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Boussinesq and non-Boussinesq turbulent plumes in a corner
with applications to natural ventilation

Shuo Li * and M. R. Flynn
Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada

(Received 12 February 2021; accepted 4 May 2021; published 18 May 2021)

A previous formulation of plume merger [Rooney, J. Fluid Mech. 796, 712 (2016)]
is generalized to model both Boussinesq and non-Boussinesq plume rise in a corner of
arbitrary angle 2π/n where n � 1. The Boussinesq plume theory predicts the correct near-
and far-field similarity solutions when n is noninteger. Moreover, an alternate entrainment
assumption is proposed whereby the rate of entrainment per unit height correlates directly
to the plume perimeter. Model predictions made using this alternative entrainment as-
sumption agree well with a previous prediction for the plume volume flux when n = 2.
For non-Boussinesq plumes, the theory also approaches the correct near- and far-field
similarity limits. When the source area is compact, and regardless of the corner angle,
the non-Boussinesq height, i.e., height over which non-Boussinesq effects are important, is
small compared to the contact height between the plume and the corner. When the source
area is relatively large, the non-Boussinesq height can be comparable to the contact height;
enhanced non-Boussinesq effects are observed for smaller corner angles. Our Boussinesq
theory is adapted to the natural ventilation model developed by Linden et al. [J. Fluid Mech.
212, 309 (1990)] and agrees well with previous experimental and theoretical predictions
for the steady-state depth of the layer of discharged plume fluid that accumulates along
the ceiling of the (ventilated) interior space. For non-Boussinesq plumes, the counterpart
theory compares satisfactorily with previously measured results of fire plume mass flux.

DOI: 10.1103/PhysRevFluids.6.054503

I. INTRODUCTION

The seminal work of Morton et al. [1] (MTT hereafter) modeled theoretically an isolated plume
in an unbounded environment. In general, the MTT model consists of a set of three coupled ordinary
differential equations representing the conservation of plume mass, momentum, and buoyancy; the
set is closed by an entrainment assumption. On the basis of MTT, Baines and Turner [2] studied
plume rise and discharge in a bounded environment, a composite flow referred to as a “filling box.”
Over time, filling boxes lead to a stable ambient density stratification. The significance of Baines and
Turner’s work in the architectural context was solidified by Linden et al. [3]. They considered plume
rise in a ventilated filling box and thereby derived an estimate for the depth of the layer of discharged
plume fluid that accumulates along the ceiling. A key finding from the work of Linden et al., results
from which have been adapted to the design of naturally ventilated buildings [4], is that the form of
the ambient stratification that develops in the ventilated enclosure depends on the details of turbulent
entrainment but not on the source buoyancy flux. The model of Linden et al. [3] has been extended
in numerous follow-up studies, which have examined multiple noninteracting plumes [5], external
wind forcing [6], transient effects [7], and ventilation of fires and non-Boussinesq plumes [8,9].
Where discrete plumes arise in the previous studies, they are assumed to be centrally situated so that
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plume rise is not impeded by the presence of sidewall boundaries. When such an assumption cannot
be justified, ambient entrainment into the rising plume is not axisymmetric leading to potentially
significant deviations [10] from the dynamical descriptions provided by, e.g., MTT and Baines and
Turner [2].

Insights into the importance of uniform versus nonuniform ambient entrainment are provided
by studies devoted to the merger of adjacent plumes. For instance, Kaye and Linden [11] assumed
that the mechanism driving merger is the passive advection between plumes placed side by side.
Their model predicts a merging height that is in good agreement with experimental measurements.
Later Linden and Kaye [12] adapted Kaye and Linden’s model in the context of naturally ventilated
buildings; they found that the merger of two coflowing plumes influences the stratification only
if merger occurs below the ambient interface height expected for two noninteracting plumes.
Extending the work of Kaye and Linden [11], Cenedese and Linden [13] proposed a piecewise
equation describing the volume flux of two merging plumes through three different stages of plume
evolution. In a separate effort, Rooney [14] developed a novel plume merger model by describing
the boundaries of n merging plumes using velocity potential contours for n line sinks. Rooney
[14] investigated the merging of an infinite row of plumes, then explored in a later study [15] the
merging of n equally spaced plumes arranged around a circle. By the method of images, Rooney’s
latter study can be extended to the case of a plume in a corner of angle 2π/n where n, as argued
by Rooney, remains integer valued; the noninteger case remains to be characterized. In a further
extension of Rooney’s later model [15] for plume merger, He and Lou [16] added linear stratification
to the external ambient. Their theoretical predictions compare reasonably well with the output from
analog numerical models, which are described in a companion study [17]. Even more recently, Li
and Flynn [18,19] have extended Rooney’s theory to include the effects of a nonidealized plume
source, multiple rows, and crosswinds.

Studies of plume merger have helped guide our understanding of plume rise in the vicinity
of vertical walls. For instance, Gao et al. [20,21] applied the aforementioned piecewise model
of Cenedese and Linden [13] to study wall and corner plumes in a ventilated enclosure. Gao
et al. [21] thereby determined the critical distance between the plume and the vertical boundary
(wall or corner) below which ambient entrainment is restricted. Other wall plume studies have
pursued different questions; e.g., Cooper and Hunt [22] and Kaye and Cooper [23] both considered
plumes that emanate from a distributed source of buoyancy. Analogous to MTT, Cooper and Hunt
[22] proposed a plume model using the entrainment assumption. Owing to the high-Reynolds
number of the flow, they ignored the contribution of the wall shear stress. In Cooper and Hunt’s
ventilated filling-box experiments, they found that a complicated density stratification develops in
the enclosure owing to horizontal intrusions that form due to the detrainment of plume fluid from
the vertically distributed source. Kaye and Cooper [23] analyzed the effects of a finite source and
of wall shear stress on vertically distributed plumes. They concluded that the reduced entrainment
coefficient for wall-bounded plumes may be due to (1) the wall shear stress, (2) the restriction
imposed by the wall on the engulfment of the largest eddies and on plume meandering, and (3) the
nonideal source. More recently, Parker et al. [24] revealed that the entrainment rate per unit height
for a two-dimensional wall plume is less than one-half the value of a line plume of equal source
buoyancy flux situated far away from a wall. As argued by Parker et al. [24], the presence of the
wall imposes no-slip and no-penetration boundary conditions, which carry similar importance in
determining rates of entrainment. For three-dimensional wall plumes, Ezhova et al. [25] introduced
a drag term into the classic MTT plume equations whereby the entrainment coefficient and drag
coefficient are quantified from data derived from direct numerical simulations. Contrary to Parker
et al. [24], Ezhova et al. [25] found that the volume flux of a three-dimensional wall plume is
one-half of that expected for a conical plume whose rise is unimpeded by sidewalls.

The studies described above focus primarily on Boussinesq plumes where density differences
are only important insofar as computing the buoyancy. However, there are many situations where
density differences exceed ∼10%, plumes generated by fires being the oft-cited example. Compared
to a fire source located at the room center, a fire source situated near a wall or corner is subject
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to restricted entrainment and possibly leads to an increase in the temperature of smoke that
accumulates below the ceiling. The study of Mowrer and Williamson [26] revealed that a fire
in a corner may cause flashover with half the heat release rate expected for a fire located at the
room center. Later Takahashi et al. [27] studied the effects of corners on flame heights and plume
entrainment. Their experimental measurements showed that, in comparison to an isolated fire, a
corner fire is characterized by reduced vertical velocities, a more moderate growth rate, and an
extended flame height. A more recent study by McGrattan and Stroup [28] investigated the effect of
an offset distance between a plume and a corner on the hot layer temperature and height. McGrattan
and Stroup found that the corner effect is most important when the fire is just against the corner and
that this effect fades quickly as the offset distance increases.

The above review indicates that the plume geometry plus the details of plume merger have a
nontrivial effect on the manner in which turbulent entrainment is parameterized. In this spirit,
the current study focuses on plume rise in a corner, a configuration that is commonly seen in
practice but not as commonly studied, e.g., in the context of natural ventilation. Compared to
the previous work of Rooney [15], the novelty of the present contribution is fourfold: (1) we
generalize Rooney’s model and thereby include noninteger values for n, (2) we propose an alternate
entrainment assumption whereby the near-field entrainment is not reduced, (3) we extend Rooney’s
model to describe non-Boussinesq plume rise in a corner, and (4) we apply the present theory to the
case of a naturally ventilated space.

Our paper is structured as follows: In Sec. II we first review Rooney’s work in Secs. II A to II C,
then in Secs. II D and II E we generalize Rooney’s theory to model a plume in a corner of arbitrary
angle. In Sec. III we propose an alternate entrainment formulation that relates the entrainment flux
per unit height to the plume perimeter. In Sec. IV we formulate the analog non-Boussinesq theory.
Thereafter, in Sec. V we adapt the models of Secs. II and IV to a naturally ventilated space driven
by plume rise in a corner. In Sec. VI we draw conclusions.

II. BOUSSINESQ PLUME IN A CORNER

According to Turner [29] and Kaye and Linden [11], the induced flow into a turbulent plume
can be treated as horizontal and irrotational and is akin to the flow resulting from a line sink. By
extension, and considering the linearity of Laplace’s equation, the entrainment flow into two or
more plumes can be described by a superposition of line sinks. Moreover, and by the method of
images, the configuration consisting of n plumes equally spaced around a circle is equivalent to
the case of a plume situated in a corner with angle 2π/n. In the following, we first prescribe the
complex potential that describes the entrainment flow into a plume in a corner. Consistent with
Rooney [15], we then describe the contours of equal velocity potential, which represent the mean
plume boundaries at different heights.

A. Complex potential [15]

Following the idea of superposing line sinks, let the n line sinks in question be located at

Zp = a ei 2π p/n, p = 0, 1, . . . , n − 1, (1)

where Z = x + iy = reiθ , a (>0) is a real constant [Fig. 1(a)] and n, for now, ∈ N. The complex
potential due to these n line sinks is given by

Ω = − m

2π
ln (Zn − an) = − m

2π
ln (Z ′n − 1) − m

2π
ln an, (2)

where Z ′ = Z/a and m is the (uniform) strength of each individual line sink. Using polar coor-
dinates, i.e., Z ′ = ρeiθ where ρ = r/a, and from Ω = φ + iψ , the velocity potential, φ, and the
stream function, ψ , are, respectively, given by

φ = − m

2π
ln(ρ2n − 2ρn cos nθ + 1)1/2, (3)
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(a) (b)

FIG. 1. (a) Top view of a plume in a corner of angle β = 2π/n. Here n < 2, but our analysis applies equally
to the case n � 2. (b) Velocity potential contours for n = 4/3 (β = 3π/2). Contours are labeled according to
their k value, k defined in (6). For k < 1, the solid and dashed curves denote the positive and negative square
roots of (7), respectively. The thick solid curve corresponding to k = 1 represents the level of first contact.

ψ = − m

2π
tan−1

(
ρn sin nθ

ρn cos nθ − 1

)
. (4)

Although (2)–(4) are derived assuming n to be integer-valued, we will show that for any real number
n � 1, (2)–(4) apply for a line sink in a corner of angle β = 2π/n. As illustrated schematically in
Fig. 1(a), the vertex of the corner is located at the origin and the plume source lies on the bisector
of the angle β at a radial distance a from the origin. In polar coordinates, the two corner surfaces
are described by θ = ±β/2. For solid surfaces, the no-penetration boundary condition should be
satisfied, which implies that the velocity normal to the corner surface respects:

uθ |θ=±β/2 = 1

r

∂φ

∂θ

∣∣∣∣
θ=±β/2

= − m

2πa

nρn−1 sin nθ

ρ2n − 2ρn cos nθ + 1

∣∣∣∣
θ=±β/2

= 0. (5)

Thus, the corner surfaces are also streamlines of the flow. Moreover, the flow always includes a
stagnation point located exactly at the origin. In this sense, (2) with n � 1 is a stagnation flow that
is similar to another common type of stagnation flow in a corner of angle π/n, i.e., the stagnation
flow described by Ω = aZn.

Contours of equal velocity potential are described by

ρ2n − 2ρn cos nθ + 1 = k2, (6)

where k > 0 is a constant. Solving for ρ and θ separately yields

ρ = [cos nθ ± (k2 − sin2 nθ )1/2]1/n, (7)

θ = ±1

n
cos−1

(
ρ2n + 1 − k2

2ρn

)
. (8)

For n = 4/3 (β = 3π/2), a set of velocity potential contours is illustrated in Fig. 1(b). The
maximum radial extent occurs at θ = 0 and is given by

ρmax = (k + 1)1/n. (9)

The minimum radial extent is given by a piecewise function that reads

ρmin =
{

(1 − k)1/n, k � 1

(k − 1)1/n, k > 1.
(10)
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From (9) and (10), the cross-sectional area enclosed by a velocity potential contour is given by

Â ≡ A

a2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
∫ ρmax

ρmin

θ+ρ dρ, k � 1

1

2

∫ π/n

−π/n
ρ2

+ dθ, k > 1,

(11)

where the subscript + corresponds to the positive root in (7) and (8).
The entrainment flow speed can be obtained from q = | dΩ

dZ |, which is given by

q = m

2πa

nρn−1

k
. (12)

Thus the flow speed at the maximum radial extent, ρmax (9), is expressed as

qe = m

2πa

n(k + 1)(n−1)/n

k
. (13)

Note that qe is the maximum entrainment speed measured along a velocity potential contour.

B. Entrainment flux

On any of the velocity potential contours shown in Fig. 1(b), the (irrotational) entrainment flow
velocity is everywhere orthorgonal to the contour. The associated entrainment flux can be evaluated
using the stream function (4). For k � 1, the entrainment flux per unit height, E , can be computed
from

E = 2(ψ (ρmax, 0) − ψ (ρmin, 0)) = −m

π
(0 − π ) = m. (14)

An identical result is obtained when k > 1:

E = 2(ψ (ρmax, 0) − ψ (ρmin, π/n)) = −m

π
(0 − π ) = m. (15)

Using (13), the entrainment flux can be related to qe by

E = m = a
2πk

n(k + 1)(n−1)/n qe. (16)

C. Boussinesq plume equations

Through a rearrangement of the MTT plume equations, Rooney [14] proposed a pair of general-
ized equations for a Boussinesq plume in an unstratified ambient. This pair reads as follows:

A
d

dz

(
1

2
w2

)
= Ag′ − wE , (17)

d

dz
(Aw) = E , (18)

where w and g′ are the plume mean vertical velocity and reduced gravity, respectively. The
set of Eqs. (17) and (18) is closed by an entrainment assumption, i.e., qe = αw, where α is
an empirical entrainment coefficient. Equations (17) and (18) can be written in nondimensional
form as

dŵ

dẑ
= 1

Q̂ŵ
− feŵ

2

Q̂
, (19)

dQ̂

dẑ
= feŵ, (20)
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where

fe = 2πk

n(k + 1)(n−1)/n . (21)

Meanwhile, ŵ, Q̂, and ẑ respectively indicate the nondimensional vertical velocity, plume volume
flux, and vertical coordinate. These parameters are related to their dimensional analogues via

w = α−1/3F 1/3a−1/3ŵ, Q = α−1/3F 1/3a5/3Q̂, z = α−1aẑ. (22)

Here F = Awg′ is the plume buoyancy flux. In similar fashion, we define the plume momentum
flux as M = Qw. The plume momentum flux is important because it appears in the flux-balance
parameter, Γ , which is defined as [30]

Γ (z) ≡ 5

8π1/2α

FQ2

M5/2
= 5

8π1/2Â1/2ŵ3
. (23)

The flux-balance parameter is useful because it is a single nondimensional number that quantifies
the departure of the plume from a pure-plume balance with Γ = 1.

To solve (19) and (20), we first assign a small value for k, e.g., k0 = 0.001 whereupon the
source cross-sectional area, Â0, can be obtained using (11). Then, for prescribed Γ0 ≡ Γ (z = 0), the
source vertical velocity, ŵ0, can be determined using (23). In turn, Q̂0 is obtained from Q̂ = Â0ŵ0.
Equations (19) and (20) are then integrated using a fourth-order Runge-Kutta method. Assuming a
pure-plume balance at the source, Γ0 = 1, a near-field virtual origin, ẑvn, may be applied, where

ẑvn = 5

6

(
0.001

n

)
. (24)

D. Plume boundary curvature

The curvature at any point on a velocity potential contour is given by

κ (θ ) =
∣∣2( dρ

dθ

)2 + ρ2 − ρ
d2ρ

dθ2

∣∣[
ρ2 + ( dρ

dθ

)2]3/2 . (25)

Thus the characteristic curvature at θ = ±π/n is given by

κ1 = |k − n|
k(k − 1)1/n , (26)

where k > 1. Thus κ1 = 0 requires k = n, which is consistent with k = 2 for the merging of n = 2
plumes as studied by Li and Flynn [18]. In physical terms, k = n represents the vertical elevation
where the plume boundary is no longer concave and thereafter the plume, which had until this
elevation appeared significantly distorted, exhibits a more uniform radius of curvature. When k =
1 [thick solid curve of Fig. 1(b)], κ1 → ∞ implying that the plume distortion is maximum. In
the following, we shall define k = 1 and k = n as two contact heights, denoted as ẑc, 1 and ẑc, 2,
respectively. In particular, and by the method of images, ẑc, 2 is analogous to the height of full
merger defined in Kaye and Linden [11].

E. Representative solutions

The major difference with Rooney’s work up to this point is that we consider n to be noninteger.
For noninteger n, Rooney [15] argued that the potential field described by (2) is discontinuous on
the negative real axis. This discontinuity, as we have discussed in Sec. II A, is not an issue when
considering a plume in a corner of arbitrary angle. To wit, the corner surfaces are always streamlines
of the flow; see (5). On this basis, and by setting n to be noninteger, we aim to examine (1) whether
the theoretical results still approach the correct near- and far-field similarity solutions (see Sec. 3.2
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FIG. 2. Log-log plot showing the vertical variation of ŵ (a) and Q̂ (b) for n = 7/3 (β = 6π/7). The dotted
lines denote the respective near- and far-field similarity solutions, as given in Sec. IV B but with η = 1 where η

is the ratio of plume density to ambient density. The lower and upper dashed horizontal lines denote ẑc, 1 = 0.60
and ẑc, 2 = 1.28, respectively. ẑc,1 (ẑc, 2) is determined as the height where k is closest to 1 (n).

of 15; see also Sec. IV B with η = 1) and (2) whether the theoretical results vary smoothly from
integer to noninteger n values.

Representative results showing the plume nondimensional vertical velocity and volume flux for
the n = 7/3 (β = 6π/7) case are illustrated in Fig. 2. Both panels confirm that this noninteger case
approaches the near- and far-field similarity solutions. Figure 2(a) shows that the vertical velocity
first overshoots the far-field similarity limit then relaxes back, a trend also observed in Fig. 3(a)
of Rooney [15]. A linear extrapolation of the (Q̂/ŵ)

1/2
data for 9 < ẑ � 10 (not shown) yields a

far-field virtual origin ẑv f = −0.201. For a range of n values, we plot ẑc, 1, ẑc, 2 and ẑv f in Fig. 3.

1The negative value seen here indicates a virtual origin that is situated above (i.e., downstream of) the physical
source. When, as in (24), the virtual source is positive, the virtual origin is instead situated below the physical
source.

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

FIG. 3. ẑc, 1, ẑc, 2, and ẑv f vs n (β = 2π/n). ẑc, 1 and ẑc, 2 are two contact heights corresponding to k = 1
and k = n, respectively. ẑv f is the far-field virtual origin. In all cases, Γ0 = 1. Virtual origin corrections are
included in the manner of (24).
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The profiles in Fig. 3 show that ẑc, 1 and ẑv f reach their respective asymptotic values for n � 4. The
nonmonotonic variation of ẑc, 2 with n is due to the competing effects of plume distortion and corner
angle. When n is small, the plume distortion effect is expected to be small thus leading to small ẑc, 2.
By contrast, larger n implies smaller corner angle so that plume easily fills the corner, which results
in a decrease in ẑc, 2.

III. ALTERNATE ENTRAINMENT CLOSURE

Recall that the entrainment assumption described in Sec. II C, qe = αw, relates the maximum
entrainment velocity (13) to the mean vertical velocity of the plume. Note also that the entrainment
flux E is related to qe by E = a feqe (16), which, for a prescribed E , requires the minimum fe

because qe is maximum. The parameter fe is interpreted as the nondimensional effective entrainment
perimeter in Li and Flynn [19]. Using the aforementioned (MTT) entrainment assumption, Rooney
[15] revealed that the predicted Γ shows an unusual, nonmonotonic variation with height. To achieve
a more regular Γ profile, Rooney [15] proposed an empirical function for the entrainment correction
that includes k, Γ , and a model constant S; see his Eq. (3.16). Li and Flynn [18] incorporated an
empirical correction factor that depends only on the plume boundary curvature, κ of (25). Overall,
the deficiencies of these previous entrainment correction formulations are twofold: (1) a lack of
theoretical basis and (2) an overprediction of the reduction in entrainment in the near field. As
regards (2), plume entrainment can be assumed to be unaffected below the height of first contact,
which is supported by the experimental studies of Kaye and Linden [11] and Cenedese and Linden
[13]. To resolve this deficiency without introducing more empirical factors, we consider a smaller
entrainment velocity, e.g., ql = E/l , which denotes the mean entrainment velocity per unit contour
length l . Assuming ql = αw, the entrainment flux per unit height, E , is given by

E = αwl = αwa fl , (27)

where the parameter fl is defined as fl = l̂ ≡ l/a. Analogous to the plume cross section Â, l̂ can be
obtained by integration over ρ or θ using (A5) of Rooney [15]. In the case of undistorted plume cross
section (and unaffected entrainment) below the first contact height, the nondimensional entrainment
perimeter can be expressed as 2(π Â)

1/2
.

A comparison of fe, fl , and 2(π Â)
1/2

is shown in Fig. 4. As expected, fe � fl and the deviation
is largest at k = 1. Moreover, fe increases monotonically with k, whereas fl first increases then
decreases sharply at k = 1 and thereafter increases again. The insets to Figs. 4(a) and 4(b) show that
fl and 2(π Â)

1/2
closely align with each other and the differences become distinguishable only when

k is close to unity. This close match implies that the present model aligns with the measurements of
Kaye and Linden [11] and Cenedese and Linden [13], who, to reiterate, found that entrainment was
little impacted below ẑc, 1.

For n = 2, the effective entrainment is defined by Qeff = (Q/Q(n=1))3/4 where Q(n=1) denotes the
volume flux of an isolated plume [13]. Figure 5(a) shows the variation of Qeff with ẑ for the original
(constant entrainment coefficient) MTT model, Rooney [15], the entrainment model represented by
(27) and the piecewise model of Cenedese and Linden [13]. In the latter case (and again assuming
n = 2), the equation for the effective entrainment reads as follows:

Qeff, CL =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, ẑ < 0.70,

(ẑ/2)−5/4(0.73ẑ/2 − 0.082)3/4, 0.70 � ẑ � 0.88,

1

21/2

(
1 + 0.12

ẑ/2

)5/4

, ẑ � 0.88,

(28)

where the subscript CL stands for Cenedese and Linden [13]. Note that (28), which has been
validated by the filling box experiments of Cenedese and Linden [13], applies only for n = 2.
Figure 5(a) shows that the present model (solid black curve) yields better agreement with Cenedese
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FIG. 4. Comparison of fe, fl , and 2(π Â)
1/2

as functions of k for n = 2 (a) and n = 4 (b). fe is defined by
(21), and fl = l/a where l denotes the contour length.

and Linden’s model compared to the other models, especially in the near-field where the effective
entrainment is constant. Complementing the data from Fig. 5(a), the two contact heights predicted
by the same four models are summarized in Table I. Significantly, (27) predicts the smallest ẑc,1,
which is due to its enhanced entrainment below ẑc, 1 compared to the MTT and Rooney [15] models.
Cenedese and Linden [13] predicts the largest ẑc, 1 because they assume that the plume interaction
before the point of first contact is mutual advection rather than plume distortion. Note, moreover,
that ẑc, 2 predicted by (27) is closest to that of Cenedese and Linden [13]. For n = 4, Fig. 5(b) shows
similar profiles to those displayed in Fig. 5(a). Note that the near-field kink observed at ẑ � 0.3 in
the solid curve of Fig. 5(b) corresponds to the kink in the solid curve of Fig. 4(b).

TABLE I. Contact heights predicted by MTT, Rooney [15], the present model (27) and Cenedese and
Linden [13] for the n = 2 case. ẑc,1 (ẑc,2) is defined as the height where k = 1 (k = n); see Sec. II D.

MTT Rooney [15] Present model Cenedese and Linden [13]

ẑc,1 0.63 0.55 0.47 0.70
ẑc,2 1.22 1.01 0.91 0.88
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FIG. 5. Effective entrainment vs height for four different theoretical models. (a) n = 2. The vertical dashed
line represents the far-field limit of 2−1/2. (b) n = 4. The vertical dashed line represents the far-field limit of
4−1/2 = 1/2. The Cenedese and Linden [13] solution is here omitted because their model is restricted to n = 2.

IV. NON-BOUSSINESQ PLUME IN A CORNER

A. Non-Boussinesq plume equations

Following the pioneering work of Rooney and Linden [31], the top-hat governing equations for
a non-Boussinesq plume rising through an unstratified ambient read

d

dz
(ρAw) = ρaE (Mass), (29)

d

dz

(
ρAw2

) = −gA(ρ − ρa) (Momentum), (30)

d

dz
(Aw) = E (Volume), (31)

where ρ is the plume density, ρa is the ambient fluid density, A is the plume cross-sectional area,
w is the mean vertical velocity, E is the rate of entrainment per unit height, and g is gravitational
acceleration. Letting η = ρ/ρa, the mass (29) and volume (31) evolution equations indicate that the
density deficit flux, F = gAw(1 − η), is constant. Equation (30) can be rewritten, with the aid of
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(29), as

A
d

dz

(
1

2
w2

)
= Ag

1 − η

η
− wE

η
. (32)

In the Boussinesq limit η → 1, and (32) reduces to (3.1a) of Rooney [15].
For non-Boussinesq plumes, Rooney and Linden [31] used their similarity solutions to derive the

entrainment assumption, which reads

ue = αη1/2w. (33)

Assuming ue = E/l [cf. Eq. (27)], E is given by

E = αη1/2wl. (34)

Defining the volume flux as Q = Aw and using (34), (32), and (31) can be respectively rewritten
as

dw

dz
= F

ηQw
− αl

η1/2

w2

Q
, (35)

dQ

dz
= αlη1/2w. (36)

Moreover, the conservation of density deficit flux, dF = 0, yields

dη

1 − η
= dQ

Q
. (37)

Using the density deficit flux, F , and the characteristic length scale a, the vertical velocity, volume
flux and vertical distance can be nondimensionalized as in (22). On this basis, (35) to (37) can be
rewritten as

dŵ

dẑ
= 1

ηQ̂ŵ
− ŵ2

η1/2Q̂
l̂, (38)

dQ̂

dẑ
= η1/2ŵl̂, (39)

dη

dẑ
= (1 − η)η1/2 ŵ

Q̂
l̂. (40)

The flux-balance parameter for non-Boussinesq plumes, Γnb, is defined as [32]

Γnb(z) = 5FG2

8απ1/2M5/2
= 5

8π1/2η1/2
Â−1/2ŵ−3, (41)

where the mass flux is G = ηAw, the momentum flux is M = ηAw2 and the nondimensional cross-
sectional area is Â = Q̂/ŵ = A/a2. To solve (38)–(40), we first assign a small value of k, e.g.,
k0 = 0.01 at the source z = 0, thus the source cross-sectional area Â0 ≡ Â(z = 0) can be determined
using (11). By setting Γnb, 0 ≡ Γnb(z = 0) and η0 ≡ η(z = 0) separately, we can then determine
ŵ0 ≡ ŵ(z = 0) from (41). With all the source parameters set, (38)–(40) can be integrated in height
using a fourth-order Runge-Kutta method. Considering the finite source at z = 0, a near-source
virtual origin correction is applied using the methodology of Carlotti and Hunt [32]. For the special
case of Γnb, 0 = 1, the near-field virtual origin is located at

zvn = (Q0η0)3/5F−1/5κ−3/5, (42)
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where Q0 ≡ Q(z = 0) and κ = 35/3(2π )2/3

54/3 α4/3. In terms of nondimensional variables, (42) can be
written as

ẑvn = 54/5

3(2π )2/5
Q̂3/5η

3/5
0 . (43)

B. Near- and far-field similarity solutions

In the near field, the plume tends to be axisymmetric and similarity solutions are possible.
According to Rooney and Linden [31], analytical solutions to (35)–(37) are given by

w =
(

3

4

)1/3(6α

5

)−2/3

π−1/3F 1/3z−1/3, (44)

Q = 6α

5

(
9α

10

)1/3

π2/3η−1F 1/3z5/3, (45)

Δ =
(

4

3

)1/3(6α

5

)−4/3

π−2/3F 2/3g−1z−5/3, (46)

where Δ = 1−η

η
. The counterpart nondimensional solutions for w and Q are given, respectively, as

ŵ = 5

6

(
9

10

)1/3

π−1/3ẑ−1/3, Q̂ = 6

5

(
9

10

)1/3

π2/3η−1ẑ5/3. (47)

The far-field flow for a plume in a corner of angle 2π/n is equivalent to n merged plumes with
buoyancy flux nF . Therefore, and replacing F with nF in (44), we obtain the far-field similarity
solution for w. By contrast, the far-field similarity solution for Q is given by [15]

Q = 1

n

6α

5

(
9α

10

)1/3

π2/3η−1(nF )1/3z5/3 ⇒ Q̂ = 6

5

(
9

10

)1/3

η−1
(π

n

)−2/3
ẑ5/3. (48)

It is expected that the plume is Boussinesq in the far-field thus (48) is identical to the counterpart
Boussinesq far-field similarity solution. By extension, the modified flux-balance parameter Γnb, m ≡
n1/2Γnb tends to unity in the far field.

C. Representative solutions

For n = 2, η0 = 0.4 and Γnb, 0 = 1, solutions to (38)–(40) are illustrated in Fig. 6. Analogous
to Figs. 2(a) and 2(b), Figs. 6(a) and 6(b) show that the plume vertical velocity and volume
flux approach their respective near- and far-field similarity limits. The density profile shown in
Fig. 6(c) indicates that non-Boussinesq effects are important only near the source. Assuming that the
demarcation between the Boussinesq and non-Boussinesq regions is defined as the height, znb, where
η = 0.9, the non-Boussinesq region for the case considered in Fig. 6 spans 0 < ẑ � ẑnb = 0.012.
Also evident from Fig. 6(c) is that the non-Boussinesq height ẑnb is considerably smaller than the
first contact height, ẑc, 1; see the lower dashed line in Fig. 6(c). Figure 6(d) reveals that Γnb, m is
almost constant below ẑc, 1; this is consistent with the fact that the vertical velocity and volume flux
closely align with the respective self-similar solutions below ẑc, 1; see Figs. 6(a) and 6(b).

For fixed Γnb, 0 = 1 and η0 = 0.4, ẑc, 1, ẑc, 2 and ẑnb are plotted as functions of n in Fig. 7. For a
range of η0 from 0.05 to 0.95, we have found that the curves of ẑc, 1 and ẑc, 2 versus n are almost
identical (not shown), which indicates that non-Boussinesq effects do not dictate the heights of
contact between the plume and the corner. This is also implied by Fig. 7 in that ẑnb is small compared
to ẑc, 1 and ẑc, 2. As we indicate in Sec. IV D 1, the conclusion ẑnb 
 ẑc, 1, ẑc, 2 holds in general for
small source plumes.
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FIG. 6. Representative results of the nondimensional vertical velocity (a), volume flux (b), density (c), and
modified flux-balance parameter (d) for n = 2, η0 = 0.4 and Γnb, 0 = 1. The dotted lines in (a) and (b) denote
the near- and far-field similarity limits, respectively. The vertical dashed line in (c) denotes η = 0.9. In all
panels, the lower and upper horizontal dashed lines denote the contact heights defined in Sec. II D.

D. Non-Boussinesq height

1. Small source plumes

Further to Figs. 6 and 7, it is necessary to examine the non-Boussinesq height, ẑnb, for arbitrary
plume source conditions and corner angles. For a point-source pure plume in an unbounded,
uniform ambient, Woods [33] derived the vertical length scale over which non-Boussinesq effects

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

FIG. 7. ẑc, 1, ẑc, 2, and ẑnb vs n (β = 2π/n). ẑc, 1 and ẑc, 2 are two contact heights corresponding to k = 1
and k = n, respectively. ẑnb is defined as the point at which η = 0.9. In all cases, Γ0 = 1 and η0 = 0.4. Virtual
origin corrections are included in the manner of (43).
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FIG. 8. (a) ẑnb and Q̂3/5
0 vs Γnb, 0 for n = 2 and η0 = 0.2. (b) ẑnb vs Γnb, 0 for n = 2 and different η0. ẑnb

is defined as the point at which η = 0.9. Q̂3/5
0 (50) is a theoretically derived scaling height over which non-

Boussinesq effects are important.

are important:

znb→b =
(

F 2

g3α4

)1/5

. (49)

The above equation can be nondimensionalized in the manner of (22) whereby

ẑnb→b = Q̂3/5
0 . (50)

For small and fixed Â0 = 10−4, n = 2 and η0 = 0.2, we plot ẑnb and Q̂3/5
0 versus Γnb, 0 in Fig. 8. A

virtual origin correction is not considered here because ẑvn is small compared to ẑnb. The curves in
Fig. 8(a) show that ẑnb and Q̂3/5

0 are of the same order, which is consistent with the findings of Woods
[33]. For Â0 = 10−4 and n = 2, Fig. 8(b) shows ẑnb versus Γnb, 0 for different η0. It is observed that
ẑnb decreases with η0, which is consistent with the fact that Q̂3/5

0 also decreases with increasing η0.
For the same source conditions but with different n, i.e., different corner angles, we find that the
curves align closely with those in Fig. 8. This is consistent with Fig. 7, which indicates that ẑnb

varies by only a small amount, particularly for n � 2.
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FIG. 9. ẑnb, Q̂3/5
0 and ẑc, 1 vs Γnb, 0 for n = 2 (a) and n = 4 (b). In both panels, η0 = 0.4. ẑnb is defined as the

point at which η = 0.9. Q̂3/5
0 (50) is a theoretically derived scaling height over which non-Boussinesq effects

are important.

2. Large source plumes

When the plume source diameter is nontrivial compared to the distance between the plume center
and corner vertex, the non-Boussinesq height is expected to be non-negligible compared to the first
contact height. Strictly speaking, the theory in Sec. IV is applicable to plume sources close to ideal.
For large source plumes, a large source area Â0 is mapped to a relatively large k0, which corresponds
to an already distorted plume source. Nonetheless, we still regard the aforementioned theory as a
reasonable approximation for large source plumes in a corner, provided k0 < 1. This approximation
can be justified by the fact that the effect of distortion on entrainment becomes significant only
when k is close to unity; see Fig. 4. To obtain some representative results, we first choose a source
area Â0 = 0.08, which can be mapped to k0 = 0.32 when n = 2 and to k0 = 0.60 when n = 4.
Then by solving (38)–(40), we plot ẑnb, Q̂3/5

0 and ẑc, 1 versus Γnb, 0 in Fig. 9. In contrast to Fig. 7,
Fig. 9 shows that ẑnb is comparable to ẑc, 1; in fact, ẑnb > ẑc, 1 when Γnb, 0 is small (thus Q̂3/5

0 is
large). Comparing the relative magnitude of ẑnb versus ẑc, 1 in Figs. 9(a) and 9(b), non-Boussinesq
effects are more pronounced in case of smaller corner angles. This finding is qualitatively consistent
with the experimental observation that a right-angled corner has significant effects on the flame
height and plume temperature while a wall does not [28]. Later in Sec. V B we validate the present
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FIG. 10. Schematics of centered (left) and wall-bounded (right) plumes in naturally ventilated enclosures.
The interface height is h, and the total room height is H .

non-Boussinesq plume theory with previously collected experimental measurements of area source
fire plumes.

V. APPLICATIONS TO FLOWS IN BUILDINGS

A. Boussinesq plume

Following the seminal work of Linden et al. [3], we consider the application of the above results
in Sec. II to a single-zone, naturally ventilated enclosure having a lower level vent of area AL and an
upper level vent of area AU . The vents connect the enclosure (or room) to a much larger quiescent
external environment; see Fig. 10. As a result of the thermal forcing imparted by the plume, a two-
layer stratification develops over time. Fluid exchange between the upper and lower layers of Fig. 10
is through ambient entrainment into the ascending plume, which has the effect of transporting lower
layer fluid across the ambient interface and into the upper layer. The ventilation volume flux, i.e.,
the flow rate through the lower and upper vents, can be computed by considering the hydrostatic
pressure difference between the room and the ambient. To wit,

Qv = A∗[g′
u(H − h)]1/2

, (51)

where g′
u is the reduced gravity of the upper layer and the effective vent area, A∗, is defined as

A∗ = cd AU AL[
1
2

( c2
d
c A2

U + A2
L

)]1/2
, (52)

where c is the inlet loss coefficient and cd is the discharge loss coefficient. Because the only
interfacial transport is through the plume,

Qv = Q(z = h). (53)

Meanwhile, buoyancy conservation requires that

g′
u = g′(z = h) = F/Q. (54)

From (51)–(54), we reproduce a result akin to (2.11) of Linden et al. [3],

A∗

H2
=

(
C

Q

Q(n=1)

)3/2(
ζ 5

1 − ζ

)1/2

, (55)

where ζ = h/H is the nondimensional interface height and Q(n=1) = CF 1/3h5/3 where C =
6
5 ( 9

10 )
1/3

π2/3α4/3. Using Qeff = (Q/Q(n=1))3/4, (55) can be rewritten as

A∗

H2
= (

CQ4/3
eff

)3/2
(

ζ 5

1 − ζ

)1/2

, (56)
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FIG. 11. Comparison of different model predictions with the experimental data of Linden and Kaye [12]
for two merging plumes. (a) Interface height as a function of the distance from the plume source to the adjacent
wall with A∗/H 2 = 0.02 (data reproduced from Fig. 8 of Linden and Kaye [12] with permission). (b) Interface
height as a function of the effective vent area with a/H = 0.05 (data reproduced from Fig. 11 of Linden and
Kaye [12] with permission).

on which basis we may define an effective constant, Ceff = CQ4/3
eff [21]. When z = h, ζ can be related

to ẑ using ζ = α−1a
H ẑ, which connects the theory in Sec. II to (56).

For n = 2, the flow illustrated in Fig. 10(b), the plume can be regarded as half of two merging
plumes using the method of images. Linden and Kaye [12] performed laboratory experiments of two
merging plumes with equal and unequal strengths in a ventilated enclosure. A comparison between
the MTT, Rooney [15], the present model (27), Cenedese and Linden [13] (28), and the measured
data of Linden and Kaye [12] is shown in Fig. 11. Here we focus on the steady-state interface height,
ζ , and choose α = 0.13 consistent with the classic MTT model. Good overall agreement between
the present model and experimental measurements is observed.

For n = 4, which corresponds to a plume in a right-angle corner, Gao et al. [21] proposed a
technique for computing the plume volume flux on the basis of the piecewise model of Cenedese
and Linden [13] (28). Using the so-called principle of image theory, Gao et al. [21] argued that
a plume in a right-angle corner is equivalent to the case of two plumes that share four times the
effective vent area for a single room; see their Fig. 6. (Following the method of images strictly, the
case of a plume in a right-angle corner is equivalent to four plumes with an effective vent area four
times that of a single room). Mathematically, the governing equation for ζ , analogous to (56), is

054503-17



SHUO LI AND M. R. FLYNN

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1(a)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1(b)

FIG. 12. Comparison of different model predictions for the ambient interface height ζ in the case of a
plume in a right-angle corner. (a) Interface height as a function of a/H for A∗/H 2 = 0.04. (b) Interface height
as a function of A∗/H 2 for a/H = 0.1. The red curve represents the solution of (57).

given by Gao et al. [21] as

2A∗

H2
= (

CQ4/3
eff, CL

)3/2
(

ζ 5

1 − ζ

)1/2

, (57)

where Qeff, CL is expressed by (28). A comparison of the MTT, Rooney [15], and present (27) models
with the predictions of (57) is shown in Fig. 12, where we again focus attention on the interface
height.2 For relatively small a/H , (57) agrees satisfactorily with Rooney [15] and with (27); see
Fig. 12(a). This agreement is also observed clearly in Fig. 12(b) wherein a/H = 0.1 is fixed. For
larger a/H , entrainment is expected to be less influenced by the corner and the plume should
therefore behave more like a free plume. In such cases, however, (57) approaches the solution for a
free plume having twice the effective vent area of a single room, which overestimates the interface
height compared to the predictions of Rooney [15] and (27). Among the different models, (27)
predicts the lowest interface height when a/H > 0.1 [Fig. 12(a)]. This phenomenon is attributed to
the fact that the present model does not underestimate entrainment especially in the near field; see

2Note that the difference between the red curve in Fig. 12(a) and the counterpart thick red curve in Fig. 7 of
Gao et al. [21] is due to the smaller entrainment coefficient; α = 0.093 listed in Table 1 of Gao et al. [21] is
the entrainment coefficient assuming Gaussian rather than top-hat profiles.
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FIG. 13. Illustration of plume rise in a right-angle corner of a room (shaded gray). The plume boundaries
are shaded according to the nondimensional height, and the contours are projected onto the bottom plane.

Fig. 5(b). For better visualizing plume rise in a right-angle corner, a three-dimensional contour plot
using the present model (27) is illustrated in Fig. 13.

B. Non-Boussinesq plume

The non-Boussinesq plume theory described in Sec. IV is compared with experimental measure-
ments of corner fire plumes by Takahashi et al. [27] whose configuration is shown in Fig. 14. Two
different burner locations are considered with S/D = 0.5 and 2.0. The distance between the burner
center and the wall surface can be calculated by a = S + D/2 where D = 0.1 m. The heat release
rate from the fire source is Q̇c = 15 kW. The buoyancy flux of the plume can be related to Q̇c by

F = gQ̇c

cpρaTa
, (58)

where cp = 1006.1 J/kg K is the air-specific heat capacity and ρa = 1.2047 kg/m3 is the air density
at an ambient temperature Ta = 293.15 K. As inferred from Fig. 4 of Takahashi et al. [27], the fire

FIG. 14. Top view of a square (D × D) fire source near a corner. The distance between the burner (i.e., fire
source) edge and the wall surface is given by S, whereas a denotes the distance between the burner center and
the corner vertex [27].
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FIG. 15. Comparison of theory vs experiment in terms of mass flux at different heights for S/D = 0.5
(a) and 2 (b). The configuration is a fire in a right-angle corner as shown in Fig. 14.

source excess temperatures T0 − Ta for S/D = 0.5 and 2 are 743.1 K and 657.5 K, respectively.
Thus following the ideal gas law, the source density ratio can be computed from η0 = ρ0/ρa =
Ta/T0. The source area is A0 = D2 and the nondimensional counterpart is Â0 = A0/a2. Using F =
A0w0g(1 − η0), the plume source velocity w0 can be determined. With all the input parameters to
the non-Boussinesq plume theory in hand, we compare the mass flux (ρQ) as a function of height
(z) for theory versus experiment in Fig. 15. The theoretical model does not describe the flame region
explicitly, however, the respective flame tip heights for the cases S/D = 0.5 and 2 are 0.73 m (7.3D)
and 0.58 m (5.8D). The greater flame tip height for S/D = 0.5 is due to the more restricted mixing
between the fuel and the ambient air.

The agreement between theory and experiment shown in Fig. 15 is satisfactory, given that the
flame tip height is non-negligible compared to the maximum height of measurement. In general,
using a smaller entrainment coefficient, α = 0.09, slightly improves the agreement. Note also that
the agreement for the case of S/D = 2 is better than that for S/D = 0.5. There are two explanations
for this observation. First, and as noted above, the flame region is greater for S/D = 0.5. Second,
the nonideal source effect for S/D = 0.5 is more pronounced, which renders the irrotational flow
theory (i.e., assuming an ideal sink; see Sec. II A) less accurate in this small S/D case.
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C. Boussinesq versus non-Boussinesq ventilation

A final point of interest concerns a comparison of Boussinesq versus non-Boussinesq plumes
in a corner within a naturally ventilated enclosure. From the results presented in Sec. IV D, the
non-Boussinesq height for a small source fire plume is expected to be negligible compared to the
interface height within the ventilated room. Therefore, the difference between Boussinesq versus
non-Boussinesq ventilation in the case of a “small fire” is expected to be small. As discussed in
Sec. IV D 2, and when the nonideal source effect is important, e.g., the fire source is against the
corner (S/D = 0 in Fig. 14), the difference between Boussinesq and non-Boussinesq plumes can be
nontrivial. For the S/D = 0 case in Takahashi et al. [27], our theory predicts that the non-Boussinesq
height is approximately 90% of the room height (3 m). This value will increase still further if the
burner heat release rate increases such that the temperature of the hot layer below the ceiling also
increases, possibly leading to flashover [26]. For this case, the flame region extends over nearly
half of the room height and laminarization of the plume flow along the walls occurs [27]. In such
scenarios, more work is needed to account for the flame region and the wall drag acting on the
plume.

VI. CONCLUSIONS

The present study extends the models of Rooney [14,15] to describe Boussinesq and non-
Boussinesq plume rise in a corner of arbitrary angle. We demonstrate that the complex potential
(2), originally derived for n line sinks arranged equally around a circle, is able to describe a plume
in a corner of angle 2π/n, where n can be any real number satisfying n � 1. For noninteger n,
theoretical solutions of the plume vertical velocity and volume flux approach their respective near-
and far-field similarity limits as exhibited graphically in Figs. 2(a) and 2(b). Another finding of
the present study is that the alternate entrainment assumption (27) yields good agreement with the
model of Cenedese and Linden [13] in terms of the effective entrainment for the n = 2 case, i.e.,
a plume near a wall. To wit, the alternate entrainment assumption does not reduce entrainment in
the near-field, depressed entrainment being a key limitation of previous entrainment formulations
[15,18]. Moreover, this alternate entrainment assumption is simpler in that it does not introduce
any empirical correlation for the entrainment coefficient. The application of the present model to
naturally ventilated spaces yields good agreement with the experimental data of Linden and Kaye
[12] vis-à-vis the interface height for the n = 2 case. For the n = 4 case, i.e., a plume in a right-angle
corner, a comparison between different models shows that the present model predicts lower ambient
interface heights than do previous models, this provided that the plume source is not too close to the
corner.

Another major contribution of the present work is to extend the model of Rooney [15] to describe
non-Boussinesq plume rise in a corner. We reveal that the plume vertical velocity and volume flux
also approach their respective near- and far-field similarity solutions in the case of a non-Boussinesq
source. For small source non-Boussinesq plumes, we find that the height over which non-Boussinesq
effects are significant is negligible compared to the contact height between the plume and the corner
(Figs. 6 and 7). For relatively large source plumes, we reveal that the non-Boussinesq height is
comparable to the first contact height between the plume and the corner (Fig. 9). Moreover, non-
Boussinesq effects are more pronounced for smaller corner angles. The theory of a non-Boussinesq
plume in a corner compares satisfactorily with previous measurements, due to Takahashi et al. [27],
of fire plume mass flux with height, although the theory does not account for the flame region. We
note that when the nonideal fire source is situated just against the corner, theoretical results show
that the non-Boussinesq effect persists over a nontrivial height, which may significantly enhance the
likelihood of flashover.

A major limitation of the present study is that there are limited experimental data available for
validation. Nonetheless, this study opens the door for several future endeavors. A topic of interest
is to study the transient behavior of a naturally ventilated room forced by a plume in a corner. In
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such a configuration, the critical value for A∗/H2 beyond which the buoyant upper layer overshoots
its steady-state height may be different from that anticipated for a centrally located plume [7]. It
may also be interesting to investigate the behavior of a turbulent fountain in a corner. An isolated
turbulent fountain in a uniform ambient consists of an inner jetlike upflow and an outer plume-like
downflow. With the presence of a nearby corner, either the upflow or the downflow will first touch
the corner surface whereafter the flow dynamics are expected to be significantly altered.
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