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Using direct numerical simulation, we study the behavior of the maximal Lyapunov
exponent in thin-layer turbulence, where one dimension of the system is constrained
geometrically. Such systems are known to exhibit transitions from fully three-dimensional
turbulence through a mixed two- and three-dimensional phenomenology state and then
onto fully two-dimensional dynamics. We find a discontinuous jump in the Lyapunov
exponent at this second transition, implying the predictability of such systems can change
dramatically. Such transitions are seen in a number of different turbulent systems, for
example, those undergoing strong rotation; hence these results may be relevant for the
predictability of complicated real world flows. The Lyapunov exponent is found to provide
a particularly clear measure of the transition to two-dimensional dynamics. Finally, the
application of these results to atmospheric predictability with regard to high-resolution
modeling is examined.

DOI: 10.1103/PhysRevFluids.6.054612

I. INTRODUCTION

The dynamical behavior of turbulent fluid flows is known to be vastly different in two and
three dimensions. The three-dimensional case is characterized by a forward cascade of energy
from large to small scales separated by an inertial range where the energy spectrum takes the
form E (k) ∼ k−5/3. In the two-dimensional case, the existence of a second quadratic invariant, the
enstrophy, leads to a dual cascade scenario: an inverse cascade of energy from small to large scales
and a direct enstrophy cascade from large to small scales. These cascades exhibit scaling regions
of E (k) ∼ k−5/3 and E (k) ∼ k−3, respectively. Much of our understanding of turbulence in three
dimensions can be attributed to Kolmogorov [1,2], while in two dimensions the groundwork was
laid by Kraichnan [3].

Despite these differences, there is a growing body of evidence that two- and three-dimensional
turbulent dynamics can coexist under certain circumstances. Perhaps the first demonstration of
this was in measurements of the energy spectrum in the Earth’s atmosphere [4], in which the
data were interpreted as showing both forward enstrophy and energy cascades. One possible
explanation is that the geometry of the atmosphere is such that the vertical direction is constrained
compared to the other two, with the result that above a certain length scale the system is effectively
two-dimensional. This situation is often referred to as thin-layer turbulence. The coexistence of
two- and three-dimensional phenomenology, that is, both forward and inverse energy cascades, has
been observed in both experimental and numerical studies of thin layers [5–14]. In the numerical
investigations, it was found that by reducing the thickness of the fluid layer the system transitions
from fully three-dimensional behavior to mixed two- and three-dimensional dynamics and then onto
purely two-dimensional. Such transitions are not restricted to thin-layer turbulent systems; they have
also been seen in turbulence undergoing rotation, exhibiting stratification, those under the influence
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of strong magnetic fields and in axis-symmetric flows [15–21]. For a more comprehensive review
of such systems and cascade behavior see [22].

These prior studies into this transition all employed the standard statistical approach to turbu-
lence [23], in which the properties of the flow under a suitable averaging procedure are studied.
However, it is also possible to exploit the deterministic chaos exhibited by turbulent flows [24–27]
to investigate their behavior. As could be predicted from the differences in dynamical behavior
across dimensions, the chaotic properties are also vastly different when comparing two and three
dimensions. In particular, the scaling behavior of the maximal Lyapunov exponent, Kolmogorov-
Sinai entropy and attractor dimension (see [27] for definitions) in three dimensions was determined
entirely by the Reynolds number of the flow [28–31]. In two dimensions, for the case of the entropy
and attractor dimension, this scaling was found to be more complicated and nonuniversal, being
influenced by the system size and forcing length scale [32]. The strong contrast between these two
cases then suggests that these chaotic properties may be utilized in the study of this transitional
behavior.

The use of the chaotic properties of a system in the study of phase transitions has seen a
small amount of attention in the critical phenomena literature [33–35]. In such studies, it was
found that the maximal Lyapunov exponent could be used as an indicator of a phase transition,
showing differing behavior either side of a critical point. This, combined with the aforementioned
drastic differences in the scaling behavior of chaotic properties of turbulent flows in two versus
three dimensions, suggests the maximal exponent might provide a useful alternative viewpoint in
the study of this transition in thin-layer flows. Furthermore, the Lyapunov exponent measured in
numerical simulations of turbulent fluid flow is found to be a remarkably stable quantity, particularly
against the effects of numerical resolution [36]. As such, it may be expected to be a robust measure
of the transitional behavior seen in thin-layer turbulence. Finally, the Lyapunov exponent gives
a measure of the predictability of a system. Given the observation of transitional behavior seen
in the Earth’s atmosphere understanding how the predictability of thin-layer turbulence changes
across such transitions may then provide important information for the wider study of atmospheric
predictability.

II. PROBLEM SETUP

In this work, we study the transition between two- and three-dimensional phenomenology in
thin-layer turbulence via measurement of the maximal Lyapunov exponent in direct numerical
simulations (DNS) of the incompressible Navier-Stokes equations

∂t u + u · ∇u = −∇P + ν∇2u + μ∇−2u + f ,

∇ · u = 0.
(1)

In the above, u(x, t ) is the velocity field, P(x, t ) the pressure field, f (x, t ) is an external force used to
sustain the flow and ν is the kinematic viscosity. To avoid the formation of a large-scale condensate
as a result of the inverse energy cascade, we also include a hypoviscous term with hypoviscosity,
μ, which removes energy at the large scales. This is an important addition, as such a condensate is
a form of self-organization, which can cause a reduction of chaos in the flow. In all cases μ is set
such that a condensate is unable to form. We employ the standard pseudospectral method with full
dealiasing using the two-thirds rule. Our simulations are performed in a fully periodic box with side
lengths L × L × H , with L = 2π and H < L. Throughout we will consider the side of length H to
be in the z direction. To facilitate comparison with previous studies, our external forcing function
acts only on the x and y components of the velocity field and has the form f = (−∂yφ, ∂xφ, 0) such
that it is solenoidal. The scalar field φ(x, t ) is stochastic and delta correlated in time, which ensures
that on average the energy injection rate is ε, which can be set by the amplitude of the forcing.
Additionally, the forcing is concentrated in Fourier space on modes with magnitude k f � 2π/l f .
The initial conditions of the flow are such that the field is near zero, with the small amount of
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energy spread across a wide range of length scales. As such, the flow is essentially generated by the
stochastic forcing. We maintain an even grid spacing in physical space, therefore, upon reducing H
we also reduce the total number of grid points needed in the vertical direction. In Fourier space this
leads to a larger spacing between modes in the vertical direction than in the horizontal directions.

As in [14], we find the system is described by a number of nondimensional parameters. The first
is the Reynolds number defined at the energy injection scale as

Re = ε
1
3 l

4
3
f

ν
. (2)

We also have the ratio of the forcing length scale and the side of length H defined as Q = l f /H
and the aspect ratio of the system given by A = H/L. Of these two quantities, It has been observed
that Q is the more important parameter for determining the transition points of the system [11,14],
thus, we formulate our results in terms of Q. For Q much less than 1, at the length scale where
energy is injected the system is fully three-dimensional, and as such we expect three-dimensional
phenomenology to dominate. For Q much greater than 1 the system is expected to appear two-
dimensional. Between these two extremes it is observed that both two- and three-dimensional
behavior coexist in the flow. Indeed, in [11] using a severe Galerkin truncation in the vertical
direction, an Re independent critical value of Q was found, above which the flow transitions from
three-dimensional behavior to mixed phenomenology. Additionally, a second critical value at which
point the system moves to two-dimensional behavior was found, although this point was found
to have an Re dependence. Our simulations span the ranges Re ≈ 90–1200 and Q ≈ 0.1–16 with
the forcing length scale either k f = 4, 8. Finally, the number of grid points used in the horizontal
directions varied from 128–1024, such that the simulations remained well resolved.

We will focus here on this second critical value, denoted as Q2D(Re). In [11] it was shown
that by considering the interplay between the layer thickness H and the shearing force driving
three-dimensional instabilities in the flow, this critical thickness should behave as

Q2D(Re) ∝
√

Re; (3)

see also [37] for further information. Before presenting results for the maximal Lyapunov exponent
in thin-layer turbulence, we will first establish an approximate value in terms of Q/

√
Re at which

the transition to two-dimensional dynamics occurs using a standard indicator. We will consider the
velocity field to be decomposed into two- and three-dimensional parts,

u(k, t ) = u2D(k, t ) + u3D(k, t )

= u(k : kz = 0, t ) + u(k : kz �= 0, t ),
(4)

such that the two-dimensional part is composed of all modes with vertical wave number, kz = 0.
Using this decomposition, the total energy of the flow also becomes split into two- and three-
dimensional parts:

E (t ) = E2D(t ) + E3D(t ). (5)

At the point Q2D(Re), we expect the three-dimensional energy to vanish. As such, we consider the
ratio of the averaged three-dimensional energy to the averaged total energy. In Fig. 1 we plot this
ratio for a range of Q and Re values. Here we see a common curve across all Re values, with the
possible exception of only the highest Re values. This is likely explained by the transition from
three-dimensional behavior to mixed dynamics becoming Re independent at high enough Re, as
found in [14]. For all cases we find the transition point Q2D(Re) to occur at Q/

√
Re ≈ 0.25. This is

consistent with what was found in the pre-condensate phase of the simulations in [14]. It should be
noted that the value of Q2D(Re) may be influenced by the form of forcing employed. In our case, the
forcing is fully two-dimensional; however, it has been found that when using a three-dimensional
force the transition point is altered [38].
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FIG. 1. Ratio of average energy in the three-dimensional modes to the average total energy across a range
of Q and Re values. Color gradient used to indicate Re value, becoming darker as Re increases.

III. LYAPUNOV EXPONENTS IN FLUID TURBULENCE

Having established a value for Q2D(Re), we now consider the maximal Lyapunov exponent. This
exponent gives, to leading order, the rate of divergence of trajectories in the state space of the system.
This state space in our simulations is of very high dimension, equal to the number of Fourier modes
retained. Systems with a positive maximal Lyapunov exponent are said to exhibit deterministic
chaos, a state characterized by a extreme sensitivity to initial conditions. Turbulent fluid flow is
known to be deterministically chaotic and, given the ubiquity of turbulence in nature, this has
implications for the predictability of real world phenomena. This work is motivated in part by
atmospheric predictability, where the chaotic nature of turbulence, coupled with finite experimental
resolution, leads to small measurement errors growing exponentially in time. As a result, if weather
forecasts are to be accurate within a given error tolerance there is a finite predictability time
before the error will grow to exceed any tolerance. This predictability time is determined by the
maximal Lyapunov exponent, at least for small-scale weather phenomena. For larger-scale climate
forecasting it is possible for the predictability time to exceed that given by the Lyapunov exponent.
We return to this point in Sec. V.

Numerically, the maximal Lyapunov exponent is calculated by considering two distinct velocity
fields, one perturbed slightly from the other once a steady state has been reached. More explicitly,
we consider a reference field u1 and a perturbed field, u2, which at the perturbation time t0 is defined
as

u2(t0) = u1(t0) + δ0, (6)

in which δ0 is a Gaussian random velocity field with zero mean. The variance of the perturbation
field is chosen such that the initial separation, �, between the two velocity fields can be consid-
ered infinitesimal, i.e., |δ0| ≡ � 
 U , where U is the root-mean-square velocity. The use of an
infinitesimal perturbation can be considered to model the effect of finite experimental measurement
resolution, with the reference field representing the true system, and the perturbed field representing
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the what is measured experimentally. Both fields are then evolved concurrently according to the
Navier-Stokes equations. While the difference between the fields remains small, it is found to grow
exponentially in time with a rate given by the maximal Lyapunov exponent. To obtain more detailed
statistical information for this exponent, the difference between the two fields is rescaled to the
initial value � at periodic intervals of time of length �t ,

u2(t0 + �t ) = u1(t0 + �t ) + �
δ(t0 + �t )

|δ(t0 + �t )| , (7)

in which δ(t ) = u2(t ) − u1(t ). The finite-time Lyapunov exponent is then defined as

γ (�t ) = 1

�t
ln

( |δ(�t )|
�

)
, (8)

which, when averaged over many iterations, gives the maximal Lyapunov exponent λ = 〈γ (�t )〉.
For more detailed descriptions of numerically computing Lyapunov exponents see [39]. Importantly,
if, as in this work, a stochastic forcing is used, the force should be randomly generated only once
per iteration and the same force applied to both the reference and perturbed fields. If a new random
force is generated for each field, this acts like a new perturbation at each iteration and destroys the
exponential growth of separation between the fields.

The expected scaling behavior of λ in both two- and three-dimensional turbulence can be
estimated on dimensional grounds by assuming it will be determined by the inverse of the smallest
timescale of the flow. In homogeneous and isotropic three-dimensional turbulence this is given by
the Kolmogorov timescale, which then implies [40,41]

λ3D ∼ τ−1 ∼ 1

T

√
Re, (9)

where τ is the Kolmogorov time and T is the large eddy turnover time. Following similar arguments
in two dimensions results in [42]

λ2D ∼ 3
√

η, (10)

in which η is the enstrophy dissipation rate. In the two-dimensional case there is also the possibility
of logarithmic dependence on Re due to logarithmic corrections to the energy spectrum in the
enstrophy scaling range [43]. It is not clear which of these dimensional estimates should be used in
thin-layer turbulence. Furthermore, there is no theory in the literature to guide this choice.

IV. RESULTS

To investigate the transition from the viewpoint of predictability, we consider the Re dependence
of λ. Note that here, similarly to in [11], we use a second forcing scale Reynolds number defined as

Re f = l f

√
E

ν
. (11)

The reason for second definition is that the Re defined in Eq. (2) does not contain any information
about the dynamical properties of the underlying flow, making determination of scaling exponents
difficult. Note, that we continue to use Re as defined in Eq. (2) when discussing the location of
Q2D(Re) to facilitate comparison with the literature. In Fig. 2 we clearly observe two distinct scaling
laws, one for points below Q2D(Re) and another for those above. It should be noted that, in contrast
with these previous studies in three dimensions, we nondimensionalize λ using the enstrophy
dissipation rate timescale. This is justified by the relationship between enstrophy production and
velocity derivative skewness which, if we assume K41 holds, gives this timescale the same Re
scaling as τ . The scaling exponent below the critical point is in good agreement with the λτ scaling
shown in [28] for purely three-dimensional turbulence. In a study of two-dimensional turbulence
[32] the Re dependence of λ was found to be λ ∼ Re0.16 which is in line with what we find for
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FIG. 2. Maximal Lyapunov exponent, λ, scaled by the enstrophy dissipation rate timescale against Re.
Color gradient is set such that approaching the transition at Q/

√
Re from either side results in a lighter color.

Additionally points below the transition become more red while above they become more blue. Lower dashed
line has a gradient of 0.29 while higher dashed line has a gradient of 0.14, and these give the corresponding
ReE scaling exponents.

beyond Q2D(Re). Figure 2 highlights the possibility of an increase in Re, seemingly paradoxically,
causing an increase in predictability as the system moves from the inverse cascade branch to the
bidirectional cascade branch. Given that the value of Q/

√
Re at which this change in scaling occurs

is the same as for the energy indicator and that seen in the literature, it is clear that the Lyapunov
exponent provides a robust measure of the transition.

In Fig. 3 we show λ rescaled by both Re and η for a range of Q and Re values. The power of
Re f chosen corresponds to the scaling exponent for points below the transition point in Fig. 2. This
scaling gives an approximately constant value for points below Q/

√
Re ≈ 0.25. At and above this

point, we observe what appears to be a discontinuous jump as the flow becomes two-dimensional
and the scaling behavior is changed.

Notably, in both Figs. 2 and 3 there is no indication of a first transition from three-dimensional
to mixed dynamics. This suggests the leading chaotic properties of the flow remain effectively fully
three-dimensional until the point Q2D(Re). This is in agreement with the idea that the maximal
Lyapunov exponent should be related to the shortest timescale of the flow. In both the three-
dimensional and mixed states, a forward cascade of energy to the smallest scales is seen, vanishing
only when we pass Q2D(Re). Physically, we can understand this behavior by considering the
cascades and triadic interactions involved at each stage. As we increase Q, the triads corresponding
to three-dimensional dynamics are progressively removed. Upon reaching the transition point, a
critical proportion of these triads have been lost, ending the forward energy cascade and rendering
the flow two-dimensional. Unlike for E3D/E , which decreases continuously as the forward cascade
region is reduced, if ε and ν are fixed, then as Q is increased, and as long as a forward cascade exists,
λ will have the same value before changing discontinuously when no forward cascade remains. A
similar discontinuous transition was observed in [44], where the energy cascade was reversed by
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FIG. 3. Maximal Lyapunov exponent, λ, scaled by the Reynolds number and enstrophy dissipation rate
against Q/

√
Re. Color gradient used to indicate Re f value, becoming darker as Re f increases. An empirically

determined exponent is used in scaling the maximal exponent. This is to highlight the discontinuous transition.

altering the weighting of certain triadic interactions between helical modes. See also the Appendix
of [12] for further discussion of this triadic interpretation.

It is also possible to view the transition through a less abstract physical interpretation, albeit one
that is intimately connected with the triadic interpretation. It is well known that in two dimensions
the vorticity equation has no vortex stretching term [45]. As a result, since we consider the steady
state case, the enstrophy dissipation timescale in our simulations in the Q/

√
Re > 0.25 regime is set

entirely by the rate of enstrophy injection by the forcing. On the other side of the transition vortex
stretching is possible, and thus additional enstrophy is produced by nonlinear interactions. This then
leads to a higher rate of enstrophy dissipation at steady state for an equal rate of enstrophy injection.
Hence, in the Q/

√
Re < 0.25 regime the maximal Lyapunov exponent is determined by the smallest

scales of the flow. The transition can then be understood as a consequence of the effect of geometric
confinement on vortex stretching. The predictability of flows on either side of the transition can then
be vastly different: on the three-dimensional side it is governed by action at the smallest scales of
the flow and by the macroscopic energy injection scale on the two-dimensional side.

An important point to consider in the simulation results presented here is the influence of the
form of geometric confinement used. It is clear that considering a periodic flow in a box with a
varying height is a very artificial kind of confinement. In atmospheric turbulence, flow confinement
is typically seen as a result of stratification. As mentioned in the introduction, stratified flows are
also known to exhibit transitions between two- and three-dimensional turbulence, dependent on
the degree of stratification. It would be interesting to study the predictability of the transition in
these flows as a more representative approximation of atmospheric turbulence. It may be possible
to make a connection between the Reynolds number-dependent Q criterion for the transition seen
here and the Richardson stability criterion of stratified flows [46], particularly as both are related to
vortex stretching.

An interesting area for investigation is then what happens to the behavior of the chaotic properties
of the flow, which depend on all the active degrees of freedom in the flow, for example, the
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FIG. 4. Time series for the finite time Lyapunov exponent, γ (t ) re-scaled by the mean value. Time is
measured from the point the exponent has stabilized. We show a case far from Q/

√
Re ≈ 0.25 (blue) and one

close to this point (black). These cases have similar Reynolds number values with Re ≈ 600.

Kolmogorov-Sinai entropy and attractor dimension [27]. These may show different transitional
behavior and reveal further information about the properties of such transitions. However, their
calculation is out of the scope of this work.

Since λ represents the exponential rate at which two initially close fields diverge from each other,
it provides a measure of the predictability time of the flow. Figure 3 suggests that this predictability
time will exhibit discontinuous jumps. This is of particular interest in real world thin-layer systems,
which are, in general, nonstationary. In such flows, as Re varies and the flow transitions from one
set of dynamics to another, predictability may be drastically altered.

Finally, we have also studied the temporal behavior of λ. In [14], as the point Q2D(Re) was
approached, intermittent bursts of three-dimensional energy were observed and related to the idea
of on-off intermittency in dynamical systems [47]. Such bursts should impact the behavior of the
finite time Lyapunov exponents and would be expected to cause large fluctuations. Indeed, in Fig. 4
the case with Q/

√
Re ≈ 0.25 is seen to undergo large variations in time. As the cases shown are at

comparable Re values, then we can be relatively confident these fluctuations are caused by proximity
to the transition. Although we show only two cases, this behavior is typical of points close to the
transition point.

The appearance of large fluctuations as we approach the transition point is reminiscent of
phase transitions in critical phenomena. It is then tempting to try to classify this transition from
a bidirectional cascade to two-dimensional dynamics. Indeed, the abrupt change in behavior of the
Lyapunov exponent at Q2D(Re) suggests something similar to a first order phase transition may be
occurring. Making a definitive statement on this issue will require further investigation and a wider
range of the parameter space to be studied.

V. CONCLUDING REMARKS

Using Lyapunov exponents in systems of complexity to study phase transitions has received
little attention in the literature. Therefore, their utilization in this work on fluid turbulence, and
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the clarity of the results achieved, suggests this method may be of particular use in extended
nonequilibrium systems in general. A particular application of our results may well be found in
the next generation of numerical weather prediction models. For systems with multiple timescales,
the Lyapunov exponent is proportional to the smallest characteristic timescale, regardless of the
size of the fluctuations in the different timescales. In the atmosphere, predictions can be made
beyond the limit imposed by the Lyapunov timescale, which is associated with turbulence, as
the predictability is imposed by the large-scale dynamics [24,48]. However, within the last decade
increases in computing power have allowed for large-eddy simulations to be nested within numerical
weather prediction models, whereby three-dimensional turbulence is resolved explicitly. These
high-resolution simulations have important applications in many areas, such as particle transport
dispersion modeling and wind turbine site profiling [49].

Furthermore, the advent of exascale computing will see operational global weather models run
at far greater resolution (<1 km), which will allow regional models to operate at scales where
turbulent phenomena are explicitly resolved [50]. Therefore, our finding of a discontinuous change
in predictability at Q2D(Re) indicates that understanding the transition between two- and three-
dimensional turbulent regimes in the atmosphere may be essential for determining predictability in
different weather scenarios in these future high-resolution regional models. Forecast skill could be
improved, particularly in severe convective thunderstorms, by more accurately resolving the atmo-
sphere’s transition from predominantly two to three-dimensional turbulent motion, which occurs
in convection, as the error growth may change rapidly across this transition [51–54]. Additionally,
in situ aircraft observations have shown that in the hurricane boundary layer, a height-dependent
transition between two- and three-dimensional turbulence occurs, and that the large-scale hurricane
vortex feeds directly from the small scales [6]. Given this, our result that the transition from two- to
three-dimensional dynamics is accompanied by a discontinuous change in the Lyapunov exponent
means that correctly resolving this transition in hurricane models will be necessary for correctly
predicting changes in intensity.

Based on the results of this study into geometrically confined turbulence alone it is not yet
possible to make any definitive claims regarding real-world atmospheric turbulence. However, the
potential applications discussed in the preceding paragraphs suggest that further study of transitions
in turbulence through the lens of predictability should be carried out. It is known that transitions
between two- and three-dimensional turbulence occur in both rotating and stratified flows. Consid-
ering the transition in these cases from the point of view of triadic interactions presents a different
picture than in the problem studied here. In our simulations, the flow is geometrically confined in an
artificial way by varying the height of the domain, resulting in certain triads being removed entirely
from the flow. This is not the case in rotating and stratified flows, where the effects of rotation and
stratification will progressively damp certain triads. It is then possible that the predictability of these
flows around the transition will not show the same behavior as seen in thin-layer turbulence. Given
that these flows better approximate true atmospheric turbulence than the problem studied in this
work, understanding their predictability will allow more concrete claims to be made regarding the
potential applications discussed here.

A final caveat to consider when interpreting the findings presented here is the range of ap-
plicability of the Lyapunov exponent in numerical weather forecasting. In the atmosphere it is
the large-scale dynamics that determine long-term predictability, hence, predictability is found
beyond the timescale defined by the maximal exponent [48]. However, for local, short timescales,
predictability is dominated by the nonlinear dynamics of the system and thus the Lyapunov exponent
is a useful measure. Hence, for the next generation of high-resolution numerical weather prediction
models, particularly those used in nowcasting, the transitions in predictability as measured via the
maximal Lyapunov exponent may become important to accurately resolve. For a more in-depth
discussion of some of these points see [55] and [56].

To summarize, we have studied the behavior of the maximal Lyapunov exponent in thin-layer
turbulence through the use of direct numerical simulation. Using this exponent, we have measured
the point at which the flow transitions from a bidirectional energy cascade to a purely inverse
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energy cascade. This point was found to occur at Q/
√

Re ≈ 0.25 when measured from Lyapunov
exponent data, which is in agreement with the value obtained via more standard methods [14]. The
nature of the transition when viewed through the Lyapunov exponent is abrupt and discontinuous.
As the maximal exponent is determined by the small-scale features of the flow, it is not sensitive
to the transition from a purely forward cascade to a bidirectional cascade. This suggests the short
time predictability of such bidirectional cascade systems is as in three dimensions. However, near
the transition to a purely inverse cascade the potentially discontinuous nature of the transition
leaves the possibility for dramatic changes of the predictability time in this region. Our results
demonstrate that, almost paradoxically, the predictability of a system can change discontinuously
even when other quantities, such as the energy, vary smoothly. As such, studying this transition
via the Lyapunov exponent provides a complementary approach and highlights the importance of
resolving these effects in future models of atmospheric predictability.

ACKNOWLEDGMENTS

This work used the Cirrus UK National Tier-2 HPC Service at EPCC [57] funded by the Uni-
versity of Edinburgh and EPSRC (EP/P020267/1). This work has used resources from ARCHER
[58] via the Director’s Time budget. D.C. and A.A are supported by the University of Edinburgh.
D.J.B is supported by the Carnegie Trust for the Universities of Scotland. A.B. acknowledges partial
funding from the UK Science and Technology Facilities Council.

[1] A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large
Reynolds numbers, Cr Acad. Sci. URSS 30, 301 (1941).

[2] A. N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a
viscous incompressible fluid at high Reynolds number, J. Fluid Mech. 13, 82 (1962).

[3] R. H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids 10, 1417 (1967).
[4] G. Nastrom, K. Gage, and W. Jasperson, Kinetic energy spectrum of large-and mesoscale atmospheric

processes, Nature (London) 310, 36 (1984).
[5] H. Xia, D. Byrne, G. Falkovich, and M. Shats, Upscale energy transfer in thick turbulent fluid layers, Nat.

Phys. 7, 321 (2011).
[6] D. Byrne and J. A. Zhang, Height-Dependent Transition from 3-D to 2-D Turbulence in the Hurricane

Boundary Layer, Geophys. Rev. Lett. 40, 1439 (2013).
[7] M. N. Izakov, Large-scale quasi-two-dimensional turbulence and a inverse spectral flux of energy in the

atmosphere of Venus, Solar System Res. 47, 170 (2013).
[8] R. Young and P. Read, Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer,

Nat. Phys. 13, 1135 (2017).
[9] A. Celani, S. Musacchio, and D. Vincenzi, Turbulence in More than Two and Less than Three Dimensions,

Phys. Rev. Lett. 104, 184506 (2010).
[10] K. Seshasayanan, S. J. Benavides, and A. Alexakis, On the edge of an inverse cascade, Phys. Rev. E 90,

051003(R) (2014).
[11] S. J. Benavides and A. Alexakis, Critical transitions in thin layer turbulence, J. Fluid Mech. 822, 364

(2017).
[12] L. Biferale, M. Buzzicotti, and M. Linkmann, From two-dimensional to three-dimensional turbulence

through two-dimensional three-component flows, Phys. Fluids 29, 111101 (2017).
[13] S. Musacchio and G. Boffetta, Split energy cascade in turbulent thin fluid layers, Phys. Fluids 29, 111106

(2017).
[14] A. van Kan and A. Alexakis, Condensates in thin-layer turbulence, J. Fluid Mech. 864, 490 (2019).
[15] L. M. Smith, J. R. Chasnov, and F. Waleffe, Crossover from Two- to Three-Dimensional Turbulence,

Phys. Rev. Lett. 77, 2467 (1996).

054612-10

https://doi.org/10.1017/S0022112062000518
https://doi.org/10.1063/1.1762301
https://doi.org/10.1038/310036a0
https://doi.org/10.1038/nphys1910
https://doi.org/10.1002/grl.50335
https://doi.org/10.1134/S0038094613020044
https://doi.org/10.1038/nphys4227
https://doi.org/10.1103/PhysRevLett.104.184506
https://doi.org/10.1103/PhysRevE.90.051003
https://doi.org/10.1017/jfm.2017.293
https://doi.org/10.1063/1.4990082
https://doi.org/10.1063/1.4986001
https://doi.org/10.1017/jfm.2019.29
https://doi.org/10.1103/PhysRevLett.77.2467


CHAOTIC MEASURE OF THE TRANSITION BETWEEN …

[16] L. M. Smith and F. Waleffe, Transfer of energy to two-dimensional large scales in forced, rotating three-
dimensional turbulence, Phys. Fluids 11, 1608 (1999).

[17] A. Sozza, G. Boffetta, P. Muratore-Ginanneschi, and S. Musacchio, Dimensional transition of energy
cascades in stably stratified forced thin fluid layers, Phys. Fluids 27, 035112 (2015).

[18] K. Seshasayanan and A. Alexakis, Critical behavior in the inverse to forward energy transition in two-
dimensional magnetohydrodynamic flow, Phys. Rev. E 93, 013104 (2016).

[19] M. Buzzicotti, H. Aluie, L. Biferale, and M. Linkmann, Energy transfer in turbulence under rotation,
Phys. Rev. Fluids 3, 034802 (2018).

[20] T. Pestana and S. Hickel, Regime transition in the energy cascade of rotating turbulence, Phys. Rev. E 99,
053103 (2019).

[21] Z. Qin, H. Faller, B. Dubrulle, A. Naso, and W. J. T. Bos, Transition from non-swirling to swirling
axisymmetric turbulence, Phys. Rev. Fluids 5, 064602 (2020).

[22] A. Alexakis and L. Biferale, Cascades and transitions in turbulent flows, Phys. Rep. 767-769, 1 (2018).
[23] G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge,

1953).
[24] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130 (1963).
[25] D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys. 20, 167 (1971).
[26] T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Approach to Turbulence

(Cambridge University Press, Cambridge, 2005).
[27] E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002).
[28] A. Berera and R. D. J. G. Ho, Chaotic Properties of a Turbulent Isotropic Fluid, Phys. Rev. Lett. 120,

024101 (2018).
[29] G. Boffetta and S. Musacchio, Chaos and Predictability of Homogeneous-Isotropic Turbulence, Phys.

Rev. Lett. 119, 054102 (2017).
[30] P. Mohan, N. Fitzsimmons, and R. D. Moser, Scaling of Lyapunov exponents in homogeneous isotropic

turbulence, Phys. Rev. Fluids 2, 114606 (2017).
[31] A. Berera and D. Clark, Information production in homogeneous isotropic turbulence, Phys. Rev. E 100,

041101(R) (2019).
[32] D. Clark, L. Tarra, and A. Berera, Chaos and information in two-dimensional turbulence, Phys. Rev.

Fluids 5, 064608 (2020).
[33] P. Butera and G. Caravati, Phase transitions and Lyapunov characteristic exponents, Phys. Rev. A 36, 962

(1987).
[34] L. Caiani, L. Casetti, C. Clementi, and M. Pettini, Geometry of Dynamics, Lyapunov Exponents, and

Phase Transitions, Phys. Rev. Lett. 79, 4361 (1997).
[35] J. Barré and T. Dauxois, Lyapunov exponents as a dynamical indicator of a phase transition, Europhys.

Lett. 55, 164 (2001).
[36] R. D. J. G. Ho, A. Armua, and A. Berera, Fluctuations of Lyapunov exponents in homogeneous and

isotropic turbulence, Phys. Rev. Fluids 5, 024602 (2020).
[37] B. Gallet and C. R. Doering, Exact two-dimensionalization of low-magnetic-Reynolds-number flows

subject to a strong magnetic field, J. Fluid Mech. 773, 154 (2015).
[38] B. Poujol, A. van Kan, and A. Alexakis, Role of the forcing dimensionality in thin-layer turbulent energy

cascades, Phys. Rev. Fluids 5, 064610 (2020).
[39] G. Benettin, L. Galgani, A. Giorgilli, and J. Strelcyn, Lyapunov characteristic exponents for smooth

dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory,
Meccanica 15, 9 (1980).

[40] D. Ruelle, Microscopic fluctuations and turbulence, Phys. Lett. A 72, 81 (1979).
[41] A. Crisanti, M. H. Jensen, G. Paladin, and A. Vulpiani, Predictability of velocity and temperature fields

in intermittent turbulence, J. Phys. A 26, 6943 (1993).
[42] K. Ohkitani, Log–corrected energy spectrum and dimension of attractor in two–dimensional turbulence,

Phys. Fluids A 1, 451 (1989).
[43] R. H. Kraichnan, Inertial-range transfer in two- and three-dimensional turbulence, J. Fluid Mech. 47, 525

(1971).

054612-11

https://doi.org/10.1063/1.870022
https://doi.org/10.1063/1.4915074
https://doi.org/10.1103/PhysRevE.93.013104
https://doi.org/10.1103/PhysRevFluids.3.034802
https://doi.org/10.1103/PhysRevE.99.053103
https://doi.org/10.1103/PhysRevFluids.5.064602
https://doi.org/10.1016/j.physrep.2018.08.001
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1007/BF01646553
https://doi.org/10.1103/PhysRevLett.120.024101
https://doi.org/10.1103/PhysRevLett.119.054102
https://doi.org/10.1103/PhysRevFluids.2.114606
https://doi.org/10.1103/PhysRevE.100.041101
https://doi.org/10.1103/PhysRevFluids.5.064608
https://doi.org/10.1103/PhysRevA.36.962
https://doi.org/10.1103/PhysRevLett.79.4361
https://doi.org/10.1209/epl/i2001-00396-3
https://doi.org/10.1103/PhysRevFluids.5.024602
https://doi.org/10.1017/jfm.2015.232
https://doi.org/10.1103/PhysRevFluids.5.064610
https://doi.org/10.1007/BF02128236
https://doi.org/10.1016/0375-9601(79)90653-4
https://doi.org/10.1088/0305-4470/26/23/034
https://doi.org/10.1063/1.857413
https://doi.org/10.1017/S0022112071001216


DANIEL CLARK et al.

[44] G. Sahoo, A. Alexakis, and L. Biferale, Discontinuous Transition from Direct to Inverse Cascade in Three-
Dimensional Turbulence, Phys. Rev. Lett. 118, 164501 (2017).

[45] P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, New
York, 2015).

[46] L. F. Richardson, The supply of energy from and to atmospheric eddies, Proc. R. Soc. London A 97, 354
(1920).

[47] H. Fujisaka and T. Yamada, A new intermittency in coupled dynamical systems, Prog. Theor. Phys. 74,
918 (1985).

[48] E. N. Lorenz, The predictability of a flow which possesses many scales of motion, Tellus 21, 289 (1969).
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