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We studied turbulence induced by the Rayleigh-Taylor (RT) instability for two-
dimensional (2D) immiscible two-component flows by using a multicomponent lattice
Boltzmann method with a Shan-Chen pseudopotential implemented on graphics processing
units. We compare our results with the extension to the 2D case of the phenomeno-
logical theory for immiscible 3D RT turbulence studied by Chertkov and collaborators
[Phys. Rev. E 71, 055301 (2005)]. Furthermore, we compared the growth of the mixing
layer, typical velocity, average density profiles, and enstrophy with the equivalent case but
for miscible two-component fluid. In both the miscible and immiscible cases, the expected
quadratic growth of the mixing layer and the linear growth of the typical velocity are
observed with close long-time asymptotic prefactors but different initial transients. In the
immiscible case, the enstrophy shows a tendency to grow like ∝ t3/2, with the highest
values of vorticity concentrated close to the interface. In addition, we investigate the
evolution of the typical drop size and the behavior of the total length of the interface in
the emulsionlike state, showing the existence of a power-law behavior compatible with our
phenomenological predictions. Our results can also be considered as a validation step to
extend the application of the lattice Boltzmann tool to study the 3D immiscible case.
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I. INTRODUCTION

When a heavy fluid is accelerated against a lighter fluid, the so-called Rayleigh-Taylor (RT)
instability can develop [1,2], which eventually leads to a mixing layer with a turbulent motion called
Rayleigh-Taylor turbulence. In this process, the two fluids seek to reduce the total potential energy
of the system [3]. The turbulent regime is relevant in many different contexts, for example in the
understanding of the Earth’s climate, in the nuclear fusion process [4,5], and as a key mechanism
for thermonuclear flames in some types of supernovae [6,7]. In the context of classical fluids, the
incompressible Rayleigh-Taylor turbulence has important properties [8], one of the most important
of which is the quadratic growth of the mixing layer width. In some cases, important connections
have been found with classical theories of turbulence for simple fluids [9–11].

Physical experiments of the RT instability have shown some challenges due to the difficulty of
sustaining an unstable density stratification necessary to set up the appropriate initial conditions for
the instability [3,12–14]. Despite this limitation, considerable advances in numerical simulations
of the Rayleigh-Taylor instability have been verified in the past few decades, especially in the
context of systems with miscible fluids [8,10,15–18]. Only a few works have been dedicated to the
immiscible case [3,19–23], and most of them are devoted to the early stages of the instability with
little information about the state of developed turbulence. One of the reasons for this is the highly
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complicated pattern formed by the interfaces that appear in the immiscible case, originating high
gradients and singularities in the solutions, which is a source of challenging numerical instabilities
in many numerical methods for multicomponent fluids. Some works tried to close the dynamics in
terms of effective equations for the interface; see [24,25] for a recent discussion.

With respect to the theoretical aspects of the immiscible RT turbulence, it is only recently
that a consistent phenomenological study of the effects of surface tension has been proposed by
Chertkov and collaborators [26]. It followed the earlier work in Ref. [10], where a phenomenological
theory was developed for two- and three-dimensional miscible RT turbulence in the Boussinesq
approximation. Said work considers a three-dimensional (3D) scenario, in which the direct energy
cascade happens in a range of scales limited by the mixing layer width (integral scale) and the
viscous (Kolmogorov) scale, both dependent on time. In the two-dimensional case, the lack of
energy and enstrophy cascades leads to the assumption of Bolgiano-Obukhov theory describing
the cascade of temperature fluctuations in the inertial range [27,28]. Reference [26] described the
theory of three-dimensional immiscible RT turbulence, studying the effects of surface tension in an
emulsionlike state and predicting the rate of growth for the typical drop size.

In the present paper, we extend the phenomenological theory of Ref. [26] for two-dimensional
immiscible RT turbulence assuming the Boussinesq approximation, which is valid in the limit of
small density variations [29,30]. This extension includes predictions for the growth of the total
length of the interface and the typical drop size. We also provide predictions for the evolution of
the enstrophy in the miscible and immiscible cases, which have not been addressed earlier. These
predictions are tested using numerical simulations based on the multicomponent lattice-Boltzmann
method with the Shan-Chen pseudopotential model [31,32]. In the immiscible case, this method
is able to accurately overcome the inherent numerical complexity caused by the complicated
structure of the interface that appears in the fully developed turbulent regime [3,19,33]. This method
also allows parallel implementations in many situations, which is very important for statistical
analyses that require a substantial number of simulations, as in our numerical verification for the
phenomenological predictions. We run several parallel simulations of RT turbulence on graphics
processing units (GPUs) using CUDA with a computational grid of resolution 10 000 × 5000.

This paper is organized as follows. Section II describes the basic equations for the classical
Rayleigh-Taylor system, miscible and immiscible, characterizing the Boussinesq approximation and
including the surface tension effects. In Sec. III we describe the multicomponent lattice-Boltzmann
method with the Shan-Chen pseudopotential model, and we show how to approach the Boussinesq
approximation with this method. In Sec. IV we construct phenomenological predictions for the mix-
ing layer, typical velocity, and averaged density profile, with the respective numerical verifications,
showing a direct comparison between the miscible and immiscible cases. Section V is dedicated to
the phenomenological properties of the interface. In the first part of that section, we investigate the
evolution of the typical drop size and total length of the interface in the emulsionlike state, and at the
end we study the evolution of enstrophy. The statistics for the enstrophy are also used to understand
the influence of the interface on small-scale statistics and to verify the validity of the assumption of
the Bolgiano-Obukhov regime in our phenomenology. Section VI provides some conclusions and
perspectives.

II. IMMISCIBLE AND MISCIBLE RAYLEIGH-TAYLOR SYSTEMS

An interface between two fluids of different densities becomes unstable when a heavier fluid is
placed above a lighter fluid under gravity [34]. In the classical formulation of fluid dynamics, the
flow is described by the incompressible Navier-Stokes equations

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · {
μ

(∇u + (∇u)T
)} + f, ∇ · u = 0, (1)

where u is the fluid velocity depending on spatial coordinates x and time t , p is the pressure, and
ρ and μ are the fluid density and dynamic viscosity. The buoyancy forcing term is f = ρg with
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the acceleration of gravity g. In this work, we study two-dimensional flows with x = (x, y) for two
different physical models describing the immiscible and miscible flows.

The immiscible formulation considers two fluid phases with constant densities and viscosities:
ρ1 and μ1 for the first phase and ρ2 and μ2 for the second phase. We assume that ρ1 > ρ2, i.e.,
the first phase is heavier. The two subdomains occupied by each phase are separated by a moving
interface �(t ). Equations of motion for each phase are given by (1) with the corresponding constant
values of density and viscosity. At the interface, the boundary conditions take the form

x ∈ � : [u]� = 0, u · n = u�,
[−pn + μ

(∇u + (∇u)T
)
n
]
�

= −σκn, (2)

where [·]� denotes the jump of the quantity across the interface, n and u� are the interface normal
vector and velocity, σ is the surface tension, and κ is the interface curvature. The first two conditions
in (2) describe the continuity of fluid velocity and mass conservation, while the last condition
corresponds to the balance of momentum. The no-slip condition, u = 0, is assumed at a rigid
boundary. This condition is the simplest choice for the boundaries, which is also convenient from a
numerical point of view. We stop our simulations before the mixing layer reaches the boundaries.

We assume the Boussinesq approximation, valid for small Atwood numbers A = (ρ1 −
ρ2)/(ρ1 + ρ2) � 1. It corresponds to the density treated as a constant and density variations
affecting only the buoyancy force as

ρ = ρ0, f = −ρ0θ g̃ey, (3)

where ρ0 = (ρ1 + ρ2)/2 is a background density, g̃ = Ag is the effective gravity, ey = (0, 1) is
the unit vector in the vertical direction, and θ is the order parameter equal to 1 in the first phase
and −1 in the second phase. In this formulation, the background value of the buoyancy term ρ0g is
included in the pressure. If viscosities μ1 and μ2 of two components are close, one can use the mean
kinematic viscosity ν = (μ1 + μ2)/(2ρ0). For the study of the Rayleigh-Taylor systems without the
assumption of the Boussinesq approximation, we refer the reader to Refs. [15,35,36].

Initial conditions at t = 0 for the Rayleigh-Taylor system correspond to the fluid at rest, u = 0,
with the heavier (first) phase occupying the upper half-plane y > 0 and the lighter (second) phase
occupying the lower half-plane y < 0. This configuration is an unstable stationary solution: small
perturbations of the interface with wave numbers k <

√
2ρ0Ag/σ grow exponentially with a dis-

persion relation superiorly bounded by λ(k) = −νk2 +
√

gAk − σk3/(2ρ0) + (νk2)2 [16,37,38];
see Fig. 5 in Sec. III. Depending on the values of viscosity and surface tension, this upper bound
can be a good approximation of the actual dispersion relation [3]. In Fig. 5, it is also possible to see
that the main effect of the viscosity is a small reduction of the growth rate of the instability. After an
initial linear growth, such perturbations develop into nonlinear mushroomlike structures evolving
further to the fully developed turbulent mixing layer as shown in Fig. 1.

In the miscible flow, the fluid is modeled by a single phase with a variable density. We write
this density, also assuming the Boussinesq approximation, as ρ = ρ0(1 + Aθ ) with the Atwood
number describing a typical amplitude of density variations. The function θ (x, t ) describing density
variations satisfies the transport equation

∂θ

∂t
+ u · ∇θ = ∇ · (D∇θ ), (4)

where D is the diffusion coefficient. In general, both viscous and diffusion coefficients are functions
of density. Analogous formulation arises when the density is considered to be a function of
temperature T , in which case θ = −β(T − T0) with the coefficient of thermal expansion β [29].
In the Boussinesq approximation, one considers a constant density and buoyancy term (3).

The miscible Rayleigh-Taylor instability corresponds to the same initial conditions as the immis-
cible one. It follows a similar scenario, where small perturbations of the interface are amplified first
linearly and then nonlinearly, growing into the developed turbulent mixing layer, as shown in Fig. 2.
The important difference between the immiscible and miscible cases can be seen at small scales.
The immiscible Rayleigh-Taylor turbulence leads to the formation of an emulsionlike state with
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FIG. 1. Mixing layer of the immiscible Rayleigh-Taylor turbulence, where the yellow represents a heavier
phase, and the brown corresponds to a lighter phase. Lower pictures show the phases in the small region
(marked in the center of the main panel) for three different times: the initial linear growth, the formation of
nonlinear mushroomlike structures at intermediate times, and fully developed turbulent mixing at larger times.
Simulations are performed on the grids 10 000 × 5000 in lattice Boltzmann units (LBUs), a simple artificial
set of units with spatial and time steps verifying �t = �x = �y = 1. This set of units is directly connected
with the lattice Boltzmann method described in Sec. III.

a multitude of small bubbles. The miscible Rayleigh-Taylor turbulence develops sharp gradients
leading the enhanced diffusion at small scales.

III. LATTICE BOLTZMANN MODEL

In this section, we describe the two-component lattice Boltzmann method for simulating immis-
cible and miscible Rayleigh-Taylor systems in the Boussinesq approximation; we refer the reader
to Refs. [31,32] for more details (see Figs. 3 and 4). In this method, spatial coordinates and time
take values on the lattice with spacings �x and �t , and the system is described by the interactions
between two species of particles, A and B. Considering the so-called D2Q9 scheme, each particle is
allowed to have nine velocities c0, . . . , c8. These velocities are given by the vectors (0,0), (±c, 0),
(0,±c), and (±c,±c) with c = �x/�t , such that a particle either stays at the same lattice point or
moves to a neighboring lattice point in a single time step. The system is described by the functions
f s
i (x, t ) determining the number of particles of component s = A or B and velocity ci at a given

point and time. The densities of each component and common velocity of the fluid are defined as

ρs(x, t ) =
∑

i

fis(x, t ), u(x, t ) =
∑

s,i f s
i (x, t )ci/τs∑

s ρs(x, t )/τs
, (5)

where s = A, B and i = 0, . . . , 8. The total density is given by the sum ρ = ρA + ρB.
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FIG. 2. Mixing layer of the miscible Rayleigh-Taylor turbulence, where colors describe the fluid density;
lighter colors represent a heavier fluid. Lower pictures show the densities in the small region (marked in the
center of the main panel) for three different times: the initial linear growth, formation of nonlinear mushroom-
like structures at intermediate times, and fully developed turbulent mixing at larger times. Simulations are
performed on the grids 10 000 × 5000 in lattice Boltzmann units (LBUs), a simple artificial set of units with
spatial and time steps verifying �t = �x = �y = 1. This set of units is directly connected with the lattice
Boltzmann method described in Sec. III.

The evolution is governed by the lattice-Boltzmann equations with the Bhatnagar-Gross-Krook
collision term [33]

f s
i (x + ci�t, t + �t ) − f s

i (x, t ) = − 1

τs

[
f s
i (x, t ) − f s(eq)

i (ρs, u + τsFs/ρs)
]
, (6)

where τs and Fs are the relaxation time and the forcing term for component s, respectively. The
right-hand side in (6) describes the relaxation toward the local equilibrium distribution

f s(eq)
i (ρs, u′) = ρswi

(
1 + 3ci · u′

c2
+ 9(ci · u′)2

2c4
− 3u′ · u′

2c2

)
, u′ = u + τsFs

ρs
, (7)

with the lattice sound speed cs = c/
√

3 and constant weights wi. These weights are expressed
through velocity components ci = (c1

i , c2
i ) by the conditions∑

i

wic
a
i cb

i = c2
s δab,

∑
i

wic
a
i cb

i cc
i cd

i = c4
s (δabδcd + δadδbc + δacδbd ) for a, b, c, d = 1, 2, (8)

where δab is the Kronecker delta.
The forcing terms Fs = Fff

s + Ffb
s + Fext

s contain three parts describing the fluid-fluid interaction,
the fluid-boundary interaction, and the external forces. The first is given by the Shan-Chen inter-
molecular force as

Fff
s (x, t ) = −GABρs(x, t )

∑
i

wiρs′ (x + ci�t, t )ci, (9)
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FIG. 3. Components of the velocity field for the immiscible Rayleigh-Taylor flow shown in Fig. 1. The
velocities are indicated in simulation units.

FIG. 4. Components of the velocity field for the miscible Raleigh-Taylor flow shown in Fig. 2. The
velocities are indicated in simulation units.
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with s′ = B and s = A or vice versa. Here, we consider a system without self-interaction, where
the coupling constant GAB controls the interaction between components A and B. The interaction
between fluid and boundary is given by

Ffb
s = −Gsbρs(x, t )

∑
i

wiS(x + ci�t )ci, (10)

where S(x) is the indicator equal to unity at boundary nodes and vanishing otherwise. The parame-
ters GAb and GBb control interactions between fluid components and solid boundary; they relate to
contact angles of fluids in the mixture. External forces are introduced as

Fext
A = −ρAg̃ey, Fext

B = ρBg̃ey, (11)

which yield the buoyancy forces in the Boussinesq approximation, as we will see below.

Implementation details

We choose �x = �t = 1 (considered as lattice-Boltzmann units) in the rectangular domain of
horizontal size Lx = 104 and vertical size Ly = Lx/2. Periodic boundary conditions are assumed in
the horizontal direction with the solid bottom and top boundaries. The bounce-back relation [32,39]
is used for the distribution function f s

i (x, t ) at the solid boundaries for modeling the no-slip condi-
tion. The relaxation time τ = 0.53 is chosen for both components, providing the kinetic viscosity
ν = c2

s (τ − 1/2) = 0.01. In the continuous limit, the lattice Boltzmann system approximates the
coupled Navier-Stokes and Cahn-Hilliard equations [32,40] for the velocity field u(x, t ), the total
density ρ(x, t ), and the order parameter φ(x, t ) = ρA − ρB. For small fluid velocities (small lattice
Mach numbers) |u| � cs, the flow can be assumed incompressible. We consider pure densities of
both fluid components equal to 1.10 and the gravity parameter g̃ = 9 × 10−6. Since changes of the
total density due to pressure variations and mixing are small, we approximate ρ(x, t ) ≈ ρ0 by a
constant. In this case, the Boussinesq buoyancy force (3) agrees with our choice of the external
force (11) for θ = φ/ρ0.

The coupling constant GAB has a critical value with the immiscible (two phase) fluid for stronger
couplings and the miscible (single phase) fluid for weaker couplings. For our immiscible and
miscible models, we select GAB = 0.1381 and 0.0805, respectively. In the interactions with the
boundaries, we use neutral wetting, i.e., GAb = GBb = 0, to minimize the influence of the boundaries
in the simulations. In the immiscible model, two phases are separated by a diffuse interface having
a width of approximately lint ∼ 3 grid nodes. This model approximates the Boussinesq system
(1)–(3) considered at scales much larger than lint with the surface tension σ = 0.0059 obtained from
pressure measurements for large bubbles. Similarly, one recovers the miscible Boussinesq system
(1), (3), and (4) in the continuous limit for small gradients of the order parameter. The diffusion
coefficient can be estimated roughly as D 
 c2

s [(τ − 1/2) − ρτGAB/2] = 0.002 [40]. Though the
diffusion coefficient is a function of the order parameter in a more accurate description, such
dependence is not important for our study based on the phenomenological theory of turbulence.

Simulations are implemented on GPUs of the model NVIDIA Tesla V100 PCIe 32 GB. The
use of a GPU is instrumental to accumulate better statistics with a reasonable amount of time.
Specifically, for our main tests we consider ensembles with 15 simulations on the grids 10 000 ×
5000 for the immiscible and miscible flows performed for different random initial disturbances. For
further quantitative indications on the performances and potentialities of the GPU codes, we refer
the reader to Refs. [41–43]. The choice of the size of the ensembles is motivated by small values
of standard deviations verified in our numerical experiments, indicating a small dependence on the
initial conditions for big computational grids like the ones used by us. For smaller grids and early
stages of turbulence, the influence of initial conditions was studied in [17,44].

We perform a number of additional numerical tests justifying the validity of the lattice Boltzmann
model for the Rayleigh-Taylor instability. In particular, we show that numerical dispersion relations
of the initial linear instability are in agreement with theoretical predictions [3,38]; see Fig. 5. We
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FIG. 5. We show the theoretical upper bound for the dispersion relation λ = −νk2 +√
gAk − σk3/(2ρ0 ) + (νk2)2 [37] for the immiscible RT system (black curve) compared to the results

of lattice Boltzmann simulations (circles) obtained by measuring exponential growth of the maximum
interface displacement for different values of the effective gravity g̃ = Ag. Error bars for fitting are
approximately the size of the data symbols. We also compare with the classical dispersion relation without
viscosity [3], indicated by the blue dashed line, showing that in our case the main effect of the viscosity
is a small reduction in the growth rate of the RT instability. The simulations are performed on grids of
size 512 × 512 with parameters corresponding to the relaxation time τ = 1.0 and interaction parameter
GAB = 1.22, which gives the kinematic viscosity ν = 0.1667 and the surface tension coefficient σ = 0.061.
The numerical experiments considered different values of g̃ for a fixed k = 2π/512.

verify that nonisotropic contributions to the stress tensor due to variations of the order parameter are
small in the miscible case. In the immiscible flow, these contributions grow in time following the
increase of the interface, but they remain small compared to buoyancy and viscous contributions.
Also, numerical anisotropy of the Shan-Chen force generates spurious currents [45,46] within thin
diffuse interfaces, which do not affect most of our measurements but may interfere in the results
for enstrophy, as discussed in the end of Sec. V. A more detailed account of the tests describing
the validity and performance of the numerical method will be given elsewhere. For simulations in
this paper, we initialize the flow by using an equilibrium immiscible configuration and adding a
small random (white-noise) deformation to the interface with an amplitude of four grid points. In
this equilibrium configuration, the first phase consists primarily of component A with about 9% of
component B, and vice versa for the second phase.

IV. EVOLUTION AND SHAPE OF THE MIXING LAYER

In this section, we investigate the large-scale dynamics of the RT mixing layer, comparing its
development in immiscible and miscible flows.

The development of the mixing layer from a small initial perturbation of the straight interface line
is presented in Fig. 1 (immiscible) and Fig. 2 (miscible). The panels in the bottom of these figures
correspond to zooms of a small region in the middle of the computational domain (red rectangles
in the main plots) at different times. They illustrate the initial linear growth of perturbations, which
develop into a nonlinear quasiperiodic pattern with mushroomlike structures. For later times, these
structures break down, forming a fully developed turbulent mixing layer.
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FIG. 6. Definition of the mixing layer as the region between two points, where the averaged component
densities ρA (red) and ρB (black) attain 20% of the total density.

The macroscopic properties of the turbulent mixing layer are described by its width L(t ) and the
large-scale velocity fluctuation U (t ). The latter estimates the velocity of large-scale plumes within
the mixing layer, which yields the relation U (t ) ∼ dL/dt . Phenomenologically, the energy balance
dE/dt ∼ −dP/dt describes the transfer of potential energy P ∝ −AgL into kinetic energy E ∝ U 2;
see, e.g., Ref. [8]. Recall that the Atwood number A characterizes typical density variations, and
we denoted g̃ = Ag in the Boussinesq approximation and the lattice Boltzmann method. The energy
balance provides the relation dU/dt ∼ Ag. Integrating, we obtain the quadratic asymptotic growth
of the mixing layer and linear growth of the velocity fluctuation as

L(t ) ≈ αLAgt2, U (t ) ≈ αUAgt, (12)

where the starting moment is set to t = 0. The two dimensionless parameters αL and αU characterize
the efficiency of the conversion of potential into kinetic energy.

The numerical procedure for the analysis of the mixing layer is illustrated in Fig. 6. Here the
red and black lines show the dependence on the vertical coordinate y for the component densities
ρA(x, t ) and ρB(x, t ) averaged with respect to the horizontal coordinate x. We define the mixing
layer as the region between two points, at which the averaged density of each component reaches
20% of the total density. This definition separates the central region of the mixing layer, cutting
off its most nonhomogeneous outer parts. Then, the large-scale velocity fluctuation is introduced as
U 2 = 〈‖u‖2〉ML, where the averaging is performed within the central region of the mixing layer.

Numerical measurements for the width L(t ) and speed U (t ) of the mixing layer, averaged with
respect to ensembles of realizations, are presented in Fig. 7 for both immiscible and miscible flows.
We associate the beginning of turbulent mixing with the time when mushroomlike structures break
down into a chaotic multiscale mixing layer; see Figs. 1 and 2. In our simulations, turbulent mixing
layers develop roughly at the times t � 4 × 104 in the immiscible case and t � 3 × 104 in the
miscible case. The difference between these initial times can be attributed to the resistance caused
by the surface tension in immiscible flows. All simulations are stopped at times t ≈ 8.5 × 104. For
larger times, the mixing layer may be affected considerably by the top and bottom rigid boundaries.
In terms of the Reynolds number Re = UL/ν, the developed turbulent regime corresponds to
(0.3-2.1) × 104 for the immiscible flow and (0.1-2.1) × 104 for the miscible flow.
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FIG. 7. (a) Width of the mixing layer L(t ) and (b) large-scale velocity fluctuation U (t ) depending on time
for immiscible (bold blue) and miscible (thin red) flows. Shaded areas indicate standard deviations. The inset
in (a) compares the graphs

√
L(t ) in the region of turbulent mixing with the estimated slopes (13) shown by

dotted lines.

To verify the phenomenological predictions (12), we estimate

αL = 1

4AgL

(
dL

dt

)2

, αU = 1

Ag

dU

dt
, (13)

where the derivatives are computed by finite differences. Such relations are more robust numerically
because they are insensitive to shifts of the initial time, t �→ t − t∗, accounting for the early nontur-
bulent development of the mixing layer. The results of computations with formulas (13) are shown
in Fig. 8, demonstrating clear tendencies to constant values in the regions of developed turbulent
mixing. The estimated values are αL = 0.027 ± 0.005 and αU = 0.083 ± 0.007 for immiscible and
αL = 0.033 ± 0.004 and αU = 0.1 ± 0.005 for miscible flows; see also the direct comparison in
the inset of Fig. 7(a). Notice that previous experiments [8,16,35,47] reported the prefactors αL

between 0.01 and 0.06 for the miscible mixing layer, which are compatible with our estimates
taking into account that we use a different definition of L. Our results provide a value of αL in
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FIG. 8. Measurement of the dimensionless prefactors for the immiscible (bold blue) and miscible (thin
red) flows: (a) αL for the mixing layer width and (b) αU for the large-scale velocity fluctuation. Constant values
(dashed lines) are estimated in the regions of turbulent mixing.
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FIG. 9. Density profiles for the component A averaged with respect to horizontal coordinate x and an
ensemble of realizations. The results are shown at three consecutive times t = 4.5 × 104, 7 × 104, and
8.9 × 104. (a) Dependence on the vertical coordinate y. (b) Dependence on the rescaled vertical coordi-
nate y/L(t ) demonstrates self-similarity and universality of the density profile for immiscible and miscible
flows.

the immiscible case slightly lower than those in the miscible situation, see Fig. 8(a), indicating
that the immiscible RT turbulence may be less efficient in the conversion of potential into kinetic
energy; the same conclusions are valid for the other prefactor αU . However, the differences are
small (comparable to standard deviations), which does not exclude the possibility that they are
actually equal for immiscible and miscible flows in the asymptotic limit of an infinitely large
domain. Analogous universality of the mixing layer prefactors with respect to small-scale physics
was observed recently for the Kelvin–Helmholtz instability [48], where Navier-Stokes flows were
compared to a point-vortex model.

Figure 9 shows profiles for the density ρA of component A averaged with respect to the horizontal
coordinate x and an ensemble of realizations. Figure 9(a) shows profiles at three consecutive times
both for immiscible (bold blue) and miscible (thin red) flows. By the dimensional argument leading
to power laws (12), one can also conjecture that the averaged density profiles are self-similar in the
regime of developed turbulent mixing, with the dependence only on the ratio y/L(t ). This conjecture
is supported by Fig. 9(b), where the graphs from the left panel collapse into a single curve when
plotted with respect to the rescaled coordinate y/L(t ). The graphs suggest that the inner region of
the mixing layer develops a linear average density profile with a slope decreasing proportionally to
1/L(t ) ∝ t−2. This linear profile implies statistical homogeneity inside the mixing layer [8,16].
Notice that, up to numerical fluctuations, the self-similar profiles are indistinguishable for the
immiscible and miscible cases. This provides further evidence for the universality of large-scale
properties in the RT turbulence for immiscible and miscible flows.

Self-similarity, homogeneity, and isotropy in the statistical sense [9] are important assumptions
for phenomenological theories derived similarly to Kolmogorov’s theory of turbulence (K41) [49].
For miscible Rayleigh-Taylor systems, the tendency toward isotropy restoration of small-scale
fluctuations has been numerically verified by Refs. [15,50,51] and experimentally by Ref. [12].
The similarities of the statistics between miscible and immiscible RT flows in our experiments
indicate that the same tendency may also happen for the immiscible Rayleigh-Taylor systems,
which motivates the definition of turbulence for the observed late-time behavior. Notice that,
though numerical simulations confirm self-similar RT dynamics, some experiments report on
departures from the canonical turbulence scenario with strong sensitivity to initial conditions;
see, e.g., [44,52,53].
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V. EVOLUTION OF THE INTERFACE IN THE IMMISCIBLE RT TURBULENCE

An intricate evolution of the interface between two phases is the most distinctive feature of
immiscible RT turbulence. In this section, we study the statistical properties of the interface
depending on time and scale, the distribution of drops with respect to their size, and the effects
of the interface on the flow.

The interface evolution with the formation of drop-rich (emulsion) regions is driven by the
velocity fluctuations at small scales. In the RT turbulence, such fluctuations can be described phe-
nomenologically assuming that the dynamics at small scales adjusts in a quasistationary (adiabatic)
manner to the large-scale growth of the mixing layer described by the width L(t ) and velocity
U (t ). In two-dimensional flows, statistics at small scales follows the so-called Bolgiano-Obukhov
scenario [27,28,54], which assumes the balance of buoyancy and nonlinear terms with density
fluctuations cascading toward small scales at a constant rate. For Eqs. (1)–(3), this balance reads
(δru)2/r ∼ Agδrθ , where we denoted coarse-grained velocity fluctuations at scales r by δru and
analogous fluctuations of the order parameter by δrθ . With the estimate εθ ∼ (δrθ )2(δru)/r for
the flux of order-parameter fluctuations, elementary derivation yields the well-known Bolgiano-
Obukhov scaling laws δru ∝ r3/5 and δrθ ∝ r1/5. These laws are valid at scales of the inertial
interval η � r � L limited from below by the viscous (Kolmogorov) scale η, at which viscous
forces must be taken into account. There is also a limitation caused by the interface introducing the
scale � of a typical drop size. We will see later that the interface affects the turbulent fluctuations
considerably at scales r � �.

The change of fluctuations in time is derived using the conditions δru ∼ U (t ) and δrθ ∼ 1 at the
scales r comparable to the size of the mixing layer L(t ). This yields [10]

δru ∼ U (t )
(

r
L(t )

)3/5 ∼ (Ag)2/5 r3/5

t1/5 ,

δrθ ∼
(

r

L(t )

)1/5

∼ (Ag)−1/5 r1/5

t2/5 ,

(14)

where we used relations (12). Note that these scaling laws are only approximate due to the expected
intermittency [8]. The scale r ∼ η(t ) at which viscous and nonlinear terms become comparable is
found as ν(δru)/r2 ∼ (δru)2/r. With the use of (14), this yields [10]

η(t ) ∼ ν5/8

(Ag)1/4
t1/8. (15)

In our simulation, the viscous scale computed by expression (15) stays close to the value η ≈ 4
(four lattice distances) at all times corresponding to turbulent mixing.

Let us denote by � the size of a typical drop (or the typical size of small interface structures)
in the emulsionlike state; see Fig. 10(a). It can be estimated as the scale where kinetic and surface
energy densities are of the same order, ρ0(δ�u)2 ∼ σ/� [10,55]. Using (14), we find

�(t ) ∼ σ 5/11

ρ
5/11
0 (Ag)4/11

t2/11. (16)

This formula is derived under the assumption that the typical drop size �(t ) exceeds the viscous scale
η(t ) given by expression (15). As we show later in Fig. 10(c), a typical drop size in our simulations
is about � ∼ 50, which is an order of magnitude larger than the viscous scale. Therefore, � belongs
to the inertial interval at times corresponding to turbulent mixing.

If typical-sized drops are dense (distances among drops are comparable to their sizes) in the
mixing layer of width L(t ) and horizontal length Lx, the total number of drops is estimated as
N�(t ) ∼ LxL(t )/�2(t ). This yields an estimate for the maximum total length of the interface as
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FIG. 10. (a) Interface between two phases defined as the line of equal component densities, ρA = ρB, for
a typical simulation of immiscible RT turbulence. The inset compares typical drops and their statistical size
estimate (blue circle). (b) Length frequencies for different values of curvature radius R along the whole interface
at a fixed time. We use the logarithmic binning, which corresponds to constructing the PDF for log R. The PDF
maximum determines a typical drop size as � = 2Rmax. The dashed red line corresponds to the theoretical
prediction (18) for the dependence of interface structures on scale, i.e., Lr ∝ 1/R. (c) Temporal dependence of
the typical curvature radius for times corresponding to turbulent mixing, shown in logarithmic scales; the inset
shows the same graph in linear scales. The blue line corresponds to the theoretical prediction � = 2Rmax ∝ t2/11,
which is expected to approximate the data for times bigger than t 
 50 000, corresponding to the turbulent
regime.

Ltot(t ) ∼ N�(t )�(t ) ∼ LxL(t )/�(t ). Using relations (12) and (16), we obtain

Ltot(t )

Lx
∼ ρ

5/11
0 (Ag)15/11

σ 5/11
t20/11. (17)

This expression provides, up to a dimensionless coefficient, a phenomenological estimate for the
growing length of the interface.

At smaller scales, the mean kinetic energy is insufficient for forming a drop. Therefore, drops of
sizes r � � are very rare, being induced by extreme velocity fluctuations. On the contrary, drops
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can form freely at larger scales r � �. Let us denote by Nr the total number of drops having size of
order r. It is estimated similarly to typical-sized drops as Nr (t ) ∼ LxL(t )/r2. The total interface of
such drops, Lr (t ) ∼ Nr (t )r, is expressed using relations (12) as

Lr (t )

Lx
∼ Ag

t2

r
. (18)

Naturally, this length decreases for larger r, and therefore the total length of the interface is
dominated by drops of typical size r ∼ �.

In the numerical simulations, the points of the moving interface �(t ) for an immiscible binary
mixture are commonly given by the equation φ(x, t ) = 0; see Fig. 10(a). This definition assumes
a diffuse interface [31,56] and approximates the actual interface in the sharp interface formulation
given by (1) and (2). Then, the typical drop size can be accessed through the measurements of the
interface curvature radius R = 1/κ , the inverse of the curvature κ . Therefore, we can define the
typical drop size as two times the most frequent curvature radius. This concept was implemented
numerically: we computed the curvature radius for each adjacent pair of small interface segments
at a given time t , and also associated weight using the lengths of the corresponding interface
segments. Then, these data are represented in the form of a histogram with logarithmic binning for
the curvature radius R; see Fig. 10(b). This histogram approximates the (not normalized) probability
density function (PDF) for the values of ln R within the interface. The histogram in Fig. 10(b) has the
well-defined maximum at R = Rmax(t ), and we define the typical drop size as �(t ) = 2Rmax(t ). The
measured value is demonstrated in the inset of Fig. 10(a) by a blue circle of diameter �, providing
a visual validation of our numerical approach. Figure 10(c) presents the measurements of typical
drop sizes at different times shown in logarithmic scale, with the straight line corresponding to
the phenomenological prediction (16). In addition to having a good agreement between theory and
numerical simulations, we are able to estimate the dimensionless prefactor in the expression (16)
as 6.7 ± 0.7. Notice also that the slope of the histogram in Fig. 10(b) to the right of the maximum
value (dashed red line) confirms our prediction (18) for the distribution of drops with respect to
their size. This slope extends to the integral-scale structures with R ∼ L(t ) ∼ 104. At larger values
of R � 105, Fig. 10(b) measures the increased probability of almost flat interface segments; such
segments can be recognized both in Figs. 1 and 10(a).

Figure 11(a) presents the temporal dependence of the total interface length in our simulations,
which is computed using the Cauchy-Crofton formula [57,58]. Its logarithmic derivative (with
logarithms to the base 10) is shown in Fig. 11(b), demonstrating a well-established power law in
the regime of turbulent mixing. The measured exponent of this power law is equal to 1.64 ± 0.07
(dashed horizontal line), which is rather close to and slightly below its theoretical estimate of 20/11
(solid horizontal line) from Eq. (17). The difference between these exponents may be attributed
to our theoretical assumption that typical-sized drops are dense in the mixing layer. The lower
numerical value of the exponent implies that typical-sized drops get more sparse at larger times.

In the final part of this section, we study the influence of the interface on the properties of the flow.
Namely, we will show that the immiscible RT turbulence generates a considerably larger enstrophy
compared to the miscible flow, and that the source of this extra enstrophy is confined within a small
neighborhood of the interface.

The phenomenological estimate for fluctuations of vorticity ω = ∇ × u in the inertial range is
obtained using expression (14) as

δrω ∼ δru

r
∼ (Ag)2/5

r2/5t1/5
. (19)

Vorticity fluctuations increase at smaller scales and attain the maximum at the viscous scale r ∼
η(t ). Thus, the total enstrophy of the flow �(t ) can be estimated as a product of (δηω)2 and the size
of the mixing layer L(t )Lx. Using expression (12) for L(t ) and (15) for η(t ), we derive the power
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FIG. 11. (a) Time dependence for the total interface length Ltot averaged over an ensemble of 10 immiscible
RT simulations; the shaded region shows standard deviations. (b) Logarithmic derivative of the previous graph,
d (logLtot )/d (log t ), indicating the power-law dependence in the turbulent regime (t � 4.5 × 104) with the
exponent 1.64 ± 0.07 shown by a dashed horizontal line. The solid horizontal line shows the phenomenological
estimate (upper bound) 20/11 for the same exponent.

law for the enstrophy � in the form

�

Lx
∼ (δηω)2L(t ) ∼ (Ag)2

ν1/2
t3/2. (20)

Numerical verification of this relation is presented in Figs. 12(a) and 12(b). In the first figure, we
plot the total enstrophy as a function of time for the immiscible (bold blue) and miscible (thin red)
flows, and the second figure shows their logarithmic derivatives, demonstrating a good agreement
with the phenomenological exponent 3/2 (a horizontal line). Note that ν ≈ 0.01 and D ∼ 0.002 in
our miscible simulations, which implies that the particle diffusion does not affect the inertial range.

It is apparent from Fig. 12(a) that, despite the power-law exponents being the same in both
immiscible and miscible cases, the dimensionless prefactor is considerably larger for the immiscible
flow. We now argue that this difference can be attributed to the flow in a small neighborhood of the
interface. Figure 12(c) shows the vorticity field for the immiscible flow; it corresponds to a small
area of 667 × 467 lattice points marked by the rectangle in the center of Fig. 1 and amplified in its
right small panel. Visually, it is clear that a considerable part of the high vorticity is concentrated
near the interface. For comparison, we present the vorticity field for the miscible case in Fig. 12(d),
which corresponds to a small area from Fig. 2. In the miscible case, the vorticity is more dispersed
and its amplitude is roughly twice as small (notice the difference in the color scales).

According to [59], the interface can be considered a source of vorticity depending on the velocity
jump across the interface, variations of the curvature, and other details of the flow. Also, a part of
the enstrophy may have a numerical origin coming from spurious currents of the lattice Boltzmann
method (see Sec. III); however, our estimates suggest that this numerical contribution is not very
large [60]. For quantification of the interface contribution, we separate the bulk enstrophy in
the immiscible case by excluding small areas around the interface. This is done numerically by
removing all nodes within squares of size 8 × 8 at each point of the interface. This size is much
smaller than the typical drop (� ∼ 50) and roughly twice as large as the viscous scale (η ∼ 4) and
the numerical interface width (lint ∼ 3). The filtered enstrophy is plotted in Fig. 12(a) by a dotted
black curve, which agrees very well with the miscible data for the times corresponding to turbulent
mixing. Though such a fine agreement may partially be attributed to the chosen filter, removing
larger areas around the interface yields only a moderate effect. This observation suggests that the
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FIG. 12. (a) Evolution of total enstrophy averaged over 10 realizations for the immiscible (bold blue)
and miscible (thin red) simulations; shaded regions indicate standard deviations. The dashed black line
corresponds to the filtered enstrophy of the immiscible flow by excluding small neighborhoods of the interface.
(b) Logarithmic derivatives, d (log �)/d (log t ), of the same graphs compared with the theoretical power-law
exponent (horizontal line). (c) Example of vorticity field for immiscible and (d) miscible flow. (e) PDFs of the
vorticity fields. (f) PDFs of the vorticity fields normalized by the respective standard deviations (SD).

immiscible flow in the regions away from the interface features turbulent statistics similar to the
miscible flow. This conclusion is further justified in Fig. 12(e), where we plot PDFs of vorticity: one
can see that the PDFs for the miscible (red) and filtered immiscible (dotted black) flows are very
close, while the PDF for the full immiscible flow favors much larger values of vorticity characteristic
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of thin boundary layers. Still, normalized PDFs of vorticity shown in Fig. 12(f) reveal a distinctive
shape of the tails for large ω (rare events), which is the same for the original and filtered fields in
the immiscible flow.

It is remarkable that the filtered part of the enstrophy, which is concentrated in a thin neigh-
borhood of the interface, follows the same power law as its bulk value, Fig. 12(b). We conjecture,
however, that this similarity is coincidental, because the vorticity generation by the interface is not
described by the Bolgiano-Obukhov scenario. The enstrophy corresponding to the interface can be
estimated as a product of the total interface lengths and the linear enstrophy density. The former
grows as a power law with the measured exponent 1.64 ± 0.07; see Fig. 11(b). The latter may
depend on the drop size and velocity fluctuations, both of which change very slowly in time; see
Eqs. (14) and (16). These estimates suggest that a power law for the enstrophy growth generated by
the interface may have an exponent close to 3/2, i.e., very similar to the prediction (20) following
from the Bolgiano-Obukhov theory. Since the scaling range accessed by our simulations is not too
wide, one cannot exclude other behaviors, e.g., the possibility of anomalous scaling.

VI. CONCLUSION

We have presented a high-resolution study of immiscible RT turbulence in 2D using the Shan-
Chen multicomponent method. The large-scale statistics for the mixing layer, typical velocity, and
average density profile have been compared with the miscible case and found to have very similar
power-law behaviors with close overall prefactors but different transient behavior. In the immiscible
case, the presence of the interface affects the small-scale statistics, leading to a significant differ-
ence, with respect to the miscible RT, in the evolution of the enstrophy. The Bolgiano-Obukhov
assumption generates a valid prediction for the power-law behavior of the temporal evolution of
total enstrophy also for the immiscible case [see Eq. (20)], but it does not account for the big change
in the prefactor, which could be affected by extra vorticity induced by the interface. The evolution
of the typical drop size and the total length of the interface in the emulsionlike state of developed
RT turbulence are measured and shown to be compatible with our phenomenological predictions.

A natural question that can be addressed in the future concerns the statistics of the structures with
a typical size smaller then the typical drop size. In this range of scales, the presence of capillary
waves propagating along the interfaces of the drops is expected [26]. The developed numerical
scheme can also be applied to the problem of fragmentation and whitecapping at the surface of
breaking waves, which involves a complex process with the formation of drops and bubbles; see,
e.g., Refs. [61,62]. It is also important to note that most of the numerical procedures presented in this
article are naturally extendable for the three-dimensional immiscible Rayleigh-Taylor turbulence,
which is a more suitable configuration for experimental procedures, although such an extension
of the present GPU code, with appropriate optimizations to obtain affordable statistics, can be a
nontrivial task. Some laboratory experiments for the two-dimensional case may be conducted in
thin liquid films [14,22] using, for example, aqueous gelatin solutions with very high concentration
[44]. The corresponding extension of the lattice Boltzmann method to these cases seems feasible,
but it requires further study.
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