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Turbulent signals are intermittent with large instantaneous fluctuations. Such large fluc-
tuations lead to small Kolmogorov scales that are hard to resolve in numerical simulations
[P. K. Yeung, K. R. Sreenivasan, and S. B. Pope, Effects of finite spatial and temporal res-
olution in direct numerical simulations of incompressible isotropic turbulence, 3, 064603
(2018)]. The present paper follows the above basic logic, but instead of dissipation events
in isotropic turbulence, we study wall-shear stress events in plane channel flow. Wall-shear
stress fluctuations are increasingly more intermittent as the Reynolds number increases.
Hence, one has to employ higher grid resolutions as the Reynolds number increases in
order to resolve a given percentage of wall-shear stress events. The objective of this paper
is to quantify effects of the grid resolutions on the rare and high intensity wall-shear stress
events. We find that the standard grid resolution resolves about 99% of the wall-shear
stress events at Reτ = 180. A slightly higher grid resolution has to be employed in order to
resolve 99% of the wall-shear stress events at higher Reynolds numbers, and if the standard
grid resolution is used for, e.g., a Reτ = 10000 channel flow, one resolves about 90%–95%
wall-shear stress events.

DOI: 10.1103/PhysRevFluids.6.054603

I. INTRODUCTION

Direct numerical simulation (DNS) gives solutions to the Navier-Stokes equation as a function of
space and time at a resolution that is usually not possible in a laboratory experiment and therefore
is one of the most useful tools for turbulence research [1]. Since the early works of Moser and
Moin [2], Kim et al. [3], and Spalart [4], DNS has been extensively used in the studies of wall-
bounded flows, and the grid resolution in Ref. [3], i.e., �x+ ≈ 12, �z+ ≈ 7, is considered to be
the “standard” DNS grid resolution. (The standard wall-normal grid resolution is max[�y+] ≈ 4.5
at the channel centerline and min[�y+] � 0.1 at the wall.) Here, x, y, and z are the streamwise,
wall-normal, and spanwise directions, and the superscript + denotes normalization by the wall
units.

Generally speaking, no simulation is completely error free [5]—even for DNS. In their seminal
work, Kim et al. noted “(there is) not sufficient evidence that the computed (DNS) results are
unaffected by the small-scale motions neglected in the computations,” calling for more thorough
studies of the grid resolution. Oliver et al. [6] assessed the adequacy of the standard DNS grid
resolution for channel flow at Reτ = 180. They concluded that the standard DNS grid resolution is
adequate for low-order statistics such as the mean flow, the Reynolds shear stresses, and the skin
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friction coefficient. However, Oliver et al. did not consider rare and high intensity wall-shear stress
events, and their discussion was limited to one Reynolds number.

Measuring and predicting wall-shear stress is essential to the study and modeling of wall-
bounded flows [7,8]. The friction velocity, which is determined by the wall-shear stress, appears
in many velocity scalings including the logarithmic law of the wall and the scaling of other
velocity statistics [9–15]. In the past few years, the fundamental phenomenology of the fluctuating
wall-shear stress has received much attention, and DNS has played an important role in unraveling
the underlying physics [16–23]. However, without carefully assessing the adequacy of the standard
DNS grid resolution, it would be hard to know how much one could trust the conclusions in
these studies. From an application standpoint, rare wall-shear stress events are responsible for
particle entrainment. Hence, accurate modeling of rare wall-shear stress events, or rather, accurate
modeling of high-order wall-shear stress statistics, is essential to the numerical modeling of various
applications with particle entrainment, e.g., sandstorms, snowdrift, pollen transport, etc. [24–30].

In this paper, we assess the adequacy of the standard DNS grid resolution for rare and high
intensity wall-shear stress events. Here, high intensity and rare wall-shear stress events are wall-
shear stress events that are not sufficiently well resolved by the standard DNS grid resolution. The
study will answer the following three questions. First, what must the grid resolution be if we want to
resolve the wall layer as well as Kim et al. [3], but at a higher Reynolds number? Second, if we use
the same grid resolution as Kim et al. [3], how well is the wall layer resolved at a higher Reynolds
number? Third, what wall-shear stress events are missed by the standard DNS grid resolution, but
exist in reality? Before we proceed to further motivating the present work, it is worth pointing out
that Refs. [31,32] address a different question. In Refs. [31,32], the question concerns the number
of grid points needed for a spatially developing boundary layer given the grid resolution �x+ ≈
12, �z+ ≈ 7, whereas the question here concerns whether the resolution �x+ ≈ 12, �z+ ≈ 7 is
adequate.

The basic logic of this paper generally follows that in Refs. [33–37] by Yeung, Sreenivasan,
and co-workers. Their basic idea is that large fluctuations in turbulent dissipation lead to small Kol-
mogorov length scales that require finer-than-standard grids to resolve. For example, a fluctuation in
the turbulent dissipation that is ε = 10 000〈ε〉 leads to a local instantaneous Kolmogorov scale that
is η = 0.1(ν3/〈ε〉)1/4. Here, ε is the instantaneous turbulent dissipation, ν is the kinematic viscosity,
and 〈·〉 denotes time averaging. For a DNS whose grid resolution scales with η ≡ (ν3/〈ε〉)1/4,
these events are hard to resolve. The authors then argue that one must use grid resolutions that
are increasingly smaller fractions of the Kolmogorov length scale as the Reynolds number increases
in order to resolve a given percentage of the dissipation and enstrophy events in isotropic turbulence.
The same is true for wall-shear stress fluctuations and DNS of wall-bounded flows. The wall-shear
stress in channel flow is increasingly more intermittent as the Reynolds number increases [38] [as
evidenced by the increase of the wall-shear stress’s root-mean-square (rms) as a function of the
friction Reynolds number [39,40]]. A large instantaneous fluctuation in the wall-shear stress leads to
a small local viscous scale. Hence, one needs grid resolutions that are increasingly smaller multiples
of the viscous unit as the friction Reynolds increases in order to resolve a given percentage, say,
99%, of the wall-shear stress events in the flow.

In this paper, multiple DNSs are carried out with refined grids at two friction Reynolds numbers,
i.e., Reτ = 180 and Reτ = 400, until the resulting probability density function (PDF) of the wall-
shear stress is grid converged. We keep our simulations running for an extended period of time
to minimize the sampling error [6,41]. These DNSs allow us to directly assess the adequacy of
the standard DNS grid resolution at the two specific Reynolds numbers Reτ = 180 and 400. Then,
we generalize our conclusions to high Reynolds numbers by resorting to known Reynolds number
scalings. We show that the standard DNS grid resolution falls short for rare wall-shear stress events.
Our conclusion will inevitably cast doubt on some previous studies that relied on DNSs for their
study of high intensity and rare wall-shear stress events. the objective is not to challenge these
authors but to bring a few different thoughts to the discussion.
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TABLE I. DNS details. The nomenclature of the cases follows the rule of “Resolution+Reynolds number.”
C, R, F, and FF denote “coarse,” “regular,” “fine,” and “finer,” respectively. LM180 is the Reτ = 180 channel
flow case in Ref. [41]. The size of our computational domain is Lx × Ly × Lz = 4πh × 2h × 2πh, where h is
the channel half width. The domain is larger than the minimal channel [42]. T is the averaging time (after the
flow reaches a statistically stationary state). Tf = Lx/ub is the flow-through time. Here, Lx is the streamwise
length of the computational domain, and ub is the bulk velocity.

Reτ �x+ �z+ �y+ T/Tf

C180 180.2 24 13 0.25, 9.4 100
R180 180 12 6.3 0.062, 4.7 100
F180 180.2 5.9 3.1 0.062, 4.7 100
FF180 181.2 2.9 1.6 0.062, 4.7 100
LM180 182.1 4.5 3.1 0.074, 3.2 34.3
C400 399.1 26 14 0.14, 10 100
R400 399.5 12 6.5 0.027, 4.7 100
F400 401.3 5.8 3.3 0.027, 4.7 100
FF400 401.2 2.9 1.8 0.027, 4.7 100

The rest of the paper is organized as follows. Details of the DNSs are presented in Sec. II. We
show the results in Sec. III and discuss their implications. Finally, we summarize in Sec. V following
a short discussion in Sec. IV.

II. DNS DETAILS

We conduct a series of incompressible turbulent channel flow DNSs. The flow is periodic in the
streamwise (x) and the spanwise (z) directions. No-slip and no-penetration conditions are applied
as boundary conditions in the wall-normal (y) direction. For spatial discretization, the code uses the
Fourier pseudospectral methods in the x and z directions and the Chebyshev pseudospectral method
in the y direction [3]. Time advancement uses the third-order Runge-Kutta. All statistics denoted
with “+” in this study are normalized by the combinations of the density ρ, the kinematic viscosity
ν, and the mean velocity gradient at the wall (∂〈u〉/∂y|w ), where 〈·〉 denotes the ensemble average.
The flow is driven by a constant pressure gradient dP/dx in the x direction.

We consider flows at two Reynolds numbers, i.e., Reτ = 180 and 400, where Reτ is the friction
Reynolds number defined with uτ [=√

ν(∂〈u〉/∂y)w]. Four grid resolutions are considered with
successively grid refinements from �x+ = 24, �z+ = 13 to �x+ = 2.9, �z+ = 1.6. The Reτ of
each case varies by less than about 0.6% as shown in Table I. Because of the use of a Chebyshev grid,
i.e., y j = cos[( j − 1)π/(Ny − 1)], keeping the standard grid resolution at the channel centerline,
i.e., max[�y+] ≈ 4.7, results in a wall-grid resolution min[�y+] that halves as the Reynolds number
doubles. We will show in Sec. IV that further refining the wall-normal grid does not affect the wall-
shear stress statistics. The time step size is such that the Courant-Friedrichs-Lewy (CFL) number
is about 0.8. We follow Ref. [6] and average for about T = 100Lx/ub to minimize sampling errors.
We may measure the sampling errors by examining the total stress, i.e., νdU/dy − 〈u′v′〉, of which
the analytic solution, (1 − y/h)u2

τ , is well known. The deviation of computed total stress from the
analytic solution is less than 0.006u2

τ in all simulation cases. Table I shows the details of our DNSs.
The R cases, i.e., R180 and R400, use the standard DNS grid resolution. We include the Reτ = 180
channel flow data in Ref. [41] (denoted with “LM”) for comparison, where the grid resolution in
the horizontal directions are �x+ = 4.5, �z+ = 3.1, and the distance between B-spline knots in the
wall-normal direction gives min[�y+] = 0.074 and max[�y+] = 3.4 at the wall and the channel
centerline, respectively. Throughout this paper, we use a prime (′) to denote fluctuation, and σφ to
denote the standard deviation of the quantity φ.
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FIG. 1. (a), (c) Mean velocity. (b), (d) Streamwise velocity’s rms. (a), (b) Results at Reτ = 180 (c),
(d) Results at Reτ = 400.

III. RESULTS AND DISCUSSION

A. Mean flow and streamwise variance

Figure 1 shows the mean velocity U + and the rms of the streamwise velocity fluctuation u+
rms.

For U +, the R, F, and FF results collapse, and LM180 agrees well with R180, F180, and FF180.
For u+

rms, the F and FF results collapse. The R cases predict a slightly smaller peak than the F and
FF cases. The LM180 results again agree well with F180 and FF180. For both the mean velocity
and the streamwise velocity’s rms, the C results are visibly different from the R, F, and FF results.
These results are consistent with Ref. [6]: The standard DNS grid resolution is sufficient for low-
order statistics such as the mean flow, the Reynolds stresses, and the skin friction coefficient. In the
next section, we will examine rare wall-shear stress. Considering that the coarse grid resolution is
insufficient for even the low-order statistics such as the mean flow, our discussion in the next section
will focus on the R, F, and FF cases.

B. Wall-shear stress

Figures 2(a) and 2(b) show the PDFs of the streamwise and the spanwise wall-shear stresses in
R180, F180, and FF180. Similar to many other turbulent flow quantities, it is more likely to find
τx and τz near their means. (〈τ+

x 〉 ≡ 1 by definition.) These frequent events are not significantly
affected by the grid resolution, at least for the three grid resolutions investigated here. In fact, R180,
F180, and FF180 predict very similar probability densities near τ+

x = 1 and τ+
z = 0. The difference

between a regular grid, i.e., R180, and a fine grid, i.e., F180 or FF180, arises only at large τx and τz

values. This is consistent with Refs. [18,35,36], where differences between a coarse grid and a fine
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FIG. 2. PDFs of (a) the streamwise wall-shear stress and (b) the spanwise wall-shear stress in R180, F180,
FF180, and LM180. The vertical lines are at τ+

x = 1 and τ+
z = 0. The horizontal lines are at constant PDF

values above which FF180’s probability density function integrates to 0.9, 0.99, and 0.999, respectively. (c),
(d) Reτ = 400 results.

grid are found only for rare events, i.e., high dissipation events in Refs. [35,36] and backflow events
in Ref. [18]. For the two quantities in Figs. 2(a) and 2(b), the R grid leads to a higher probability at
large τ values than the two fine grids. This is also consistent with Refs. [35,36], where the dissipation
rate in an isotropic turbulence DNS is found to be more intermittent on a coarse grid (�/η = 2.22)
than on a fine grid (�/η = 0.55) at both Reλ = 390 and 650, where Reλ is the Taylor microscale-
based Reynolds number.

The results in Fig. 2 allow us to answer the following question: What percentage of the wall-shear
stress events is resolved in R180? To determine that percentage, we draw a horizontal line in
Figs. 2(a) and 2(b) such that the R180 result agrees with the FF180 result above that line. Integrating
the probability density function above that horizontal line gives the percentage of the resolved events
in R180. In Figs. 2(a) and 2(b), we draw three lines above which FF180’s probability density
function integrates to 0.9, 0.99, and 0.999, respectively (i.e., keeping one significant digit for the
percentage of the unresolved events). According to Figs. 2(a) and 2(b), R180 captures between 99%
and 99.9% wall-shear stress events. We will be conservative and say that R180 captures 99% of
the wall-shear stress events. Now, whether or not capturing 99% of the wall-shear stress events is
sufficient depends on the quantity of interest and the desired level of accuracy. Because rare and
high intensity events play a more important role in determining higher-order statistics, the level
of accuracy we can expect for higher-order statistics such as 〈τ 4〉 will be lower than lower-order
statistics such as 〈τ 〉. For example, let us compute 〈τz〉, a low-order statistics, and 〈τ 4

z 〉, a high-order
statistics, in R180. Figure 3 shows the premultiplied PDFs τ+

z × PDF and τ+4
z × PDF in R180. The

integration of the two premultiplied PDFs gives 〈τ+
z 〉 and 〈τ+4

z 〉. Following the discussion above,
the events |τ+

z | < 0.65 are well resolved but the events |τ+
z | > 0.65 are not. The resolved events

are responsible for about 90% of the integration
∫ ∞
τ+

z =0 PDF τ+
z dτ+

z and 30% of the integration
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FIG. 3. Normalized premultiplied PDF. R180 results. Red lines: τ+
z × PDF. Blue lines: τ+4

z × PDF. Solid
lines: Wall-shear stress events that are resolved in R180. Dashed lines: Wall-shear stress events that are not
(well) resolved in R180. The premultiplied PDF is symmetric/antisymmetric with respect to τ+

z = 0 and we
show only the results for τ+

z > 0.

∫ ∞
τ+

z =0 PDF τ+4
z dτ+

z , leading to a much lower level of accuracy for 〈τ+4
z 〉. The above exercise can be

repeated for the Reτ = 400 results in Figs. 2(c) and 2(d), and we will arrive at similar conclusions.
Next, we discuss what to expect at higher Reynolds numbers. First, we need to find a scaling

that collapses the PDFs of τx and τz at all Reynolds numbers. According to the previous studies,
the scaling log (PDF)/〈τ ′+2〉 (τ ′+/〈τ ′+2〉) collapse the tails of the PDFs [43] [that is, the tails of the
PDFs collapse if one plots log (PDF)/〈τ ′+2〉 as a function of τ ′+/〈τ ′+2〉], and the scaling PDF × σ+

τ

(τ ′+/σ+
τ ) collapses the central parts of the PDFs [44]. Here, we need a Reynolds number scaling for

the part of the PDF that we can trust, which is the central part of the PDF. Hence, we follow Ref. [44]
and plot PDF × σ+

τ as a function of τ+/σ+
τ . Figure 4 shows the results. We have also included

the results at Reτ = 1000, 2000, and 5200 for comparison purposes. We see from Fig. 4 that the
central parts of the scaled PDFs do collapse. The 99% line intersects with the scaled streamwise
wall-shear stress PDF at (τ+

x − 1)/σ+
τx

= −1.9 and 3.2 and the scaled spanwise wall-shear stress
PDF at τ+

z /σ+
τz

= −3.3 and 3.3. These are the limiting events for resolving 99% of the wall-shear
stress events. In other words, to resolve 99% of the wall-shear stress events, the grid resolution

FIG. 4. Scaled PDFs of (a) the streamwise wall-shear stress and (b) the spanwise wall-shear stress in
FF180, FF400, and the channel flow DNSs at Reτ = 1000, 2000, and 5200 [41]. Details of the LM cases can
be found in Ref. [41]. As we will show later in this section, the rare events, i.e., the tails of the wall-shear stress
PDFs, are not accurately predicted at higher Reynolds number if one uses the standard DNS grid resolution, and
therefore the tails of the wall-shear stress PDFs for LM1000, LM2000, and LM5200 are not shown here. The
plotted part of the PDFs integrates to 0.9. The two insets are unscaled PDFs of the streamwise and the spanwise
wall-shear stresses for FF180 and FF400. The two horizontal lines are at a constant σ+

τ × PDF location above
which the PDF integrates to 0.99.
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must accommodate the limiting events (τ+
x − 1)/σ+

τx
= 3.2 and τ+

z /σ+
τz

= 3.3. Here, the Reynolds
number information is incorporated in σ+

τx
and σ+

τz
. In the absence of other length and velocity scales,

the resolution needed to resolve a particular wall-shear event τ must be a function of ν and τ , i.e.,
� = f (ν, τ ). It follows from the Buckingham π theorem that � must be �x+ ∼ 1/

√
τ+ and �z+ ∼

1/
√

τ+, i.e., �x+√
τ+ = const and �z+√

τ+ = const. In other words, in order to resolve 99%
wall-shear stress events, the grid resolution �x+ and �z+ must be such that �x+√

3.2σ+
τx

+ 1 = Cx

and �z+
√

3.3σ+
τz

= Cz, where Cx and Cz are two constants. In the above discussion, the fluid density

ρ ≡ 1 is omitted. We determine the two constants Cx and Cz by plugging in the σ+
τx

and σ+
τz

data at
Reτ = 180 and the standard grid resolution (recall that the standard grid resolution resolves 99%
wall-shear stress events) and arrive at the following grid resolution requirement,

�x+
99% ≈ 18√

3.2σ+
τx

+ 1
, �z+

99% ≈ 5.7√
3.3σ+

τz

, (1)

for resolving 99% wall-shear stress events. The number 99% is because R180 resolves 99% of the
wall stress events. As both σ+

τx
and σ+

τz
are increasing functions of the Reynolds number [39,40],

�x+ and �z+ in Eq. (1) are decreasing functions of the Reynolds numbers. This is consistent with
Refs. [35,36]: One must use resolutions that increasingly smaller fractions of the viscous length
scale as the Reynolds number increases in order to resolve a given percentage of the dissipation
events.

To get numerical numbers from Eq. (1), we need scaling estimates for σ+
τx

and σ+
τz

as a function
of the Reynolds number. The exact dependence of σ+

τx
and σ+

τz
on the friction Reynolds number Reτ

is not yet well established. For example, Yang et al. [38] argue for

σ+2
τ = a log(Reτ ) + b, (2)

Schlatter et al. [40] argue for

σ+
τ = a′ log(Reτ ) + b′, (3)

and Chen and Sreenivasan [45] argue for

σ+2
τx

= a′′(0.25 − b′′Re−1/4
τ

)
. (4)

The above three scalings all predict an increasing στx as a function of the Reynolds number,
and despite their differences, the three scalings in Eqs. (2)–(4) give very similar predictions at
moderately high Reynolds numbers, i.e., for Reτ < O(105). In addition to the above three scalings
that predict an increasing στx as a function of the Reynolds number, Gubian et al. [46] examined
their experimental data and arrived at a somewhat surprising conclusion: στx stays a constant beyond
Reτ ≈ 600. Closely scrutinizing Gubian et al.’s experimental methodology, Örlü and Schlatter [47]
later found that the spanwise grooves (spanwise rectangular cavities) that Gubian et al. cut on
their surfaces to place their hot wires had a big impact on the near-wall flow’s dynamics, thereby
explaining the somewhat surprising conclusion in Ref. [46]. In this work, we will adopt the more
conventional view and rely on the scalings in Eqs. (2)–(4) that predict an increasing στx as a function
of the Reynolds number. As these three scalings give similar results for DNS’s Reynolds number
range, we can practically use any one of the three scalings when estimating σ+

τx
and σ+

τz
. The catch

of course is that all these scalings have two undetermined constants that must be fitted to the data.
Here, we rely on our FF180 and FF400 results to fit for a, b, a′, and b′ (to give a rough idea of the
impacts of using different scalings for σ+

τ ). Substituting Eqs. (2) and (3) in Eq. (1), we have Fig. 5.
We see that the two σ+

τ scalings lead to practically the same result. According to Fig. 5, one only
needs to very slightly refine the grid at high Reynolds numbers to resolve as well as Kim et al.’s
Reτ = 180 channel [3]. For example, to resolve 99% of the wall-shear stress events at Reτ = 5200,
one needs �x+ = 11 and �z+ = 5.5, which is slightly finer than the resolution used in Ref. [3].
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FIG. 5. The grid resolution required to resolve 99% of the wall-shear stress events. Blue lines: �x+. Red
lines: �z+. Solid lines: Assuming σ+2 ∼ log(Reτ ). Dashed lines: Assuming σ+ ∼ log(Reτ ). Cross symbols:
�x+ in some of the channel flow DNSs. Round symbols: �z+ in some of the channel flow DNSs. The
references are as follows: For Reτ = 180, Ref. [3]; for Reτ = 2000, Refs. [41,48]; for Reτ = 4200, Ref. [42];
for Reτ = 5200, Ref. [41]; and for Reτ = 8000, Ref. [49].

That being said, the present practice has been to use a coarser grid at higher Reynolds numbers: Lee
and Moser [41] used �x+ = 12.7 for their Reτ = 5200 channel, Lozano-Duranand Jiminez used
�x+ = 12.8 for their Reτ = 4200 channel, and Yamamoto and Tsuji [49] used �x+ = 14.8 for
their Reτ = 8000 channel (and they use a finite difference code). This is somewhat disconcerting,
as we may have been trading off accuracy for higher Reynolds numbers.

The result in Fig. 5 answers the question, which grid resolution is needed if one wants to resolve
the wall layer as well as Kim et al. [3]. Next, we answer the following question: How well resolved
will the wall layer be at high Reynolds numbers if we use the same grid resolution as Kim et al. [3]?
In the above, we come to the conclusion that the standard DNS grid resolution is adequate for the
events τ+

x = 1 + 3.2σ+
τx

|
Reτ =180

= 2.18, τ+
z = 3.3σ+

τz
|
Reτ =180

= 0.66. If one uses the standard DNS
grid resolution at a different Reynolds number, that standard DNS grid resolution should still resolve
the events τ+

x = 2.18, τ+
z = 0.66. Hence, drawing a horizontal line that goes through τ+

x = 2.18,
i.e., τ+

x /σ+
τx

= 2.18/σ+
τx

, in Fig. 4(a), and τ+
z = 0.66, i.e., τ+

z /σ+
τz

= 0.66/σ+
τz

, in Fig. 4(b), and
integrating the PDF above the two lines should give the percentage of the resolved wall-shear stress
events. Again, the Reynolds number information is embedded in σ+

τx
and σ+

τz
. That result is shown in

Fig. 6. According to Fig. 6, if σ+2
τ ∼ log(Reτ ), the standard DNS grid resolution resolves about 97%

of the spanwise wall-shear stress events at Reτ = 1000 and about 93% of the spanwise wall-shear
stress events at Reτ = 5000. The numbers are not very different if σ+

τ ∼ log(Reτ ). In all, it is safe

FIG. 6. The percentage of the resolved wall-shear stress events if one uses the standard DNS grid resolu-
tion. Blue lines are for streamwise wall-shear stress events. Red lines are for spanwise wall-shear stress events.
Solid lines: Assuming σ+2

τ ∼ log(Reτ ). Dashed lines: Assuming σ+
τ ∼ log(Reτ ).
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to say that the standard grid resolution resolves about 90%–99% of the wall-shear stress events at
Reτ = 5000.

We end this discussion by quoting Kim et al. [3], that “(using the standard DNS grid resolution)
although the disagreement between the computed and measured values does not seem to be
serious, ..., it is important to resolve the differences if the use of the computer-generated databases or
experimental data in studying turbulence structures and in developing improved turbulence models
is to be continued.” Again, the objective of the discussion here is to bring different thoughts to the
topic.

C. Small-scale structures

In this section, we answer the last question: Which wall-shear stress events are missed by the
standard DNS grid resolution that exist in reality? In recent experimental work, Sankar et al. [50]
measured the flow in the viscous sublayer. The authors found spanwise meandering motions of fluid
parcels at the scale of a few plus units and associated these meandering motions to large spanwise
wall-shear stress |τz|. The scales of these meandering motions are subgrid for the standard DNS grid
resolution, i.e., about 2–3 wall units in the spanwise direction across a length of 20 wall units in the
streamwise direction. Here, we examine if these meandering motions and high spanwise wall-shear
stress events are resolved by the standard DNS grid resolution. Figure 7 shows the conditional
averaged spanwise wall-shear stress based on τ+

z > 1.5 at x = z = 0, and we show results for R180,
FF180, R400, and FF400. A τ+

z > 1.5 event is a rare event. The probability of encountering such
an event is less than 0.1% in FF180 and FF400. From Fig. 7(a), we see that R180’s resolution is
obviously insufficient for the τ+

z > 1.5 events: The contour lines are symmetric with respect to
z = 0 in R180 but asymmetric in FF180. Comparing Figs. 7(a) and 7(b), the difference between the
standard DNS grid and the fine grid becomes more notable as the Reynolds number increases,
particularly the “streamlines.” In all, it is safe to say that the standard DNS grid resolution is
insufficient for resolving rare spanwise wall-shear stress events. In this section, we have focused
on one specific type of wall-shear stress event that we know is not resolved by the standard DNS
grid resolution. A more thorough comparison between the R and the FF cases is left to future
investigation—when more detailed experimental measurements of the flow in the viscous sublayer
become available.

IV. FURTHER DISCUSSION

When studying rare events in a turbulent flow, one can achieve grid convergence only in a relative
sense. In Fig. 2, cutting off at PDF > 10−4, we achieve grid convergence for τx and τz at the
resolution �x+ = 5.9 and �z+ = 3.1. If we were to limit PDF > 10−1, we would have achieved
grid convergence at the standard resolution �x+ = 12 and �z+ = 6.3. Likewise, if we require grid
convergence for, e.g., PDF > 10−7, i.e., for very rare events, grid convergence can be achieved only
at finer resolutions.

In Sec. II, we discuss the effects of horizontal grid resolutions but not the wall-normal grid
resolution. Our code uses a Chebyshev grid in the wall-normal direction. As a result, keeping the
standard grid resolution at the channel centerline, i.e., max[�y+] ≈ 4.7 results in a min[�y+] that
halves as the Reynolds number doubles. The underlying hypothesis of our discussion in Sec. II
is that the standard Chebyshev grid is sufficient. Here, we present empirical evidence. Table II
shows the details of two additional DNSs: Fy180 and Fy400. Fy180 is F180 but doubling the wall-
normal grid number, and Fy400 is F400 but doubling the wall-normal grid. Because of the use of a
Chebyshev grid, doubling the number of wall-normal grid quadruples the grid resolution at the wall.
Figures 8(a) and 8(b) compare the PDFs of the streamwise and the spanwise wall-shear stresses in
F180 and Fy180, and Figs. 8(c) and 8(d) compare the results in F400 and Fy400. We see that there
is barely any difference between the F cases and the Fy cases.
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FIG. 7. (a) Conditional averaged the wall-shear stress based on τ+
z > 1.5 at x+ = z+ = 0. The color

contour shows the results for FF180. The line contour shows the results for R180. The four black solid lines are
streamlines for the vector field (τx, τz ) in FF180. The four dashed solid lines are the results for R180. The solid
lines and the dashed lines start at the same x and z locations. (b) Same as (a) but for the results at Reτ = 400.

V. CONCLUDING REMARKS

In this work, we conduct channel flow DNSs at two Reynolds numbers, i.e., Reτ = 180 and
Reτ = 400, and four grid resolutions, i.e., �x+ = 24, 12, 5.9, 2.9, and �z+ = 13, 6.3, 3.1, 1.6.
We show that the standard DNS grid resolution does not capture rare and high intensity wall-shear
stress events. Specifically, this work answers the following three questions. First, which grid
resolution does one need to use to resolve the wall layer as well as Kim et al.’s Reτ = 180 DNS [3]

TABLE II. DNS details of the F and the Fy cases.

Reτ �x+ �z+ �y+ T/Tf

F180 180 5.9 3.1 4.7, 0.062 100
Fy180 180 5.9 3.1 2.4, 0.015 100
F400 400 5.8 3.3 4.7, 0.027 100
Fy400 400 5.8 3.3 2.3, 0.0068 100
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FIG. 8. PDFs of (a) the streamwise wall-shear stress and (b) the spanwise wall-shear stress.

but at a higher Reynolds number? Second, how well is the wall layer resolved if one uses the same
grid resolution as Kim et al. [3] but at a higher Reynolds number? Third, which wall-shear stress
events are not captured by a standard DNS grid but exist in reality? The answers to the above three
questions are given in Figs. 5–7. Specifically, we show first that one needs to refine the grid in order
to resolve the wall layer as well as in Ref. [3] at a high Reynolds number, second, that the wall layer
becomes less and less well resolved if one uses the same grid resolution as in Ref. [3] for flows
at higher and higher Reynolds numbers, and third, that the standard DNS grid does not resolve
large spanwise wall-shear stress events. It is worth noting that by saying “a wall-shear stress event
is not well resolved” we are not saying “a wall-shear stress event does not have the right amount
of energy.” The two are not the same. For example, one can digitally filter a Gaussian signal such
that it has the same energy spectrum as a turbulent signal, but that filtered signal does not resolve
any turbulence. When we say “a wall-shear stress event is not well resolved,” we mean that the
wall-shear stress event in a simulation is not the same as what it would be in the real world. That
being said, wall-shear stress is an intermittent quantity and therefore is intrinsically hard to resolve.

We conclude our discussion with the following remarks. First, our discussion concerns solely
the channel flow, but because wall-shear stress in a boundary layer flow behaves similarly, the
conclusions in this paper should still be valid for the DNS of boundary layer flow. Second,
discretization methods are likely to have a big impact on the results [51]: Obviously, lower-order
methods will require a higher grid resolution than higher-order methods. The conclusions in this
paper apply to Fourier-Chebyshev spectral codes only. The grid resolution requirement will be much
more stringent than the ones suggested in this work if, e.g., a second-order finite difference method
is used.
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