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The dip-coating process consists of withdrawing immersed objects from a liquid reser-
voir. After withdrawal, a significant layer of liquid remains on the object. Various industrial
processes (food and beverage industry, automotive industry) use this technique to coat or
treat surfaces. Recent studies have shown that the thickness of deposit is determined by
the flow inside the reservoir for yield-stress fluids. This is different from the behavior of
simple liquids for which the coating thickness is solely determined by the flow inside the
meniscus. In this work, we reexamine this question and propose a complete phase diagram
linking the Newtonian case and the yield-stress fluid case. We provide asymptotic scaling
laws for extreme cases. A good agreement with experiments is obtained.
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I. INTRODUCTION

In everyday life, various types of yield-stress fluids are employed as adhesives, paints, gels,
pastes, and creams. They respond elastically to small applied stresses and flow as viscous fluids
if the applied stress exceeds the critical yield stress. In many applications, yield-stress fluids are
spread on a solid substrate. At home, examples are putting chocolate spread on a toast or coating of
eyelashes by mascara. A controlled spreading technique is dip coating in which a film is deposited
by withdrawing an immersed object from a fluid reservoir as sketched in Fig. 1. The method is
low-cost, waste-free, and easy to scale up [1]. It is broadly used in a wide variety of industrial
applications that range from manufacturing to the food industry [2]. In academic research, the
dip-coating technique is frequently employed to prepare thin films from sol-gel precursors [3–5].
It is of major interest to master the thickness of the coating film, which generally depends on
several physical parameters: fluid properties, withdrawal velocity and shape of the withdrawn object.
The flow extends from the reservoir to the deposited film through a connecting area called the
meniscus. The shape of the meniscus is given by the balance between gravity and surface tension
for simple liquid or gravity, surface tension and yield stress for yield-stress fluids. A static meniscus
is connected to the film of constant thickness by a zone of variable thickness coined as the dynamic
meniscus. It is usually admitted that the shape of the part of the meniscus in contact with the
reservoir is not modified by the liquid flow. The deposit thickness is controlled by the a balance
between viscous and capillary forces in the dynamic meniscus [6–9]. This description has been
validated experimentally on many Newtonian fluids [8,9]. For yield-stress fluids with a large yield
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FIG. 1. (a) Schematic of the dip-coating experiment: a rod of radius r1 is pulled out with velocity V from
a cylindrical liquid reservoir of radius r2, which deposits a coating film of thickness h. (b) Typical thickness
profile resulting from the dip coating. The coating profile can be divided into regions in a transient regime, a
steady regime, and break-up regime (see text).

stress, previous studies have revealed that the flow inside the reservoir plays a role [10–12]. In other
words, for high yield stress values, the amount of liquid pulled out of the reservoir is not large
enough to feed the film as would be required by the static meniscus. In this situation, the thickness
of the coating is determined by the flow inside the reservoir and not by the flow inside the meniscus
[13]. There are currently no descriptions that unify these limiting behaviors. Theoretical approaches
have considered only the situations where the process is determined by the flow either in the bath
[12,13] or in the meniscus [6–9]. Furthermore, no simple criterion on the yield-stress exists that
distinguishes whether the thickness of the deposited film depends on the flow in the bath and/or
the flow in the meniscus The originality of our work is to provide such a criterion and to propose a
description that bridges the gap between the two limiting behaviors.

In this work we study a cylindrical geometry sketched in Fig 1 of a rod of radius r1 pulled out
of a cylindrical bath of yield stress fluid of radius r2. The limiting case where the object is a plate
(r1 → ∞) is treated in the Supplemental Material (SM) [14]. The choice of a cylindrical geometry
comes from the fact that the bath plays an important role in the size of the deposit. Indeed, the flow
is more complex in a square or rectangular bath. This argument justifies the theoretical positioning.
Experimentally, the circular geometry is not necessarily the most used. Another advantage is that
the centering allows to obtain a homogeneous deposit. The position of the object and their centering
in the bath are crucial and can induce inhomogeneous deposits. In terms of applications, a very large
bath if not circular is favorable.

The current work is structured as follows: in Sec. II we introduce the hydrodynamic equations
and explain our strategy to bridge the gap between the two limiting behaviors. Section III considers
the situation where the flow in the reservoir is the mechanism that governs the process, and Sec. IV
considers the situation where the flow in the meniscus dominates. In both situations, we provide
solutions for the thickness of the deposit in the asymptotic limits, i.e., for both low or large values
of the yield stress. Then we present a comprehensive diagram drawing the boundaries between these
two regimes in Sec. V. Section VI is devoted to a comparison with experiments. The final section
displays the conclusions and the outlook of this work.

II. FROM RESERVOIR ONTO COATING

When an object is withdrawn from a fluid reservoir, a fluid flow is created. In this work, we
assume that flow is steady, i.e., that the velocity and the stress do not depend on time. An analysis
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of the conditions to reach this steady state is given in Appendix A. We assume that the inertial
stresses are negligible compared to the deviatoric stress tensor components, i.e., low Reynolds
number Re. This corresponds to a situation where Re = ρV 2

τc
� 1 with ρ the density of the fluid,

V the withdrawal velocity, and τc the yield stress. Under these hypotheses, the momentum balance
equation writes

∇ · τ − ∇P + ρg = 0, (1)

with P the fluid pressure, ρ the fluid density, and g the gravitational acceleration. The deviatoric
stress tensor τ depends on the rheological properties of the fluid. The modeling of yield-stress
fluids is still a subject of debate. Various viscoplastic models have been proposed and we refer
to Fraggedakis et al. [15] for a recent review. The Herschel-Bulkley model successfully describes
experimental observations of steady flows of liquid foams, emulsions, and microgels [16–19]. A
detailed analysis of the conditions for its validity is given in Appendix A. The constitutive equation
of this model reads

γ̇ = max

(
0,

|τ| − τc

k

) 1
n τ

|τ| , (2)

where γ̇ is the shear rate, k is the consistency parameter, and n > 0 is the power index. The shear-
thinning behavior is associated to 0 < n < 1. This model reduces to the Bingham model when
n = 1. Shear-thickening behavior corresponds to n > 1 but is more unusual [20].

This set of equations has to the completed by boundary conditions. We assume in this paper that
the solid-liquid interface is impermeable and consider the case of an object vertically withdrawn
from a fluid reservoir with velocity V . At the object-fluid interface, the fluid velocity is v = V ẑ and
at the reservoir-fluid boundary v = 0. At the free surface of the film, the tangential stress vanishes
and the value of the normal stress is given by Laplace’s law:

P − P0 − �H = n̂ · τn̂ = 0, (3)

where P is the pressure inside the meniscus, P0 is the atmospheric pressure, � is the fluid/air surface
tension, H is the curvature of the interface, and n̂ is the normal unit vector to the interface.

Beyond the different parameters that define the flow, the problem is made complex by the
geometry. Part of the flow takes place in the bath, and part of the flow takes place in the film. In
classical descriptions for simple fluids, the flow in the bath is not taken into account. The hypothesis
is made of the existence of a static meniscus that feeds the film, which is not perturbed by the flow.
The static meniscus is however sufficient to drain enough material and feed the film. This description
is no longer valid for yield-stress fluids for which a large portion of the sample is jammed. The value
of the stress borne by the sample is in many locations smaller than the yield stress value. This is
in particular the case for the part of the sample in contact with air or in the center of the bath. The
amount of material coating the rod is therefore limited by the amount of material that can flow from
the bath. Surface tension and meniscus play a minor role in this situation. In the following we will
proceed with this hypothesis. We study separately the two limiting situations: the situation where
the flow is driven by the properties of the bath and the situation where the flow is driven by the
meniscus. To predict the thickness of the deposit in the first situation, we analyze the thickness of
the deposit on a rod from a yield-stress fluid subjected to viscous driving forces and gravity. We
set as a boundary condition at the bottom of the rod the amount of liquid per unit time delivered
by the bath. To eliminate the role of the meniscus, we assume that the surface tension vanishes.
The second situation is analyzed assuming the existence of a static meniscus with a shape set by a
balance between surface tension, yield stress, and gravity. In this situation we analyze the flow in the
dynamic meniscus and determine the pressure drop using the static shape of the meniscus. We then
select the limiting process by comparing the obtained thickness. The situation giving the thinner
deposit is the limiting process. This method allows us to obtain a general diagram for the various
possible values of the thickness of the deposit as a function of both the geometrical parameters of
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the experiments and the rheological parameters of the yield stress fluid. As we show below, the
study of these limiting situations remains complex. To advance we propose in each of the two cases
to make a dimensional analysis based on the Buckingham π theorem, which indicates the minimal
number of dimensionless parameters that describe the phenomenon. We then determine regions
where the coating process involves a dominant physical phenomenon. In each region, we estimate
the thickness of the deposit. Depending on the case, these regions are defined by the fact that the
chosen dimensionless parameters are larger than one or smaller than one or by the fact that some
combination of these parameters is larger or smaller than one. These criteria are used to find the
equation of the boundaries between the regions.

III. COATING DRIVEN BY THE FLOW IN THE RESERVOIR

In this section, we consider the case where the thickness of the coating film on a cylinder of
radius r1 pulled at a velocity V from a reservoir of yield stress fluid of radius r2, is driven by the
flow in the reservoir. In this situation the meniscus plays no role. The characteristic parameters
involved in the flow are h the thickness of the deposit, r1 the radius of the rod, r2 the radius of the
reservoir, ρg the gravity force by unit volume, V the rod velocity, and the yield stress τc. These
six parameters involve three fundamental units. According to Buckingham’s π theorem, a set of
three dimensionless parameters are required to describe the flow: we choose here the confinement
parameter Co = (r2 − r1)/r1, the Bingham number Bm = τc

k ( r2−r1
V )n (the ratio of the yield stress by

the viscous stress), and Ȳ = τc/(r1ρg) (the ratio of the yield stress to the gravitational stress). In
order to find the dependence of the coating thickness on the dimensionless parameters {Co, Bm, Ȳ},
we proceed through different steps. First, we link Co to the amount of liquid going out from the
reservoir. We evidence two situations, one occurring for h > h∗ and another for h < h∗, where h∗
is the thickness of deposit at which the stress at the rod’s surface equals yield stress −τc. Then we
calculate the amount of liquid going out of the reservoir as a function of Co and Bm. Finally, we
predict the thickness of the deposit by regrouping these calculations.

A. Link between the thickness of the deposit and the amount of liquid that goes out from the
reservoir as a function of time

The pressure gradient outside the bath in the flat part of the meniscus vanishes and the shear
stress profile in the film is given by the force balance on a fluid annulus of height dz which has an
internal radius r � r1 and an external radius r1 + h at the free surface,

τrz(r) = ρgr

2
− ρg(r1 + h)2

2r
. (4)

Let us call h∗ the thickness of the deposit at which the stress on the rod equals the yield stress −τc:

h∗

r1
= −1 +

√
1 + 2

τc

r1ρg
. (5)

If the collected deposit h is smaller than h∗, the film is jammed on the rod, and we are left with the
mass conservation equation [

π (r1 + h)2

2
− πr2

1

2

]
Vcoating = Qbath. (6)

The coating velocity Vcoating is larger than the withdrawal velocity V of the rod, because the
withdrawal leads to a lowering of the liquid level of the reservoir. Vcoating is the fluid velocity in
the reference frame of the fluid level of the reservoir. If h < h∗, Vcoating is constant over the film’s
thickness and the velocity profile vcoating(r) does not depend on the radial position r. Note that
h < h∗ corresponds to the situation where the system is jammed meaning that the absolute value of
the shear stress nowhere exceeds the yield stress. If h > h∗, the mass conservation becomes tricky
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FIG. 2. (a) Sequential pictures of a dip-coating experiment with a Carbopol gel with n = 0.35 and Bm = 4.
Horizontal layers are colored by food coloring to indicate the fluid flow, which is vertical away from the
meniscus and the end of the rod. (b) Schematic cross sections of a steady fluid flow with n = 0.35 and Bm = 1
for a cylindrical geometry with r1 = r2/4. Inside the reservoir, the yielded regions are indicated light-shaded,
and the unyielded regions are shown dark-shaded.

since part of the liquid going out from the reservoir drains back into the reservoir. We get

∫ h+r1

r1

2πrvcoating(r) dr � Qbathγ̇rz(r) =
{

0 for r � h∗

− 1
k

[
τc + ρgr

2 − ρg(r1+h)2

2r

] 1
n for r < h∗ . (7)

Solving these equations requires the calculation of the fluid flow inside the reservoir. For highly
symmetric geometries, the flow inside the reservoir can be calculated semianalytically. Here we
discuss the axisymmetric case of a cylinder vertically withdrawn from a concentric cylindrical
reservoir. A similar analysis of the two-dimensional dip coating problem on a plate is provided
in the SM [14]. It should be noted, however, that from the moment that the flow in the bath is
important, having a nonsymmetrical or noncentered geometry has repercussions on the film. The
thickness of the film is no longer homogeneous, and one side of it might be thicker than another.
The analysis of this case goes beyond the scope of this work.

B. Flow through concentric annuli, calculation of the amount of fluid leaving the reservoir

The withdrawal of a rod from a concentric reservoir of yield-stress fluid gives rise to a vertical
flow in the z direction in the fluid regions away from the meniscus and the end of the rod [Fig. 2(a)].
The only nonvanishing stress component is the shear stress τrz. At low Reynolds number Re,
i.e., when the inertial stresses are negligible compared to the deviatoric stress tensor components,
the inertial terms vanish. This corresponds to a situation where Re = ρV 2/τc � 1 with V the
withdrawal velocity. The resulting Stokes equation for the momentum balance reads

−ρg − ∂P

∂z
+ 1

r

∂rτrz

∂r
= 0, (8)

with r the radial coordinate and z the vertical axis [the notation is detailed in Fig. 2(b)].
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By integration, the general solution for a non-Newtonian fluid with a yield stress τc flowing
through a concentric annulus can be obtained [21]:

τrz = τc

�

(
r − λ2

r

)
. (9)

Here � = 2τc/(ρg + ∂P/∂z) and λ is a so far undetermined integration constant, corresponding to
the radius where the shear stress vanishes.

The positions of the yield surfaces (λi and λo) are given by the conditions τrz(λi) = −τc and
τrz(λo) = τc, respectively. The length � = λo − λi is then the width of the plug flow region, and the
length λ = √

λiλo is the geometric mean of the yield radii. The shear stress field is hence given by

τrz = τc

λo − λi

(
r − λiλo

r

)
. (10)

The unknown positions of the yield surfaces λo and λi are determined from the boundary
conditions of the velocity profile and mass conservation. The velocities at the two boundaries
(vz(r1) = V and vz(r2) = 0) yield the integration constants of the shear rate:

V +
∫ r2

r1

γ̇ dr = 0. (11)

Because of mass conservation, the volume of the retracted rod is compensated by a downwards flux
in the reservoir. This imposes that

−πr2
1V = 2π

∫ r2

r1

rvz(r) dr = π [r2vz(r)]r2
r1

− π

∫ r2

r1

r2γ̇ dr, (12)

where the second equality is obtained by an integration by parts. Assuming no-slip velocity
boundary conditions, this last equation can be rewritten as∫ r2

r1

r2γ̇ dr = 0. (13)

Hence, we simultaneously need to solve Eqs. (11) and (13) for the unknowns λi and λo. The
shear rate is calculated using the Herschel-Bulkley model:

γ̇rz(r) =

⎧⎪⎨
⎪⎩

−[
τc

k(λo−λi )

] 1
n
(

λiλo
r − r + λi − λo

) 1
n < 0 for r1 � r < λi

0 for λi � r � λo[
τc

k(λo−λi )

] 1
n
(
r − λiλo

r + λi − λo
) 1

n > 0 for λo < r � r2

. (14)

The determination of the yield surfaces is then reduced to finding the roots of the following functions
of λi,o:

F (λi, λo) =
[

k(λo − λi )

τc

] 1
n

V −
∫ λi

r1

f (r, λi, λo) dr +
∫ r2

λo

f (r, λi, λo) dr, (15)

G(λi, λo) =
∫ λi

r1

r2 f (r, λi, λo) dr −
∫ r2

λo

r2 f (r, λi, λo) dr (16)

with

f (r, λi, λo) =
(∣∣∣∣r − λiλo

r

∣∣∣∣ + λi − λo

) 1
n

. (17)

The function F follows from the boundary conditions on the velocity [Eq. (11)] and the function G
follows from mass conservation [Eq. (13)].
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FIG. 3. Normalized width of the inner liquid zone in steady flow for different power index n and ratio r1/r2

as a function of Bingham number Bm. Dotted lines denote the low-Bm limit for n = 1 [Eq. (B2)]. Dashed
lines denote the low-Bm approximation for a reservoir with a narrow gap [Eq. (B4)]. Blue dotted-dashed
lines denote the high-Bm approximation for a large reservoir [Eq. (B14)]. Red dotted-dashed lines denote the
high-Bm approximation for a reservoir with a small gap [Eq. (B10)].

In order to solve numerically this problem, we perform a double iteration along the lines of
Fordham et al. [22]. The outer iteration provides a zero of F , to iterate the value of λi that lies in
the range r1 � λi < λ∗ where λ∗ is the limit to which both λi and λo converge when the Bingham
number Bm = τc

k ( r2−r1
V )n tends to zero. Its value is found by solving

∫ λ∗

r1

r2 f (r, λ∗, λ∗) dr =
∫ r2

λ∗
r2 f (r, λ∗, λ∗) dr. (18)

The outer iteration provides a solution of G = 0 given an iterate λi, to iterate λo, which lies in the
range λi < λo � r2. Typical velocity and shear-stress profiles are plotted in Fig. 2. In our previous
work, we showed a quantitative agreement of the model with experimental velocity profiles [13].

The flow inside the reservoir depends on three independent length scales [r1, r2, and the rheolog-
ical length V (k/τc)1/n]. Hence, according to Buckingham’s π theorem, a set of two dimensionless
parameters is required to describe the flow: we choose r1/r2 and the Bingham number Bm. Note that
the flow in the reservoir only depends on the ratio τc/k and not on k and τc individually. In Fig. 3
we show the width of the inner liquid zone (δ = λi − r1) normalized by the channel width (r2 − r1)
as function of Bm. The normalized width of the inner liquid zone decreases with increasing Bm.

C. Steady state coating without drainage (h < h∗)

When the rod is withdrawn from the liquid reservoir, the fluid dragged along forms a coating
layer. An upper bound of the coating thickness is obtained when all the fluid in the sheared layer
between r1 and λi deposits onto the rod. This occurs when the value of the yield stress is sufficiently
high, i.e., when h is smaller than h∗.
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The coating velocity Vcoating is given by V − vz(λi). When all the fluid in the yielded layer is
deposited on the rod leaving a layer of thickness h, mass conservation leads to

π
[
(r1 + h)2 − r2

1

]
[V − vz(λi)] = 2π

∫ λi

r1

r[vz(r) − vz(λi)] dr. (19)

The thickness of the coating is obtained by integration by parts of Eq. (19):

h = −r1 +
√√√√∫ λi

r1
r2γ̇rz(r) dr∫ λi

r1
γ̇rz(r) dr

. (20)

It is not possible to obtain an analytical relationship between the thickness of the fluidized layer and
the coating thickness for all values of the index n for a Herschel-Bulkley fluid. In the special case
of a Bingham fluid (Herschel-Bulkley model with n = 1), Eq. (20) gives

hn=1 = −r1 + (λi − r1)

√
3r2

1 + 2r1(λi + 2λo) + λi(λi + 2λo)

−6(λi − r1)(2λo − λi + r1) + 12λiλo ln λi
r1

. (21)

When λi/r1 is close to unity, we make a series expansion of λi around r1. By performing a change
of variable p = 1 − r/λi in both integrals of Eq. (20), we obtain up to first order:

h � n

1 + 2n
(λi − r1). (22)

Note that this expression is the same as that obtained for the coating of a plate given in Ref. [13]:
when the width of the inner sheared layer (λi − r1) is small with respect to the rod radius r1,
curvature effects can be neglected.

In general, the coating thickness h depends nonlinearly on the length scales r1, r2, and V (k/τc)1/n.
However, in extreme cases of low and high values of the dimensionless ratio r1/r2 and the Bingham
number Bm, asymptotic power laws for the width of the liquid zone and the coating thickness
can be obtained. The derivations of the asymptotic formulas and their ranges of validity are given in
Appendix B. Five regimes (I–V) are distinguished. When the fluid inside the gap is strongly sheared,
the yield stress character can be neglected and asymptotic limits are obtained for high r1/r2 (I) and
for low r1/r2 (II). The asymptotic limits in I and II only depend on r1, r2 and n. When the fluid
inside the gap is weakly sheared, a major part of the fluid in the bath is unyielded and the coating
thickness decreases with increasing Bm. Regimes III–V are valid for high, low, and extremely low
r1/r2, respectively. In regimes IV and V the coating thickness is independent on the bath radius r2.

To summarize, an overview of the asymptotic limits for 1
3 � n < 1 is given in Fig. 4. The domain

boundaries are obtained by equating the asymptotic limits. For n = 1, an exact asymptotic solution
for the low-Bm limits I–II can be obtained [Eqs. (B2) and (B3)].

D. Steady state coating subject to drainage (h > h∗)

In the limit where the coating is dominated by the flow in the reservoir, the film is in general
unyielded if the absolute value of the yield stress exceeds the gravitational stress. However, if the
gravitational field is strong enough, a fraction of the film close to the rod is draining, which tends
to decrease the coating thickness. We would like that stress that drainage can already occur in the
meniscus where the fluid has a thickness up to δ = λi − r1, i.e., significantly thicker than the final
coating thickness h. This regime has already been studied for a plate geometry by Maillard et al.
[12] Mass conservation and momentum balance allow us to write∫ h+r1

r1

2πrVcoating(r)dr � Qbath, (23)

r1τrz(r1) = ρg

2

[
r2

1 − (r1 + hg)2], (24)
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FIG. 4. Asymptotic limits of the width of the liquid zone δ = λi − r1 (blue) and the reservoir-flow coating
thickness h (black) for 1

3 < n < 1. The parameter space can be divided up into domains I–V (see Appendix
B). Solid lines indicate the typical shape of the domain boundaries, whose nontrivial dependencies are given
in gray. c denotes a constant.

respectively, where hg is the coating thickness affected by gravitation drainage. Solving these
coupled equations is complex and out of the scope of the current work. We give here only an
estimation of the parameters for which gravitational drainage becomes important.

To find the boundary between regime IV/V and the regime where gravity plays a role we use the
following procedure. If the thickness h calculated from of Eq. (20) is larger than h∗, the thickness of
deposit is governed by drainage due to gravity. We thus define a zone E (see Fig. 5) at low Ȳ where
the thickness of deposit is governed by gravity after the withdrawal of the rod of the reservoir.

FIG. 5. Asymptotic limits of the reservoir-flow coating thickness Co (blue or black) in absence of surface
tension. The parameter space can be divided up into three domains (IV, V, E). The boundary between region IV
and V corresponds to Ȳ = Bm, the boundary between IV and E is given by Ȳ = Bm

1
2+n , and the boundaries

between E and V are given by Ȳ = Bm(3n−1)/(5n−1) and Bm = 1.
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FIG. 6. The meniscus around a rod of radius r1. The shape of the static meniscus that forms between the
rod and the bath at rest is indicated by the blue dashed line. When the rod is withdrawn from the bath, a coating
of thickness h is formed. lx is the length of the dynamic meniscus, which marks the transition between the static
meniscus and the coating film.

This region spans over the whole range of B but is limited to low Ȳ values for high Bm values.
Writing that h = h∗ at the boundaries IV–E and V–E, we find that the analytical expressions of these
boundaries are Ȳ = Bm1/(2+n) and Ȳ = Bm(3n−1)/(5n−1), respectively.

IV. COATING DRIVEN BY THE MENISCUS FLOW

In this section we assume that the flow in the reservoir drags a sufficient amount of liquid such
that the thickness of deposit is fixed by the flow at the level of the meniscus. This regime is observed
in situations where the yield stress is small and plays little role. We use dimensional analysis and
scaling arguments starting from reasonable physical assumptions in order to obtain scaling laws for
the coating thickness. A full numerical calculation of the flows goes beyond the scope of this work.

When a rod is immersed in a reservoir filled with a wetting liquid, a meniscus forms along the
rod. Surface tension, gravity, and yield stress are responsible for the deformation of the interface and
the shape of the meniscus. A flat horizontal surface is imposed by gravity at distances far away from
the rod. In situations of complete wetting, the contact angle between the solid rod and the liquid
vanishes. Both constraints are satisfied by bending the interface with a curvature 1/R, such that the
increase of elastic energy stored in the material τcR3 and the increase of the gravitational energy
ρgR4 are compensated by the decrease of surface energy �R2. When the rod is moved upwards,
liquid is dragged along. The viscous force is the driving force of the liquid upward motion, whereas
surface tension and gravity oppose the fluid motion.

Far from the static meniscus, the film is homogeneous and has a constant thickness. There is
always a solid layer at the free surface of the film if the fluid has a finite yield stress. The pressure
in the film is lower than in the meniscus. There is therefore a pressure gradient over a characteristic
length lx which is the height of what we call the dynamic meniscus that connects the constant
film thickness to the static meniscus; see Fig. 6. The momentum balance equations in the static and
dynamic menisci allow us to calculate the height lx of the dynamic meniscus as well as the thickness
of deposit in various limiting situations.

The characteristic parameters involved in the flow are the thickness of deposit h, the radius of
the rod r1, the radius of the reservoir r2, the gravitational forces by unit volume ρg, the withdrawal
velocity of the rod V , the viscous stress τ , and the interfacial tension �. These seven parameters
involve three fundamental units and, according to the Buckingham’s π theorem, a set of four
dimensionless parameters are required to describe the flow: We choose the confining parameter Co,
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the capillary number for complex fluids Ca f = r1kV n/(�rn
1 ) (the ratio between the viscous forces

and the surface tension forces with � the surface tension), and lc/r1 (the ratio of the capillary length
divided by the radius of the rod). The capillary length lc = √

�/(ρg) measures the importance of
gravity. Gravity plays a role if the capillary length lc is smaller than the radius r2 of the external
wall of the reservoir. We also introduce the yield number Y = τcr1/� that compares the yield stress
and the capillary stress. In this section we study the limit of small yield stress. These dimensionless
numbers are different from and more numerous than those chosen in the previous paragraph. They
are more numerous because the surface tension must taken into account in the meniscus. They
are different by choice and for convenience in this limit where the yield stress does not play any
important role. Indeed, it is important to note that Ca f = Bm−1Y Con, and Y = Ȳ r2

1/l2
c . So one might

as well choose Co, Bm, lc/r1 and Ȳ to describe the process. We follow here the choice usually done
in literature for power-law fluids. We anticipate that in order to study the transition to the situation
where the coating is dominated by the flow in the reservoir studied in Sec. II, we will have to use
the same dimensionless parameters in the two limits. In the last section we decide to convert our
results in terms of the first set of dimensionless parameters Co, Bm, Ȳ into Co, Ca f , Y , lc/r1.

The force balance equation of a liquid slice of thickness dz at a height z is

rτrz(r) =
(

ρg + ∂P

∂z

)[
r2

2
− (r1 + h)2

2

]
. (25)

The pressure gradient is obtained from Laplace’s law at the surface of the film,

∂P

∂z
= ∂H

∂z
, (26)

where H is the local curvature of the meniscus. In the dynamic meniscus and at the tip of the
static meniscus, the outer surface of the film is very close to a cylinder of radius r1 + h and
H = �/(r1 + h) − �∂2h/∂2z. The shear stress at the surface of the rod is given by the Herschel-
Bulkley model τrz(r1) = −τc − kγ̇ n if τrz(r) < −τc and τrz(r1) = −βτc if τrz(r) > −τc with 0 <

β < 1. For a Newtonian or a power-law fluid the yield stress vanishes. In the static meniscus the
viscous shear stress close to the wall is negligible by definition. In the yield-stress fluid situation,
since the fluid flows in the static meniscus, the shear stress at the wall is less or equal to −τc

depending upon the history of the fluid. As the sample close to the wall comes from the reservoir
where it was flowing, we assume that it has accumulated a maximal elastic strain so that the shear
stress is τrz(r1) = −τc.

Depending on the relative values of gravity, viscous force, elasticity, and surface tension terms,
different limiting regimes can be obtained. Our method is to study independently all these regimes
by focusing on limiting cases where the process is ruled by one or two phenomena. At first glance,
this study may look like a multitude of regimes, but in fact it is the only way to deal with the problem
at the level of dimensional analysis. The difficulty of this approach does not lie in the resolution of
each regime but in their choice and in the way they are connected. The choice of the limiting regimes
is based on the set of dimensionless parameters chosen above. The crossovers between regimes are
made by equating the ratios of the different forces at the crossover.

In a first step, we neglect the yield stress compared to capillary forces and viscous forces, and
we therefore consider a power-law fluid. Then we consider the opposite situation where the yield
stress is higher than the capillary forces and the viscous forces. We bridge the two situations by
writing that at the boundary the yield-stress force is on the order of the magnitude of the capillary
forces. We anticipate that the comparison between yield stress and capillary or viscous stresses are
not independent due to the similarity of the equation in the static meniscus and in the dynamic one.
The assumption that the yield stress is higher than the capillary stresses but lower than the viscous
stresses or the assumptions that the yield stress is higher than the viscous stresses but lower than the
capillary stresses do not lead to a solution.
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A. Power-law fluid

We consider a power-law fluid with a vanishing yield stress, i.e., Y = 0 in the wide reservoir
and narrow reservoir geometries. This corresponds to a situation where the fluid in the meniscus
is mainly liquid, i.e., there is only a small solid crust at the interface between air and fluid, which
plays a negligible role. Based on these limiting behaviors we then propose a phase diagram in
the parameter plane {Ca f , Co} that summarizes the different behaviors and display the boundaries
between them. To analyze this behavior we split the study into several regimes. As said previously,
the following should not be seen as a series of special cases. They are in fact the set of limiting
situations of the problem that can be analyzed because of the dimensionless numbers that exist in
the analysis.

1. Coating from a wide reservoir in the absence of gravity

We first focus on a situation where the gap between the rod and the outer wall of the reservoir is
wide (r2 > r1) and where we can neglect gravity. This situation has been described at length in many
work [23–25]. For the sake of clarity and consistency, we recall here the basis and assumptions of
these descriptions. In this situation, the force balance from Eq. (25) becomes

∂P

∂z
= ∂H

∂z
= 0. (27)

This leads to lx = √
h(r1 + h). Assuming that in the dynamics meniscus at the scaling level γ̇ ∼

V/h, we then obtain the following scaling laws:

h

r1
�

⎧⎨
⎩Ca

2
1+2n

f if h � r1

Ca
1
n
f if h 	 r1

. (28)

The numerical prefactors could in principle be calculated from a full calculation using the method
of matched asymptotic expansions [23–25].

2. Coating from a wide reservoir in the presence of gravity

Gravity plays a role if the capillary length lc is smaller than the radius r2 of the external wall of
the reservoir. When the relevant length scale of the experiment is larger than the capillary length,
gravitational forces dominate over capillary forces. In this case we can neglect surface tension and
the balance equation of the momentum in the dynamic meniscus writes [see Eq. (24)]

−kr1

(V

h

)n

� ρg

2

[
r2

1 − (r1 + h)2], (29)

which leads to the thickness of the coating film

h

r1
�

{
Ca

1
1+n

f

( lc
r1

) 2
1+n if h � r1

Ca
1

2+n

f

( lc
r1

) 2
2+n if h 	 r1

. (30)

3. Coating from a narrow reservoir

If the reservoir is very narrow, i.e., r2 − r1 � r1, the thickness of deposit is small compared to the
rod radius, and it is too small for gravity to play a role. The static meniscus has in this limit a toroidal
shape of radius r2 − r1. The momentum balance equations in the static and dynamic menisci lead to
lx = √

h(r2 − r1) and �h2/l3
x = k(V/h)n. The thickness of the coating film is then

h

r1
� Ca

2
1+2n

f Co
3

1+2n . (31)
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FIG. 7. Asymptotic limits of the meniscus-driven coating thickness h/r1 (blue). The parameter space can
be divided up into domains A–E. The diagram corresponds to n = 0.5 and lc/r1 = 6.25.

Note that when the velocity becomes too large, i.e., Ca f > Con−1, the thickness h becomes of the
order of the gap size r2 − r1.

4. Thickness of the coating film driven by the meniscus flow

We summarize the results of this section on the coating of power-law fluids by a diagram showing
the various scaling regimes in the plane of the two relevant dimensionless numbers Ca f and Co.
Figure 7 corresponds to lc/r1 = 6.25.

For Y = 0, n = 1 and Ca f < 1, we find the laws of Landau and Levich [6,7] for Newtonian
fluids. We have simply extended the phase diagram to confined geometries. It is important to note
that we have not taken into account here the normal stress differences that may be present in these
systems. We find a region where the thickness of the deposit varies as Ca1/n

f . This region only exists
if the capillary length is greater than the fiber radius (see Fig. 8). This point was not considered

FIG. 8. Asymptotic limits of the meniscus-driven coating thickness h/r1 (blue). The parameter space can
be divided up into domains A–E. This diagram corresponds to n = 0.5 and lc/r1 = 0.5.
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FIG. 9. Asymptotic scaling limits of the meniscus-driven coating thickness h/r1 (blue). The parameter
space can be divided into three domains: A, B, and F. The diagram corresponds to n = 0.7, Co = 0.1, and

lc/r1 = 1.5. w = [(Co+1)2−1]r2
1

l2
c

.

previously. The exponent 1/n comes from the fact that we have considered that lx varies when
h becomes larger than r1. We do not find the divergence proposed by White and Tallmadge for
capillary numbers between 1 and lc/r1. The divergence proposed by White and Tallmadge [26]
results from a perturbative treatment of gravity. It does not seem to be observed experimentally. The
boundaries between the regions A–C, A–D, A–B, and B–E are found by imposing the continuity
of the thickness in the transition regions: The thickness of deposit in region A is equal to h/r1 =
Co3/(1+2n)Ca2/(1+2n)

f . The thickness of deposit in region C is equal to h/r1 = Ca2/(1+2n)
f for Ca f < 1.

Writing the continuity of coating thickness over regions A and C, yields that the equation of the A–C
boundary equals {Co = 1, Ca f < 1}. Following the same approach we find that the A–B boundary
is given by {Ca f > 1, Co = Can−1

f }, the B–D boundary by {1 < Ca f < (lc/r1)n, Co = Ca1/n
f }, and

the B–E boundary by {(lc/r1)n < Ca f , Co = Ca1/(2+n)
f (lc/r1)2/(2+n)}.

To conclude this section, Fig. 8 displays the same situation for lc/r1 = 0.5.The boundaries
between the different regions are determined following the same rules above. Note that the region
D does not exist if the radius of the rod r1 is larger than the capillary length lc and that the equations
determining the boundaries between the various regions depend upon n, lc/r1, and Co.

B. Coating by a fluid with a finite yield stress

If the yield-stress value is high compared to the stress created by the surface tension and to
the viscous stresses, the sample behaves as a gel. The static and dynamic menisci are jammed. In
this context, the coating process can be assimilated to a fracture process. It is not possible to find a
scaling law by analyzing the momentum equations in the static and dynamic meniscus as previously:
Both lead to the same relationship. It is possible only to give an upper value of the film thickness in
the flat zone by imposing that the system be jammed, i.e. that the stress be equal to the yield-stress
value at the level of the rod. We get

h

r1
= −1 +

√
1 + 2Y

l2
c

r2
1

. (32)

This equation is valid both for wide and narrow reservoirs.
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FIG. 10. Asymptotic scaling limits of the meniscus-driven coating thickness in very wide geometry for
n = 0.4, lc/r1 = 2, and Co = 10 (h/r1 in blue).

C. Review of the different regimes when the thickness of deposit is driven by the meniscus

To summarize these results, we display in Figs. 9 and 10 the predicted regimes for the film
thickness in the parameter plane {Ca f ,Y } when the thickness of deposit is driven by the flow in the
meniscus. As said above, to set the cross over between the power-law fluid and the yield-stress fluid,
we consider that the power-law fluid corresponds to the situation where the yield-stress is negligible
with respect to viscous loss. In other words, the power-law fluid behavior describes the case of a
meniscus bearing only a very thin layer of jammed fluid located close to the air-fluid interface.

Let us now consider the regimes C and F. Regime C is valid if we can neglect the yield stress
with respect to the viscous dissipation. At the boundary between the two regimes, both terms are
equal. This gives

τc = k
(V

h

)n

, (33)

h

r1
= Ca

2
1+2n

f . (34)

The boundary between the regimes C and F is given by Y = Ca1/(1+2n)
f . In region C, h/r1 =

Ca2/(1+2n)
f and in region F, h/r1 = Y l2

c /r2
1 . Using the same procedure, the D–F boundary is given by

Y = 1, and the E–F boundary is given by Y = (r1/lc)2n/(1+2n)Ca(1+n)/(1+2n)
f . In region D, the coating

thickness scales as h/r1 = Ca1/n
f . The boundaries between regions C, D, and E are set by imposing

the continuity of the h value: The C–D boundary writes Ca f = 1 and the D–E boundary corresponds
to h = lc and writes Ca f = (lc/r1)1/n. Figures 9 and 10 evidence a zone for large Y value where the
thickness of deposit is governed by a competition between gravitational stresses and the yield stress.
A simple image emerges from this analysis, when Y > 1 for low capillary number, the sample is
jammed in the meniscus and the thickness is given by a balance between gravity stresses and yield
stress.

V. COATING DIAGRAM

In this section, we put together the results of the two previous sections and specify the cases in
which the thickness of the deposited film is controlled by the flow in the meniscus and those in
which it is controlled by the flow in the reservoir. Our aim is to combine Fig. 5 and Fig. 10 into a
single general diagram, which presents the possible regimes for the coating thickness as a function
of the yield number Y and the capillary number Ca f for fixed values of the confinement parameter
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FIG. 11. The equivalent of Fig. 5 in the parameter plane {Y, Ca f }.

Co and of lc/r1. We focus on the case of large reservoirs. Fig. 5 uses the variables Ȳ and Bm and
Fig. 10 the variables Y and Ca f . Some transition lines are obtained as functions of the ratio lc/r1 of
the capillary length to the radius of the rod. It is straightforward to transpose Fig. 5 into the variables
of Fig. 10. We recall that Ca f = Bm−1Y Con, and Y = Ȳ r2

1/l2
c . The boundary between zone V and

zone IV is Ca∗
f = Conr2

1/l2
c . Zone V corresponds to small Ca f values. Zone E for Ca f < Ca∗

f ranges

from Y = 0 to Y = Co(3n−1)/2Ca(1−3n)/2n
f (r1/lc)(5n−1)/n and for Ca f > Ca∗

f extends from Y = 0 to

Y = Con/(1+n)Ca−1/(1+n)
f (r1/lc)(4+2n)/(1+n). To find at every point of the parameter plane {Ca f ,Y }

the deposit thickness, we compare the expressions found in Figs. 10 and 11.
The measured deposit thickness is the thickness dictated by the limiting phenomenon, i.e., the

thinnest thickness. We anticipate that this construction depends upon the values of Co and of lc/r1.
We applied this construction rule to build Fig. 12. Although this criterion is simple, the detailed
analysis of the different cases is rather tedious. Instead, we prefer to draw a complete diagram in the
parameter plane {Y, Ca f }.

Figure 12 displays the results for the thickness of the coating film deposited from very large
reservoirs. Regions C, D, and E correspond at high capillary numbers to a limit where the deposit
thickness is limited by the flow in the liquid meniscus and to the behavior of fluids with very low
yield stress. As the capillary number increases, the thickness of deposit increases and drainage and
gravity play any role for Ca f > (lc/r1)n. In regions IV and V, the material supply to the film is

FIG. 12. Coating diagram in the parameter plane {Y, Ca f } for lc/r1 = 2, Co = 10, and n = 0.4.
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TABLE I. Rheological characteristics of the Carbopol gels used in the dip-coating experiments. The
rheological parameters are obtained using a Discovery HR-2 rheometer (TA Instruments) in a parallel-plate
geometry with a gap size of 1 mm. The parameters τc, k, and n are obtained by fitting the flow curve (shear
stress versus shear rate) by the Herschel-Bulkley model and correcting for the inhomogeneous shear rate in the
parallel-plate geometry [27]. The value of the surface tension � has been reported by Jørgensen and co-workers
[28]. For sample 4, a lower value is obtained by addition of 1% aqueous PEG-12 dimethicone (detailed in
Ref. [13]). The viscoelastic properties are determined by imposing an oscillatory strain comprising between
0.1%–100% at a frequency of 1 Hz. The storage modulus G is then obtained by averaging over the linear
viscoelastic regime between 0.1%–3%.

Sample number τc (Pa) k (Pa sn) n � (mN/m) G (Pa)

1 3.0 1.6 0.47 63 24
2 27.6 14.4 0.35 63 237
3 69.0 29.6 0.35 63 450
4 53.6 28.7 0.35 27 385

limited by the flows in the reservoir, which means that neither gravity nor capillarity play role in the
thickness of the deposited film. In region E at low capillary number, the thickness of deposit results
from a competition between the amount of liquid given by the reservoir and gravity. Note that in the
situation where lc < r1, zone D disappears, but the diagram remains roughly the same. From this
diagram, the following simple picture emerges: When Y > 1 (i.e., when the yield stress exceeds the
Laplace pressure), the thickness of deposit is governed by the flow inside the reservoir. The deposit
thickness h varies as a function of the capillary number. When Y < 1, the situation is more complex
and h depends on the geometry as well as upon the capillary number.

VI. COMPARISON WITH EXPERIMENT

Here we compare some theoretical predictions with our previous experimental data [13] and
additional experiments following the same protocol. The dip-coating experiments are carried out
with Carbopol gels of yield stress τc = 3–69 Pa (see Table I). Acrylic rods of radius r1 = 2.5, 5, and
10 mm are immersed over a height of H = 10 cm into a reservoir of radius ranging from r2 = 13
to 33 mm. Next, the rods are vertically withdrawn with velocity V = 0.1–10 mm/s giving rise to
Bingham numbers between 2 and 10. The thickness profile of the coating films is directly measured

TABLE II. Comparison of the thickness of the deposit predicted by the bath-flow model and from
experiment with r2 = 33 mm for the samples in Table I and a withdrawal velocity of V = 3 mm/s.

Sample number r1 (mm) Bm Y hexp (mm) hth (mm)

1 2.5 5.6 0.1 0.18 ± 0.02 0.49
5 5.4 0.2 0.20 ± 0.02 0.69

10 4.9 0.5 0.26 ± 0.01 0.85
2 2.5 4.3 1.1 0.31 ± 0.01 0.36

5 4.2 2.2 0.59 ± 0.02 0.53
10 3.9 4.4 0.71 ± 0.09 0.67

3 2.5 5.2 2.7 0.29 ± 0.03 0.32
5 5.1 5.5 0.58 ± 0.04 0.47

10 4.8 11 0.72 ± 0.07 0.60
4 2.5 4.2 5.0 0.33 ± 0.04 0.36

5 4.1 9.9 0.51 ± 0.03 0.53
10 3.8 20 0.68 ± 0.03 0.68
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FIG. 13. Steady coating thickness for different ratio r1/r2 (color coding in legend) as a function of Bingham
number Bm for Carbopol gels of τc = 28 Pa (sample 2, squares), τc = 54 Pa (sample 4, circles), and τc = 67 Pa
(sample 3, triangles). The theoretical predictions (solid lines) follow from calculations of the flow inside the
bath. Inset: normalized theoretical coating thickness hth versus experimental values hexp.

using a Keyence LJ-V7060K profilometer. The experimental conditions are such that a steady flow
is reached and a constant coating thickness can be determined.

For each experiment, the material parameters of the gels are reported in Table I. A selection of
the experimentally determined coating thickness is reported in Table II. The values are given for
the widest bath under scrutiny (r2 = 33 mm) and a withdrawal velocity of V = 3 m/s. For samples
2–4 of relatively high yield stress and Y ≡ τcr1/� > 1, the experimental values are well described
and within 20% of the predictions by the bath-flow model. For sample 1 with Y < 1, a discrepancy
of a factor of ∼3 is observed. This shows that for Y < 1, the thickness is ruled by the flow in the
meniscus and not by the flow inside the bath.

A comparison between the experimental data for Y > 1 and the bath-flow model is given in
Fig. 13. The experimental observations are well described by the bath model over the full range of
the explored parameter space of Bm ∈ [2, 10] and r1/r2 ∈ [0.08, 0.59].

As expected, when Y < 1, the experimental observations are not in agreement with the bath-flow
model.

VII. CONCLUDING REMARKS

We have studied the withdrawal of a rod from a yield-stress fluid reservoir. The coating layer
is formed in the meniscus region, where the yield-stress fluid progressively crosses over from a
liquid to a solid behavior. For the cylindrical geometry under current scrutiny, symmetry allows for
a semianalytical determination of the stress field inside the reservoir from the velocity boundary
conditions and mass conservation. Our results show that the thickness of the coating layer can be
controlled by selecting the size of the reservoir and the pull-out velocity.

The semianalytic model and the scaling laws presented here provide a guide to control the coating
thickness and to optimize performance and costs in industrial applications. Depending upon the
yield stress, surface tension, and geometry, the thickness of deposit may be controlled either by the
flow in the reservoir or by the flow in the meniscus. A simple image emerges from our calculations.
If the dimensionless number Y = τcr1/� is greater than one, the thickness of deposit is governed
by the flow inside the reservoir whatever the geometry and the capillary number. A comparison of
the coating thickness predicted by Eq. (20) with experimental observations shows a good agreement
in the limit where the yield number Y is larger than one. The semianalytic model and the scaling
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laws also suggest for instance that the use of surfactants has no impact on the thickness of deposit
for high value of the yield stress. In the case of an eccentric configuration of rod and bath or a total
absence of cylindrical symmetry, the coating thickness may be inhomogeneous. In these cases, we
recommend the use of a large bath to obtain the most homogeneous coating layer.

To conclude, let us summarize the main hypothesis of this work and propose some perspectives.
We have proposed scaling laws for the thickness of deposit when the flow is governed by the
reservoir or by the meniscus. These scaling laws have to be used in their range of validity. Our
description is weak when the flow is governed by what happens in the meniscus and when the
meniscus is solid. In this last situation, the coating process corresponds to a fracture process, and
we are simply able to give an upper bound of the thickness.

This work is restricted to a steady flow. We have shown that a steady flow is achieved when
the time of the experiment is larger than the time required to reach a steady shear stress profile.
As shown in our previous work [13], this occurs in many experimental configurations as soon as
the gap between the rod and the external reservoir is not too wide. The extension of this work to
transient regimes is more complex and requires numerical work to describe both the elastic and fluid
behaviors. We believe that the use of a nonlocal model [29,30] is necessary to take into account the
appearance of shear bands.

We also have neglected normal stresses in Eq. (3). Usually yield-stress fluids exhibit low normal
stresses compared to polymer solutions [31]. Bonn and co-workers have shown that in those systems
the second normal stress difference N2 is negligible compared to the first normal stress differences
N1 which scales as N1 ∝ τ 2/G [32] where τ is the stress and G the shear modulus. Our hypothesis
requires that N1R � � where R is the meniscus curvature. Assuming τc = Gγc with γc the yield
strain the criterion writes τcγcR � �. In a standard situation (R = 2 mm, � = 63 mN/m, γc = 0.1),
this hypothesis is valid for gels with a yield stress less than ∼300 Pa.

Last but not the least, instabilities such as viscous fingering or Rayleigh Plateau instabilities may
occur when the rod is withdrawn from the reservoir. We have not included these phenomena in our
description.

The main perspective of this work concerns the experimental testing of the scaling laws. As
stated above, the experiments in the literature are in agreement with the predicted flow diagram but
do not constitute a quantitative test for it. Experiments with samples of small yield stress and on a
large range of capillary numbers are necessary for an accurate test of the flow diagram.
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APPENDIX A: EXISTENCE OF A STEADY FLOW

Saramito has proposed an elastoviscoplastic model [20,33] which has the advantage to be
tensorial and simple. The constitutive equation of this model reads [20]

�
τ

G
+ max

(
0,

|τ| − τc

k

) 1
n τ

|τ| = γ̇ , (A1)

where G is the elastic modulus, γ̇ is the shear rate, and
�
τ is the Gordon-Schowalter convected time

derivative of the stress tensor, defined by [34,35]

�
τ = τ̇ + v · ∇τ + τW (v) − W (v)τ − a(τD(v) + D(v)τ) (A2)

with W (v) = (∇v − ∇vT )/2 the vorticity tensor, D(v) = (∇v + ∇vT )/2 the rate of deformation
tensor, and the interpolation parameter is such that |a| � 1 [33]. The vertical withdrawal of a rod

063302-19



SMIT, KUSINA, COLIN, AND JOANNY

from the reservoir gives rise to a vertical flow in the fluid regions away from the meniscus and the
end of the rod [Fig. 2(a)]. The only nonvanishing stress component is the shear stress τrz, and the
only nonvanishing shear rate component is the shear rate γ̇rz. For a = 1, the temporal evolution of
τrz writes

γ̇rz = 1

G

∂τrz

∂t
+ max

(
0,

|τrz| − τc

kn

) 1
n τrz

|τrz| . (A3)

When τrz(r) � τc, Eq. (A3) reduces to the Kelvin-Voigt model for a elastic solid. The characteristic
time T of the dynamics of the velocity profile of the gel for stresses values higher than the yield
stress is given by T = τc/(Gγ̇ ) with G the elastic modulus. The sheared band close to the wall of the
reservoir involves the longest characteristic time which is equal to τc(r2 − λo)/(GVd ), where Vd is
the downward velocity of the fluid and λo is the position in the reservoir where the stress is equal to
+τc. Neglecting the wetting film on the external wall which is much smaller than the film thickness
h, mass conservation gives Vd = −V (r1 + h)2/(r2

2 − r2
1 ) where V is the velocity of the rod. In the

main text we consider situations where Texp > T and assume a steady flow. In this situation the
Saramito model [Eq. (A3)] reduces to the Herschel-Bulkley model [Eq. (2)].

APPENDIX B: ASYMPTOTIC POWER LAWS FOR THE RESERVOIR-FLOW MODEL

When the Bingham number and r1/r2 take extreme values, it is possible to derive asymptotic
scaling laws for the inner yield location λi and the coating thickness h. Five cases can be distin-
guished. First, we treat the limits of fast withdrawal corresponding to small Bingham number (I–II).
Second, we treat the cases of large Bingham number (III–V).

1. Small Bingham number

When the withdrawal velocity is large and V (k/τc)
1
n 	 r2 − r1 (Bm � 1), the yield locations

λi and λo tend to the same value λ∗, which can be found by solving Eq. (18). Substitution of p =
1 − r2/λ2

∗ on the left-hand side and of p = −1 + r2/λ2
∗ on the right-hand side of Eq. (18) gives

∫ 1− r2
1

λ2∗

0
(1 − ρ)

1
2 − 1

2n p
1
n d p =

∫ r2
2

λ2∗
−1

0
(1 + ρ)

1
2 − 1

2n p
1
n d p. (B1)

This equation can be solved for λ∗ numerically. Note that the value of λ∗ depends neither on
the yield stress τc nor on the consistency k but solely on the power index n and the geometrical
parameters r1 and r2.

In the special case of n = 1 (Bingham fluid), the solution to Eq. (B1) is given by

λ∗ =
√

r2
1 + r2

2

2
, (B2)

and the coating thickness can be calculated using Eq. (21):

h = −r1 + r2
2 − r2

1

2

√(
r2

1 + r2
2

)
ln

(
1
2 + r2

2

2r2
1

)
+ r2

1 − r2
2

. (B3)

λ∗ approaches λi within 20% for Bm � 0.3 and r1 = 0.1 r1, for Bm � 1 and r1 = 0.5 r1, and for
Bm � 8 and r1 = 0.9 r1 (see dotted lines in Fig. 3).
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I. Small gap

When the channel width r2 − r1 is small with respect to r1, the values for p in Eq. (B1) are small.
A first-order expansion yields the following scaling-law approximation for any n:

λ∗ � r1 + r2

2
+ n − 1

4

1 + 2n

(r2 − r1)2

r1 + r2
. (B4)

Equation (B4) matches the exact result within 20% for r1 � 0.5 r2, n � 0.2, and Bm � 0.3 (see
dashed lines in Fig. 3). As λ∗/r1 is close to unity, we can make use of Eq. (22) to obtain the coating
thickness

h � n

2 + 4n
(r2 − r1)

(
1 + 4n − 1

2 + 4n

r2 − r1

r1 + r2

)
. (B5)

Note that for small channel widths and large withdrawal velocities, a flow instability similar to
viscous fingering is prone to occur [36–41].

II. Large reservoir

When the rod is small with respect to the size of the reservoir (r1 � r2), the ratio r1/λ∗ is small.
For 1

3 < n < 1, the left-hand side of Eq. (B1) remains finite for r1/λ∗ → 0 and r2/λ∗ converges
to a constant. For n � 1

3 , the left-hand side of Eq. (B1) diverges for r1/λ∗ → 0 and the integral is
dominated by its upper bound 1 − r2

1/λ
2
∗. The right-hand side of Eq. (B1) is dominated by the upper

bound r2
2/λ

2
∗ − 1. Neglecting the lower bound, one obtains to leading order the power-law relation

λ∗ ∝

⎧⎪⎪⎨
⎪⎪⎩

(
1+3n
1−3n

) n
2 r

1−3n
2

1 r
1+3n

2
2 for 0 < n < 1

3
r2

6
√

ln r2
r1

for n = 1
3

r2 for 1
3 < n < 1

. (B6)

The coating thickness is imposed by Eq. (20), which can be written as

h � λ∗

√√√√√
∫ 1

r1
λ∗

p2− 1
n (1 − p2)

1
n d p∫ 1

r1
λ∗

p− 1
n (1 − p2)

1
n d p

− r1. (B7)

For 1
3 < n < 1, the integral in the numerator converges for r1/λ∗ → 0, whereas the integral in the

denominator is dominated by its lower bound. For n � 1
3 , both integrals are dominated by the lower

bound r1/λ∗. Neglecting the insignificant upper bound, one finds

h ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r1

(√
1−n

1−3n − 1
)

for 0 < n < 1
3

r1

√
ln r2

r1
for n = 1

3

r
1−n
2n

1 r
− 1−3n

2n
2 for 1

3 < n < 1

. (B8)

2. Large Bingham number

We now explore the slow withdrawal limit with Bm 	 1 and consider two cases.

III. Reservoir with a small gap

When the gap of the reservoir r2 − r1 is small with respect to the rod radius r1, λi is close to r1

and λo is close to r2. From the mass conservation condition [Eq. (13)], we infer

r2
1

∫ λi

r1

γ̇rz(r) dr � −r2
2

∫ r2

λo

γ̇rz(r) dr. (B9)
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Using this result in the velocity boundary conditions [Eq. (11)] and performing series expansions of
λi around r1 and of λo around r2 yields

λi � r1 + 1

2

(
1 + n

n

) n
1+n

r1

( r2 − r1

r1

) 1
1+n

Bm− 1
1+n . (B10)

For r1 = 0.9 r2, this expression is within 20% of the exact result for Bm � 41 and n = 1, for Bm �
15 and n = 1, and for Bm � 11 and n = 0.2 (see red dotted-dashed lines in Fig. 3).

From Eq. (22) we obtain the coating thickness

h � r1

2 + 4n

[(
1 + n

n

)n r2 − r1

r1

] 1
1+n

Bm− 1
1+n . (B11)

Note that for a given gap size the coating thickness increases with rod size as h ∝ r
n

1+n

1 .

IV–V. Reservoir with a large gap

We now treat the case of a large reservoir size with respect to the rod radius, i.e., r2 	 r1. For
Bm 	 1, the velocity of the solid region tends to zero and λo → r2. We have

V � −
∫ λi

r1

γ̇rz(r) dr =
(τc

k

) 1
n

∫ λi

r1

(
λi

r
− 1

) 1
n

dr. (B12)

Employing the variable substitution p = 1 − r/λi yields

V

(
k

τc

) 1
n

� λi

∫ 1− r1
λi

0

(
p

1 − p

) 1
n

d p. (B13)

We distinguish two limits:
IV. When V (k/τc)

1
n � r1, λi is close to r1 and p is small. Performing the first-order expansion

(1 − p)−
1
n � (1 + p/n), we obtain

λi � r1 + r1

(
1 + n

n

) n
1+n

(
k

τc

V n

rn
1

) 1
1+n

. (B14)

Note that λi is independent on the reservoir radius r2 and reaches a plateau value when r2 increases.
This contrasts with the findings for a plate geometry, for which the thickness of the liquid region
diverges with increasing reservoir size; see Sec. B of the SM [14]. For r1 � 0.1 r2, Eq. (B14)
approximates the exact result within 20% for Bm � 0.7 in the case of n = 1, Bm � 1.4 in case of
n = 0.35, and for Bm � 3 in case of n = 0.2; see blue dotted-dashed lines in Fig. 3. When drainage
and gravity can be neglected, the coating thickness can be calculated using Eq. (22), which gives

h � nr1

1 + 2n

(
1 + n

n

r2 − r1

r1

) n
1+n

Bm− 1
1+n . (B15)

V. When V (k/τc)
1
n 	 r1, r1/λi is small and the integral on the right-hand side of Eq. (B13) is

dominated by the upper bound limit for which p is close to unity. Neglecting the lower bound and
approximating p

1−p ≈ 1
1−p , we find to leading order

λi �
{(

1−n
n

)n
r1−n

1
k
τc

V n for 0 < n < 1
1

ln kV
τcr1

kV
τc

for n = 1
. (B16)

We would like to stress that the approximations made are rather rough and the approximate value
of λi may differ substantially from the exact solution, especially for n equal or close to one.
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Nevertheless, the power-law relation can be insightful. The coating thickness from Eq. (20) is
approximated by

h � −r1 + λi

√√√√√√
∫ 1

r1
λi

p2− 1
n (1 − p)

1
n d p∫ 1

r1
λi

(
1
p − 1

) 1
n d p

. (B17)

For n � 1
3 , both integrals are dominated by the lower bound r1/λi. For 1

3 < n � 1, the integral in
the numerator converges for r1/λ∗ → 0, whereas the integral in the denominator is dominated by
the lower bound. To leading order, we obtain the power-law dependency

h ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1

(√
1−n

1−3n − 1
)

for 0 < n < 1
3

r1

√
ln kV n

τcrn
1

for n = 1
3

r1

(
kV n

τcrn
1

)− 1−3n
2n

for 1
3 < n < 1

kV
τc

1
3
√

ln kV
τcr1

for n = 1

. (B18)

It is worth mentioning that for large reservoirs, it may take a while until the stress field converges
and a steady flow is reached. For a rod of finite length, the transient regime can cover the entire
length and the steady flow relations do not apply.
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