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In this work, a data-driven wall model for turbulent flows over periodic hills is developed
using the feedforward neural network (FNN) and data from wall-resolved large-eddy
simulation (WRLES). To develop a wall model applicable to different flow regimes, the
flow data in the near-wall region at all streamwise locations are grouped together as the
training data set. In the developed FNN wall models, we employ the wall-normal distance,
near-wall velocities, and pressure gradients as input features and the wall shear stresses
as output labels, respectively. A priori tests on the prediction accuracy and generalization
capacity of the trained FNN wall model are carried out by comparing the predicted wall
shear stresses with the WRLES data from the same cases for model training and the
cases with different Reynolds numbers and hill geometries. For the instantaneous wall
shear stress, the FNN predictions show an overall good agreement with the WRLES data
with some discrepancies observed at locations near the crest of the hill. The correlation
coefficients between the FNN predictions and WRLES predictions are larger than 0.7 at
most streamwise locations. For the mean wall shear stress, the FNN predictions agree
very well with WRLES data. A posteriori test is also carried out. A good performance is
observed for the turbulent channel flow case. Discrepancies between the predictions from
the wall-modeled LES and the WRLES are observed for the periodic hill case.
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I. INTRODUCTION

Separation and reattachment in turbulent flows over curved surfaces exist in numerous envi-
ronmental and industrial processes, e.g., underwater vehicle, fuselages at high incidence, curved
ducts, and stalled wings and turbine blades. Such flows are difficult to predict accurately using
the Reynolds-averaged Navier-Stokes (RANS) method due to nonequilibrium spatial and temporal
fluctuations, although it is widely used in engineering applications. On the other hand, large-eddy
simulations, which directly solve energetic turbulence scales, model the subgrid scales, and are
significantly less computational expensive than direct numerical simulation (DNS) [1–3], provide
a feasible way for simulating complex turbulent flows with separation and reattachment at a
reasonable cost. However, it is still not applicable to employ wall-resolved large-eddy simulation
(WRLES) in the design and optimization of high Reynolds number turbulent flow problems in real
life because of the extremely high resolution needed to resolve the viscous scale near the wall
[2,4]. To reduce the computational cost of WRLES, wall models are employed in the literature
[5,6] to avoid the need to resolve the small-scale turbulence in the near-wall region, providing a
feasible way for LES of wall-bounded flows at high Reynolds number. However, most existing
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wall models [7,8] based on equilibrium hypothesis are incapable of predicting flow separations
and reattachments. The development of machine learning methods [9,10] and the availability
of high-resolution data from experiments and high-fidelity simulations provide another possible
approach for developing advanced wall models for complex turbulent flows. As the first step, in
this work we develop the wall models based on neural networks for turbulent flows over periodic
hills.

We first briefly review different wall models developed in the literature. In wall-modeled LES
(WMLES), the turbulent flow near the wall is described by a wall-layer model with its influence
on the outer flow represented by appropriate boundary conditions. The wall-stress model is the
most widely used one in the literature, in which the wall shear stress is computed and provided
as boundary conditions for outer flow simulations. Different models have been developed in the
literature for computing wall shear stress, which include the equilibrium-stress model and zonal
model (also dubbed as the two-layer model) [8]. The algebraic equilibrium-stress models assume a
constant-stress layer near the wall [11] and calculate the wall shear stress using the law of the wall of
deterministic form [7]. The algebraic model has the advantage of low computational cost, but it can-
not accurately predict the wall shear stress in nonequilibrium flows, for which the equilibrium-stress
hypothesis is no longer valid. The zonal model, on the other hand, solves the thin-boundary-layer
equation (TBLE) on an embedded grid between the first grid point and the wall. Wang and Moin
[12] systematically studied the efficacy of zonal models and found that the instantaneous wall shear
stress cannot be accurately predicted when the nonequilibrium terms are ignored or the pressure
gradient term is only considered. Later, the dynamic zonal models were proposed, which adjust
mixing-length eddy viscosity in TBLE, and were shown to be able to predict low-order turbulence
statistics [13,14]. Park [15] applied two standard zonal models, a nonequilibrium and an equilibrium
one, to predict the flow over a wall-mounted hump, and found that the nonequilibrium model gives
better predictions of the mean velocity and force on the wall in the region with flow separation and
reattachment. The integral wall model was also developed in the literature [16], which introduces an
additional linear term into the equilibrium logarithmic velocity profile and accounts for near-wall
nonequilibrium effects by solving the vertically integrated momentum equation. However, this
model has only been tested in applications in which the nonequilibrium effects is insignificant.
Lozano-Durán et al. [17] investigated the performance of three different wall models, an equilibrium
one [18] and two nonequilibrium ones [14,16], for a nonequilibrium three-dimensional channel flow.
They found that increasing the degree of modeling complexity reduces the errors in WMLES of the
considered flow. Besides the wall-stress type models, the virtual-wall model was also developed by
aligning the slip velocity in the integrated TBLE on the virtual wall [19,20]. It has been demon-
strated to be capable of capturing the quantitative features of a separation-reattachment turbulent
boundary-layer flow at low to moderately large Reynolds numbers. However, the identification of
virtual wall in a virtual-wall model is challenging for flows with complex geometries. Recently, the
dynamic slip wall model was developed [21,22] to model the wall shear stress from the derivation
of the LES equations using a differential filter, but its accuracy is sensitive to the subgrid-scale
(SGS) models and numerical methods. The conventional wall models have been applied to dif-
ferent kinds of flows [8,23–25], but they still cannot accurately predict the flow separation and
reattachment. Advanced wall models accounting for such nonequilibrium effects has yet to be
developed.

Thanks to the exponential growth in computing power, the increasing amount of high-fidelity data
provides a possibility to develop data-driven wall models to resolve the above issues. The data-based
approaches, particularly the machine learning (ML) method, have been applied to various turbulence
problems, e.g., the development of turbulence models [26,27], temporal prediction of turbulence
[28,29], and reconstruction of the turbulent flow fields [30,31]. For the applications of the ML
method in developing RANS models, Ling et al. [26] presented a deep neural network for RANS
turbulence modeling on an invariant tensor basis [32]. Xiao and coworkers [33,34] developed a
physics-informed ML framework to learn Reynolds stress discrepancies between RANS and DNS.
Duraisamy et al. [9] reviewed in detail the recent developments of RANS turbulence models based
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on ML. As for LES models, the ML has been applied to model the SGS stresses in different flows
including the turbulent channel flows [35], two-dimensional decaying turbulence [36], and isotropic
turbulence [27] and to model the SGS scalar flux [37]. For the wall-bounded turbulent flows, the ML
was also employed to develop wall models [38], which is the major concern of this work. Recently,
Yang et al. [39] developed a wall-stress model for LES of turbulent channel flow using DNS
data and physics-informed neural networks. They found that the trained wall model outperforms
the conventional equilibrium wall model in simulating the three-dimensional boundary-layer flow,
which can be considered to have a nonequilibrium effect. A similar neural network was then applied
to spanwise rotating turbulent channel flows with a discussion on the performance of physics-based
and data-based approaches [40]. However, to the best of our knowledge, the nonequilibrium effects,
e.g., pressure gradients, curvature, and separation, which are important for complex turbulent flows
in engineering applications, have not been fully taken into account in the existing data-driven wall
model and need to be systematically investigated.

Characteristics of complex wall-bounded turbulent flows depends on the geometry of the bound-
ary and the corresponding boundary conditions. Development of a data-driven nonequilibrium
wall model applicable to different types of turbulent flows requires a significant amount of data
of different flows, which is beyond the scope of this work, will be carried out in our future
work. An attempt to develop such a data-driven wall model framework has been carried out by
Lozano-Durán and Bae [41], which includes a predictor of wall models trained using different
data and a classifier giving a confidence value for different types of flows. The flow over periodic
hills, in which the flow is featured by separation from a curved surface, recirculation, reattachment,
and strong pressure gradient, is an ideal generic test case for developing statistical closures for
separated flow [42]. Different wall models have been applied to simulate the flow over periodic
hills. For instance, Temmerman et al. [43] applied the equilibrium wall models to simulate the
flow over periodic hills and found that the sensitivity of the solution to the SGS model is less than
that to grid resolution and wall model. Furthermore, they demonstrated that the WMLES cannot
accurately predict the flow separation, reattachment, and related statistics. To simulate the flow
over periodic hills, Manhart et al. [44] proposed an extended inner scaling for the wall layer of
wall-bounded flows under the influence of both wall shear stress and adverse pressure gradient.
Duprat et al. [45] constructed a different wall model based on the simplified TBLE, which takes
into account both the streamwise pressure gradient and the Reynolds stresses effects, and applied
it to simulate the flow over periodic hills. It was shown that their proposed model yields good
results for predictions of first-order statistics and reproduction of flow separation. To investigate in
detail the separation and reattachment process, Breuer et al. [46] carried out numerical and wind
tunnel experiments of the flow over periodic hills at various Reynolds numbers in the range of 100
to 10 595. Rapp and Manhart [47] experimentally investigated the flow over periodic hills at four
Reynolds numbers ranging from 5600 to 37 000. Krank et al. [48] carried out DNS of the flow
over periodic hills at Reynolds number 10 595, which is the highest fidelity to date. Moreover, Xiao
et al. [49] constructed benchmark data sets for the flow over periodic hills by performing DNS
with varying flow configurations to alleviate the lack of data for training and testing data-driven
models.

The objective of this work is to develop a data-driven wall model for the flow over periodic
hills using the feedforward neural network (FNN) and WRLES data. The data sets employed for
training the model consist of flow field data in the near-wall flow region at all streamwise locations
with different flow features. To train the FNN wall model, we employ the wall-normal distance,
near-wall velocities, and pressure gradients as input features and the wall shear stresses as output
labels, respectively. The trained wall model is evaluated using the data from different snapshots and
spanwise slices for both training and testing data sets.

The rest of the paper is organized as follows: In Sec. II, WRLES of the flow over periodic hills is
briefly described, which is followed by the procedure for preparing data sets for training and testing
FNN models. Then the feedforward neural network is introduced and trained in Sec. III. At last,
conclusions from this work are drawn in Sec. V.
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II. DATA GENERATION AND PREPARATION

A. Data generation using wall-resolved large-eddy simulation

In this section, we describe the numerical method and the case setup for generating the data
employed for developing a data-driven wall model, which can take into account the nonequilibrium
effects, e.g., flow separation and reattachment, for turbulent flows over periodic hills.

We employ the VIRTUAL FLOW SIMULATOR (VFS-WIND) [50,51] code for WRLES of turbulent
flows over periodic hills. The VFS code has been successfully applied to industrial and environmental
turbulent flows [52–59]. In the VFS-WIND code, the governing equations are the three-dimensional
unsteady spatially filtered incompressible Navier-Stokes equations in nonorthogonal, generalized
curvilinear coordinates shown as follows:
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where xi and ξ i are the Cartesian and curvilinear coordinates, respectively, ξ i
l = ∂ξ i/∂xl are the

transformation metrics, J is the Jacobian of the geometric transformation, ui is the ith component
of the velocity vector in Cartesian coordinates, U i = (ξ i

m/J )um is the contravariant volume flux,
gjk = ξ

j
l ξ k

l are the components of the contravariant metric tensor, ρ is the fluid density, μ is the
dynamic viscosity, and p is the pressure. In the momentum equation, τi j represents the anisotropic
part of the subgrid-scale stress tensor, which is modeled by the dynamic eddy viscosity subgrid-scale
model,

τi j − 1
3τkkδi j = −2νt Si j, (2)

where Si j is the filtered strain-rate tensor and νt is the eddy viscosity calculated by

νt = C�2|S|, (3)

where C is the model coefficient calculated dynamically using the procedure of Germano et al. [60],
|S| =

√
2Si jSi j , and � = J−1/3 is the filter size, where J−1 is the cell volume.

The governing equations are spatially discretized using a second-order accurate central differ-
encing scheme, and integrated in time using the fractional step method. An algebraic multigrid
acceleration along with generalized minimal residual method (GMRES) solver is used to solve the
pressure Poisson equation. A matrix-free Newton-Krylov method is used for solving the discretized
momentum equation. More details about the flow solver can be found in Refs. [50,61,62].

The three different periodic hill geometries with varying slopes considered in this work are
depicted in Fig. 1. The baseline geometry is shown in Fig. 1(a) with the computational domain
and the employed curvilinear mesh on a x-y plane, which has been extensively employed in
experiments [46,47] and numerical simulations [42,43,48]. Different slopes of the hill are obtained
by multiplying a factor to the width of the hill as in the literature from Xiao et al. [49], shown in
Appendix A. As seen, for the baseline geometry, the height of the hill is h, with a flat wall placed
2.036h above the crest of the hill, and the distance between the crests of two hills is Lx = 9h. In
the spanwise direction, the size of the computational domain is Lz = 4.5h for all the cases. The
Reynolds number based on the bulk velocity Ub, which is defined as Ub = Q/[ρLz(Ly − h)] (where
Q is the mass flux), and the height of the hill is Reh = ρUbh/μ. No slip boundary condition is
applied at the top wall and the surface of the hills. In the streamwise and spanwise directions,
periodic boundary condition is applied. The flow is driven by a pressure gradient uniformly applied
to whole domain to maintain a constant mass flux.

In this work, the WRLES of flow over periodic hills at three Reynolds numbers are carried
out for the training and testing of data-driven wall model, as shown in Table I. For Reh = 5600
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FIG. 1. Schematic of the periodic hill geometry with different steepness and the time-averaged flow fields
for (a) the baseline periodic hill geometry with computational domain (Lx = 9.0h, Ly = 3.036h, Lz = 4.5h)
and the employed curvilinear mesh on a x-y plane (on which every fifth grid line is displayed), (b) schematic
of different hill geometries obtained by multiplying a factor α to the width of the baseline geometry (grey
line) for the green line α = 0.5 and the blue line α = 1.5, respectively, and (c) the contours of time-averaged
streamwise velocity and streamlines from the WRLES case at Reh = 10595 for different values of α.

and 19 000, only the baseline geometry is considered, while for Reh = 10 595, simulations with
all three geometries are carried out. The data sets from cases 1 and 3 are employed for training
the data-driven wall model, with others for model testing. The computational domain of flow over
periodic hills is discretized using a body-fitted curvilinear grid, as shown in Fig. 1(a). The height
of the first off-wall grid nodes in wall units, �y+ = �yccuτ /ν, is in the range of 0.056 to 3.95 at
Reh = 10595 as shown in Fig. 17 in Appendix B. Here, �ycc = �y/2 is half the height of the first
off-wall grid, uτ = √

τw/ρ denotes the friction velocity, and ν = μ/ρ.
The size of time step is �t = 0.01h/Ub. The simulation is first carried out for about 22T (flow-

through time T = Lx/Ub) for the flow to achieve a fully developed state. Then the flow is further
simulated for about 50T for time-averaged quantities and flow-field data on slices for training the
data-driven wall model.

To validate the employed numerical method and case setup, we compare the profiles of the
mean velocity, Reynolds shear stress, turbulence kinetic energy, and the skin friction and pressure
coefficients computed in this work with the results from measurements [43] and DNS by Krank
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TABLE I. Parameters for the WRLES cases carried out in this work, where α denotes different hill
geometries (Fig. 1) and �ycc is the height of the first off-wall grid node.

Case Reh Mesh (Nx × Ny × Nz) α �t �ycc/h

1 5600 297 × 193 × 187 1.0 0.01 0.0015
2 (Hill_S) 10595 267 × 193 × 187 0.5 0.01 0.0015
3 10595 297 × 193 × 187 1.0 0.01 0.0015
4 (Hill_L) 10595 327 × 193 × 187 1.5 0.01 0.0015
5 19000 460 × 300 × 290 1.0 0.005 0.00075

et al. [48] and demonstrate an overall good agreement as shown in Appendix B for validating the
employed numerical method and case setup.

B. Data preparation

The WRLES data are further processed to prepare the data for training the data-driven wall
model. In WMLES, the wall shear stress is often computed using the velocity at the first off-wall grid
node or nodes further away from the wall to avoid the log-layer mismatch [63]. If the data-driven
model is developed using the velocity at a specific location, it may only be applicable to grids of
fixed grid spacing. Moreover, if the wall model is developed using the data at a certain streamwise
location, e.g., the location where the flow is attached or the location where flow separation occurs, it
may only be valid for a certain flow condition. To avoid these two issues, we are devoted to develop
a data-driven wall model applicable to different spatial resolutions and not limited to certain flow
conditions using the data in the near-wall region of the periodic hills at all streamwise locations.
Specifically in this work, the flow data in the near-wall region with wall-normal distance in the
range of 0.006 � η/h � 0.1 are employed, where η denotes the wall-normal coordinate. The top
boundary of the region at η/h = 0.1 is determined considering that the flow field above is less
correlated with the wall shear stress and is usually well-resolved by WMLES. It is noticed that the
region with η/h < 0.1 is defined as the inner layer for a turbulent channel flow, where h is the half
width of the channel. The bottom boundary at η/h = 0.006 is defined to preclude the effects of
viscous sublayer and with the consideration that no wall model is needed if the viscous scale is
resolved.

A step-by-step diagram for preparing the training data is shown in Fig. 2. Saving the three-
dimensional flow fields at every time step, which requires a significant amount of disk space, is
not feasible. Instead, we save the WRLES data at four spanwise (x-y) slices located at z/h = 0.0,
1.125, 2.25, and 3.375, respectively. To make the most of the WRLES data and meanwhile keep the
cost for training the model at a reasonable level (in other words, avoid using the flow fields close
in time, which can be very similar), nine snapshots of the instantaneous flow fields are extracted on
each slice for one flow-through time. In total, we obtain 450 snapshots for all 50 flow-through times
at each Reynolds number. It is preferred that the data in z and t employed for model training are
independent from each other. To examine such independence, the correlation coefficient between
two successive snapshots and the correlation coefficient between two neighbor spanwise slices are
computed, which are approximately 0.5 and zero, respectively.

For each snapshot, the flow-field data at different wall-normal locations are further extracted at
Nx − 1 streamwise locations due to periodic boundary condition to include different flow features
along the lower wall of periodic hills. At each streamwise location of the lower wall, the flow-field
data at 95 nodes uniformly distributed in η/h ∈ [0.006, 0.1] are interpolated from the surrounding
grid nodes to form 95 pairs of input-output data along the wall-normal direction. Finally, the
flow-field data along the wall-normal direction at different streamwise locations for all considered
spanwise slices and snapshots form the complete training and testing data sets, which contain
approximately 1.8 × 108 input-output pairs. It is noticed that the grid nodes in the wall-normal
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FIG. 2. Schematic diagram of the data preparation from the WRLES data for training the data-driven wall
model. To prepare the data, 450 snapshots covering 50 flow-through times are extracted on four x-y slices
located at z/h = 0.0, 1.125, 2.25, and 3.375. At each snapshot, the flow-field data at 95 locations along the
wall-normal direction in the region 0.006 � η/h � 0.1 are extracted at Nx − 1 streamwise locations using the
triangulation with linear interpolation approach.

(η) direction in general do not coincide with the curvilinear grid nodes employed for solving the
flow. The linear interpolation approach based on triangulation is employed to obtain the flow-field
data at the 95 points along the wall-normal coordinate.

Input features and output labels are critical for the success of data-driven models. The wall shear
stress including the streamwise and spanwise stresses τw,t , τw,s, which are often applied as boundary
conditions for outer flow simulations in WMLES, are employed as the output labels. To prepare the
data set for model training, the wall shear stresses are directly calculated using the WRLES data. As
for the input features, the wall-normal distance η; the three velocity components uw,t , uw,n, and us in
the wall-tangential, wall-normal, and spanwise directions; and the pressure gradients ∂ p

∂wt
, ∂ p

∂wn
in the

wall-tangential and wall-normal directions are employed. It has been shown by Duprat et al. [45]
that using a near-wall scaling defined with the classic friction velocity and the streamwise pressure
gradient can improve the performance of wall models for separated flows. To take into account such
knowledge when constructing the neural networks for data-driven wall models, the wall-normal
distance normalized using the near-wall scale and written in the logarithmic form, i.e., ln(η/y∗),
where y∗ = ν/uτ p, uτ p =

√
u2

v + u2
p , uv = √|νut/η|, up = |(μ/ρ2)(∂P/∂x)|1/3, is employed as the

input feature for training the data-driven wall model. It is noticed that uv is the friction velocity
only if η is located within the viscous sublayer. The same normalization is employed in both model
training and the a priori and a posteriori tests. For each point, to further improve the generality of
the trained model, the pressure gradients are multiplied by η

h before being taken as input features as
suggested by Yang et al. [64].

III. CONSTRUCTION OF DATA-DRIVEN WALL MODELS

A. Feedforward neural network

We use a multi-hidden-layer feedforward neural network (FNN) to establish the relation between
the near-wall flow and the wall shear stress on the surface of periodic hills. As shown in Fig. 3, the
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FIG. 3. Schematic diagram of the feedforward neural network (FNN) with multiple hidden layers.

employed FNN consists of an input layer, multiple hidden layers, and an output layer. Each layer
has a number of neurons, which are computational units that propagate the weighted sums of the
inputs to an activation function and calculate the output. The detailed procedures for calculating the
output based on the input in the FNN is shown in Appendix C, which includes the linear matrix
manipulation of the weight and bias coefficients and the nonlinear mapping using the activation
function.

The activation function used in this paper is the rectified linear unit (ReLU) [65],

f (x) =
{

0, if x < 0,

x, if x � 0.
(4)

The prepared input and output data are normalized using the min-max scaling,

x* = x − xmin

xmax − xmin
. (5)

The loss function is defined as

EWM = 1

Ns

Ns∑
i=1

(Yi − Yi
*)

2 + λ0

2Ns
‖w‖2

2, (6)

where Ns is the number of training samples, w is the weight coefficient, and λ0 is the regularization
rate, which is set to 0.001. The first term in Eq. (6) denotes the mean square error (MSE) between the
FNN output Y* and the labeled output Y from the WRLES. The second term is an L2 regularization
term included to avoid overfitting.

We use the error backpropagation (BP) scheme [56] implemented with TENSORFLOW [57] to train
the FNN by optimizing the weight and bias coefficients to minimize the loss function. The key steps
for FNN training are as follows:

(1) Provide training data to the input layer, propagate data signal forward layer by layer, and
compute the result in the output layer. Details on this step can be found in Appendix C.

(2) Compute the loss function according to Eq. (6) using FNN output and the labeled output.
(3) Adjust the weight and bias coefficients using the gradient descent algorithm,

v = v + �v, �v = −η
∂EWM

∂v
, (7)

where v denotes the weight and bias coefficients in the FNN, and η ∈ (0, 1) denotes the learning
rate, which is dynamically adjusted using the Adam optimizer [66].
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TABLE II. Two sets of cases for examining the effects of different numbers of input features (case set 1)
and different number of neurons (case set 2) on training performance. In this table, “N” denotes the number of
neurons and “H” denotes the number of hidden layers. For both sets of cases, we only consider one output, i.e.,
the wall-tangential shear stress.

No. of inputs (no. per point × no. of points) No. of neurons (no. of hidden layer)

Case set 1 5× (1, 2, 3, 4, 5, 6) N20 (H6)
Case set 2 5 × 3 N3, N5, N10, N20, N50, N100 (H6)

(4) Repeat the above steps until the maximum number of training epochs is achieved or the value
of the loss function is sufficiently small and does not change when increasing the number of epochs.

B. Training of the data-driven wall model

In this section, three sets of cases, i.e., one with different number of input features, another one
with different number of neurons in each hidden layer, and the third one with different number of
output labels, are carried out to evaluate the performance of different setups for training wall model
using FNN and the flow data at Reh = 5600 and 10 595. The key requirement for a wall model
is to accurately predict the wall shear stress. In conventional wall models, the wall shear stress
is determined by an empirical relation (e.g., the power law or the logarithmic law) or simplified
Navier-Stokes equations (e.g., the thin boundary layer equation) using the velocity at one off-wall
grid node (usually the first or the second off-wall node). To compensate for the lack of governing
equations in data-driven wall models, flow-field data at more than one off-wall grid nodes probably
can improve the training efficiency and predictive capability of the model. In the first set of cases, we
test the effects of input features obtained using different numbers of wall-normal points (five inputs
per point) with the distance between two adjacent points 0.03h. How well a data-driven model
represents near-wall turbulence with flow separations and reattachments depends on the complexity
of the employed neural network, i.e., the number of hidden layers and the number of neurons in each
layer. In the second set of cases, we examine the effects of the number of neurons ranging from 3 to
100 on the training performance with fixed number of hidden layers and input features. Details on
these two sets of cases can be found in Table II.

Figure 4 plots the variations of loss with the training epochs for both training and validation data
sets for the two sets of cases. The number of training samples is 1.24 × 107, of which 90% are used
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FIG. 4. The variations of loss with training epochs for both the training and validation datasets for
(a) results from case set 1 with different numbers of input features and (b) results from case set 2 with different
numbers of neurons. In this figure, the numbers after letters “I,” “O,” “H,” and “N” denote the numbers of input
features, output labels, hidden layers, and neurons, respectively.
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TABLE III. The training of two FNN models with different inputs and outputs.

FNN Input Output HL size

FNN-1 [ln(η/y∗), uw,t
hwm

, uw,n
hwm

, ∂ p
∂wt

hwm
h , ∂ p

∂wn

hwm
h ] × 3 τw,t

H6-N20
FNN-2 [ln(η/y∗), uw,t

hwm
, uw,n

hwm
, us

hwm
, ∂ p

∂wt

hwm
h , ∂ p

∂wn

hwm
h ] × 3 τw,t , τw,s

as the training data set and the remaining 10% are used as the validation data set, and the batch size
is 2 × 105. Initially, the loss is large because the weight coefficients are randomly set and the bias
coefficients are set to zero. Then, the weight and bias coefficients are adjusted and the loss rapidly
decreases during the first few epochs. After the initial stage, the loss tends to approach a steady
small value after approximately 1000 training epochs.

In Fig. 4(a), the loss in the FNN model I5-O1 (only using input features at one wall-normal
point) is significantly worse than in the other models: The loss at 6000 epochs is about 1.5 times
larger than others, while the values of loss from the models using input features at more than one
point are similar to each other. This indicates that only using the input features at one point is not
sufficient to accurately model the complex near-wall turbulence encountered in this periodic hill
case, while adding just one point can significantly improve the training performance. To ensure
the training performance without increasing the computational cost in the meantime, we choose 15
input features from three wall-normal points for case set 2 and other cases in this work. Figure 4(b)
compares the loss of FNN models with different number of neurons. If no overfitting occurs, more
neurons employed is correlated with smaller loss. In this work, we use 20 neurons for the proposed
FNN wall model.

To consider the influence of output labels on the FNN training, the models FNN-1 with only one
output label (τw,t ) and FNN-2 with two output labels (τw,t , τw,s) are trained, validated, and tested.
The settings of the two FNN wall models are shown in Table III. As for the first of the input features,
we did a test comparing the loss function when using ln(η/y∗) with that using η/y∗. It is observed
that the value of loss function from the case using ln(η/y∗) is smaller than that from the case using
η/y∗. As for the model performance, no significant improvement is observed when using ln(η/y∗)
compared with η/y∗. Figure 5 shows the variations of loss with training epochs for FNN-1 and
FNN-2. It can be observed that including the spanwise wall shear stress as the output label has some
effects on the model training process for epochs less than 100 but little influence on the final loss of
tangential wall shear stress.

epochs

lo
ss

10
0

10
1

10
2

10
310
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10
-2

10
-1

FNN-1: Train
             Validation
FNN-2: Train_Tangential
             Validation_Tangential
             Train_Spanwise
             Validation_Spanwise

H6-N20
(b)

FIG. 5. The variations of loss with training epochs for both the training and validation data sets for FNN-1
and FNN-2.
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IV. EVALUATION OF DATA-DRIVEN WALL MODELS

A. Accuracy test

To evaluate the prediction accuracy of the trained FNN wall model, we apply it to predict the
wall shear stress for different snapshots and spanwise slices for both training data sets and testing
data sets obtained from the cases with Reh = 5600 and 10 595.

We first evaluate the FNN wall models for predicting wall shear stresses using the training
dataset. In Fig. 6, we show the comparison of the instantaneous friction coefficient (which is defined
as Cf = τw/ 1

2ρU 2
b ) at an instant, the correlation coefficient ρFNN-LES between the instantaneous wall

shear stress predicted by the FNN model and the WRLES, and the error ετ of the instantaneous wall
shear stress predicted by the FNN model relative to the WRLES predictions. Here, the correlation
coefficient ρτ is defined as

ρτ =
〈(
τ FNN
w − 〈

τ FNN
w

〉)(
τLES
w − 〈

τLES
w

〉)〉
〈(
τ FNN
w − 〈

τ FNN
w

〉)2〉1/2〈(
τLES
w − 〈

τLES
w

〉)2〉1/2 , (8)

where 〈 〉 denotes the average over snapshots.
To further assess the prediction accuracy of FNN model on the fluctuations of wall shear stress

over time, we define the instantaneous relative error ετ as follows:

ετ =
〈∣∣τ FNN

w − τLES
w

∣∣∣∣〈τLES
w

〉∣∣
max

〉
, (9)

where |〈τLES
w 〉|max denotes the peak value of averaged wall shear stress among all the streamwise

locations. The relative error of the time-averaged wall shear stress, which will be shown in Fig. 7(d),
is defined as follows:

ε〈τ 〉 =
〈
τ FNN
w

〉 − 〈
τLES
w

〉∣∣〈τLES
w

〉∣∣
max

. (10)

As seen in Figs. 6(a) and 6(b), the instantaneous skin friction coefficient Cf predicted by the
FNN model in general agrees with that from WRLES at most streamwise locations. Many sharp
peaks are observed in streamwise variation of the instantaneous wall shear stress. The trained FNN
wall model is observed being able to predict these abrupt variations at most streamwise locations,
although the peak amplitude is underpredicted at some locations, e.g., at x/h ≈ 0.18 for this instant
for the Reh = 10 595 case. It is also noticed that the wall-tangential component of wall shear stress
predicted by the FNN-1 and FNN-2 almost collapse with each other. Moreover, the spanwise
component of the wall stress predicted by the FNN-2 model is also in good agreement with the
WRLES predictions. In Figs. 6(c)–6(d), it is observed that the correlation coefficients are larger
than 0.7 and the instantaneous relative errors are smaller than 0.1 at almost all streamwise locations
except near the crest of the hill at x/h = 0.2 and x/h = 8.5 (where the correlation coefficient is
around 0.6 and the instantaneous relative error is around 0.15), indicating that the large temporal
fluctuations there are not well captured by the FNN model. It is noticed that correlation coefficient
for the spanwise wall shear stress is similar with that of the tangential wall shear stress although the
magnitude of the instantaneous spanwise wall shear stress is one order of magnitude smaller than
the tangential component, which makes it difficult to train the corresponding FNN model for both
components.

In Fig. 7, we evaluate the capability the FNN model in predicting the mean wall shear stress and
the standard deviation of wall shear stress. As seen in Fig. 7(a), the mean skin friction coefficients
at both Reh = 5600 and 10 595 predicted by the FNN models (i.e., FNN-1 and FNN-2) are in
perfect agreement with WRLES results at all streamwise locations. The mean spanwise wall shear
stress component, on the other hand, is close to zero for both FNN-2 and WRLES predictions (not
shown in the figure). In Figs. 7(b) and 7(c), we compare the normalized standard deviations of the
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FIG. 6. Evaluation of the FNN wall model using the training data set for [(a), (b)] comparison of instanta-
neous skin friction coefficients computed by different FNN wall models with that from WRLES; (c) correlation
coefficients [Eq. (8)] of instantaneous wall shear stresses between the predictions from the FNN wall models
and the WRLES; (d) relative error [Eq. (9)] for different FNN wall models for instantaneous snapshots on the
x-y slice located at z/h = 0.0.
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FIG. 7. Evaluation of the FNN wall model using the training data set for (a) comparison of the time-
averaged skin friction coefficients computed by different FNN wall models with that from WRLES; [(b), (c)]
normalized standard deviations of the wall shear stresses computed by the FNN models and the WRLES; and
(d) relative error [Eq. (10)] based on the time-averaged wall shear stress for different FNN wall models on the
x-y slice located at z/h = 0.0.
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temporal fluctuations of wall shear stresses predicted by the FNN models with those from WRLES.
It is observed that the FNN predictions are smaller than the WRLES predictions for both tangential
and spanwise components. Interestingly, it is observed that the standard deviation of the spanwise
shear stress is similar with the tangential component although its instantaneous value is one order of
magnitude smaller than the tangential component. Figure 7(d) shows the error of time-averaged wall
shear stress predicted by the FNN model relative to that from WRLES. It is seen that the absolute
values of the errors are smaller than 0.05 at most streamwise locations, except at locations close to
the crest of the hill.

Overall, we have shown that both FNN-1 and FNN-2 wall models can accurately predict the
instantaneous and time-averaged wall shear stresses for the training data set. Next, we will evaluate
the performance of the FNN wall models using the testing data set, which is obtained from a
different x-y slice (located at z/h = 2.25) from the cases with Reh = 5600 and 10 595 from the
training data set.

In Fig. 8, we first evaluate the capability of the FNN models in predicting the instantaneous
wall shear stress using the testing data set. As seen in Figs. 8(a) and 8(b), both tangential and
spanwise instantaneous skin friction coefficients predicted by the FNN models are in an overall
good agreement with the WRLES predictions except for some sharp peaks. Figures 8(c) and 8(d)
show the correlation coefficient and relative error between the FNN and LES predictions. As seen in
the range of x/h = 1 to 8.5, the correlation coeffcients are in general larger than 0.7 and the relative
errors are smaller than 0.1 for both tangential and spanwise components. At locations close to the
crest of the hill, lower coefficients and larger errors are observed especially close the separation
point for the spanwise component.

In Fig. 9, we compare the mean skin friction coefficients (averaged over snapshots), the standard
deviations of the fluctuations and the time-averaged relative error of wall shear stresses predicted by
different FNN wall models. As seen in Fig. 9(a), good agreements between the FNN and WRLES
predictions at Reh = 5600 and 10 595 are obtained for the mean friction coefficients for both FNN
models. For the standard deviations of the wall shear stresses, the predictions by the FNN models
are significantly smaller than those from WRLES for both tangential and spanwise components. In
Fig. 9(d), the relative errors are smaller than 0.05 at most streamwise locations, which are close to
the results in the training data set.

B. A priori test of FNN wall model

To further evaluate the generalization capacity of the FNN wall model, we perform the a priori
test of the FNN wall models using cases with different Reynolds numbers and hill geometries.

First, the trained FNN wall models are applied to the testing data set at Reh = 19 000.
Figures 10 and 11 evaluate the predictive capability of the FNN models on the instantaneous

and mean wall shear stresses, respectively. We first examine the predictions of the instantaneous
skin friction coefficient. As shown in Fig. 10(a), the FNN predictions are consistent with those from
WRLES at most streamwise locations. The correlation coefficients [Fig. 10(b)] of instantaneous
wall shear stresses between the FNN and LES predictions are also observed to be in general larger
than 0.6, in the range of x/h = 1 to 8.5, although they are somewhat smaller than those computed
using the training data set. The instantaneous relative errors are then examined in Fig. 10(d). It is
observed that the magnitude of the errors are slightly larger than those in training data set, but still
smaller than 0.1 at most streamwise locations.

Here we examine the performance of the FNN models for predicting the mean skin friction
coefficient. As seen in Fig. 11(a), the mean skin friction coefficients at Reh = 19 000 predicted
by the FNN-2 model are in good agreement with WRLES results at all streamwise locations.
Some discrepancies are observed between the FNN-1 predictions and the WRLES predictions,
highlighting the importance of having spanwise wall shear stress as one of the output labels. As
expected, the mean spanwise wall shear stress component is close to zero for both FNN model
predictions and WRLES predictions. Similar with those observed in the cases with Reh = 5600 and
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FIG. 8. Evaluation of the FNN wall model using the testing data sets at Reh = 5600 and 10 595 for [(a), (b)]
comparison of instantaneous skin friction coefficients computed by different FNN wall models with that from
WRLES; (c) correlation coefficients of instantaneous wall shear stresses between the predictions from the FNN
wall models and the WRLES predictions; (d) relative error for different FNN wall models for instantaneous
snapshots on the x-y slice located at z/h = 2.25.
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FIG. 9. Evaluation of the FNN wall model using the testing data sets at Reh = 5600 and 10 595 for
(a) comparison of the time-averaged skin friction coefficients computed by different FNN wall models with
that from WRLES; [(b), (c)] normalized standard deviations of the wall shear stresses computed by the FNN
models and the WRLES; and (d) relative error based on the time-averaged wall shear stress for different FNN
wall models on the x-y slice located at z/h = 2.25.

054610-16



WALL MODEL BASED ON NEURAL NETWORKS FOR LES …

x/h

C
f

0 1 2 3 4 5 6 7 8 9
-0.03

0

0.03

0.06

Tangential: WRLES

                   FNN-1

                   FNN-2

Spanwise: WRLES

                  FNN-2

Reh=19000 & z/h =2.25 & tUb/h=100
(a)

x/h

� �

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Tangential: FNN-1
                  FNN-2
Spanwise: FNN-2 Reh=19000 & z/h =2.25

(b)

x/h

� �

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

Tangential: FNN-1
                  FNN-2
Spanwise: FNN-2

Reh=19000 & z/h =2.25
(c)

FIG. 10. Evaluation of the FNN wall model using the testing dataset at Reh = 19 000 for (a) comparison
of instantaneous skin friction coefficients computed by different FNN wall models with that from WRLES;
(b) correlation coefficients of instantaneous wall shear stresses between the predictions from the FNN wall
models and the WRLES predictions; and (c) relative error for different FNN wall models for instantaneous
snapshots on the x-y slice located at z/h = 2.25.

10 595, the normalized standard deviations of wall shear stress fluctuations predicted by the FNN
models are smaller than those from WRLES, as shown in Fig. 11(b). In Fig. 11(d), the relative errors
of the time-averaged wall shear stress are smaller than 0.1 at most streamwise locations, which are
slightly larger than those computed using the training data set. It is also noticed that the magnitude
of the relative error for the predictions from the FNN-2 model is smaller than that from the FNN-1
model especially at locations around x/h = 8.4.

At last, we present the evaluation results for cases with different hill geometries. The length
of the separation bubble increases as the hill becomes steeper (shown in Fig. 1). For these cases,
the performance of the FNN-2 model is observed to be better than that of the FNN-1 model, with
the results from the latter not presented in this paper. In Fig. 12, it is seen that the FNN-2 model
accurately predicts the mean skin friction coefficients although the peak value of Cf is somewhat
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FIG. 11. Evaluation of the FNN wall model using the testing data set at Reh = 19 000 for (a) comparison
of the time-averaged skin friction coefficients computed by different FNN wall models with that from WRLES;
(b) normalized standard deviations of the wall shear stresses computed by the FNN models and the WRLES;
and (c) relative error based on the time-averaged wall shear stress for different FNN wall models on the x-y
slice located at z/h = 2.25.

underpredicted for the hill geometry with α = 0.5, with the relative errors between the predictions
from the FNN-2 model and the WRLES of less than 0.1 except for the location close to the hilltop
on the windward side, as shown in Fig. 12(c). In Fig. 12(b), it is seen that the correlation coefficients
of the instantaneous wall shear stress between the predictions from the FNN model and the WRLES
are in general larger than 0.6. These evaluation results demonstrate the good generalization capacity
of the trained FNN wall models for different hill geometries with different separation patterns.

C. A posteriori test of FNN wall model

In this section, the trained FNN wall model is evaluated in the actual WMLES, i.e., a posteriori
test, where the velocity and pressure computed in WMLES are employed as the input features
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FIG. 12. Evaluation of the FNN wall model for cases with different hill geometries for (a) comparison of
the time-averaged skin friction coefficients computed by the FNN models with that from WRLES, (b) corre-
lation coefficients of the instantaneous wall shear stresses between the predictions from the FNN wall models
and the WRLES, and (c) relative error of the time-averaged wall shear stress for the FNN wall models on the
x-y slice located at z/h = 0.0.

in the FNN wall model with the predicted wall shear stress in turn affecting the solution of the
WMLES. In the present WMLES, the wall shear stress and the nonpenetration boundary conditions
are employed for the wall-parallel and wall-normal velocity components, respectively. Two different
wall models are considered, i.e., the FNN wall model developed in this work and the Werner-Wengle
(WW) model [67]. Details of the implemented WW model can be found in Appendix D. In the WW
model, the velocity at the first off-wall grid node is employed for computing the wall shear stress.
In the FNN wall model, the input features computed at y f , y f + 0.03h, and y f + 0.06h away from
the wall are employed for computing the wall shear stress.

Two cases are considered, the flow over periodic hills, which is the major objective of this
work, and the turbulent channel flow, which is simple with no flow separation and reattachment but
challenging because the turbulent channel flow data are not employed for training the FNN model.
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FIG. 13. Comparison of the mean streamwise velocity obtained from WMLES with different wall models
with DNS for turbulent channel flows for (a) Reτ = 1000 and (b) Reτ = 5200 (the DNS data are from the
Johns Hopkins turbulence databases [68]).

1. Turbulent channel flow

In this subsection, we evaluate the predictive capability of the developed FNN wall model in
simulating the turbulent channel flows.

The dimensions of the channel are 7.0δ, 2.0δ, and 3.5δ in the streamwise, vertical, and spanwise
directions, respectively, where δ is the half-height of the channel. Two different Reynolds numbers
are considered, i.e., Re = Ubδ/ν = 19 999 and 1.25 × 105, where Ub is the bulk velocity, which
correspond to the Reynolds number based on the friction velocity, Reτ = uτ δ/ν = 1000 and 5200,
respectively. In WMLES, the channel is discretized with a computational mesh of 32 × 32 × 32,
and the height of the first off-wall grid is set to δ/32.

Figures 13–15 compare the vertical profiles of mean streamwise velocity, the primary Reynolds
shear stress, and turbulent intensities obtained from WMLES with different wall models and the
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FIG. 14. Comparison of the vertical profiles of the primary Reynolds shear stress 〈u′v′〉+ obtained from the
WMLES with different wall models with DNS for turbulent channel flows for (a) Reτ = 1000 and (b) Reτ =
5200.
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FIG. 15. Comparison of the vertical profiles of 〈u′u′〉+, 〈v′v′〉+, and 〈w′w′〉+ obtained from the WMLES
with different wall models with DNS for turbulent channel flows for [(a), (c)] Reτ = 1000 and [(b), (d)]
Reτ = 5200.

DNS data for Reτ = 1000 and 5200. For the FNN wall model, two different cases are considered
with the first interpolation point located at different locations from the wall, i.e., y f /δ = 0.04, 0.08.
The profiles of DNS are downloaded from the Johns Hopkins turbulence databases [68], reported
by Lee and Moser [69]. As shown in Fig. 13, the mean streamwise velocities predicted by the FNN
and the WW wall models agree well with those from the DNS. As for the primary Reynolds shear
stress shown in Fig. 14, the FNN wall model gives better predictions than the WW model for the case
with Reτ = 1000, but overestimates the magnitude for the case with Reτ = 5200. For the turbulence
intensities shown in Fig. 15, the results from the FNN wall model are in good agreement with those
from the WW model, while both of them overestimate the streamwise and spanwise components
and underestimate the vertical component in the near-wall region, respectively, when compared to
the DNS results. In the outer region, the predictions from the WMLES with the FNN wall model
are in better agreement with the DNS results. Furthermore, it is observed that the predictions from
the FNN wall model with different y f are minor for different components of turbulence intensities.

2. The flow over periodic hills

In this subsection, we present the a posteriori test of the FNN wall model for the flow over
periodic hills. Only the case at Reh = 10 595 with the baseline geometry is considered. The number
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FIG. 16. Comparison of vertical profiles from the WMLES with WW and FNN wall models and
the WRLES of flow over periodic hills for (a) time-averaged streamwise velocity 〈u〉, (b) time-averaged
vertical velocity 〈v〉, (c) primary Reynolds shear stress 〈u′v′〉, and (d) turbulence kinetic energy k =
1
2 〈u′u′ + v′v′ + w′w′〉.

of grid nodes is Nx × Ny × Nz = 112 × 32 × 64. The grid spacings near the crest of the hill are
�x/h = 0.08 and �y/h = 0.03 in the streamwise and vertical directions, respectively.

Figure 16 compares the vertical profiles of turbulent statistics from the WMLES with WW and
FNN wall models with the WRLES results. The FNN wall model is applied to both the lower and
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upper walls. Large discrepancies are observed for the profiles of velocity, Reynolds shear stress, and
turbulence kinetic energy at different streamwise locations for both wall models for the employed
grid.

There are several different reasons causing the poor performance of the FNN wall model in the
a posteriori test of the periodic hill case. First, the input features, i.e., the instantaneous velocity
and pressure field in the near-wall region, from the WMLES are different from those from the
WRLES. The instantaneous flow fields from WMLES, which are affected by the SGS model,
the wall model, the grid resolution, the discretization schemes, and others, are not the same as
the filtered instantaneous flow fields from WRLES. Second, only using the wall shear stress
boundary condition for the outer flow may not be enough for the periodic hill case. Near the region
of flow separation or reattachment, the wall shear stress, which is close to zero, probably cannot
fully represent the effect of near-wall layer on the outer flow. Because of the coupling of the FNN
wall model with the outer flow, it is not easy to examine the two reasons separately.

V. CONCLUSION

As a first step toward developing a general wall model for complex turbulent flows, in this
work we developed a data-driven wall model for LES of flow over periodic hills using the physics-
informed feedforward neural networks and WRLES data.

Data preparation is critical for the success of training data-driven wall models. As the objective of
this work is to develop a wall model that is applicable to different streamwise locations (of different
flow regimes, i.e., attached wall turbulence, flow separation, and reattachment) of the periodic hill,
the flow data near the surface of the hill at all streamwise locations are grouped together as the
training data. The wall shear stresses are taken as the output labels. The input features include wall-
normal distance and different components of velocity and pressure gradient at different wall-normal
locations.

Effects of number of input features and number of neurons in the hidden layers on training
performance were tested. It was found that using the flow data at more than two off-wall locations
(in addition to the velocity at the boundary, which is implicitly taken into account) are adequate
for training the data-driven wall model. Further increasing the number of input features does not
improve the convergence rate when training the model. Employing more than 20 neurons in each
hidden layer is found enough for this case. In the data-driven model developed in this work, flow
data at three off-wall locations are employed as input features with 20 neurons for each hidden layer.
Two different wall models, i.e., one using only the tangential wall shear stress as the output label
(FNN-1), and the other one using both wall shear stress components as the output labels (FNN-2),
are tested.

The prediction accuracy and generalization capacity of the trained FNN wall model were exam-
ined by comparing the predicted wall shear stresses with the WRLES data. The instantaneous wall
shear stresses predicted by the FNN wall model show an overall good agreement with the WRLES
data with some discrepancies observed at locations near the crest of the hill. For the mean wall shear
stress, the predictions from the FNN wall models agree very well with WRLES data. However, the
standard deviations of the fluctuations of the wall shear stress are underpredicted by the FNN wall
model. Furthermore, it is noticed that the predictions from the two models, i.e., FNN-1 and FNN-2,
are very similar with each other for the Reh = 5600 and 10 595 cases, which are employed for
training the model. For the Reh = 19 000 case and the cases with different hill geometries, for which
the flow data are not employed for training the model, the FNN-2 model is observed performing
better than the FNN-1 model. In summary, good performance and generalization capacity are
observed in the a priori test of the developed FNN wall models.

Finally, the FNN wall model is applied to the WMLES of flow over periodic hills and turbulent
channel flows, as the a posteriori test. For the turbulent channel flow cases, overall good agreements
are obtained for the mean streamwise velocity, the primary Reynolds shear stress, and the turbulent
intensities. For the flow over periodic hills, discrepancies between the FNN predictions and the
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WRLES data are observed for different flow quantities. Reasons causing this poor performance are
analyzed. An in-depth analysis on this issue, which is being carried out, will be presented in our
future paper.
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APPENDIX A: DETAILS OF THE HILL GEOMETRY

The coordinates of the baseline hill geometry consists of six segments, described by the following
piecewise functions [49,70]:

ŷ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min (1, 1 + 2.42 × 10−4x̂2 − 7.588 × 10−5x̂3), x̂ ∈ [0, 0.3214],
0.8955 + 3.484 × 10−2x̂ − 3.629 × 10−3x̂2 + 6.749 × 10−5x̂3, x̂ ∈ [0.3214, 0.5],
0.9213 + 2.931 × 10−2x̂ − 3.234 × 10−3x̂2 + 5.809 × 10−5x̂3, x̂ ∈ [0.5, 0.7143],
1.445 − 4.927 × 10−2x̂ + 6.95 × 10−4x̂2 − 7.394 × 10−6x̂3, x̂ ∈ [0.7143, 1.071],
0.6401 + 3.123 × 10−2x̂ − 1.988 × 10−3x̂2 + 2.242 × 10−5x̂3, x̂ ∈ [1.071, 1.429],
max(0, 2.0139−7.18×10−2x̂+5.875×10−4x̂2+9.553×10−7x̂3), x̂ ∈ [1.429, 1.929],

(A1)
where x̂ = x/h and ŷ = y/h are normalized horizontal and vertical coordinates, respectively.

As for the hill geometries with varying slopes, the variables x̂ are substituted with x̂/α in
Eq. (A1). The hill geometries in Fig. 1 are obtained from setting α = 0.5, 1.0, and 1.5 and the
fixed interhill distance (5.142h) of the bottom flat wall.

APPENDIX B: DETAILS ON THE EMPLOYED GRID AND VALIDATION
OF THE PRESENT WRLES CASE

In this Appendix, we show some details on the employed grid and validate the employed VFS-
WIND code and the case setup for simulating turbulent flows over periodic hills at Reh = 10595 by
comparing our WRLES results with the DNS results by Krank et al. [48] (896 × 448 × 448 grid
points). Figure 17 shows the distribution of the grid spacings in wall units for x and y direction
along the lower wall, where �x+ = �xuτ /ν denotes the streamwise grid spacing in wall unit. The
height of the first off-wall grid nodes in wall units, �y+, is in the range of 0.056 to 3.95.
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FIG. 17. Distribution of the grid spacings in wall units for x and y direction along the lower wall.
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FIG. 18. Comparison of vertical profiles from the present WRLES with DNS data from Krank et al. [48]
for (a) time-averaged streamwise velocity 〈u〉, (b) time-averaged vertical velocity 〈v〉, (c) primary Reynolds
shear stress 〈u′v′〉, and (d) turbulence kinetic energy k = 1

2 〈u′u′ + v′v′ + w′w′〉.

In Fig. 18, we plot the vertical profiles of the time-averaged streamwise velocity 〈u〉 and vertical
velocity 〈v〉, primary Reynolds shear stress 〈u′v′〉, and turbulence kinetic energy k. As seen, the
WRLES results are in good agreement with the DNS results [48] except for some minor differences
observed in the Reynolds shear stress and the turbulence kinetic energy (with the relative error less
than 12%). Figure 19 shows the comparison of the skin friction coefficient Cf and the pressure
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FIG. 19. Comparison of (a) skin friction coefficient and (b) pressure coefficient at the lower wall between
the present WRLES and DNS by Krank et al. [48].

coefficient Cp. Again, the Cf and Cp from the present WRLES agree very well with the DNS
predictions.

APPENDIX C: FEEDFORWARD NEURAL NETWORK

The detailed procedures for calculating the output based on the input in the FNN are described
in this Appendix.

The input layer is

X = [
x1, x2, . . . , xnI

]T
, (C1)

where xi denotes the ith input feature and nI is the number of neurons in the input layer. The matrices
of weight and bias coefficient connecting the input layer and the hidden layer are

W1 =

⎡
⎢⎢⎢⎢⎢⎣

w1
1,1 w1

1,2 · · · w1
1,nI

w1
2,1 w1

2,2 · · · w1
2,nI

...
...

. . .
...

w1
nH ,1 w1

nH ,2 · · · w1
nH ,nI

⎤
⎥⎥⎥⎥⎥⎦, B1 =

⎡
⎢⎢⎢⎣

b1
1

b1
2
...

b1
nH

⎤
⎥⎥⎥⎦, (C2)

where w1
i, j (i = 1, 2, . . . , nH ; j = 1, 2, . . . , nI ) denotes the weight coefficient connecting the ith

neuron in the hidden layer and the jth neuron in the input layer, b1
i denotes the bias coefficient

for the ith neuron in the hidden layer, nH is the number of neurons in the hidden layer. Initially, the
weight coefficients are set to be random numbers from truncated normal distribution (0.0 mean and
0.1 standard deviation) and the bias coefficients are set to zero.
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The output of the hidden layer is

HT = f (W1X + B1) = [
h1, h2, . . . , hnH

]T
, hi = f

(
nI∑

j=1

w1
i, jx j + b1

i

)
, (C3)

where f denotes the activation function to carry out the nonlinear mapping of the FNN, and the
superscript “T” denotes the transpose of matrix. After the data transmission of multiple hidden
layers, the matrices of weight and bias coefficient connecting the last hidden layer and the output
layer are

WL+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

wL+1
1,1 wL+1

1,2 · · · wL+1
1,nH

wL+1
2,1 wL+1

2,2 · · · wL+1
2,nH

...
...

. . .
...

wL+1
nO,1 wL+1

nO,2 · · · wL+1
nO,nH

⎤
⎥⎥⎥⎥⎥⎥⎦

, BL+1 = [
bL

1, bL+1
2 , . . . , bL+1

nO

]
, (C4)

where wL+1
i j (i = 1, 2, . . . , nO; j = 1, 2, . . . , nH ) denotes the weight coefficient connecting the ith

neuron in the output layer and the jth neuron in the Lth hidden layer, bL+1
i denotes the bias

coefficient for the ith neuron in the output layer, and nO is the number of neurons in the output
layer.

The output of the FNN is calculated by

Y* = WL+1HT + BL+1 = [
y∗

1, y∗
2, . . . , y∗

nO

]
, y∗

i =
nH∑
j=1

wL+1
i j h j + bL+1

i . (C5)

APPENDIX D: THE CELL-INTEGRATED FORM OF THE WW WALL MODEL

In this Appendix, the employed WW model is described. In the WW model, the wall shear stress
is computed based on the linear profile and the power law for the viscous sublayer and above,
respectively, as follows:

u+ =
{

y+, y+ � y+
C ,

A(y+)B, y+ > y+
C ,

(D1)

where A = 8.3, b = 1/7, y+
C = A1/(1−B), u+ = u/uτ , and y+ = yuτ /ν. The velocity varies signifi-

cantly in the first off-wall grid cell, i.e., the law of the wall changing from the one for the viscous
sublayer to that for the logarithmic region. This means that the velocity of the first-wall grid cell
can be treated differently. One way is to consider the velocity at the center of the first off-wall cell
as the velocity at the cell center location, i.e., the pointwise approach; the other way is to treat it as
the mean averaged over the cell (i.e., the cell-integrated form) as follows:

Up

uτ

= 1

�y+

∫ �y+

0
u+(y+)dy+, (D2)

where Up denotes the velocity at the center of the first off-wall cell, and �y+ = �yuτ /ν denotes the
wall-normal grid size in wall unit. Substituting Eq. (D1) into Eq. (D2), the expression for the wall
shear stress is obtained as follows:

|τw| =
⎧⎨
⎩

ρ
2ν|Up|

�y , |Up| � ν
2�y A

2
1−B ,

ρ
[

1−B
2 A

1+B
1−B

(
ν

�y

)1+B + 1+B
A

(
ν

�y

)B|Up|
] 2

1+B
, |Up| > ν

2�y A
2

1−B .

(D3)

The cell-integrated form of the WW model shown in Eq. (D3), which was shown to have a better
performance than the pointwise approach [43], is employed in this work.
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