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The dynamics of finite-span vortex rings expelled from a synthetic jet actuator is studied
experimentally using stereoscopic particle image velocimetry as well as being modeled
with an inviscid Biot-Savart velocity induction solver. Five rectangular orifices are tested
with aspect ratios AR of 2, 4, 6, 13, and 19 at a single actuator stroke length. In the lower
synthetic jet, vortex ring axis switching is the dominant factor influencing the jet’s shape,
while in the upper jet, viscous diffusion plays a more critical role. The variations in the jet’s
width driven by vortex ring axis switching becomes more extreme with increasing orifice
AR. The height of the first axis switch also increases with AR, and for the three lowest AR
values tested, the jet axis switches two to three times. However, at orifice AR of 13 and
19, the jet only axis switches once. The lack of additional axis switching is shown to be
due to a collision of the vortex ring with itself after the first axis switch and a subsequent
bifurcation of the vortex ring. The critical AR limit above which vortex ring bifurcation
occurs is found to be consistent with prior work on isolated vortex rings. The axial profiles
of centerline velocity for the AR = 4–19 jets exhibited two local peaks which become
more prominent with increasing jet AR. These variations in centerline velocity are also
predicted by the inviscid solver, indicating that they are most likely due to the dynamics of
the primary vortex ring and not secondary structures as previously hypothesized.

DOI: 10.1103/PhysRevFluids.6.054702

I. INTRODUCTION

Synthetic jet actuators (SJAs) are a type of active flow control device that can add momentum to
a flow field without a net addition of mass. They are able to achieve this feat because an oscillating
driver, such as a piston, voice coil, or piezoelectric disk, periodically draws external fluid into the
actuator cavity and then expels that same fluid back out of the orifice. The periodic ejection of fluid
from the orifice is an efficient excitation mechanism for rapid vortex ring formation when compared
to the generation of coherent structures in continuous jets due to either instability or forcing [1,2].
As a consequence, the entrainment rate in the lower region of synthetic jets is superior to that of
continuous jets [3–5]. The vortex rings are also critical in enabling the formation of the synthetic jet
and in transporting momentum through the external flow field [6,7].

The potential applications of synthetic jets are many and varied, including controlling external
and internal flow separation [8,9], providing flight control for maneuvering aircraft [10], enhancing
heat transfer via jet impingement [11], vectoring steady jets [12], and increasing mixing in reacting
flows [13]. In many of these applications jet entrainment and mixing are important attributes
influencing the effectiveness of the flow control. For example, in thrust vectoring high entrainment
in the synthetic jet is crucial in establishing the pressure gradient which provides the lateral force to
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turn the coflowing steady jet [14]. In separation control the jet’s ability to entrain high momentum
free stream fluid down into an adverse pressure gradient boundary layer can help mitigate flow
separation [15]. In reacting flows the vortex dynamics of nonaxisymmetric jets can provide not
only large-scale mixing, brought about by self-induced deformations, but also critical small-scale
turbulent mixing which is enhanced by the vortex ring azimuthal instability modes [16].

When a SJA utilizes a nonaxisymmetric orifice the shape of the resulting jet fluctuates as it flows
downstream due to self-induced deformations of the vortex rings. For noncircular vortex rings with
symmetric shapes, these deformations give rise to a phenomenon called axis switching, whereby the
vortex ring major axis contracts and the minor axis expands until the original minor axis becomes
the new major axis and vice versa. The lateral deformations of the vortex rings during this process
cause external fluid to be engulfed into the jet, thereby increasing the jet’s entrainment [17,18].
Therefore, a clear understanding of vortex dynamics in synthetic jets is essential for any study
seeking to maximize the performance of synthetic jets in flow control applications.

Axis switching has been studied for decades in isolated vortex rings, with the earliest work
employing inviscid models that closely matched physical observation [19–23]. The inviscid ap-
proximation is reasonable in the regions of an irrotational fluid around a vortex where the induced
velocity depends more on the circulation strength of the vortex than on the distribution of vorticity
within the core. Therefore, the diffusion of vorticity in the core can be ignored and the vortex
approximated as a line vortex with either an irrotational vortex profile or a Rankine vortex profile
with a fixed core size [19–21]. Of course, inviscid techniques cannot model vortex formation, decay,
or collisions, as they are inherently viscous processes.

The governing equation for the inviscid incompressible propagation of an ideal vortex ring is the
Biot-Savart law. A differential form of the Biot-Savart law is

dV = �

4π

dl × r
|r|3 , (1)

where V is the induced velocity at point P, � is circulation, dl is a discreet segment of the line
vortex, and r is the vector between P and the line segment dl .

It can be shown that the local self-induced velocity of a curved irrotational vortex is proportional
to the curvature of the vortex axis and that all noncircular vortex rings therefore “wobble” as they
propagate [19]. Consider, for example, a bisymmetric elongated vortex ring with curved ends and a
rectilinear midsection (see the t0 vortex ring in Fig. 1). This is a reasonable approximation for the
shape of a vortex ring that would form from an elongated rectangular orifice or nozzle. Initially, the
ends of the vortex ring, possessing high curvature, travel downstream faster than the middle. This
gives the ring the appearance that it is folding along its minor axis (see t1 and t2 in Fig. 1). Before
the vortex ring actually folds in half, however, the previously low curvature middle region develops
a bend and accelerates to catch up with the leading part of the ring (see t2 and t3 in Fig. 1). When
the ring flattens back out, what was previously the major axis of the ring has become the minor
axis, i.e., the vortex ring has axis switched (see t4 in Fig. 1). From here the process can repeat,
eventually returning the ring to its original orientation [20]. Various prior studies have found good
agreement between the dynamics predicted by inviscid simulations of noncircular vortex rings and
the observations made in experimental images and movies [20,21].

The many numerical and experimental studies investigating isolated vortex rings with elongated
shapes (e.g., elliptic) have established a number of common findings about axis switching. For
one, the aspect ratio AR of the vortex ring (i.e., the ratio of initial length to width) is the most
important characteristic influencing the axis-switching behavior. In low AR vortex rings, which
deviate only slightly from a circular shape, the deformations associated with axis switching are
generally sinusoidal and relatively subtle. At higher AR these motions become more complex and
the oscillations in the ring’s width and length become larger [19,21–23]. The oscillation period and
spatial wavelength of the axis-switching deformations also increases with AR, i.e., high AR vortex
rings take a longer time and a greater distance to complete an axis switch than low AR rings do
[21,23–25]. The half period of the oscillatory deformations is marked by the vortex ring’s return
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FIG. 1. Biot-Savart solver simulation of an ARr = 4.2 vortex ring undergoing self-induced axis-switching
deformations with the ring axis displayed at five instances, labeled t0–t4, and colored with increasing time from
blue to red.

to a roughly planar configuration with the axes now reversed. The term “roughly planar” is used
because the ring is typically not perfectly flat when the axis switch is completed (note that, although
it is hard to tell due to the scale of the figure, the vortex ring at t4 in Fig. 1 is not completely flat)
[19–21], nor is the original shape of the vortex ring precisely recovered [19–21,25]. In particular,
the vortex rings tend to develop a pinch in the middle of the long axis upon completion of the axis
switch which, for certain conditions, can cause the antiparallel sides of the vortex ring to collide,
leading to vorticity reconnection (see the shape of the t4 vortex ring in Fig. 1) [21–23,25].

The axis-switching deformations continue as long as the vortex ring remains coherent and
maintains its topology. However, the axial distance and time between axis switches increase
with the number of switches [23,24]. This phenomenon has been attributed to the decline in
circulation strength with time [23], although the growth of the vortex core size due to diffusion
of vorticity is likely a contributing factor. It has been established that vortex rings with larger
cores experience weaker local self-induction and are therefore slower to switch axes than thin
core vortices [23,25,26]. The geometric oscillations of the vortex ring also change with time.
Axis-switching deformations in noncircular vortex rings are due to an instability associated with
the vortex geometry. With time, the oscillations slowly damp out as the vortex ring converges to a
more stable circularized shape [20]. However, a fully circular vortex ring is unlikely to be achieved
because viscous processes tend to limit the longevity of isolated noncircular vortex rings to only a
few axis switches.

Axis switching of vortex rings is also well established in continuous jets [1,17,26]. The impact
the AR has on the frequency of axis switching and the magnitude of the deformations for isolated
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rings also apply to the vortex rings in continuous jets. However, in jets the self-induced deformations
of the vortex ring also change the shape of the jet and, importantly, enhance the jet’s entrainment
rate [17]. This enhancement in entrainment and mixing have led some to propose nonaxisymmetric
orifices as a mechanically simpler alternative to active techniques meant to achieve the same effect.

In general, less attention has been given to studying vortex ring axis switching in synthetic jets
than in isolated vortex rings and continuous jets. The particle image velocimetry (PIV) measure-
ments presented by Amitay and Cannelle [27] in AR = 50.8, 76.2, and 101.6 rectangular orifice
synthetic jets reveal the typical variations in jet width associated with vortex ring axis switching,
although the phenomenon was not explicitly identified in the discussion. The presence of these
deformations in such large AR synthetic jets suggests that the phenomenon occurs over a very large
range of vortex ring AR values. Van Buren et al. [28] were able to reconstruct the core axes of
vortex rings produced by an AR = 12 synthetic jet revealing dynamics which qualitatively look
very similar to those in isolated vortex rings. However, the AR = 6, 12, and 18 orifice synthetic jets
tested switched axes only once. Straccia and Farnsworth [29] later showed that the lack of additional
axis switching was due to bifurcation of the vortex rings. Lindstrom and Amitay [30] investigated
synthetic jets with AR = 19 rectangular, trapezoidal, and triangular orifices and reported that all
of the jets axis switched, albeit only once. Wang et al. [18] focused their experimental study on
synthetic jets with lower AR rectangular orifices ranging from 1 to 5. While up to three vortex ring
axis switches were measured in the AR = 2–4 orifice jets, the vortex ring from the AR = 5 orifice
axis switched only once before bifurcating. When they compared their results to prior data from
continuous jets, Wang et al. [18] found that the vortex rings in synthetic jets axis switch closer to
the orifice. They attributed this difference to a slower convective speed in the synthetic jet, although
the earlier formation of the vortex ring in the synthetic jet was probably also a contributing factor. As
with continuous jets, Wang et al. [18] reported that axis switching in the nonaxisymmetric synthetic
jets yielded a higher entrainment rate than that of a axisymmetric synthetic jet.

Unsurprisingly, Wang and Feng [31] found that noncircular vortex rings in a crossflow, which
were produced by a rectangular orifice synthetic jet embedded in a flat plate, also axis switch.
Furthermore, axis switching was observed whether the long axis of the orifice was aligned with the
flow or perpendicular to it; however, the influence the orifice orientation had on the jet-crossflow
interaction did alter the vortex ring axis-switching frequency. This is because shear in the boundary
layer can stretch the vortex ring while background vorticity complicates the vortex topology. In
particular, the circulation around the ring becomes variable leading to branches in the vortex tube,
which can present as hairpin legs or a trailing vortex loop [31,32]. Berk and Ganapathisubramni [33]
detected similar vortex ring topologies in their PIV measurements of a rectangular orifice synthetic
jet in a crossflow. To understand the cause of the momentum deficit behind the synthetic jet they
employed a Biot-Savart law-based solver to model the vortex rings with their hairpin legs. The
induced velocity on the jet centerline predicted by the model compared favorably with the phase-
locked PIV data. Some of the remaining discrepancies between the measurements and model may
partially be explained by the fact that the vortex ring was modeled as a circle and therefore did
not capture the likely axis switching of the noncircular vortex rings produced by the AR = 13
rectangular orifice in the experiment. It will be shown that axis switching has a substantial effect on
the induced velocity within moderate and high AR vortex rings.

In the present study experimental stereoscopic particle image velocimetry (SPIV) data were
obtained for SJAs with rectangular orifices ranging in AR from 2 to 19. That range encompasses
both small and moderate AR values and covers a larger sweep in AR than has been typically
investigated in prior synthetic jet experimental studies. The processing of the SPIV data in this
study was focused on elucidating the vortex dynamics associated with the different shape vortex
rings in the jets. In addition, complementary Biot-Savart simulations were run to aid in interpreting
the complex flow fields which enabled the origin of several features captured in prior studies to be
explained in the context of the dynamics of the primary vortex structure. Accordingly, Sec. II will
review the design parameters of the synthetic jet and the techniques used to acquire the experimental
data, while the modeling approach is summarized in Sec. III. In Sec. IV the results are discussed,
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FIG. 2. Schematic detailing the synthetic jet orifice geometry and coordinate system utilized.

starting with a detailed look at the AR = 6 orifice jet and finishing with an examination of the
similarities and differences seen in the other AR cases. Finally, a summary and the conclusions are
presented in Sec. V.

II. EXPERIMENTAL METHODS

A. Synthetic jet

To study the effect of the orifice AR on the vortex dynamics in synthetic jets, a modular synthetic
jet actuator with interchangeable orifice plates was designed and manufactured in house. The 71.1-
mm-diam orifice plates contained the actuator orifice and were fabricated on a Formlabs Form 2
stereolithography three-dimensional (3D) printer using a black photopolymer resin. This technique
enabled rapid prototyping of various orifice geometries while maintaining a high degree of part
commonality in the actuator. In this study five orifice geometries were tested which covered a range
of AR values, i.e., the ratio of the orifice length to its width (ARo = lo/ho) (Fig. 2). Note that the
dimensions associated with the jet orifice are denoted by a subscript o (e.g., ho, lo, and ARo), while
the dimensions associated with the vortex ring will have a subscript r (e.g., hr and ARr). To account
for variability in the 3D printing process ho and lo were measured using a set of precision metric
pins and calipers. The resulting dimensions of the five orifices yielded ARo of 2.0, 4.0, 6.1, 12.6,
and 19.3; however, from here on these are referred to as the cases of ARo = 2, 4, 6, 13, and 19 for
brevity. The length and width of the orifices were chosen to maintain a constant orifice exit area of
18 mm2 across all of the cases tested. The neck height of the orifices, i.e., the orifice depth, was also
held constant at 2.59 mm.

In addition to containing the orifice, the underside of the orifice plate also contained the actuator
cavity. The piezoelectric disk used to drive the actuator was clamped against the orifice plate sealing
the bottom of the cavity. The resulting cylindrical cavity had a height of 3.18 mm and a diameter of
58.42 mm. A single Piezo Systems bilayer piezoelectric bending disk actuator with a 63.5-mm-diam
and maximum free deflection of ±476 μm was used. The piezoelectric disk was driven with an
Agilent 33500B series waveform generator in the continuous sinusoidal mode of operation and the
input voltage was boosted with a Piezo Master VP7210 amplifier. Clamping of the piezoelectric
disk against the orifice plate was achieved with two aluminum rings. These rings were held together
by six screws that were installed with a torque wrench to precisely control the clamping force on
the piezoelectric disk.

The coordinate system used for the synthetic jet flow field originates at the exit plane of the
actuator in the center of the orifice (Fig. 2). The x coordinate aligns with the axis of the jet and
increases in the streamwise or axial direction, while the y and z coordinates are aligned with the
minor and major axes of the rectangular orifice, respectively. The orifice width ho was chosen as the
characteristic length for the flow. Finally, the flow velocity in the x, y, and z directions are labeled
u, v, and w, respectively.

Several different characteristic velocity definitions have been put forth for synthetic jets over
the years. In this study we opt to use the average orifice blowing velocity employed by Smith
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TABLE I. Synthetic jet orifice dimensions and experimental conditions investigated.

ARo ho (mm) Deq (mm) Uo (ms−1) Re St Lo/Deq

2 2.95 4.74 11.0 2168 0.144 4.31
4 2.10 4.75 11.4 1595 0.099 4.45
6 1.71 4.75 11.6 1320 0.080 4.52
13 1.16 4.64 11.2 866 0.056 4.49
19 0.93 4.60 11.6 716 0.043 4.67

and Glezer [3] because it enables a more direct comparison with prior studies of the dynamics
of piston-generated vortex rings. The average blowing velocity of a synthetic jet Uo is found by
integrating the instantaneous velocity of the jet at the orifice uo(t ) over the half of the actuator cycle
that represents blowing divided by the period of the full cycle T , as defined by

Uo = 1

T

∫ T/2

0
uo(t )dt = f Lo. (2)

If the jet velocity at the orifice varies in a sinusoidal manner with a frequency f , then the average
blowing velocity is merely the peak speed Up divided by π ,

Uo = 1

T

∫ T/2

0
Up sin(2π f t )dt = Up

π
. (3)

The jet Reynolds number and Strouhal number were calculated using

Re = Uoho

ν
, (4)

St = f ho

Uo
, (5)

respectively, where ν is the kinematic viscosity of the fluid. Accordingly, the configurations and
conditions of the five cases tested are summarized in Table I.

While researchers working on the application of flow control technologies generally favor Re
and St when reporting experimental conditions, those focused on the study of vortex dynamics
often report Re� and Lo/D, i.e., the Reynolds number based on circulation and the dimensionless
stroke length or stroke ratio. Here Lo is the stroke length of the actuator and is often defined in
synthetic jets as the average blowing velocity divided by the actuation frequency (2). For jets or
starting vortices formed from nonaxisymmetric orifices or nozzles that do not have a single length
scale D, the equivalent diameter Deq is used, which is the diameter of a circular orifice with the same
exit area as the noncircular one [1]. Note that if St is computed using Deq as the length scale, Lo/Deq

is merely the reciprocal of St [see Eqs. (2) and (5)]. While ho was chosen as the length scale in this
work, due its ubiquity in finite-span synthetic jet studies, Lo/Deq can be a useful parameter when
comparing the results in this study to prior work on vortex ring formation. Therefore, the stroke
ratio and equivalent diameter of the orifice are reported in Table I.

As the stroke ratio of an actuator Lo/Deq is increased the generated shear layer which feeds
the forming vortex ring contains more circulation, leading to a stronger vortex [34]. There is a
natural limit to this process, however, because when the vortex ring gets sufficiently strong its high
self-induced velocity causes it to outrun the shear layer feeding it such that it pinches off from its
source of vorticity. Therefore, there is an upper limit to the formation time and relative strength
of a vortex ring formed in this manner. Experiments conducted with circular and low AR elliptic
vortex rings have found that this limiting formation time or formation number falls in the range
of Lo/Deq = 3.4–4.5 [34,35]. For stroke ratios slightly above this limit the pinched-off vorticity
tends to remain near the orifice or nozzle where it slowly dissipates or, in the case of synthetic jets,
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may be reingested by the actuator during the suction phase. If the stroke ratio is well above the
limiting formation number, however, the shear layer left behind contains sufficient vorticity to form
secondary vortex rings which travel behind the primary ring [34,36].

In a companion study the influence of Re and Lo/Deq (or St) on synthetic jet axis switching
was investigated by analyzing the changes in the half-width of a rectangular orifice synthetic jet
[29]. The shape of the jet was unaffected by variations in Re between 298 and 731; however, the
stroke ratio did have an influence on axis switching. Specifically, axis switching was insensitive
to the driving conditions when Lo/Deq was below ∼4 but was sensitive for Lo/Deq > 4.2. In the
highest stroke length case (Lo/Deq = 6.2) the pinched-off vorticity formed a secondary vortex ring
which interacted with the primary vortex ring downstream, delaying axis switching. Conversely, at
Lo/Deq = 4.2 a small amount of pinched-off vorticity was observed, but it did not form a secondary
ring, nor did it appear to influence the initial axis-switching deformations of the primary vortex
ring. Because vortex pinch-off, specifically secondary vortex ring formation, is the primary factor
influencing vortex ring axis switching in synthetic jets, in this study we sought to hold Lo/Deq

constant (Table I). We believe this is more appropriate when comparing axis switching between
different AR orifices than holding constant Re or St, as computed using the length scale ho. The
actuator driving conditions were set at roughly the limiting formation number so that the primary
vortex rings would have the maximum possible strength. This made the vortices easier to detect
and analyze in the SPIV data and minimized the vortex rings’ interaction times with the orifice.
Although a vorticity tail was detected due to vortex pinch-off for the driving condition used in this
study, it will be shown that this tail was too weak to form a secondary vortex ring and instead
remained close to the orifice where it was at least partially reingested during the suction phase.

B. Thermal anemometry

The resonant frequency of the synthetic jet actuator and the maximum orifice exit air speed
at resonance was determined using a thermal anemometer, commonly referred to as a hot wire.
These measurements were collected using an A.A. Lab Systems AN-1003 constant-temperature
anemometer system with a Dantec miniature single-component hot-wire probe. The hot-wire probe
was calibrated in the potential core of a calibration jet over a velocity range of 0.1 < U < 55 ms−1.
Hot-wire measurements were then made with the probe inserted into the SJA orifice to half the neck
height, on its centerline, for a range of driver frequencies. Data were recorded at 50 kHz or roughly
80–100 points per cycle, depending on the synthetic jet actuator driving frequency. The peak speed
measured in the orifice was approximately 36 ms−1 for all five orifices. The maximum air speed was
achieved at an actuator driving frequency of 540 Hz and this frequency was used for all subsequent
SPIV measurements.

C. Stereoscopic particle image velocimetry

The velocity field within the jet was measured using SPIV. The SPIV experiments were
conducted in a 61 × 61 × 76 cm3 (24 × 24 × 30 in3) quiescent enclosure which isolated the test
environment from air currents in the laboratory. The enclosure was constructed using 3.18-mm-thick
( 1

8 -in.-thick) cell cast acrylic panels on four sides to provide low-distortion optical access in a num-
ber of test configurations. The enclosure was seeded with incense smoke for the SPIV experiments.
The synthetic jet device was mounted on two Velmex linear traverses in a y-z configuration which
allowed for precise adjustments to the location of the jet with respect to the fixed SPIV measurement
plane.

Stereoscopic PIV was utilized to map out the spatial development of the vortex rings in the
synthetic jet and to determine the height of vortex ring axis switching. The measurements were
collected with a LaVision SPIV system comprising two 2560 × 2160 pixel 16-bit dynamic range
scientific CMOS cameras capable of 50 frames/s. A Quantel Evergreen 200 dual-pulsed 532-nm
Nd:YAG laser, with a −50 mm focal length cylindrical lens to spread the beam into a sheet, provided
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FIG. 3. Schematic detailing the experimental setup of the synthetic jet actuator, enclosure, and SPIV system.

illumination of the particles within the enclosure. A second set of adjustable optics was used to
focus the width of the sheet to a minimum waist above the orifice of the synthetic jet. The bottom
of the light sheet was clipped at x ≈ 1 mm above the orifice surface before the light entered the
quiescent enclosure to eliminate surface reflections in the images. The laser was positioned so that
the light sheet illuminated an imaging plane which bisected the orifice along its centerline. The
two cameras were set up on either side of the quiescent enclosure angled 28◦ from the normal
of the imaging plane in a forward scattering orientation (Fig. 3). Each camera was fitted with a
Nikon Nikkor 200-mm macro f/4D lens connected to a LaVision Scheimpflug mount which was
adjusted to get the full width of the imaging plane in sharp focus. The resulting image scale factor
was 49 pixels/mm. The positioning of two cameras at an angle to the imaging plane enabled the
three-component velocity field in that plane to be computed by stereo cross correlation of the particle
displacements.

Stereoscopic PIV measurements were collected in the x-y and x-z planes of the orifice by rotating
the entire synthetic jet actuator assembly 90◦ while keeping the laser and cameras fixed (Fig. 3). The
x-y and x-z centerline planes bisect the orifice along its two planes of symmetry and will be referred
to from now on as the minor axis plane and major axis plane, respectively (Fig. 2). This orifice
relative terminology will be used irrespective of the vortex ring orientation, which periodically
changes due to axis switching. In both planes, six to seven phase-locked sets of 500 image pairs
were recorded at a range of phase angles in the actuation cycle. Additionally, a single 500-image set
was recorded in both planes at a frequency selected to randomly cause aliasing with the synthetic jet
driving frequency for the purpose of obtaining the time-averaged (i.e., mean) field. The raw images
were processed using LaVision’s DaVis software (version 8.4.0) to find the three-component planar
velocity field (i.e., 2D3C). The stereo cross correlation was computed using a multipass method
with two passes on 64 × 64 pixel interrogation windows followed by a single pass on 32 × 32
pixel windows. A Gaussian weighting function was applied to the interrogation windows and a
50% overlap was used between windows. The data processing yielded a 152 × 150 vector field,
accounting for the masking at the edges of the frame.

The measurement uncertainties associated with the three velocity components obtained via SPIV
were estimated using the correlations statistics method implemented in DaVis and described in
Ref. [37]. To summarize the results across the vector field, the root-mean-square (rms) of all the in-
dividual vector uncertainties was taken within the jet, i.e., in the region where u(x, y) > 0.01umax(x).
Restricting the rms to the measurements inside the jet resulted in more consistent uncertainty values
across the various jet AR values tested and is more conservative than including the region outside
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TABLE II. Estimated uncertainty in SPIV measurements reported as the root mean square of the uncer-
tainty field within the jet. Ranges cover the minimum to maximum uncertainty observed for all actuator phase
angles and AR values measured.

Major axis plane Minor axis plane

Uncertainty Phase-locked Time-averaged Phase-locked Time-averaged

σ rms
u /Uo 0.41–0.87% 0.95–1.42% 0.57–0.94% 0.88–1.82%

σ rms
v /Uo 0.38–0.75% 0.62–0.92% 0.55–0.96% 0.65–1.05%

σ rms
w /Uo 0.38–0.77% 0.53–0.86% 0.49–0.84% 0.60–1.00%

the jet where uncertainty is generally lower. Furthermore, reporting the rms value is consistent with
the convention used in prior studies of PIV uncertainty quantification [37]. The rms measurement
uncertainties in u, v, and w for the phase-locked and time-averaged measurements in the major
axis (x-z) and minor axis (x-y) planes for all phases and AR values tested are reported as ranges in
Table II.

Postprocessing of the vector files was conducted in MATLAB to establish the shape and location of
the vortex rings emitted by the synthetic jet actuator. Vortices were identified using the Q criterion
in positive regions of the Q field where rotation dominates strain [38,39]. For vortex identification
a threshold was applied to the Q field at a level above zero. The location of the peak vorticity ω

within the region enclosed by the Q contour at the threshold level was then interpolated to extract
the vortex core axis. Finally, the vortex locations in the two orthogonal measurement planes were
used to reconstruct the three-dimensional geometry of the vortex ring.

III. MODELING APPROACH

Numerical solutions to the Biot-Savart law equation are relatively easy to obtain and compu-
tationally inexpensive compared to today’s commonly used higher-order methods (e.g., unsteady
Reynolds-averaged Navier-Stokes and large-eddy simulation models). Although this method is
unable to model viscous processes like vortex formation and decay, it will be shown that the
Biot-Savart law is able to qualitatively capture many aspects of noncircular vortex ring dynamics in
a synthetic jet.

An inviscid Biot-Savart solver called IBiSS was developed in MATLAB to conduct this analysis.
Results from IBiSS are presented in this paper to give additional insight into the dynamics captured
in the SPIV data. The vortex rings were modeled as finite span, bilaterally symmetric rings with a
specified AR. The initial geometry of the vortex ring consisted of two parallel line segments running
along either side of the major axis joined by semicircular ends of radii r/hr = 0.5 which spanned
the minor axis (see the t0 geometry in Fig. 1). Kiya et al. [40] employed the same vortex ring
geometry in their vortex blob simulations and referred to it as pseudoelliptical. The 3D flow field
reconstructions experimentally obtained by Straccia and Farnsworth [29] for an AR = 13 synthetic
jet reveal that this pseudoelliptical shape is a reasonable approximation of the vortex ring formed in
moderate AR rectangular orifice synthetic jets [see Fig. 19(a) in [29], for example]. A few limited
studies were conducted with IBiSS to investigate the effect of the radii at the “corners” of the vortex
ring on the self-induced dynamics. When the corner radii are reduced (r/hr < 0.5) to give the ring a
slightly rounded-off rectangular shape the sharper corners introduce higher-order azimuthal modes
into the ring’s deformation but do not substantially influence the axis-switch height. The fluctuations
associated with the higher-order azimuthal modes in the sharper cornered vortex rings also cause
the ring width in the major and minor axis planes to oscillate relative to the pseudoelliptical ring
solution, but these differences are oscillatory not divergent. It was concluded that the corner radius
of the ring does not have a first-order effect on the self-induced deformations; therefore, all of
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the simulations presented in this paper employed an initially pseudoelliptical vortex ring shape
(r/hr = 0.5).

To input the vortex ring geometry into the solver, the ring axis was discretized into a series of
line segments which were specified by the coordinates of their end points (vertices), with the first
and last line segments sharing a common end point to ensure closure of the ring. The number of
line segments was defined in the widthwise direction and varied in the lengthwise direction with
the ring AR to maintain approximately equal initial line segment lengths �s around the ring. In the
majority of the analyses presented, a line segment density of ∼15 segments per vortex length hr

was used. In an ARr = 6 vortex ring this line segment density corresponds to a total of 200 line
segments throughout the ring. Some limited results will be discussed which utilize different line
segment densities to explore the dependence of the solution on the vortex ring geometric resolution.

IBiSS also requires the circulation strength of the vortex ring as a simulation input. While
circulation has a direct influence on the celerity of the vortex ring (i.e., its temporal development)
it does not affect the spatial development. In other words, in an inviscid simulation a vortex ring
with twice the circulation strength but the same shape as a weaker vortex ring will undergo the
same deformations at the same points in space as the weaker one; it will just do so more quickly.
With one exception, the results reported from IBiSS relate to spatial parameters like axis-switch
height and vortex ring width; therefore, circulation strength of unity was used for the duration of the
simulations. At the end of Sec. IV a comparison between experimental data and an IBiSS simulation
employing variable vortex ring circulation strength will be discussed in more detail.

In the solution approach, the induced velocity at all of the vortex ring line segment vertices is
computed at the current time step using the Biot-Savart law (1). The position of the vortex ring
in the subsequent time step is then found using the modified Euler approach outlined by Hama
[41]. This multistep technique has superior stability compared with the conventional Euler method.
To maintain stability of the explicit time-marching integration the time step size �t must be small
enough to satisfy the Courant-Friedrichs-Lewy (CFL) condition, as expressed in terms of circulation
strength �,

Cmax � ��t

(�s)2
. (6)

By trial and error a maximum Courant number Cmax of 0.2 was found to be a reliable stability limit
for the modified Euler scheme in the context of Biot-Savart modeling. Furthermore, when the time
step size was set small enough to satisfy the CFL condition the resulting spatial development of the
vortex ring was confirmed to be independent of the time step size. Accordingly, the time step size
was selected so that the Courant number was between 0.02 and 0.12 for all of the simulations.

IBiSS has the ability to include an image vortex in a simulation to model the effect of the wall
around the orifice, but in the present case there are challenges in doing so accurately. Specifically, the
image effect is only appreciable when the vortex is close to the wall, i.e., while the vortex is forming.
However, during the formation phase the vortex circulation is rapidly changing and therefore an
accurate variable circulation profile is required all the way down to the wall. There is also a distinct
difference between the motion of the vortex ring during formation, which is strongly influenced by
the motion of the fluid slug and roll-up of the shear layer, and the later inviscid advection phase,
which is dominated by self-induction [42]. Therefore, to correctly model the image vortex effect,
detailed data on the motion and circulation of the vortex ring during formation would be required.
A method would also be required for estimating an appropriate offset height from the wall at which
to start the simulation. A further complication with synthetic jets is that the suction phase of the
actuator likely disrupts the blocking effect of the wall later in the cycle.

The primary effect of the image vortex is to cause the primary vortex ring to shrink in width and
length at the very beginning of a simulation. This shrinkage in diameter or width near the orifice
or nozzle has been captured experimentally and it quickly asymptotes to a stable value as the ring
propagates away [42–44]. Effectively this is the reverse of the classic vortex ring–wall collision
interaction. The smaller vortex ring deforms more quickly than a vortex formed without an image
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FIG. 4. Contours of normalized phase-locked vorticity in the minor axis plane of the ARo = 6 synthetic jet
for phase angles (a) 103◦, (b) 143◦, (c) 183◦, (d) 223◦, (e) 263◦, and (f) 303◦.

causing spatial parameters like the axis-switch height to be reduced. However, this change in the
spatial development of the vortex ring can be largely eliminated by scaling by the initial vortex
ring width hr , as is done later in this paper when comparing the axis-switch height from SPIV
data to IBiSS simulations. Due to the complexities of accurately modeling the image vortex effect
during the vortex formation phase and the fact that proper scaling of spatial parameters essentially
obviates the image vortex, this feature was not included in the reported simulations. Furthermore,
the simulations begin with the vortex at a height of x = 0 without any type of formation offset
correction.

IV. RESULTS

A. Vortex dynamics in an AR = 6 orifice synthetic jet

To demonstrate the effect axis switching has on the shape and trajectory of the vortex rings in
a synthetic jet, six phase-locked vorticity fields from the ARo = 6 case are presented in the minor
axis (Fig. 4) and major axis planes (Fig. 5). The phase angle of the jet at the orifice exit is reported
relative to the start of the blowing cycle such that 0◦, 90◦, 180◦, and 270◦ correspond roughly to
the start of blowing, the point of peak blowing, the start of suction, and the point of peak suction,
respectively. The relative position of the first measured phase within the jet cycle is accurate to ±5◦
and the following data sets are spaced every 40◦. Furthermore, the colormap used here, and in similar
upcoming figures, represents regions of negative vorticity in blue, regions of positive vorticity in
red, and areas with little to no rotation in white, according to the right-handed convention. In each
panel two to three generations of vortex rings are identifiable as antisymmetric pairs of concentrated
vorticity. The vortex rings form at the bottom of the frame and travel upward in the positive x
direction while deforming due to the axis-switching oscillations. Note that while a small amount of
vorticity pinches off from the newly formed vortex ring [Figs. 4(c) and 5(c)], this weak tail remains
near the orifice and is at least partially reingested by the actuator during the suction phase [Figs. 4(f)
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FIG. 5. Contours of normalized phase-locked vorticity in the major axis plane of the ARo = 6 synthetic jet
for phase angles (a) 103◦, (b) 143◦, (c) 183◦, (d) 223◦, (e) 263◦, and (f) 303◦.

and 5(f)]. Therefore, the pinched-off vorticity does not interact with the vortex ring downstream. To
visualize the relative changes in the vortex ring shape and position, it is convenient to consolidate
the data from the various phase angles into a single figure as presented in Fig. 6.

The distinct effect vortex ring axis switching has on the shape of synthetic jets is plainly visible
in the time-averaged vorticity contours on the two centerline planes of the ARo = 6 jet (Fig. 6).
The vorticity streaks in the time-averaged contours provide a history of the paths of the vortices in

FIG. 6. Contours of normalized time-averaged vorticity in (a) the minor axis and (b) the major axis planes
overlaid with phase-locked vortex locations (circles) and velocities (vectors) in the ARo = 6 synthetic jet.
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FIG. 7. Phased-locked vortex ring locations (pluses) and time-averaged vortex paths (dashed curves) in
(a) the minor axis plane, (b) the major axis plane, and (c) the top view for the ARo = 6 synthetic jet.

that plane as they travel away from the actuator. Overlaid on the filled contours are black circles
indicating the positions of the vortices at six evenly spaced phases of the jet which are separated by
40◦ increments of the actuation cycle. The radii of the circles are scaled by the magnitude of the
vortex circulation strength at that phase. In addition, vectors originating from the circles’ centers
represent the direction of the phase-locked velocity at the vortex axis, while the lengths of the
vectors are scaled by the flow speed.

In the minor axis plane the initially narrow jet starts to spread outward a short distance down-
stream of the orifice [Fig. 6(a)]. The direction of the velocity at the vortex centers reveals how vortex
ring self-induction drives the rapid spreading of the jet. Further downstream in the jet the spreading
slows and the jet achieves a maximum width at x/ho = 8.1. The jet begins to contract downstream of
x/ho = 8.1, which is mirrored in the inward pointing velocity vectors for the last two vortex phases.
The contraction of the vortex rings and the jet in the minor axis plane continues until a height of
x/ho = 16.9, where a local minimum is achieved.

The behavior of the ARo = 6 jet in the major axis plane [Fig. 6(b)] is roughly the inverse of what
was observed in the minor axis plane. The wide axis of the jet contracts initially as the self-induced
velocity from the vortex ring drives the vortices towards the centerline, and at a height of x/ho = 7.0
the jet reaches a minimum width. Downstream of x/ho = 7.0 the velocity vectors at the vortex
centers tilt outward, away from the jet centerline, and the jet expands again.

In both measurement planes the vortex ring starts to deform while the vortex is still accumulating
circulation, as indicated in Fig. 6 by the increasing radii of the circles marking the vortex locations.
Vortex circulation strength peaks around the second or third phase plotted and as a result the self-
induced velocity is also highest at these phases. In the final three phases the vortex strength slowly
decays, as the does the vortex speed, evidenced by the shorter distance traveled during each time
increment by the later vortices.

To visualize the self-induced deformation of the vortex ring, the phase-locked vortex locations
were reconstructed into a rough representation of the ring (Fig. 7). The same six evenly spaced
phases of the actuator from Fig. 6 are presented again. The four vortex locations extracted from the
two centerline planes at a particular phase are indicated with pluses connected by straight lines. In
addition to the phase-locked results, the vortex locations in all 500 individual vector fields, which
constitute the time-averaged data set, were also extracted and fit with spline curves. These spline
curves are plotted as two red dashed curves in Figs. 7(a) and 7(b). Finally, the position and size of
the orifice are indicated at x/ho = 0 in blue.
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FIG. 8. Axial variation of (a) vortex ring width in the major axis (dashed curve) and the minor axis (solid
curve) planes and (b) height difference between vortices in the major and minor axis planes for the ARo = 6
synthetic jet.

Despite the coarse representation of the vortex rings from the SPIV data (Fig. 7), it is apparent
that the deformations of the physical ring develop in a manner similar to what was predicted by
IBiSS (Fig. 1) and described in Sec. I. The vortex ring returns to a roughly planar configuration
with the axes switched at a height of x/ho = 7.7, where the fourth phase of the ring presented in
Fig. 7 approximately corresponds to t4 in Fig. 1. Above x/ho = 7.7 the axis-switching deformations
continue, as seen in the final two phases, and although it is not captured in this figure, eventually the
vortex ring returns to its original orientation further downstream.

The difference in the vortex ring’s position in the major and minor axis planes of the ARo = 6
jet is presented in Fig. 8. Figure 8(a) displays how the width of the vortex ring changes in the minor
axis (�yvc) and major axis (�zvc) planes as the ring propagates downstream. The dashed and solid
curves represent the distance of separation between the two spline curves that were fitted through
the instantaneous vortex locations [see the red dashed curves in Figs. 7(a) and 7(b)]. These curves
highlight that the undulations in the jet widths are roughly 180◦ out of phase between the two planes.
The vortex separation distances in the six phase-locked data sets are also presented as closed (minor
axis plane) and open (major axis plane) circles connected by solid lines. In addition, the height at
which the vortices in the major axis plane reach a minimum width is indicated by an open triangle,
while the height of the maximum width in the minor axis plane is indicated by a closed triangle.
Interestingly, the vortex rings do not achieve their minimum width in the major axis plane at the
same downstream distance from the orifice as the vortices in the minor axis plane achieve their
maximum separation. A similar phenomenon has been observed in isolated vortex rings [19,22].

One measure of axis switching, which has been used in prior studies of nonaxisymmetric jets,
is the jet axis-switch height. As the jet grows in width in one plane and shrinks in width in the
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other, eventually a crossover point is reached where the widths in the two planes are equal. The
jet axis-switch height, which we denote by xas, is the streamwise distance above the orifice where
this crossover occurs [16]. This axis-switch height is traditionally based on the width of the jet as
determined using the half-velocity point y1/2, where u(x, y1/2) = Umax(x)/2, i.e., the point away
from the jet centerline where velocity has decayed to a half the maximum velocity value from
that height. We will refer to this measure of the jet width as the velocity width. In this study, that
technique for finding the crossover height is compared to the crossover height identified using the
paths of the vortex centers from the time-averaged data sets. The jet axis-switch heights based on the
vortex paths can be identified in Fig. 8(a) as the points where the dashed and solid curves cross, i.e.,
xas,1/ho = 3.2 and xas,2/ho = 12.4. The width of the jet based on the vortex paths will be referred
to as the vortex trajectory width. It should be noted that from a vortex dynamics perspective, the
axis-switch height has little significance since the vortex ring does not possess those two dimensions
[i.e., �yvc(xas) and �zvc(xas)] at the same time. Furthermore, the height at which the vortex ring
actually has equal widths along its two axes is not necessarily the same as when the jet has equal
widths (e.g., see phase-locked data in Fig. 8 herein and Fig. 4 in [22]).

If we treat axis switching as a periodic oscillation of the vortex ring geometry, then the point at
which the ring achieves a roughly planar shape, but with the axes flipped relative to the start of the
cycle, is approximately the half-period point (see the t4 vortex ring in Fig. 1 and the black vortex
ring in Fig. 7). We view this point as the completion of the first axis switch and propose it as a more
relevant measure of the axis switching from the perspective of the vortex dynamics. The height at
which the first axis switch is completed will be denoted xT/2. The second time that the vortex ring
achieves a roughly planar shape, but now with major and minor axes in the same orientation as at the
start of the cycle, marks one period of the cycle. This point marks the completion of the second axis
switch and the height where it occurs is denoted by xT . For reference, the heights of the jet first and
second axis switches (xas,1 and xas,2) occur at roughly the quarter-period and three-quarter-period of
the vortex ring axis-switching cycle, respectively.

Identifying the height at which the vortex ring returns to a roughly planar configuration involves
analyzing a discrete set of phase-locked measurements. An iterative data acquisition approach could
be used to identify the phase when the vortex ring completes the axis switch; however, modeling
conducted with IBiSS revealed a simpler way of determining the xT/2 point. The two measurement
planes (x-y and x-z) intersect the vortex ring axis at four points. Two of these points span the major
axis of the vortex ring and the other two span the minor axis. As the vortex ring undergoes axis
switching, the set of vortices that is further downstream periodically switches. Analysis of axis
switching using IBiSS revealed that the difference in the vortex downstream positions between
these four points varies in space in a predominantly sinusoidal manner, at least for low AR vortex
rings. This dynamic attribute was utilized during the experimental investigation to limit the number
of data points required to identify the height of the axis-switch half-period point.

In Fig. 8(b) the differences in the heights of the vortex centers in the minor versus the major
axis planes, δxvc = xvc(y = 0) − xvc(z = 0), for the six phase-locked data sets are plotted using
diamonds. Visually, δxvc is the difference in height between the closed and open circles in Fig. 8(a),
where positive δxvc indicates that the vortex axes in the major axis plane are further downstream
than the vortices in the minor axis plane, while negative δxvc indicates the opposite. In Fig. 8(b)
the vertical axis of the plot is now the average of the vortex heights in both the minor and major
axis planes, xvc, which is roughly equivalent to the average height of the vortex ring. Initially, the
vortices in the major axis plane are further downstream than those in the minor axis plane; however,
this relationship flips above xvc/ho = 7.7 as the axis switching continues. When δxvc achieves a
value of zero the major and minor axes of the vortex ring are coplanar and the full vortex ring
is roughly planar. The height where the flatness deviation of the vortex ring is minimum is very
near, if not coincident with, the height where δxvc = 0, according to IBiSS simulations. The sine
curve which was fit to the phase-locked data is plotted as a dashed line in Fig. 8(b). As predicted by
IBiSS, the variation in δxvc is essentially sinusoidal. The height of the sine curve crossing, �xvc = 0,
was interpolated to find the half-period point of the vortex ring axis-switching cycle, xT/2. For the
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FIG. 9. Contours of time-averaged normalized vorticity in the (a), (c), (e), (g), and (i) minor axis plane and
(b), (d), (f), (h), and (j) major axis plane for (a) and (b) ARo = 2, (c) and (d) ARo = 4, (e) and (f) ARo = 6, (g)
and (h) ARo = 13, and (i) and (j) ARo = 19. The axis-switching half-period height is indicated with a dashed
line in (a)–(f).
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ARo = 6 case this yielded a value of xT/2/ho = 7.7. This height is marked in Figs. 8(a) and 8(b)
with a horizontal dotted line.

B. Effect of AR on the vortex dynamics in synthetic jets

The time-averaged vorticity fields for all five orifice AR values tested are presented in Fig. 9 on
the two centerline planes. The behavior of the jet is similar in three lowest AR orifices. Specifically,
the jet initially grows in width in the minor axis plane and contracts in the major axis plane. The
jet widths in the two planes reach extrema around the height where the first axis switch completes,
xT/2, indicated by a horizontal dashed line. Above xT/2 the roles reverse and the jet grows in the
major axis plane and contracts in the minor axis plane. Thus, axis-switching deformations of the
vortex rings continue through more than one complete switch. Evidence of the second completed
axis switch of the vortex rings is apparent further downstream in Figs. 9(a), 9(c), and 9(e).

A few trends are apparent as the AR of the orifice is increased. The first is that the oscillatory
variations in the jet’s width become larger as the AR of the ring increases. Larger AR vortex rings
experience more exaggerated self-induced deformations as they propagate than do vortex rings
which deviate only slightly from a circular shape. Another observed change is in the behavior of the
early vortex ring in the minor axis plane [Figs. 9(a), 9(c), 9(e), 9(g), and 9(i)]. At ARo = 2 and 4
the spreading in the width of the jet in this plane appears to start immediately. However, starting at
ARo = 6, it is apparent that the vortices travel a short distance almost straight downstream before
spreading apart and this delay becomes more pronounced as the ARo is increased further to 13 and
19. In high AR vortex rings the middle of the ring is far removed from the influence of the highly
curved ends. This causes the middle of the ring to behave like a 2D vortex pair for some distance
downstream until the deformations which are initiated at the ends of the ring are transmitted to the
middle. The higher the ring AR is, the longer it takes for this disruption of the 2D behavior to occur.

The starkest difference between the lowest and highest AR jets tested occurs in the downstream
half of the vorticity fields presented in Fig. 9. While the ARo = 2, 4, and 6 results indicate that the
vortex rings continue axis-switching deformations after the first axis switch has completed, this is
not the case at ARo = 13 and 19. Instead of reaching a maximum width and then contracting in
the minor axis plane, the ARo = 13 and 19 jets continue to widen, albeit at a slower rate. When
the calculation displayed in Fig. 8(b) to find xT/2 was performed on the ARo = 13 and 19 jets, the
results revealed that the vortex ring axes never recover a coplanar configuration and therefore the
vortex rings do not technically complete their first axis switch. An explanation for why the periodic
axis-switching deformations ceased can be found by analyzing the minor axis plane phase-locked
vorticity contours for the ARo = 13 synthetic jet [Fig. 10(a)]. Near the orifice, at a height of x/ho =
3, a single pair of counterrotating vortices associated with the most recently formed vortex ring is
seen. Further downstream however, at a height of x/ho = 17.5, four vortices in two counterrotating
sets exist. This particular vortex pattern indicates that the older vortex ring has bifurcated, i.e., split
into two smaller vortex rings [29].

When noncircular vortex rings axis switch they do not fully recover their original shape by the
completion of the axis switch. For elongated vortex rings, like the ones formed from a rectangular
orifice, the ring develops a pinch at the middle [visible in Fig. 1(b) at t4]. This pinch becomes more
pronounced with increasing AR. When antiparallel vorticity from the two sides of the vortex ring
come in contact, vorticity reconnection occurs [45]. The two inner vortices in Fig. 10(a) (labeled B)
are bridge vortices formed from the coalescence of the reconnected vorticity. If enough circulation
is transferred from the colliding midsection of the vortex ring to the bridge vortices, then the vortex
ring bifurcates. Circulation was computed in the various parts of the vortex ring in the ARo = 13
jet by integrating the phase-locked velocity fields around polygons which were manually drawn to
encompass the full vortex while excluding adjacent vortices and secondary structures. That analysis
revealed that roughly 53% of the vortex ring’s circulation was transferred from the vortices which
collided in the major axis (x-z) plane to the pair of bridge vortices which straddle the contact zone.
This interpretation of the ARo = 13 synthetic jet draws heavily on the work reported by Straccia and
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FIG. 10. Phase-locked normalized vorticity in the minor axis plane of the (a) ARo = 13 and (b) ARo = 19
jets. Bridge vortices are indicated by the B annotation.

Farnsworth [29], which employed the same actuator with an equivalent orifice and similar operating
conditions.

The vortex ring formed by the ARo = 19 orifice also shows evidence of vorticity reconnection
but the bridges are less well defined than in the ARo = 13 jet [Fig. 10(b)]. It was observed that the
flow field around the vortex ring was more complex just prior to bifurcation in the ARo = 19 case.
However, the additional flow features which appeared within the vortex ring were quite weak and
the vorticity field somewhat ambiguous; thus nothing definitive can be said regarding their origin.
Instead, we mention this potential change in the vortex ring breakup mode to highlight an area
that may be worthy of future study, particularly to investigate additional AR values and driving
conditions.

In both the ARo = 13 and 19 cases, the bifurcation of the vortex rings prevents further axis
switching of the ring, as has been observed in continuous jets [1]. Careful inspection of the ARo = 6
jet phase-locked vorticity fields revealed that vorticity reconnection was present in that case too
[see regions of weak counterrotating vorticity between the primary vortices in Fig. 4(c)]. However,
the amount of circulation transferred by vorticity reconnection in the ARo = 6 case did not meet
the minimum threshold required for bifurcation. Such vorticity reconnection without vortex ring
bifurcation has also been reported in moderate AR isolated vortex rings and does not prevent further
axis switching of the ring [22,23].

A survey of prior simulations and experiments investigating vortex ring bifurcation in isolated
vortex rings reveals that the critical ARr above which bifurcation occurs is roughly 4–5 [29]. To
enable a comparison with this limit, the AR of the vortex rings from the different orifices were
estimated by extracting the paths of the vortex centers identified in the instantaneous velocity fields
of the time-averaged data sets. For the ARo = 6 case these vortex paths are presented as red spline
curves in Figs. 7(a) and 7(b). The vortex ring length was determined near the orifice by calculating
the cross-stream distance between the clockwise and counterclockwise rotating vortex paths in the
major axis plane. The vortex ring width was obtained in the same way in the minor axis plane.
The ratio of the vortex ring length and width near the orifice provided an estimate of the initial
ARr . However, the lack of SPIV for the first 1 mm above the orifice, due to laser sheet cutoff,
prevented an accurate assessment of the ARr at the earliest point in its formation. Instead, the
measurement bias in the present data was corrected based on a comparison with results from a
later study conducted by the authors where data had been obtained closer to the orifice. The vortex
ring from the ARo = 6 orifice is projected to have ARr = 4.2, at or slightly below the critical AR
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FIG. 11. Variation of axis-switching height (closed symbols) with ARo as computed using jet velocity
width (gray symbols) and vortex trajectory width (black symbols) in addition to the height of the axis-switching
half period (open diamonds) and full period (open circles).

for bifurcation. Conversely, the vortex rings from the ARo = 13 and 19 orifices have projected ARr

of 7.9 and 12.8, respectively, which are well above the critical limit.

C. Effect of AR on axis-switch height

In Fig. 9 it is also apparent that as ARo is increased, the height at which the jet axis switches,
xas/ho, also increases. The relationship between the jet axis-switch height and orifice AR is
presented in Fig. 11. The height of the first jet axis switch (xas,1) is marked with a downward
pointing triangle, the second jet axis switch (xas,2) with a rightward pointing triangle, and the third
jet axis switch (xas,3) with an upward pointing triangle. The jet axis-switch height calculated based
on the velocity width is plotted with gray triangles while the axis-switch height based on the vortex
trajectories is plotted with black triangles. Finally, the heights where the vortex ring completes the
first axis switch, xT/2, are plotted as open blue diamonds, while the heights where the vortex ring
completes the second axis switch (i.e., a full period of the axis-switching oscillation), xT , are marked
by open blue circles.

Based on the data plotted in Fig. 11, the jet axis-switch heights increase linearly with ARo.
A linear relationship between ARo and axis-switch height (or ARo and axis-switch period) has
also been shown in prior studies of isolated vortex rings [25] and of vortex rings in jets [18,26].
The jet axis-switch height based on velocity is generally in good agreement with the axis-switch
height based on the vortex trajectories for the first two switches, although the results from the latter
follow a linear trend more precisely than the former. The third axis-switch height based on the
jet velocity width is not plotted in Fig. 11 because tangency in the jet width curves and multiple
crossover points introduced some ambiguity to the calculation. A best estimate of the crossover
point based on jet velocity width yielded an axis-switch height 10%–40% further downstream than
the axis-switch height based on the vortex paths. This implies that above a height of xas,2 the
relative influence of momentum diffusion on the jet’s shape, as compared to axis-switching, has
become more significant. The last axis-switching milestones detected in the ARo = 4 (xas,3) and
ARo = 6 (xT ) jets occur further downstream than expected, thereby deviating from the frequency
of axis switching observed when the vortex rings were lower in the jet. At this point in the flow
the vortex rings are very weak so self-induced deformations have slowed considerably, as has
advection due to self-induction. It is conceivable that the vortex rings here are carried along by
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FIG. 12. Model results for (a) variation of the vortex ring axis-switching height with ARr from SPIV data
(black symbols) and IBiSS simulations (blue symbols) and (b) influence of Rankine vortex core size and vortex
axis line segment density on IBiSS axis-switching height prediction for ARr = 4.2.

the increasingly dominant steady component of the velocity field which characterizes the far field
of a developed synthetic jet [3,7]. Thus the final axis-switching oscillations of the vortex rings would
be stretched out more in the streamwise direction than they were lower in the jet, where the rings
were propelled by self-induction. Finally, at ARo = 13 and 19 the vortex rings bifurcated before
they could complete their first axis switch. Therefore, only xas,1 could be calculated for those cases.

To compare the experimental axis-switch data to IBiSS simulations the data had to be replotted
based on the vortex ring width hr and vortex ring aspect ratio ARr because IBiSS does not model
the actuator orifice. The height of the first axis switch based on the vortex trajectories from the
experimental data (black symbols) and IBiSS (blue symbols) is plotted in Fig. 12(a). IBiSS results
at the highest ARr tested are not available because the simulations diverged due to the solver’s
inability to handle the very close approach and/or collisions of the antiparallel vortices in those
cases. The results from the base solver, which employs an irrotational vortex model, are plotted
as open blue symbols. The slope of the IBiSS results matches the SPIV data fairly well; however,
there is an offset in the level between the experiment and the model. Specifically, IBiSS predicts the
axis-switch height to be closer to the orifice than indicated by the experimental data.

Some of this discrepancy between the SPIV data and IBiSS results relates to the irrotational
vortex model. Vortices with an infinitesimally thin vortex core experience higher local self-induction
than vortices with finite-width cores, which causes the vortex ring to deform more rapidly. To study
this effect, a version of IBiSS was developed which replaces the standard irrotational vortex profile
in the Biot-Savart relation with a finite-width Rankine profile.

The physical vortex core radii captured in instantaneous frames and ensemble-averaged phase-
locked SPIV data sets were estimated in a two-step process. First, the circulation about concentric
circles of growing radii centered on the vortex axis was obtained by integration. The integration
circuits were automatically deformed where necessary to prevent encircling the adjacent counterro-
tating vortex. Next the radial circulation distribution was fit with a Lamb-Oseen vortex profile. That
fitting process yielded the vortex core radius of an equivalent axisymmetric Lamb-Oseen vortex.
As an example, at a height of x/hr ≈ 1 in the ARo = 6 jet, the calculated vortex core radius was
between Rc/hr = 0.40 and 0.51. Note that the vortex core is distorted into a noncircular shape in
the minor axis plane due to the proximity of its counterrotating partner in the dipole. Therefore,
the average vortex core radius can exceed Rc/hr = 0.5 without the physical vortices overlapping,
as is implied by Rc/hr > 0.5. Modeling the vortex ring core geometry estimated from the SPIV
data was not possible because IBiSS simulations became numerically unstable at core radii of
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Rc/hr � 0.25–0.35, depending on the ARr . Instead, a reliably stable value of Rc/hr = 0.2 was
simulated in IBiSS to investigate the effect of employing a finite-width core. The results are plotted
with blue closed symbols in Fig. 12(a). As expected, the solver with the more realistic vortex core
model predicts that the vortex rings will complete an axis switch farther downstream than the solver
with the irrotational vortex model does.

The effect of vortex core radius on the vortex ring deformations is explored in more detail in
Fig. 12(b). IBiSS was run with the Rankine vortex model for core radii between Rc/hr = 0 and 0.35.
The number of line segments in the vortex ring was also varied between densities of N/hr = 15 and
30 with these cases differentiated in Fig. 12(b) by different symbol types. In this study, only a single
AR was tested, ARr = 4.2, which corresponds to the ARo = 6 case. As expected, increasing the
core radius also increased the axis-switch height due to the reduction in local self-induction. This
effect became stronger with increasing Rc. At small core sizes the axis-switch height also depended
on the number of line segments used to model the ring. As the line segment density was increased
the axis-switch height dropped because a more finely resolved curve has higher local curvature
and therefore higher self-induction. As the core radius was increased, however, the predicted axis-
switch height became less sensitive to N/hr , presumably because a larger core radius diminishes the
significance of the closest line segments.

The particular vortex profile and number of line segments used in the model are not the only
factors influencing the axis-switch height. Extracting an axis-switch height from IBiSS also assumes
that the vortex ring forms immediately at the orifice, i.e., at x/hr = 0, which obviously does not
occur in the physical synthetic jet. Furthermore, IBiSS does not account for the momentum of the
fluid slug ejected by the actuator which likely contributed to the initial downstream translation of
the vortex ring. Therefore, IBiSS is not a tool for quantitative predictions but instead a means to
gain insight into the qualitative behavior and inviscid dynamics of vortex rings.

D. Effect of vortex dynamics on jet centerline velocity

The time-averaged centerline velocity of the jet for all five AR orifices is presented in Fig. 13. The
centerline velocity is plotted on the vertical axis normalized by the maximum centerline velocity of
that jet. The axial distance from the orifice along the centerline is plotted on the horizontal axis and
is normalized by xas,1 so that, at a given horizontal position, the vortex rings are at a similar point
in their axis-switching cycle for all of the cases. The ARo = 2 results are presented at the bottom
of the plot and each subsequent case is offset upward 0.5 vertical units. The centerline velocity
corresponding to the ARo label on the right is plotted as a black solid line, while the ARo = 6
results are plotted in the background for all cases as a gray dashed line for comparison. In all cases,
the centerline velocity near the orifice dips down to zero at x/xas,1 = 0, as is expected for a zero-net-
mass-flux jet. Moving up from the orifice, the effect of the suction cycle dissipates and the vortex
ring circulation strength grows, which causes the centerline velocity to rise. Further downstream, the
centerline velocity profile develops two peaks: The first sits within 0 < x/xas,1 < 1 and the second
is found within 1 < x/xas,1 < 2. These local peaks in the centerline velocity are subtle at the lower
AR but become more pronounced as AR increases. The attenuated first velocity peak in the ARo = 2
case may relate to a more axisymmetric behavior in this jet as compared with the higher AR cases.

Similar double-peak centerline velocity distributions have been measured in other rectangular
orifice synthetic jet experiments and were attributed to secondary structures within the jet [2,28].
IBiSS was used to explore the dynamics involved with these peaks. Instead of using constant
circulation strength for the vortex ring, the profile of circulation growth and decay with time, which
was extracted from the time-averaged SPIV data, was used. Simulations were run for the various
AR cases. Interestingly, IBiSS was able to predict the presence of these centerline velocity peaks
despite being an inviscid solver which does not model the secondary structures.

An example circulation profile extracted from the SPIV data in the major axis plane of the
ARo = 13 jet is shown in Fig. 14(a). Circulation was computed by integrating the velocity field
around polygons, which were manually drawn to encompass the full vortex while excluding adjacent
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FIG. 13. Axial variation in mean jet centerline axial velocity with each ARo case offset up 0.5 vertical units
(black solid line) and overlaid on the ARo = 6 case (gray dashed line) for comparison.

vortices and secondary structures. The circulation values computed from the phase-locked data are
plotted with gray diamonds, while the spline fit to these data, which was used to set the dynamic
circulation strength in IBiSS, is represented by a black solid line. The circulation profile of the
ARo = 13 vortex ring has four distinct regions starting with an initial rapid strengthening of the ring

FIG. 14. The ARo = 13 axial variation in (a) vortex ring circulation from phase-locked SPIV data (dia-
monds) with a spline fit (solid line) and (b) mean jet centerline axial velocity from SPIV data (solid line) and
IBiSS simulation (dashed line).
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as the vortex forms. After achieving a maximum circulation around xvc/xas,1 = 0.6 the circulation
then declines gradually during the short pseudoinviscid advection phase. However, once the vortex
ring reaches an average height of xvc/xas,1 ≈ 1.5 the leading ends of the ring in the major axis plane
collide with each other and circulation drops rapidly due to vorticity annihilation and reconnection.
In the final region of the profile above xvc/xas,1 ≈ 2.7 the decline in circulation drops in rate again
as the colliding vortices diverge and vorticity reconnection slows or ceases. These regions of the
circulation profile along with the associated dynamics are discussed in more detail in Ref. [29].

Figure 14(b) compares the centerline velocity profile from the IBiSS results (dashed line) to the
SPIV data (solid line) for the ARo = 13 case. IBiSS was run with an ARr of 6.1 until the point
where the vortex ring achieved an average height of 2.1xas,1. The measured vortex ring AR, i.e.,
ARr = 7.9, was not used because the simulation had to be stopped too early to prevent solution
divergence when the ring approached a collision in the major axis plane. Both the measured and
simulated profiles exhibit two peaks in centerline velocity. Some of the differences between the
IBiSS and the SPIV results can be related to aspects of the synthetic jet not modeled by the solver.
For example, the centerline velocity at the orifice (x/xas,1 = 0) does not trend to zero in the IBiSS
simulation because the suction phase of the actuator is not modeled. Also, the first peak in both
velocity profiles occurs at a similar height; however, without the effect of the suction cycle, the
IBiSS peak is shifted slightly closer to the orifice.

The first peak appears in the time-averaged centerline velocity profile for a couple of reasons.
One is that the effect of suction dissipates with distance from the orifice. The other relates to the
formation of the vortex. By the Biot-Savart law, induced velocity decreases with the square of
distance from the vortex. Therefore, everything else being equal, the induced centerline velocity
is highest when the vortex ring is narrowest in either the major or minor axis plane. Although the
minor axis of the vortex ring is narrowest in the incipient ring, before axis-switching deformations
begin, the circulation strength is low at that time. Therefore, the peak centerline velocity occurs at a
height which is an optimal balance between rising circulation strength, increasing vortex separation
distance, and changing duration of the vortex proximity to a particular point.

As the vortex ring deforms, the vortices in the minor axis plane spread apart from each other,
which tends to reduce the velocity induced on the jet centerline by the minor axis portion of the
vortex ring. Concurrently, in the major axis plane the vortex ring converges towards centerline, but
from much farther away. Due to the dependence of induced velocity on the square of distance, the
net effect is a reduction in centerline velocity. Note that the trough in centerline velocity occurs
in both profiles at the height of the first axis switch (x/xas,1 = 1), which is by definition the point
where the vortices in the major and minor axis planes are an equal distance from the centerline
[Fig. 14(b)].

Downstream of xas,1 the vortices in the major axis plane continue to converge, causing centerline
velocity induction to rise. In IBiSS, the second peak in the centerline velocity coincides with the
height where the vortices in the major axis plane achieve minimum separation from the jet centerline
which is x�z,min/xas,1 = 1.90 [Fig. 14(b)]. Although the height of minimum vortex separation is
essentially the same in the SPIV measurement (i.e., x�z,min/xas,1 = 1.96), the velocity peak in the
experimental data occurs well upstream of this point and has a lower prominence than in IBiSS.
The shift and attenuation of the centerline velocity peak are due to the bifurcation of the vortex
ring. Before the vortex ring completes its first axis switch, the outer regions of the vortices in
the major axis plane collide and vorticity reconnection starts. As the circulation strength of that
portion of the ring declines so does the magnitude of induced velocity. Furthermore, the reconnected
vorticity accumulates in bridge vortices whose rotational directions induce a downward velocity on
the centerline, opposite the direction of induction from the rest of the vortex ring [29,46]. Together
these changes in the distribution of circulation explain both the rapid drop in centerline velocity in
the SPIV data and the fact that the second peak is attenuated and occurs closer to the orifice than in
the IBiSS results. The influence of the bridge vortices is not captured by IBiSS because the solver
does not model viscous processes like vorticity reconnection. In fact, the vortex dynamics predicted
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by IBiSS when the vortex ring reaches x � xT/2 is inaccurate; therefore, the solver was not run past
this point.

The effect of vortex ring bifurcation on the jet persists for a long distance downstream. In the
ARo = 2, 4, and 6 jets the centerline velocity remains relatively high out to x/xas,1 = 5, after which
all three decline at a similar rate (Fig. 13). In contrast, the centerline velocity of the ARo = 13 and
19 jets declines rapidly around x/xas,1 ≈ 1.6 due to the vortex ring bifurcation and remains low up
to the edge of the measurement domain. Although not apparent from Fig. 13, the reduction in the jet
momentum along the centerline is accompanied by an increase in momentum off centerline along
paths aligned with the two smaller vortex rings produced by the bifurcation [29].

The prominence of the centerline velocity peaks and the depth of the troughs in the SPIV data
increases with the orifice AR [Fig. 14(b)]. A similar trend was observed in IBiSS simulations. The
change in the peak prominence relates to the magnitude of the variation in �yvc and �zvc with axial
vortex position. In low AR vortex rings axis-switching deformations only produce small changes in
�yvc and �zvc; therefore, the distance from the vortex to the centerline varies little with time. As
AR is increased the deformations become more extreme, and the distance between the vortex and
the jet centerline ranges from very close at the height of the axis-switch completion to distant at
the jet width crossover heights. Therefore, the prominence of the centerline velocity peaks is also
strongly correlated with the inviscid dynamics of the vortex ring.

V. CONCLUSION

The behavior and performance of synthetic jets are closely tied to the dynamics of vortex
rings, which are a dominant feature of the early jet. When a synthetic jet actuator employs a
nonaxisymmetric orifice or nozzle the self-induced deformations of the vortex rings are responsible
for changes in the shape of the jet as well as the distribution of momentum in the jet and the
entrainment rate.

In this study, rectangular orifice synthetic jets issuing into quiescent fluid were investigated
experimentally using SPIV and modeling via an inviscid Biot-Savart solver. To explore the effect
of orifice shape on the vortex dynamics in the jet, orifice AR values of 2, 4, 6, 13, and 19 were
tested. The self-induced deformations of the vortex rings in the synthetic jet gave rise to periodic
axis switching of the ring in a manner similar to what has been reported in isolated noncircular
vortex rings. The axis-switch height of the jet based on the crossover point where the jet width
in one symmetry plane exceeded the width in the other was calculated using two methods. In the
first method the width of the jet was determined from the half-velocity points in the cross-stream
velocity profiles, while the second method defined the width using the vortex trajectories. These
two methods yielded similar results for the first few axis switches of the jet, which indicates that the
vortex ring oscillations were the primary driver of the jet shape and momentum distribution in the
near field. Above the second axis-switch point, however, the velocity width of the jet changed more
slowly than the width of the vortex rings. This suggests that this is the start of the transition zone
from the vortex dominated near field to the far field, where diffusion of momentum is the dominant
factor influencing the jet’s shape. The height at which the jet switched axes increased linearly with
the orifice AR, and the jets with the lowest orifice AR values tested axis switched two or three
times before the vortices lost coherence. However, the jets with an orifice AR greater than 6 only
axis switched once and the analysis of the vortex rings revealed that they never fully completed the
axis-switching cycle to return to a roughly planar configuration. The PIV results from prior studies
of moderate to high AR synthetic jets have also indicated that only a single axis switch occurred;
however, the reason axis switching ceased was not explored. The present study revealed that the
cessation of axis switching was due to bifurcation of the vortex rings when their AR were sufficiently
high. Furthermore, based on the estimated AR of the vortex rings produced by the different synthetic
jet actuator orifices, the critical threshold for vortex ring bifurcation in synthetic jets appears to be
consistent with the limit established in isolated vortex rings, i.e., ARr = 4–5. A comparison of the
axial variation in the mean jet centerline velocity for the different jets revealed a double peak in
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the profile which became more pronounced with increasing orifice AR. Similar double peaks in
the centerline velocity of synthetic jets have been observed in other studies, although a detailed
explanation for their origin was not offered by those authors. By analyzing the complementary
experimental data and simulation results, the present study revealed that these peaks are most
likely due to the inviscid dynamics of the deforming vortex rings and not secondary structures
as previously hypothesized. In general, the shape and momentum of the synthetic jets was strongly
influenced by the dynamics of the primary vortex rings and those dynamics changed appreciably
with the aspect ratio of the actuator orifice.
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