures and X k = nk/n, where

nk = 1

V

∫
V

nk d3x and n = 1

V

∫
V

n d3x. (F2)

The corresponding specific heats are

ct
p =

∑
k∈{A,A+}

ρYk

ρ

5

2

kb

mk
and ce

p =
∑

k

ρYk

ρ

∂he,k

∂Te

∣∣∣∣
T e

.

Together, τλh and τλel are the timescales for the kernel size R to attain uniform temperature by
heavy-particle and electron thermal conduction.

For recombination, τrec is computed from kernel-integrated recombination rates based on (12)
and (13):

R1,b = 1

V

∫
V

k f ,1

Keq(Te)
n2

enA+ d3x and R2,b = 1

V

∫
V

k f ,2

Keq(Th)
nAnenA+ d3x.

While these reaction rates depend on ne and clearly evolve, τrec provides an estimate of the time for
neV electrons to completely recombine at a constant rate (R1,b + R2,b)V .

TABLE V. Relative change in various quantities at t = tVmax and r = 0 resulting from a decrease in �t by
a factor of 4.

p∞ [atm] L [mm] �tVmax/tVmax �Th/Th �Te/Te �Xe/Xe

0.1 0.29 1.7 × 10−4 4.4 × 10−5 3.2 × 10−5 1.1 × 10−4

1.0 1.16 9.9 × 10−4 9.2 × 10−6 5.1 × 10−6 4.6 × 10−5

10.0 4.62 1.1 × 10−4 1.0 × 10−6 1.3 × 10−6 5.8 × 10−5
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The thermal relaxation timescale τrel in Table II is based on the relaxation time in (4), with
constituents τ ek = τek (nk, T e) for k = A and A+ set by (A11) evaluated for T e (27) and nk (F2).
This is obviously the rate at which collisions lead to thermal equilibrium Te = Th.
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