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We present a model appropriate to the initial motion of a flat-plate airfoil accelerating in
an inviscid fluid. The model is based on the one presented in Pullin and Wang [J. Fluid
Mech. 509, 1 (2004)] and is intended to extend the range of validity to lower angles
of attack and longer distances traveled. The separated flow structures are represented as
vortex sheets in the conventional manner and similarity expansions locally applicable to
the leading and trailing edges of the plate are developed. In our approach, an expansion is
applied to the attached outer flow rather than the vortex sheet circulations and positions.
This allows the asymmetric effect of the sweeping component of the free-stream flow
parallel to the plate to be built in to the same governing equation as the singular-order
flow. Additionally, we develop a time-dependent self-similarity procedure that allows the
modeling of more complex evolution of the flow structures. This is accomplished through
an implicit time variation of the similarity variables. As a collective result, the predicted
vortex dynamics and forces on the plate compare favorably to Navier-Stokes simulations.
The model is split into high and low angles of attack regimes. The former assumes that the
leading-edge and trailing-edge flows evolve independently, while the latter makes a further
simplification to couple the two flows.

DOI: 10.1103/PhysRevFluids.6.054701

I. INTRODUCTION

The two-dimensional flow around a flat-plate airfoil is a canonical problem of classical aerody-
namics and has been extensively studied by theorists, experimentalists, and computationalists alike.
Accordingly, it continues to serve as a benchmark for developing new, low-order inviscid modeling
techniques that tackle physical problems with increasing complexity. In particular, a myriad of
methods have been proposed for the vortex shedding from both the leading and trailing edges
and the corresponding unsteady forces exerted on the plate, for example Refs. [1–12]. Many of
these studies have been motivated by biological flows, such as flapping and hovering bird flight
and fish locomotion, in which the propulsive appendage and/or the animal itself usually performs
an oscillatory motion characterized by large incidences. Despite the rather disparate Reynolds
number regimes of the physical and modeled problems, e.g., Re ∼ O(10) − O(103) vs Re → ∞,
the force predictions from the inviscid flow have achieved impressive accuracy. The implication is
that pressure forces due to normal stress dominate in the massively separated flows.

Pullin and Wang [1] approached the problem of separated flow from the edges of a flat-plate
airfoil using perturbation expansions of the singular-order similarity solutions for the separated
flow around a semi-infinite flat plate (i.e., with no intrinsic length scale) as computed by Pullin
[13]. Expansions of both the vortex sheet positions and circulations were carried out in the small
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parameter ε(t ) = √
Rv (t )/c, where Rv (t ) is the time-dependent length scale appropriate to the size

of the growing vortex spiral and c is the chord length of the plate. Recently, Sohn [12] used the same
approach to include rotation of the plate. Interestingly, rotation does not change the fundamental
form of the asymptotic equation as the effect can be embedded within Rv (t ), which is known a
priori to the solution.

The objective of Pullin and Wang [1] was to capture the effect of asymmetry due to the
sweeping component of the free-stream flow parallel to the plate. Again, this was implemented
through higher-order corrections to the sheet positions and circulations, with the expectation that
subsequent corrections to the forces on the plate would be obtained. This led to a series of
ordered integrodifferential equations to be solved in succession, the first being the singular-order
equation of Pullin [13]. The approach was successful for the former quantities. However, due to the
construction of the expansions, the higher-order corrections to the vortex force vanished through
cancellations. Nevertheless, at high angles of attack their force prediction performed fairly well
since the wake structure approaches symmetry as the plate becomes normal to the free-stream
flow. As the incidence was decreased, the prediction worsened. Similarly, for increasing time the
predicted forces began to deviate from computational results after about 0.5–1 chords of travel for
incidences below 60◦.

Chen, Colonius, and Taira [14], inspired by the work of Pullin and Wang, conducted a compu-
tation study to more thoroughly investigate the effect of airfoil acceleration on the formation of the
leading-edge vortex (LEV). Additionally, their low Reynolds number Navier-Stokes simulations,
Re ∼ O(102), were carried out to large times, beyond the applicability of Pullin and Wang’s model,
in order to characterize the full range of transient features of the vortex shedding. In particular, they
found that the early-time lift peak due to the LEV only became prominent for angles of attack above
about 30◦ and the lift augmentation lasted for about 4.5 chords of travel. However, it was noted
that if the Reynolds number was to be increased, then these lower angles of attack would likely
display similar lift histories. This highlights the Reynolds-number-dependent gray area of when
leading-edge separation occurs and forms an organized LEV.

In lieu of continuous vortex sheets, it is common to use point vortices to represent the shed
vorticity. However, the flow separation at the leading edge (LE) has presented difficulties to such
models at moderate angles of attack. This has called into question the efficacy of the leading-edge
Kutta condition as an appropriate criterion to produce reliable flow simulations. To address these
issues, point vortex models often employ some in situ criteria to control the position, velocity,
and/or strength of newly shed vortices [2,6,7,11,15,16]. The most promising of these remedies is the
leading-edge suction parameter (LESP) criterion developed by Ramesh et al. [16], which suppresses
vortex shedding at the LE until a critical LESP value is exceeded. The physical reasoning behind
the LESP is that a finite-thickness airfoil can support some amount of suction as the flow navigates
around the (rounded) leading edge without separating. Then, above the critical LESP, the rollup
of the separated flow is reasonably well captured by the release of discrete point vortices that are
now “shielded” from a destructive interaction with the free-stream flow. Of particular note, Ramesh
et al. [16] showed that, in absence of reversed flow, the critical LESP is insensitive to the motion
kinematics and is only a function of the airfoil shape and operating Reynolds number. As such,
the critical LESP can be calibrated from a single simulation or experiment and used generally for
arbitrary kinematics. Recently, Hirato et al. [17] demonstrated the successful extension of the LESP
concept to finite wings.

For a more thorough summary of the current understanding and future prospect of research on
LEVs, the reader is referred to the recent review by Jones and Eldredge [18]. This collective work
presents experimental, computational, and low-order modeling results for two-dimensional airfoils
in translation and pitching, as well as for finite-aspect-ratio wings with translating and rotating and
revolving kinematics.

The a priori knowledge of the critical LESP value is required to close the problem, as it replaces
the LE Kutta condition in determining the amount of vorticity released from that edge. As such,
the ensuing flow evolution and dynamics predicted by an inviscid model implicitly depend on the
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critical LESP. As an alternative, Darakananda et al. [10] have taken to estimating this value using a
data assimilation approach. In this method, the critical LESP is taken as an unknown in the system of
equations, which are augmented by real-time measurements of the airfoil surface pressure obtained
from a “truth” simulation. The pressure data are used to inform a dynamic value of the critical
LESP, which can be a function of time and is more adept to handle disturbances such as gusts or
wing maneuvers.

In this paper, we aim to extend the high angle of attack vortex sheet model of Pullin and Wang [1]
to lower incidences and longer chord lengths traveled. Our approach is similar, but does not employ
an infinite-term perturbation series for the sheet positions and circulations. Instead, under certain
conditions to be identified in this paper, the asymmetric sweeping effect can be brought into the
same order as the singular attached flow around the edges. The result corresponds to the expansion
of the attached outer flow to higher order. In essence, a new singular-order governing equation is
obtained that includes the asymmetry, but which is only trivially altered from the integrodifferential
equation that governs the singular-order flow alone.

The extended model consists of two tiers or angle of attack regimes. In the moderate-to-high
incidence range, a well-formed separated LEV structure is present. More specifically, in this range
the initial developments of the LEV and trailing-edge vortex (TEV) are assumed to be independent
of each other. However, in the low-to-moderate incidence range the sweeping component of the free
stream is too strong to consider the TEV development as independent of the flow near the leading
edge. Instead of a separated LEV, the leading-edge flow is returned to the singular attached flow,
which is then coupled to the TEV evolution through the governing equation.

The remainder of the paper is organized as follows. In Sec. II we discuss the expansion of the
outer attached flow around a sharp wedge that will eventually be applied near the leading and trailing
edges of the flat plate. The full problem statement of the flow around the plate is given in Sec. III.
This is followed by the derivation of the self-similar approximation and solution for the higher
angle of attack regime in Sec. IV, which is then adapted to the lower angle of attack regime in
Sec. V. Section VI presents applied results of our model as well as comparisons to Navier-Stokes
simulations.

II. OUTER FLOW EXPANSION

In this section we briefly introduce the concept that will ultimately serve as the basis for our
model of the flow around the flat plate. Any analytic function, such as the complex potential,
can be expanded in a convergent Laurent series about a point zo that consists of positive and
negative powers of (z − zo), which correspond to outer and inner expansions, respectively [19].
If the function is also analytic at the point zo itself, then the series becomes the more familiar Taylor
series. The outer expansion represents the effect of distant agencies; “Moffatt eddies” [20] are a
well-known flow induced by such phenomena. Conversely, the inner expansion corresponds to local
(i.e., singular) agencies; for example, the vorticity field associated with a moving contact line has a
dipole distribution [21].

In the particular case of flow around a sharp wedge of interior angle βπ (0 � β < 1) with apex
located at z = 0 (see Fig. 1 for geometry), the complex potential of the attached flow can be written
as [22]

Wa(z, t ) = A0(t ) + A1(t )zn + A2(t )z2n + · · · + Ak (t )zkn + . . . , (1)

where n = 1/(2 − β ) and while Wa is finite at z = 0, it is not analytic since its complex derivative
does not exist there. Also note that (1) has set to zero the higher-order singularities of the inner
expansion corresponding to k < 0 terms. This expansion is assumed to be valid near the apex at
small times after the onset of motion. As such, the series is usually truncated after k = 1 since this
yields the dominating, singular term in the velocity expression dWa/dz of this attached flow. Hence,
the physical geometry reintroduces an inner expansion term of fractional power −(1 − n) into the
velocity. Pullin [13] regularized this flow by allowing separation at the apex to shed a self-similar
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(a) (b) (c)

FIG. 1. Example streamlines of attached flows around a wedge of angle βπ : (a) singular flow from bottom
to top, (b) higher-order regular flow from left to right, and (c) the composite flow of Eq. (2). In (c) the black
dot marks the stagnation point zs on the wedge surface.

conventional vortex sheet. Those solutions are sometimes used as an initial condition to begin
inviscid simulations with arbitrary unsteadiness (e.g., Refs. [4,12]). In DeVoria and Mohseni [22]
we significantly augmented the solution space by considering an entrainment boundary condition
(in place of no throughflow) that allows a complex coefficient A1 ∈ C and the shedding of a
vortex-entrainment sheet [23].

In this paper, we adopt the standard zero-entrainment boundary condition of no throughflow.
However, we consider the higher-order terms in the expansion (1). Since 1

2 � n < 1, the k � 2
terms are regular at the apex, each having a defined derivative there, and again represent the outer
expansion due to distant agencies. For simplicity, we truncate the series after k = 2 and to satisfy
zero entrainment on the wedge faces, where arg{zn} = nθ = ±π/2, we write A1 = −ia and A2 =
b ∈ R. Also, A0 can be set to zero without affecting the attached flow velocity field, which becomes

dWa

dz
= nzn−1{−ia + 2bzn}. (2)

As mentioned in Ref. [22], the higher-order terms in (1) introduce additional topological features.
In the case of (2), the regular flow opposes the singular flow on one wedge face and contributes to it
on the other face, and so a hyperbolic stagnation point zs appears on the surface of opposing flows
at a radial distance from the apex of

rs =
∣∣∣ a

2b

∣∣∣1/n
, (3)

where zs is on the upper surface if a/(2b) > 0 and on the lower surface if a/(2b) < 0. Figures 1(a)–
1(c) show examples of the attached flow streamlines for the singular, regular, and composite flows.
The radius rs is a length scale intrinsic to the composite flow and evidently indicates the “proximity”
of the distant agency of strength b to the apex where the potential of strength a dominates. In Sec. IV
we will show that Eq. (2) yields the asymptotic outer flow near the leading and trailing edges of a flat
plate (n = 1

2 ) of chord length c that is translating with velocity U (t ) at an angle of attack α. More
specifically, we will find that a = c1/2U sin α and b = U cos α, and that rs indicates the interaction
of the leading-edge and trailing-edge flows with the sweeping component of the free stream, namely,
b = U cos α.
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FIG. 2. Definition of the x-y coordinate system instantaneously coinciding with the mid-chord of the flat
plate that translates with speed U (t ) and angle of attack α. The trailing edge is at x = c/2, while the leading
edge is at x = −c/2. The complex positions of the corresponding shed vortex sheets are Z+ and Z−.

III. FLAT-PLATE AIRFOIL

Here, we give the problem formulation for the general flow around a plate that translates with
speed U (t ) at constant angle of attack α. In the inertial frame with the fluid at rest at infinity, the
plate motion is to the left and downward with velocity Ub + iVb = −U (t )eiα as shown in Fig. 2.
As usual, the flat-plate geometry with chord length c in the physical plane, where z = x + iy is the
complex coordinate, is obtained from the mapping of a circular boundary with radius c/4 in a virtual
ζ plane via the Joukowski transformation:

ζ (z) = 1
2 (z +

√
z2 − c2/4). (4)

The origin of the coordinate system instantaneously coincides with the mid-chord of the plate so
that its trailing and leading edges are located at z = +c/2 and −c/2, respectively. The vortex sheets
shed from each edge have corresponding positions Z± in the physical plane and ζ± = ζ (Z±) in the
virtual plane.

Next, we give the expression for the total complex potential Wo that describes the flow. The scalar
potential is φ and the stream function is ψ , both of which satisfy the Laplace equation in the fluid
domain 
 f with appropriate boundary conditions.

A. Complex potential

The total complex potential Wo only exists in the analytic region 
 f , i.e., the fluid domain, that
is outside the plate and any sheets of discontinuity shed from the plate. Let the contour immediately
surrounding these inner boundaries be Ci ∈ 
 f . Since the spatial domain is two dimensional, then
a discontinuity in Wo may also exist due to a logarithmic constituent and requires a branch cut Ccut

to be specified so that the logarithm is uniquely defined. The cut intersects the plate at a point
zc(t ) and must extend to infinity where it connects to an all-enclosing contour C∞. Each side of
Ccut is a distinct portion of the fluid boundary. This ensures that Wo is single valued in the simply
connected region defined by the complete fluid boundary ∂
 f = Ci + Ccut + C∞. Therefore, all the
usual statements regarding the properties of analytic functions apply in the region 
 f (e.g., see
Refs. [19,24,25]).

The real and imaginary parts of the jump in Wo (due to the logarithm) across the cut respectively
correspond to the net circulation �o(t ) around and the net flux Qo(t ) across a contour Co that
encloses the plate and any shed sheets [23]. As a consequence of the Cauchy-Goursat theorem,
we must have �o = �i = �∞, where �i and �∞ are the circulations around the (closed) contours
Ci and C∞, respectively. In other words, the arbitrary closed contour Co is reconcilable within the
(topologically) annular region between Ci and C∞, and thus the circulation around any such contour
is �o. Analogous statements can be made about the flux Qo.
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The quantities �o and Qo must be specified as input, or otherwise determined, to have a unique
solution for the complex potential. Since we have imposed the normal boundary condition of zero
entrainment everywhere on the inner boundary Ci, then Qo ≡ 0 necessarily. In the case of a flow
started from rest (when the fluid is free of discontinuities), Kelvin’s circulation theorem is usually
invoked to arrive at the result that �o(t ) ≡ 0. It is often taken for granted that this result requires the
assumptions that Co does not, at any time, intersect a discontinuity in velocity nor pressure, and that
no nonconservative forces f (with ∇ × f 	= 0) act tangentially anywhere along the contour. Such
nonconservative forces acting on the portion of Ci that coincides with the plate surface could be
used to model vorticity generation. While we will not explore the physical details of any of these
circulation-generating mechanisms in this study, we will carry through the analysis with �o(t ) 	= 0
for general posterity.

The total circulations in the shed sheets Z+ and Z− are �+ and �−, respectively, while the
“bound” circulation around the plate is �b. Accordingly, the circulation around the arbitrary contour
Co enclosing the entire plate and sheet system is �o = �b + �+ + �−. In general, so long as the
boundary ∂
 f is known along with the value of Wo on ∂
 f , then a unique solution exists for Wo

with a given value of �o and without requiring any further information about the bound or vortex
sheet circulations. However, we assume that the vortex sheets emanate from the edges of the plate
on the physical basis that the velocity remains finite there. Hence, two more relations are required to
ensure that this is indeed satisfied. These supplemental constraints are the Kutta conditions and
are sufficient to determine the individual circulations �+ and �−, and since �o will be known
from the dynamics (via Kelvin’s theorem), then �b is obtained as well. This completes the unique
determination of the complex potential and we may now state its analytic expression.

The total complex potential can be written as Wo = Wb + W+ + W−, where Wb and W± are the
contributions from the plate and the shed vortex sheets. Let W∞ = −zUe−iα be the potential of a
moving reference frame translating with the plate. By the circle theorem [26], the plate potential Wb

can be represented in closed form in this noninertial frame by the image systems of W± and W∞.
The resulting expression for this relative complex potential defined as W ≡ Wo − W∞ is

W = Wa + Wv + �o

2π i
log ζ , (5a)

Wa = zU cos α − iU sin α
√

z2 − c2/4, (5b)

Wv = 1

2π i

∑
±

∫ �±

0
[log(ζ − ζ±) − log(ζ − ζ i

±)]d�, (5c)

where Wa is the potential of the attached flow, Wv is the potential due to the vortex system and
includes the contributions from the sheets in the fluid as well as their corresponding images located
at ζ i

± = (c/4)2/ζ±; an overbar denotes the complex conjugate. Here and elsewhere, the sum is
shorthand for the addition of the integrals with terms respectively having (+) and (−) subscripts.
The logarithmic constituent is the image of the net circulation �o at infinity, which here can be
written explicitly as the uniformly valid term log ζ via the circle theorem. This circulation does
not affect the kinematics represented by the normal boundary condition on the plate (Neumann
problem). In fact, it is the single remaining degree of freedom in the tangential boundary condition
(Dirichlet problem), which represents the dynamics. As mentioned above, the physical principle
used to fix the value of �o is Kelvin’s theorem. Having specified the flow solution, next we discuss
the expression for the force exerted on the plate.

B. Force on the plate

The force on the plate is computed as the integral of pressure around its surface. Since the vortex
sheets are assumed to have a zero pressure jump, then the integral can be augmented to include those
sheets and thus the contour replaced by that of the inner boundary Ci. Following Newman [27] and
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temporarily using vector notation, this pressure integral can be rewritten to give the force as

F = ρ
d

dt

∮
Ci

φn̂ dl + ρ

∮
C∞

[
1

2
|u|2n̂ − u(u · n̂)

]
dl. (6)

From here, there are two different ways to proceed, the details of which depend on the reference
frame; the end result is the same, of course. In the moving frame, the C∞ integral yields the
familiar Joukowski force associated with �o (see Batchelor [28]). In the stationary frame the integral
vanishes, but the Joukowski force reappears from the time derivative of the logarithmic constituent
of φ in the Ci integral, which we discuss next.

In either frame, due to the zero-entrainment boundary condition, the scalar potential in (6)
can be replaced by the complex potential. Generally, an integral of the stream function ψ is also
present, but which is proportional to the fluid mass displaced by the body [29], and so is zero for
the flat plate. Opting for the moving frame, the residue theorem can be used to replace Ci with
C∞ for Wa and Wv in Eq. (5a). For the log term of W , however, we must use the more general
Cauchy-Goursat theorem (from which the residue theorem derives) that involves the complete fluid
boundary. Thus, the replacement contour includes the cut C∞ + Ccut, and it is easy to show that
the integral of (�o/2π i) log ζ over this contour evaluates to �ozc, where again zc is the position
where the cut intersects the plate. In the stationary frame, with coordinates z̃ and ζ̃ say, the same
result is obtained since the logarithm becomes log(ζ̃ − ζ̃o), where ζ̃o(t ) is the position of the plate
mid-chord. However, the time derivative of zc in this frame is dzc/dt + (−Ueiα ) and the Joukowski
force is recovered from the latter term. The first term is the velocity of zc(t ) on the plate surface in
the moving frame.

Returning to complex variables, we then decompose the total force as

Ft + iFn = F (v)
t + iF (v)

n︸ ︷︷ ︸
vortex force

+ F (b)
t + iF (b)

n︸ ︷︷ ︸
body force

, (7a)

where for each force constituent F (·)
t , F (·)

n are the components tangential and normal to the plate,
respectively. The “vortex force” is due to Wv and the “body force” combines the contributions from
Wa and �o, and these are expressed by the following:

F (v)
t + iF (v)

n = iρ
d

dt

{∑
±

∫ �±

0
(ζ± − ζ i

±) d�

}
, (7b)

F (b)
t + iF (b)

n = iρc2 π

4

dU

dt
sin α + iρ

d

dt
(zc�o) + iρ�o(−Ueiα ). (7c)

The conventional definitions of the lift and drag forces are D + iL = (Ft + iFn)e−iα . Next, we
briefly examine a revealing connection between the plate force and the dynamics of the shed vortex
system.

C. Inviscid vortex dynamics and impulse invariant

For an inviscid fluid of infinite extent there are flow invariants associated with integrals of the
vorticity field [28,30] that represent the net amounts of vorticity [or circulation in two dimensions
(2D)], impulse, and kinetic energy. Here, we are interested in the delivery of impulse to the fluid. For
our problem the fluid remains irrotational and the effect of vorticity is represented by vortex sheets,
which are boundaries to the fluid domain. As such, the impulse delivered to the fluid is equal to that
of the freely shed vortex sheets. Moreover, since these sheets do not support a pressure jump, then
the net fluid impulse can only be increased (or decreased) by an increment (or decrement) delivered
by the plate, i.e., only if it accelerates.

In the case that �o ≡ 0, then from (7c) we see that the plate can only deliver a net impulse in the
direction normal to itself and therefore the vortex force in (7b) (due to the impulse of the shed vortex
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system) will only generate a nonzero plate-normal component. This means that the plate-tangential
forces of the leading- and trailing-edge vortex systems must mutually cancel by the movement and
circulation dynamics of each sheet. This is despite any visual asymmetry of the total vortex system.
These claims will be validated in Sec. VI with numerically computed solutions.

IV. HIGH ANGLE OF ATTACK MODEL

We are now in the position to derive approximate governing equations for solutions that are valid
near the edges of the plate. Here, we discuss the moderate-to-high angle attack range, for which a
well-formed LEV and TEV are both present. The main assumption is that the initial developments
of the LEV and TEV are independent of each other.

First, we write the vortex sheet locations Z± and the total circulations �± as

Z+ = c

2
(1 + 2ε2ω+), �+ = J+G, (8a)

Z− = − c

2
(1 + 2ε2ω−), �− = −J−G, (8b)

where ω± are the corresponding nondimensional self-similar shape functions, and again ε2 = Rv/c.
Note the complex conjugate of ω− defining Z− in (8b). Also, J± are the nondimensional circulation
magnitudes with G(t ) as the temporal growth of the circulation scaling. Further requirements of
similarity restrict the plate velocity to be of the form

U (t ) = Btm, (9)

where m is given; we shall call this quantity the acceleration exponent. We refer the reader to
Refs. [13,22] for more details on the self-similar problem setup. It can be shown that the velocity
induced by one vortex sheet on the other at the opposing edge is of the same order as terms that we
eventually will ignore and is therefore neglected now. Next, we give some detail on the case of the
trailing-edge sheet Z+, for the results applicable to the leading-edge sheet Z− follow immediately
with minor changes.

The velocity field is obtained by differentiating (5a) with respect to z and using dW/dz =
(dζ/dz)dW/dζ where appropriate. When z → Z+ and ζ → ζ+ the result becomes the Birkhoff-
Rott equation ∂Z+/∂t = dW/dz, which is the (kinematic) governing equation for the sheet. A
careful expansion in ε of the right-hand side yields

dW

dz
= Ṙv

Co

[
1

2
√

ω+

{
−i

[
1 + �o

πcU sin α

]
+ (2ε cot α)

√
ω+ + J+

2π i
I0(ω+)

}

+ ε
J+
2π i

{I0(ω+) − I1(ω+)}
]
, (10a)

where Co = εṘv/(U sin α) and

I0(ω) =
∫ 1

0

[
1√

ω − √
ω′ − 1√

ω +
√

ω′

]
dλ′, (10b)

I1(ω) =
∫ 1

0

1

2
√

ω

[
ω − ω′

(
√

ω − √
ω′)2

− ω − ω′

(
√

ω+ +
√

ω′
+ )2

]
dλ′, (10c)

where λ = 1 − �/(JG) is the dimensionless circulation similarity variable along the sheet and
G(t ) = εcU sin α; a prime indicates a dummy variable for integration. Next, substitution of (8a)
into the left-hand side of the governing equation gives

∂Z+
∂t

= Ṙv

[
ω+ + Q(1 − λ)

dω+
dλ

]
, (11)
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with Q = (4m + 1)/(2m + 2). This equation has no explicit O(ε) term since we did not consider a
series expansion of Z+. At first glance, it seems we must then neglect all of the O(ε) terms in (10a).
However, we note that the angle of attack, which is an independently specified parameter, appears
in combination with ε in the 2 cot α term. Therefore, we impose the constraints

ε � 1, 2ε cot α ≡ ηα ∼ O(1), (12)

and drop the terms in the second set of curly brackets in (10a). The physical limitations implied by
the constraints in (12) require more comment, which will be taken up shortly in Sec. IV A where
the range of validity is discussed. The 2 cot α term represents the asymmetric sweeping effect and
can be found in the O(ε) equation of Pullin and Wang [1]. From (10a) and (2) we readily see that
the attached flow terms (with �o = 0) yield a = c1/2U sin α and b = U cos α as stated in Sec. II.

Equation (11) remains unchanged from Refs. [1,13,22], and following those works we take Co =
1
2 . Next, we write �o = Jo(πcU sin α) so that Jo is the fraction of the steady-state circulation of
classical aerodynamics. We note that since ε(t ) is a function of time, then so too is ηα (t ), and
likewise for Jo(t ) due to �o(t ) and U (t ). As such there is a separate, implicit timescale in the physical
domain solution as Z+(�, t ) = c/2 + cε2(t )ω+(λ, ηα (t ), Jo(t )) and �+(t ) = G(t )J+(ηα (t ), Jo(t )).
We will utilize this to construct a more complex evolution of the flow structures; the procedure for
this task will be further explained shortly.

The nondimensional governing equation for ω+ is given by equating (10a) and (11), then
applying (12). The equation for the leading-edge sheet ω− is obtained from the same equation,
but with ηα → −ηα and Jo → −Jo. In this case, the solution can be transformed to the physical
leading-edge location by (8b). Regarding the physical significance of ηα , we need only consider
positive values, which correspond to a positive angle of attack relative to the left-to-right uniform
flow in the axes fixed on the plate. On the other hand, Jo may take either sign in accordance with the
sign of �o. As such, we finally obtain the governing equations for ω± as

ω± + Q(1 − λ)
dω±
dλ

= 1√
ω±

{
− i(1 ± Jo) ± ηα

√
ω± + J±

2π i
I0(ω±)

}
, (13)

where the integral I0(ω) is given by (10b). Note that the (±) signs are taken individually for ω+
and ω−, respectively, and no summation is implied. The corresponding Kutta conditions at each
edge are

0 = (1 ± Jo) + J±
2π

I0(0). (14)

Upon specification of Jo and ηα , the equations can be solved for ω± and J±. In particular, when
ηα = Jo = 0, (13) reduces to the equations numerically solved by Pullin [13] and thus inclusion of
nonzero values of these parameters requires only minor amendment. We use the numerical scheme
described in DeVoria and Mohseni [22], which studied cases of nonzero entrainment in the starting-
flow separation over sharp wedges.

Once the self-similar solutions have been computed for a given pair of ηα and Jo, they can be
transformed to physical solutions using (8a) and (8b) with the following scalings:

ε(t ) =
[
Cp

(
Ut

c

)
sin α

]1/3

, G(t ) = c2ε4

tCp
, (15)

where Cp = 3/[4(1 + m)] is a constant for given m. The transformation process is detailed by the
flow chart in Fig. 3. As mentioned earlier, the result will include the implicit timescale contained
in the parameters ηα and Jo, which represent two separate asymmetric effects. A given trajectory or
curve in the ηα-Jo similarity space (parametrized by time) is obtained by beginning from the baseline
and incrementing the values along the curve using the previous solution as an initial condition to
the governing Eq. (13). We used an analogous procedure in Ref. [22] to represent a time-dependent
shedding angle of a vortex-entrainment sheet separating from a noncusped wedge.
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FIG. 3. Flow chart detailing the transformation of the self-similar solutions to the physical space for given
input data. The similarity parameters are given to the governing equation in (13) with an appropriate initial
condition.

We note that there are several useful ways to express the scaling G(t ), some of which are

G(t ) = εcU sin α = cU

[
ε4

Cp
(

Ut
c

)]
= R2

v

tCp
= RvṘv

Co
= ĠRv

QṘv

, (16)

where Co = 1
2 . Lastly, the vortex sheet model represented by (13) and (14) requires a somewhat

involved numerical solution. As such, it is worthwhile to obtain an approximate, yet more tractable
solution in which the entirety of the rolled-up sheet is represented by a concentrated point vortex.
This is given in the Appendix for the interested reader.

A. Range of validity

Here, we discuss how the constraints in (12) relate to the range of validity of the approximate
governing equation in (13). To do so we must interpret the meaning of the similarity variable ηα (t ) =
2ε(t ) cot α. In short, this nondimensional parameter “collapses” the effects of angle of attack and
the time growth of the vortex spirals. It is akin to the similarity variable for the Blasius boundary
layer that collapses the viscous layer growth with downstream distance. Since ε(t ) ∼ t (m+1)/3, then
increasing time tracks with an increase of ηα , while increasing α decreases ηα . Recall that when
ηα = 0, then (13) returns the singular-order equation of Pullin [13]. That same equation is also the
ε(t ) → 0 limit of Pullin and Wang’s model [1], which they showed to be valid for large angles of
attack. In other words, we can expect that solutions to (13) with ηα � 1 will be similarly valid for
large incidences. This is confirmed in the Appendix by comparison of their point vortex solution
with the one corresponding to our model (see Fig. 13).

To consider the validity of our model for lower, yet still moderate, angles of attack, we must
address the O(ε) integral term in (10a) that was neglected: ε{I0(ω) − I1(ω)}. This represents the
higher-order effect of the self-induced velocity of the vortex sheet and its image. On the other hand,
the term that we retained, that is ηα , represents the higher-order effect of the attached outer flow
and is technically of the same order. This is why there are two conditions in (12), which can be
combined to provide an estimate of the lower limit as tan α ≈ 2 or α ≈ 63◦. However, if it happens
that |I0(ω) − I1(ω)| � 1 regardless of ε, then the lower limit of the angle of attack range can be
reduced further. Unfortunately, there is no straightforward way to assert this possibility at this stage,
but it can be assessed a posteriori by comparison of numerical solutions with viscous simulations.
This task is taken up in Sec. VI B, where it is shown that the model provides fair predictions for
incidences down to α = 30◦ and for about 2 to 3 chords of travel.

The same type of a posteriori analysis could be used to investigate even lower angles of attack.
However, in this case the assumption that a well-formed LEV exists and whose development remains
independent from that of the TEV is no longer valid and must be revised. To this end, in Sec. V we
adapt the current model by representing the leading-edge flow as a bound circulation that is mutually
coupled to the TEV evolution.
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FIG. 4. Variation of similarity results with ηα for trailing-edge (+) and leading-edge (−) solutions. The
parameters are m = 0 (impulsive acceleration) and Jo = 0. (a) Nondimensional circulation magnitudes in the
sheets and the bound circulation. (b) Horizontal and vertical coordinates of the vortex spiral core locations for
each sheet [also see Fig. 5(a)].

B. Similarity results

In this section we present results from a set of self-similar solutions to (13) corresponding to a
simple combination of the similarity parameters, namely, varying ηα with Jo = 0. We will see that
the significant effect of asymmetry is indeed captured. Physical airfoil solutions will be discussed
in Sec. VI.

Figure 4(a) plots the nondimensional circulation magnitudes of the LEV and TEV sheets J− and
J+, respectively, for the case of an impulsively accelerated plate m = 0. The constant acceleration
case m = 1 displays the same trends, albeit with different quantitative values. For the LEV sheet, the
circulation increases with ηα , while it initially decreases for the TEV sheet. The major advantage
of our model is that nonlinear dependence on ηα comes built in with the similarity solutions J±
and ω± since the parameter ηα appears explicitly in the governing Eq. (13). For example, as seen
in Fig. 4(a), a reversal in the growth trend of the TEV circulation J+ occurs for ηα above about
0.75. Conversely, the model of Pullin and Wang [1] is a linearization at ηα = 0 (see the Appendix).
Also shown in Fig. 4(a) is the nondimensional bound circulation on the plate, which is given by
Jb = J− − J+ since Jo = 0. The dimensional bound circulation is �b = |�−| − �+ > 0 and so is in
opposite sense to that of the leading-edge sheet. This quantity is one indicator of the asymmetry in
the total vortex structure.

The asymmetric effects are best observed in the LEV and TEV sheet shapes. Some examples are
plotted in Fig. 5 for different values of ηα and acceleration exponents m. The downstream convection
of the trailing-edge (TE) spiral and the pronounced ellipticity of the LE spiral are familiar features.
As the LEV grows in strength [recall Fig. 4(a)], the spiral core is pinned closer to the plate surface
representing the attachment known to increase the lift [31]. To give a better idea of the “rate” at
which the LE and TE spiral cores convect downstream, Fig. 4(b) plots their positions as a function
of ηα for the m = 0 case.

C. Vortex force

In this section we perform some manipulations on the vortex force in order to obtain a more
intuitive expression. Replacing � with the nondimensional circulation parameter λ as the integration
variable in (7b) allows the vortex force to be rewritten as

F (v)
t + iF (v)

n = iρ
d

dt

{∑
±

�±

[
c
∫ 1

0

(ζ± − ζ i
±)

c
dλ

]}
≡ iρ

d

dt

{∑
±

�±[cI±]

}
, (17)
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(a) Impulsive acceleration: m = 0
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FIG. 5. Sheet shapes in similarity space for flow near the leading edge −ω− (left plots), and flow near the
trailing edge ω+ (right plots). Solutions with Jo = 0 and different values of the parameter ηα = 2ε cot α are
plotted as labeled, where ηα = 0 is the baseline with no effect of asymmetry. The sweeping motion of the free-
stream represented by ηα is from left to right. (a) Impulsive acceleration: m = 0, and (b) constant acceleration:
m = 1.

where I±(t, ηα, Jo) are symbols for the nondimensional integrals above, which depend on time
explicitly as well as implicitly through the parameters ηα and Jo. The quantities cI± can be
interpreted as the positions of point vortices with circulations �± that preserve the force contribution
on the plate due to each vortex sheet. While we have gained higher-order effects of asymmetry by
absorbing ε into the nondimensional governing equation through ηα , the physical positions Z± of
the sheets given by (8a) and (8b) are still only O(ε2) accurate. As such, our calculation of (17)
should be of the same order. This is accomplished by substituting Z± into (4) to obtain ζ± and these
expressions into I±, and then expanding the result for small ε.

First, however, a brief comment regarding the calculation of the force contribution from the LEV
Z− is appropriate. Since (8b) involves the negative conjugate of ω−, then this operation must also be
applied to the normal vector of the sheet to keep the force components consistent with the coordinate
system of the problem. Also, the minus sign reflecting �− < 0 is canceled (i.e., made positive) by
the opposite direction of integration along the leading-edge sheet as compared to the trailing-edge
sheet. In effect, the force from Z− can be calculated in the same way as that from Z+ and then
applying the negative conjugate operation.

Returning to our task, expanding (17) and dropping terms O(ε3) and higher yields

F (v)
t + iF (v)

n = ρ
d

dt
{cεG[ε(J−T− − J+T+) + i(J+N+ + J−N−)]}, (18a)

N± =
∫ 1

0
Re{√ω±} dλ, T± =

∫ 1

0
Im{ω±} dλ, (18b)
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where N±(ηα, Jo) will give rise to O(1) plate-normal forces and T±(ηα, Jo) to O(ε) plate-tangential
forces. If the expansions used by Pullin and Wang [1] are substituted it is found that (J−T− −
J+T+) = 0 and so the remaining force is normal to the plate. However, as explained in Sec. III C,
this must necessarily be the case since the plate only delivers a net normal impulse to the fluid
when �o = 0. One will also find that (J+N+ + J−N−) = 2J0N0, where J0 and N0 are the values
corresponding to the singular-order problem of Pullin [13], and thus we also recover their result
that higher-order corrections to the (normal) vortex force vanish by cancellation. The cancellation
occurs due to “mirror symmetries” inherent to the construction of their expansions. For our model
this does not happen because the asymmetry is built in at the level of the differential equation and
is propagated through to ω± and J±. Note that so long as the sheets remain above the plane of the
plate, then N± > 0 and T± > 0. In this case, the LEV and TEV work together to produce the normal
force, whereas they work against each other in establishing any tangential force.

Now, in distributing the time derivative through each term of (18a) we must account for both the
explicit time dependence of G(t ) and ε(t ), as well as the implicit time dependence of J±, N±, and T±
via their dependence on ηα (t ) and Jo(t ). This involves several applications of chain and product rule
differentiation and results in a cumbersome expression. To maintain notational clarity we introduce
an operator Fp(X ) with argument X and parameter p that is defined by

Fp(X ) ≡
[(

Q + 1

p

)
X + 1

2
ηα

dX
dηα

]
+ Jo

dX
dJo

[
Rv

Ṙv

(
�̇o

�o
+ U̇

U

)]
. (19)

An overdot indicates time differentiation and note that Fp is a linear operator. Also, the second
grouping of terms vanishes entirely if either �o = 0 or Jo is constant; it is assumed that U 	= 0 for
t > 0. The vortex force in (18a) can then be expressed as

F (v)
t + iF (v)

n = ρcεĠQ−1{εF1(J−T− − J+T+) + iF2(J+N+ + J−N−)}. (20)

Moreover, using (15) and (16) we have

ρcεĠQ−1 = 1

2
ρU 2c

[
ε5[

Cp
(

Ut
c

)]2

]
= 1

2
ρU 2c

[
sin5/3 α[

Cp
(

Ut
c

)]1/3

]
∼ t (5m−1)/3, (21)

thus providing a convenient form suitable to typical definitions of nondimensional force coefficients
using the dynamic pressure and chord length. Although the time dependence of the force scaling
in (21) is t (5m−1)/3, it must be recalled that the nondimensional terms within the curly brackets of
(20) have an implicit time dependence that is obtained from the numerical solution. Also note that
Ut/c = (1 + m)(s/c) where s(t ) is the distance traveled by the plate at time t and so s/c is the
number of chords traveled. The force scaling given in Ref. [1] can be recovered by substituting for
U = Btm and introducing their definitions of K = C2/3

p and a = c1/2B sin α.

V. LOW ANGLE OF ATTACK MODEL

As mentioned previously, the assumption of a well-formed LEV that is independent of the TEV
becomes invalid at low incidences. Again, this is because the free stream becomes more aligned with
the plate chord and so increases the sweeping component of that flow. Here, we give the adaptation
of our model appropriate to low angles of attack. The separated LEV sheet Z− is not explicitly
represented and is replaced with the attached singular flow around that edge. The circulation of
the LEV �− is lumped with the bound circulation around the plate �b to give the effective bound
circulation [32] as �eff = �− + �b. Figure 6 depicts the flow configuration for this situation. The
effective bound circulation is represented as a logarithmic constituent in the complex potential,
which now becomes

W = Wa + Wv + �o + �eff

2π i
log ζ , (22)
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FIG. 6. Schematic of the low angle of attack range. The separated LEV sheet is neglected, but its circulation
�− is lumped with �b to give the effective bound circulation �eff.

where Wa is still given by (5b) and Wv by (5c) but with only the contribution from the TEV sheet
Z+. As discussed at the end of Sec. III A, the presence of the logarithmic constituent does not affect
the normal boundary condition and is a degree of freedom in the tangential boundary condition.
Stated differently, the circle theorem [26] as applied to vortex elements is unique up to an arbitrary
circulation at the center of the cylinder.

To this end, the net circulation around the plate and TEV is �o = �eff + �+ and Kelvin’s cir-
culation theorem again provides an additional equation to relate these circulations. Going forward,
we employ the usual result from Kelvin’s theorem for flows started from rest, namely, �o ≡ 0,
and so −�eff = �+. As in (8a), we let the nondimensional TEV circulation be �+ = J+G, where
again G = εcU sin α. Fortunately, the governing equations in Sec. IV are unaffected in form by our
changes, and we have already done all the necessary derivation work. The only remaining issue is
to address the term in (10a) from the logarithmic constituent of (22) that now corresponds to �eff.
This term becomes

Geff ≡ −�eff

πcU sin α
= εJ+

π
= ηα tan α

J+
2π

. (23)

The appearance of ε = √
Rv/c in the middle equation represents the length-scale coupling of the

developments of the TEV and effective bound circulations as the vortex structures grow in time.
The rightmost equation in (23) expresses the circulation in terms of our existing similarity variable
ηα . This allows the flow near the trailing edge to “feel” the induced velocity of �eff. With this, the
nondimensional governing equation for the TEV sheet ω+ and the corresponding Kutta condition
are

ω+ + Q(1 − λ)
dω+
dλ

= 1√
ω+

{
− i + ηα

√
ω+ + J+

2π i
[I0(ω+) − ηα tan α]

}
, (24a)

0 = 1 + J+
2π

[I0(0) − ηα tan α]. (24b)

Again, the integral I0(ω) is given by (10b). Unfortunately, the consequence of coupling the LE
and TE flows is that Eqs. (24) explicitly contain the angle of attack. This is a disadvantage as
compared to (13) whose solutions (for a given m) can be applied to any incidence. Nevertheless, the
above equations are no more difficult to solve. Moreover, we note that the point vortex model in the
Appendix can be applied by replacing Jo with Geff from (23).

At the initial instant ηα = 0 and (24) is the same as (13) with Jo = 0. As time and thus ηα > 0
increase, the TEV and effective bound circulations develop in a coupled manner. Eventually, the
TEV will shed downstream and �eff becomes largely responsible for satisfying the Kutta condition,
which now contains ηα . We therefore expect that the solutions to (24) will yield results similar to
Wagner’s theory [33], which makes the assumptions of a flat vortex sheet that travels downstream
with the translation speed of the airfoil.

A. Force of the effective bound circulation

Since we have represented the effective bound circulation as a logarithmic constituent in the
complex potential (22), then there is a force associated with �eff, say F (eff)

t + iF (eff)
n , that is
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analogous to the part of the body force in (7c) due to �o. Here, the plane is cut along the plate
and TEV sheet (see Fig. 6) so that the branch cut of the logarithm intersects the plate at the trailing
edge zc = c/2. Recalling that �eff = −�+ we then have

F (eff)
t + iF (eff)

n = iρ

{
�+Ueiα − c

2

d�+
dt

}
. (25)

This is not the “circulatory” or vortex force of the TEV which is still given by (20) with only
F2(J+N+) making a contribution. Li and Wu [34] arrived at a similar, small-angle approximation of
(25) [see Eq. (C11) on p. 212 of their paper].

The first term in (25) corresponds to the familiar Kutta-Joukowski lift. The second term repre-
sents the change of effective bound circulation, i.e., the tangential boundary condition. This force
is analogous to the added mass, which is the other part of the body force in (7c) that is due to the
normal boundary condition, but contributes no net circulation. Combining (25) with the added mass
gives the total body force. Recognizing that �+ = πcU sin αGeff, then the corresponding drag and
lift of the body force D(b) and L(b) can be expressed as

D(b) = 1

2
ρcU 2[πC(b)

n sin2 α
]
, (26a)

L(b) = 1

2
ρcU 2[2π sin αGeff + πC(b)

n cos α sin α
]
, (26b)

C(b)
n = c

2U 2

[
dU

dt
− 2

d

dt
(UGeff )

]
, (26c)

where C(b)
n quantifies the combined added mass and d�+/dt forces. The angle of attack scalings for

the C(b)
n terms are the same as the potential and vortex normal forces in the leading-edge suction

analogy of Polhamus [35].

VI. APPLIED RESULTS

This section presents time-dependent results of our model that are converted from the similarity
space to the physical space via the transformation procedure depicted in Fig. 3. To validate and
exhibit the capabilities and limitations of the current inviscid model, we make comparison to
different theories and viscous simulations. The net circulation �o is set to zero and so Jo = 0 as well.
Due to the familiarity of the small incidence regime, we begin in Sec. VI A with the assessment
of the adaptation of our model given by (24) of Sec. V. Likewise, Sec. VI B then assesses the
application of the model in (13) of Sec. IV for the moderate-to-high angle of attack range.

A. Regime I: Low-to-moderate angle of attack

For the low-to-moderate angle of attack regime, we compare to the models of Wagner [33] and
Graham [3]. Wagner’s quasisteady theory is for impulsive motions to steady speeds, i.e., m = 0, at
low angles of attack. The main assumptions are that the TEV sheet remains flat and is convected
downstream with the instantaneous speed of the airfoil. Graham’s model accounts for the rollup
of TEV sheet, but is decoupled from the leading-edge flow (much like the high-incidence form of
our model given in Sec. IV). As such, Graham’s model is only valid for small times and does not
asymptote to a steady state like Wagner’s theory.

The shed TEV circulation from Wagner’s theory can be written as �w(t ) = �∞Gw(τ ), where
�∞ = πcU sin α is the steady-state value and Gw(τ ) is the Wagner function for circulation and is a
function of the “convective time” τ = Ut/c. We use the empirical formula for Gw(τ ) given by Li
and Wu [34] [see Eq. (C3) on p. 211 of their paper]. The circulation function analogous to Gw for
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FIG. 7. (a) The circulation functions for the low angle of attack model (solid) compared with the theories
of Wagner [33] (dashed) and Graham [3] (dashed-dotted) for steady translation m = 0. (b) The same data on a
log-log scale. �∞ = πcU sin α is the theoretical steady-state value.

our model is the quantity Geff from (23), which can also be expressed as

Geff(τ ) = J+(τ )

π
[Cpτ sin α]1/3. (27)

The circulation function for Graham’s theory [3] is equivalent to (27) with J+ = π (2Cp)−1/3

for all τ . Figure 7(a) plots the circulation functions for each model. For small α, we note that
τ ∼ α2η3

α/6 and so fairly large values of ηα are required to make τ = Ut/c ≈ 1. We computed
solutions up to ηα = 10 for each angle of attack shown: α = 5◦, 10◦, 20◦, 30◦. For Graham’s model
only a representative case of α = 10◦ is shown for clarity. On this linear scale, all models agree for
very small times, but the Wagner circulation function continues a faster rate of increase for τ > 0.25.
Unlike Graham’s theory, our model has negligible dependence of Geff on the angle of attack.
This is because of the coupling to the leading-edge flow, and (27) implies that J+ ∝ (sin α)−1/3.
Figure 7(b) plots the same cases, but on a log-log scale. For τ � 1 our model matches the τ 1/3

behavior predicted by Graham’s theory that accounts for the initial TEV rollup, and we can infer
that J+(τ ) → const in the same limit. For τ � 1 our model has Geff → 1 agreeing with the Wagner
circulation, and we can similarly infer that J+ ∼ π (Cpτ sin α)−1/3 at large times. Conversely,
Graham’s circulation eventually exceeds the steady-state value �∞ and becomes unbounded.

The near collapse of the curves for different α in our model qualitatively agrees with Wagner’s
universal function. However, there is a quantitative offset that is likely related to the different
assumptions of the two models, particularly the distribution of the shed vortex sheet strength. To
better assess these differences, we now compare the lift force. The lift from Wagner’s theory can
be written as Lw(τ ) = L∞�w(τ ), where L∞ = ρπcU 2 sin α and �w(τ ) is the normalized Wagner
lift function. A formula for �w(τ ) is also given in Li and Wu [34]. Figure 8(a) plots �w(τ ) and the
normalized lift for our model. Wagner’s quasisteady theory does not explicitly account for the rate
of change of bound/shed circulation. This is most evident from the familiar nonzero lift at τ = 0
(equal to half of L∞). The dynamic consequence of the change in the effective bound circulation is
an infinite force at the initial instant (out of frame), a feature that was also predicted by Graham [3].
However, Graham’s lift (not shown) becomes infinitely positive as τ−1/3 due to the vortex force
(20), whereas in our model the vortex force is outpaced by the d�eff/dt = −d�+/dt < 0 term in
(25). From (26c) and the small-time behavior Geff ∼ τ 1/3, this force becomes infinitely negative as
τ−2/3. The Wagner lift effectively “collapses” the short-lived time interval within which d�eff/dt
provides an appreciable contribution to the lift. Also shown in Fig. 8(a) are some viscous simulations
(Re = 500) presented in Jones and Eldredge [18]. Although there are some agreeable features,
the presence of vortex shedding becomes evident around Ut/c = 1.5 and represents a degree of
coupling that is beyond the scope of our current model.
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FIG. 8. (a) The lift functions for the low angle of attack model (solid) compared with the theory of Wagner
[33] (dashed) and the viscous simulations (Re = 500) in Jones and Eldredge [18] (dashed-dotted) for steady
translation m = 0. L∞ = ρπcU 2 sin α is the theoretical steady-state value. (b) The modeled lift coefficient CL

(solid) versus chords traveled s/c for an accelerating plate with m = 0.5 for α = 10◦ (red) and α = 30◦ (blue).
The viscous simulations (Re = 100) are from Chen, Colonius, and Taira [14] (dashed).

The examples just discussed correspond to impulsive acceleration to a steady translation, i.e.,
m = 0. Now, we briefly assess the model for a continually accelerating plate with m = 0.5.
Figure 8(b) plots the lift coefficient, defined as CL(t ) = 2L(t )/ρcU 2(t ), for two angles of attack
α = 10◦ and 30◦. The dimensional lift is finite at t = 0, but the choice of using the instantaneous
velocity U (t ) in the definition of CL yields an infinite coefficient. Since m 	= 0, the added-mass
force dominates at the initial instant and makes CL infinitely positive as t−(1+m) rather than infinitely
negative as t−(m+2/3). Also shown are the CL from the viscous simulations (Re = 100) of Chen,
Colonius, and Taira [14]. They plotted the “augmented lift coefficient” defined as CL minus the
added-mass component; here, we have reintroduced this component. There is good agreement early
on with the rapid decrease from the infinite force at the initial instant. The model appears to capture
an increase of CL after the first minimum, which is associated with the LEV contribution to the
effective bound circulation. However, this is noticeably different from that of the simulation data.
The differences are likely to be Reynolds-number dependent, however, and we do not investigate
this further here.

B. Regime II: Moderate-to-high angle of attack

Here, we assess the model for the higher angle of attack range given by (13) in Sec. IV. For a
given m and ηα-Jo curve in the similarity space, the operators F1 and F2 in the vortex force (20)
can be evaluated without any further input from the dimensional problem. For all computed cases
we found that F1(J−T− − J+T+) � F2(J+N+ + J−N−), by at least three orders of magnitude, while
F1(J±T±) and F2(J±N±) are individually all of the same order (recall Fp is linear). This validates
the statement made in Sec. III C that the tangential vortex force must be zero when �o = 0 since then
the plate only delivers a net normal impulse to the fluid. The tangential vortex force is not computed
to be precisely zero because the similarity solutions at the LE and TE are obtained independent
of each other. As such, the near mutual cancellation is a good first indication that the composite
solution is accurately capturing the full vortex dynamics.

First, we make comparison to the viscous vortex particle method simulations (with Re = 1000)
of Wang and Eldredge [7] for a flat plate that is impulsively accelerated m = 0 at α = 45◦. The top
row of Fig. 9 plots vorticity contours at several different “convective times” Ut/c; since m = 0, then
Ut/c is also equal to the number of chords traveled. The bottom row of the figure plots the LE and
TE vortex sheet positions from the current modeling of the same motion. There is good agreement
early on with the size of the vortex spirals and core locations, at least up to one chord of travel. As
expected, this begins to suffer as time increases, especially in the trailing-edge vortex sheet, which
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FIG. 9. Flow structure comparison for the case of impulsive acceleration m = 0 at α = 45◦ at different
convective times Ut/c as labeled. (Top) Vorticity contours from the viscous vortex particle method of Wang
and Eldredge [7]. (Bottom) Vortex sheet positions predicted by the present theory. Since m = 0, then Ut/c is
equal to the number of chords traveled.

does not “see” the downstream flow on the pressure side of the wing as the y/c position of the spiral
core dips below the trailing edge. However, the farther this vortex spiral is from the plate, the less
influence its exact position will have on the force experienced by the plate.

To this end, a better metric of the model performance is given by comparison of lift and drag
coefficients CL and CD. For this purpose, we use the results of the high-fidelity Navier-Stokes
simulations (with Re = 500) from Darakananda and Eldredge [11]. The force coefficients are shown
in Fig. 10 for two angles of attack: α = 45◦ and 60◦. The inviscid model of this paper provides a
fair prediction up to Ut/c ≈ 2 or about two chords of travel. Beyond this time, secondary vortex
structures begin to form (see Figs. 4 and 11 of Ref. [11]) and the unsteady forces will begin
to oscillate due to the periodic shedding of LE and TE vortices. The inviscid model, being the
composite of two self-similar flows at the edges, will not explicitly capture this physics as the flow
developments at the edges can no longer be considered independent and thus self-similar. More will
be said about this limitation of the model in the following paragraphs.

Next, we consider the case of constant acceleration m = 1 and compare with the Navier-Stokes
simulations of Pullin and Wang [1] for the flow around a thin elliptical airfoil; the elliptical cross
section has a minor-to-major axis ratio e = 0.125. They provided numerical values of the physical
parameters, but without specifying units: c = 2, B = 4. In effect, the time t can be taken in seconds
and the fluid to be of unit density such that the Reynolds number is Re = Uc/ν = 800 at t = 1 s.
We adhere to their specifications as well as their plotting of unscaled “dimensional” forces.

Figures 11(a)–11(d) plot the lift L and drag D as functions of time t from the viscous simulations
of the elliptical airfoil for angles of attack α = 30◦ and 60◦. On each panel are vertical lines marking
the times at which the airfoil has traveled 1, 2, 3, and 4 chord lengths. The forces exerted on the
flat plate performing the same motions as modeled in this paper are also shown and exhibit rather
good agreement at least to two chord lengths of travel. For lower α the trend is followed to almost
s/c = 3 with some noticeable offset, while for higher α the quantitative match for s/c < 2 is much
closer. The inertial force on the elliptical wing is due to the nonzero area of the body and it is worth
noting that this is comparable to the constant added-mass force of the zero-thickness flat plate,
which is quantified by the force values at t = 0 in the figure. As such, the vortex force does the
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FIG. 10. Comparison of lift and drag coefficients vs Ut/c for cases with impulsive acceleration m = 0 at
two angles of attack. (a), (b) CL , CD at α = 45◦; (c), (d) CL , CD at α = 60◦. The Navier-Stokes simulations
are from Ref. [11]. The legend applies to all plots. Since m = 0 then Ut/c is equal to the number of chords
traveled.

overwhelming majority of the predictive work in the inviscid model. Also plotted is the prediction
from the single point vortex model of Pullin and Wang [1], which we recall contains no correction
to the force due to asymmetry of the flow. We see that the current model provides a significant
improvement in the prediction and can be attributed to the more effective representation of the vortex
dynamics.

We note that the major deviation of the model from the simulations in Fig. 11 begins around
the time of maximum lift. This corresponds to the first LEV shedding event. In other words,
the vortex has grown so large that it can no longer remain attached to the plate and begins to
convect downstream, thus giving a negative contribution to the lift. However, we can attempt to
predict the initiation of this event, which we note is signaled by the arrival of the suction-side
stagnation point, due to the reattached LE flow, at the trailing edge [32,36,37]. Figures 12(a) and
12(b) show the vortex sheet structures of the cases α = 30◦ and 60◦ at the time of near maximum
lift, which respectively occur at about s/c = 3 and 2 (Fig. 11). At the times of maximum lift we
find that ε2 ≈ 1.1 for each angle of attack case shown in Fig. 12. Recalling that ε2 = Rv/c is
a measure of the vortex spiral size relative to the plate chord, we might expect that Rv ≈ c is a
good indication of the shedding event. Since the LE and TE flows are solved independent of each
other, the composite stream function by superposition of the two flows is technically not valid; the
streamlines do not have the visual character one would expect from a uniformly valid solution.
However, at the times under consideration, the flow near the plate is dominated by the LEV sheet.
Therefore, we estimate the suction-side stagnation point from the steam function of just this sheet.
The stagnation streamlines are also plotted in Figs. 12(a) and 12(b). While the estimated stagnation
point has not quite yet reached the trailing edge, we note that inclusion of the effect of the flow
induced by the TEV sheet will act to bring the point closer to the edge. From this and the metric
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FIG. 11. Comparison of lift and drag forces vs t for cases with constant acceleration m = 1 at two angles
of attack. (a), (b) L, D at α = 30◦; (c), (d) L, D, at α = 60◦. The Navier-Stokes simulations correspond to
an ellipse of minor-to-major axis ratio e = 0.125 from Pullin and Wang [1]; their point vortex model is also
shown and labeled as “P&W model.” The legend applies to all plots. Vertical gray lines mark when the airfoil
has traveled 1, 2, 3, and 4 chord lengths as labeled.

Rv ≈ c, we conclude that the model provides an acceptable prediction of the initial LEV shedding
event.

The results of Sec. VI indicate that the model is reasonably valid for a non-negligible distance
and time traveled by the plate at different angles of attack and acceleration exponents. Hence, the
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FIG. 12. The modeled vortex structure at the time of near maximum lift for the cases shown in Fig. 11.
The stagnation streamline corresponding to the flow induced by just the LEV sheet is also plotted (dashed red
lines). The corresponding suction-side stagnation point is marked by the circle symbol. (a) α = 30◦, chords
traveled: s/c = 3. The TE spiral is out of frame. (b) α = 60◦, chords traveled: s/c = 2.
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constraints in (12) do not appear to be too strict, and we have justified our ansatz of neglecting the
integral term ε{I0(ω) − I1(ω)} from (10a).

VII. CONCLUDING REMARKS

In this paper we considered the canonical problem of a flat-plate airfoil accelerating in an
inviscid fluid at a constant angle of attack. The objective was to extend the model of Pullin and
Wang [1] to lower angles of attack and longer chords traveled. The full problem statement for the
flat plate was approximated with self-similar solutions at both the leading and trailing edges. We
expanded the attached outer flow to higher order rather than the sheet positions and circulations. As
such, the attached flow contains a regular part representing the induction of distant effects, as well as
the usual singular part necessitating the physical flow to separate at the sharp edge. It was shown that
the higher-order regular part of the outer flow expansion corresponds to the sweeping component
of the free-stream flow parallel to the plate. Moreover, we introduced a similarity variable that
collapses the temporal growth of the vortex spiral length scale with the effect of angle of attack.
Through this parameter the sweeping flow is brought into the same order as the singular flow. In
other words, the effect of asymmetry is built in at the level of the governing equation.

The model was delineated into two angle of attack regimes. For the moderate-to-high range, the
main assumption is that the development of the LEV and TEV structures remain independent of
each other. Although the leading- and trailing-edge solutions are obtained independently, each is
coupled to the sweeping flow in a simple manner. However, for the low-to-moderate range, the LEV
and TEV developments can no longer be assumed independent because of the stronger sweeping
component of the free stream. The LEV structure was represented by lumping its circulation with the
plate-bound circulation into an effective bound circulation, which was then coupled to the governing
equation for the evolution of the TEV structure.

Using this self-similar model, we constructed composite flow solutions in the physical domain
that include the temporal variation of the length and circulation scalings as well as the implicit time
dependence of the similarity variables. As a combined result, we were able to accurately capture
a more complex evolution of the vortex structure, circulation dynamics, and forces exerted on the
plate. The approximated flow is acceptably valid for the initial phase of the motion, up to about 2
to 3 chords of travel. This was corroborated by comparison with corresponding quantities obtained
from Navier-Stokes simulations for both impulsive and constant accelerations and at different angles
of attack.

Lastly, it is hoped that the two-tier model presented here could be used to complement the LESP
concept and provide further insight to the initiation of flow separation at the leading edge. An ideal
topic for future work would be identifying the state of the inviscid model at the Reynolds-number-
dependent transition from attached to separated flow. Also, while we considered a constant angle of
attack here, this does not prevent the application of the methodology to more general plate motions.
For example, the modification of the complex potential to account for rotation is known and can be
expanded to higher order in the same way as we have done for the translational component of the
attached outer flow.
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APPENDIX: SINGLE POINT VORTEX MODEL

Here, the solution to the point vortex approximation of (13) and (14) is given. The point vortex
solution with ηα = 0 and Jo = 0 corresponding to the semi-infinite plate was originally given by
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FIG. 13. Comparison of the nondimensional circulations as predicted by the vortex sheet and point vortex
models of this study, along with the point vortex model of Pullin and Wang [1]. The parameters are m = 1
(constant acceleration) and Jo = 0. (a) Leading-edge circulation J−. (b) Trailing-edge circulation J+.

Rott [38]. Pullin and Wang [1] derived a similar model for their perturbation series, in which Rott’s
model is the leading-order term. Here, we follow suit and obtain the point vortex solution for ηα 	= 0
and Jo 	= 0.

Equation (10a) is a special case for flow around a flat plate. For generality, we consider the case
for a wedge of arbitrary internal angle βπ = (2 − 1/n)π ; recall the outer-flow expansion in (1)
and (2). The corresponding equations are readily obtained by replacing all 1

2 powers in (13) and (14)
with n and also putting Co = (1 − n). The point vortex approximation of the governing equations is
(e.g., see DeVoria and Mohseni [22])

(1 − n)[ω±v + Qω±v] = nωn−1
±v

{
−i(1 ± Jo) ± ηαωn

±v − J±
2π i

[
1

ωn±v + ωn
±v

+ 1 − n

2nωn±v

]}
, (A1)

0 = (1 ± Jo) − J±
2π

[
1

ωn±v

+ 1

ωn
±v

]
, (A2)

where ω±v = R±eiθ± are the TE (+) and LE (−) point vortex locations in similarity space. For a
given vortex, the above are three equations for the three unknowns J±, R±, and θ±. After some
algebra these can be reduced to

0 =
[

1 + 1

4n cos2(nθ±)

]
± 2ηαRn

± sin(nθ±)

(1 ± Jo)
, (A3)

0 = (1 − n)(1 + Q) − nRn−2
±

[
(1 ± Jo)(1 − n) sin(nθ±)

4n cos2(nθ±)
± ηαRn

±

]
, (A4)

0 = J±
2π

− (1 ± Jo)Rn
±

2 cos(nθ±)
. (A5)

When ηα = 0 the above can be further manipulated to obtain a closed-form solution, which returns

Rott’s solution when Jo = 0. Although a numerical solution is required for ηα 	= 0, the system is
quite simple. Again, n = 1

2 corresponds to the flat plate. Once the system has been solved for desired
ranges of ηα and Jo, the point vortex force could be obtained from (20) with the approximations
N± ≈ Re{√ω±v} and T± ≈ Im{ω±v}.

Figures 13(a) and 13(b) show an example of the LE and TE nondimensional circulations J− and
J+, respectively, as predicted by the current point vortex model. The particular case corresponds to
constant acceleration m = 1 and Jo = 0. For comparison, the predictions from our full vortex sheet
model and the point vortex model of Pullin and Wang [1] are also shown. The model of Pullin and
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Wang [1] is a linearization at ηα = 0,

J± ≈ J0 ∓
(

∂J±
∂ηα

)
ηα = J0 ∓ εJ1, (A6)

whereas the current point vortex model maintains the nonlinear behavior with ηα . The expression
for the quantity J1 = 2(∂ηα

J±) cot α � 0 obtained by Pullin and Wang is given in their Eq. (3.27).
For small ηα there is an offset of both point vortex models from the vortex sheet, which is the result
of concentrating all circulation at a single point.
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