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Dispersion of active Brownian particles is a fundamental issue in biological, environ-
mental, and related applications. However, due to the restriction in former models, a
detailed analysis of Taylor dispersion of gyrotactic microorganisms in a horizontal plane
Poiseuille flow is still lacking. In the present paper, with a recently proposed method [Jiang
and Chen, J. Fluid Mech. 877, 1 (2019)], we illustrate the influences of the swimming
ability, gyrotaxis intensity, shape anisotropy of microorganisms, and velocity of the ambi-
ent fluid on the dispersion process. Compared with nongyrotactic ones, there is a double
accumulation mechanism for gyrotactic microorganisms: gravitactic focusing and wall
accumulation. By using different boundary conditions, we show the effects of gravitactic
focusing alone and double accumulation together. The variations of vertical distribution,
overall drift, and effective dispersivity are characterized by changing the characteristic
parameters of the microorganisms and the flow. Consisting of a swimming-induced part
and an advection-induced part, the overall drift and effective dispersivity are coupled
with the shape factor, flow Péclet number, and swimming Péclet number, which leads to
nonmonotonic variations as functions of these parameters.

DOI: 10.1103/PhysRevFluids.6.054502

I. INTRODUCTION

Much importance is attached to the transport of microorganisms in different environments,
including confined channels [1,2], tubes [3,4], and porous media [5], which can be viewed as
simplifications of practical environments such as bioreactors, rivers, blood vessels, and wetlands.
Unlike solute, silt, and other passive matter, many kinds of microorganisms are motile and exhibit
complicated dynamics, such as spontaneous accumulation at walls [6,7] and near-center depletion
in pressure-driven channel flows [8]. Microorganisms do not swim meaninglessly and phenomena
like algal blooms indicate that their collective motion is to strive for nutrients [9], lights [10], and
other resources. For example, many kinds of phytoplankton swim upwards on average in quiescent
water [11,12], enabling them to photosynthesize. This antigravity swimming behavior is called
gravitaxis [13], which can be caused by the offset from the center of mass to the center of buoyancy
of the microorganism cell [3]. In shear flows, the combined effect of the gravitational torque and
the viscous torque, which is called gyrotaxis [13], will lead to some special phenomena such as
gyrotactic focusing [3,14,15] and gyrotactic trapping [1,16].
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A single gyrotactic microorganism swims neither randomly exactly like a Brownian particle nor
in a specified direction. Instead, its motion can be characterized as a biased random walk [17], which
is an extension of Brownian motion. Though a microorganism is too big to observe conventional
rules for Brownian motion, we can generalize the unbiased random walks theory with consideration
of other influential factors. The most direct effects of the environment on gyrotactic microorganisms
are the gravitational torque (related to the gyrotaxis intensity) and the viscous torque (related to the
shape of the cells) [18], which are characterized by two dimensionless parameters named the bias
parameter and the shape factor.

It is feasible and straightforward to model the motion of microorganisms with individual-level
simulations [7,19,20], but it is also important to find out their macrotransport behaviors such as
distribution, drift, and dispersivity via continuum-based methods. Taylor-Aris dispersion theory
[21–23] has served researches of macrotransport process for many years. Effective methods have
been well established to study the dispersion of passive particles [21–25], and efforts have also
been made to extend these analytical methods to active dispersion [2,4,17,26]. The difficulty is
that the governing equation of the microtransport process is a six-dimensional advection-diffusion
equation covering both the positional and orientational fluxes. To simplify this rather complex
equation to a conventional three-dimensional advection-diffusion equation in the position space,
two parameters should be determined, named the mean swim direction vector and dispersivity
tensor. For nongyrotactic active particles, after applying a small wave-number expansion to the
Smoluchowski equation, Peng and Brady [27] recently analyzed the dispersion in a Poiseuille flow
using orientational moment expansion and finite element method. For gyrotactic microorganisms,
the transport problem is more complex due to the gyrotactic term. The Pedley-Kessler (PK) model
[28] is a pioneering work and has been used in determining these two coefficients in many works
[4,13,29–32]. A Fokker-Planck equation for the orientational probability is employed to calculate
the drift vector and the dispersivity tensor in the PK model. However, the PK model is only valid for
weak shear flows, low swimming speed, and weak confinement situations [2,33]. Apart from the PK
model, the generalized Taylor dispersion (GTD) theory was also applied to dispersion of gyrotactic
microorganisms in unbounded homogeneous shear flows [25]. Bearon et al. [17] attempted to extend
the GTD model to inhomogeneous shear flows by using an imaginary unbounded homogeneous
shear flow to substitute the local flow, but the accuracy of GTD results was still limited when
the shear variation is large and when the boundary effects are not negligible, as can be seen by
comparing with the individual-based simulations in their work.

Although the PK model and traditional GTD method are obligatory to study the transport process
of gyrotactic microorganisms in three dimensions, the dispersion in confined flows can be analyti-
cally derived by a one-step generalized Taylor dispersion theory recently put forward by Jiang and
Chen [34]. GTD theory indicates that, in the long-time asymptotic state, the zeroth-order moment of
microorganism probability density (integrating over the unbounded coordinate) satisfies a no-flux
equation in the local space [35]. In other words, by setting the unbounded streamwise coordinate
as the only global coordinate, GTD theory can be directly applied to derive the dispersion process
in the streamwise direction without restrictions that the former methods suffer. As a consequence,
the one-step GTD method is accurate for investigating the dispersion process in confined flows.
Soon after the one-step method was proposed, Jiang and Chen [36] studied the gyrotactic focusing
phenomenon and its influence on the dispersion in a vertical Poiseuille flow. However, they did
not consider the dispersion of gyrotactic microorganisms in a horizontal flow, which exists widely
in natural and artificial environments. Also, the dispersion in a horizontal flow is fundamentally
different: the gravitaxis will drive microorganisms to accumulate near the upper boundary [37,38],
which is called gravitactic focusing [17]. Gravitactic focusing may greatly affect the dispersion
process, however it is not well understood yet due to former model restrictions.

Apart from the gravitactic focusing, there is another mechanism of near-boundary accumulation.
For stationary suspension of active particles confined by solid walls, an interesting phenomenon
is the wall accumulation which has been observed in the suspension of spermatozoa and E. coli
[6,7]. The mechanism underlying wall accumulation is explored by researchers from different
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perspectives. Far-field hydrodynamic interactions between cells and walls are extensively studied
[7,19,39,40] and reproduce basic features of the wall accumulation phenomenon. However, in
some numerical works incorporating the hydrodynamic effects, the wall accumulation is even
more intensive in dilute suspensions [19,41], indicating a different perspective to understand this
phenomenon. Considering direct flagellar contact dynamics alone, Li et al. [20,42] simulated the
distribution of E. coli and C. crescentus, and found better agreement with the experiments than the
hydrodynamic models. The view that steric interactions instead of hydrodynamic interactions play
a more important role in cell-wall interactions is reinforced and developed by further studies [9,43–
45].

We note that the above-mentioned descriptions of the boundary behaviors of microorganisms
are majorly on the individual scale. From a continuum perspective, Elgeti and Gompper [44] used
a set of zero-flux boundary conditions (Robin type) to solve their continuum-based model based
on a Fokker-Planck equation. Their results confirmed that the Robin type boundary conditions can
characterize the wall accumulation. Ezhilan and Saintillan [45] presented a detailed analysis of
wall accumulation, upstream swimming, and centerline depletion of active particles with different
shape anisotropy in a pressure-driven channel flow; their results again showed that the simple Robin
type boundary conditions can capture the key features in the transport of dilute suspensions of
microorganisms. Recently, Peng and Brady [27] investigated the upstream swimming and Taylor
dispersion of active Brownian particles in a pressure-driven flow. They also used the Robin type
boundary conditions in solving the continuum-based equation. The Robin type boundary conditions
ensure that the total probability flux normal to the boundary is zero. Another set of boundary
conditions that also satisfy the zero-total-flux condition is the reflective boundary conditions, which
assumes the collisions between cells and boundaries are perfectly elastic. The reflective boundary
conditions can be also implemented in solving continuum-based equations [46,47] and in doing
Brownian dynamic simulations [2,8,17,48].

In the present paper, following the one-step method, we aim to investigate the active dispersion
process under gravitactic focusing and wall accumulation in a horizontal plane Poiseuille flow. This
double accumulation mechanism may greatly affect the Taylor dispersion process. To decouple the
double accumulation, we first analyze the dispersion under gravitactic focusing alone by imposing
the reflective boundary conditions. Then we analyze the dispersion under double accumulation by
imposing the Robin type boundary conditions. Some scholars have studied the dispersion process
of gyrotactic microorganisms [2,4,14,33,36,37], but their researches either focused on vertical
flows or were based on the approximate methods (PK, GTD, or Stokes-dynamics based). The
boundary effects in vertical flows are not as obvious as they are in horizontal flow [2,17], thus
the approximate methods may hold. However, the dispersion of gyrotactic microorganisms in
horizontal plane Poiseuille flow, which is severely affected by the boundary effects, deserves an
in-depth investigation. Motivated by this, the shape factors, bias parameters, swimming ability of
the microorganisms, and average flow velocity are set to be variable in this paper to give a detailed
analysis of this process.

II. MATHEMATICAL FORMULATION

A. Governing equations

Although a microorganism is too large to be considered as a conventional Brownian particle,
the analogy has been made between the motion of microorganisms and the Brownian motion
[28] that contains translational diffusion and rotational diffusion. Under the assumption that the
suspension of microorganisms is dilute enough for negligible cell-cell and cell-fluid interactions
(one-way coupling), the Smoluchowski equation [49] of the probability density function (PDF) P
in the position-orientation space (R∗, p) is adopted as

∂P

∂t∗ + ∇∗
R · J∗

R + ∇p · j∗p = 0, (1)
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FIG. 1. Sketch of gyrotactic microorganisms in a horizontal plane Poiseuille flow.

where P is the probability of a microorganism found in the position vector R∗ with the orientation
vector p at time t∗. ∇∗

R and ∇p denote the gradient operators in the position and orientation space,
respectively;

J∗
R = [U∗(R∗) + V ∗

s p]P − D∗
t ∇∗

RP (2)

is the probability flux in the position space, and

j∗p = ṗ∗P − D∗
r ∇pP (3)

is the probability flux in the orientation space. U∗ is the velocity of the ambient flow. V ∗
s is the

average swimming speed of the microorganisms, which is a constant scalar. D∗
t and D∗

r are the
intrinsic translational and rotational diffusivity coefficients similar to those of Brownian particles,
which represent the random part of the motion.

Microorganisms change their directions at a rate

ṗ∗ = �∗
a × p, (4)

where a dot above denotes the derivative of time. �∗
a is the total angular velocity of the microorgan-

isms [13], which is calculated by

�∗
a = − 1

2B∗ p × k + 1

2
ω∗ + α0[p × (E∗ · p)], (5)

where B∗ is the gyrotactic orientation parameter [50] equaling to the reorientation time of direction
vector p under the balance of constant gravity offset torque and viscous torque. k is the unit vector
opposing the gravity;

ω∗ = ∇∗
R × U∗ (6)

is the vorticity of the ambient flow, and

E∗ = 1
2 [∇∗

RU∗ + (∇∗
RU∗)T] (7)

is the strain-rate tensor. The microorganism is considered an ellipsoid with a shape factor α0

reflecting the anisotropy (Bretherton constant [51]). α0 ranges from 0 (sphere) to 1 (infinitely thin
rod).

B. Dimensionless formulation

In a horizontal plane Poiseuille flow with height H∗, as shown in Fig. 1, position coordinates x∗
and z∗ with unit vector ex and ez and orientation coordinates ρ and θ with unit vector p and eθ are
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used for the position and orientation space, respectively; then

U∗ = U ∗(z∗)ex, (8)

where U ∗ is the speed of the ambient flow, and

p = eρ = px(θ )ex + pz(θ )ez (9)

is the swimming direction, where

px = cos θ, pz = sin θ, (10)

where θ is the angle between p and ex.
Dimensionless variables and parameters are defined by

t = t∗D∗
r , x = x∗

H∗ − Pe f t, z = z∗

H∗ , U = U ∗

U ∗
m

− 1,

Pes = V ∗
s

D∗
r H∗ , Pe f = U ∗

m

D∗
r H∗ , Dt = D∗

t

D∗
r H∗2

, λ = 1

2B∗D∗
r

,

(11)

where U ∗
m is the depth average velocity calculated by

U ∗
m � 1

H∗

∫ H∗

0
U ∗(z∗) dz∗. (12)

Pes is the swimming Péclet number for the ratio between swimming speed and rotational diffusion,
Pe f is the Péclet number for the ratio between the depth average flow velocity and rotational
diffusion, Dt is the ratio of translational diffusivity to the rotational diffusivity, and λ is the
dimensionless bias parameter.

The dimensionless form of the probability conservation equation (1) becomes

∂P

∂t
+ ∇R · [(Pe f Uex + Pes p)P − Dt∇RP] + ∇p · ( ṗP − ∇pP) = 0, (13)

where ∇R = ex
∂
∂x + ez

∂
∂z , ∇p = eθ

∂
∂θ

, and

ṗ = θ̇eθ , (14)

where

θ̇ = 1

2
Pe f

∂U

∂z
(−1 + α0 cos 2θ ) + λ cos θ. (15)

C. Boundary conditions and the initial condition

Conservation of particles requires zero-total-flux condition at the boundaries. The zero-total-flux
condition is specified as∫ 2π

0
ez · JR dθ =

∫ 2π

0

(
Pes sin θP − Dt

∂P

∂z

)
dθ = 0 at z = 0, 1. (16)

Elgeti and Gompper [44] used a set of Robin type boundary conditions

Pes sin θP − Dt
∂P

∂z
= 0 at z = 0, 1, (17)

which satisfies the zero-total-flux condition (16) and illustrates the balance between swimming flux
and translational diffusion flux in the boundary-normal direction. We note that Dt = 0 induces
singularity under the Robin boundary conditions, as pointed out by Ezhilan and Saintillan [45]
and studied by Peng and Brady [27] using Brownian dynamics simulations. This singular limit will
not be discussed in this paper and we set Dt to be a positive constant under the Robin boundary
conditions.
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The reflective boundary conditions [17,34,36] also satisfy the zero-total-flux condition (16):

P(x, z, θ, t ) = P(x, z,−θ, t ) at z = 0, 1, (18)

∂P

∂z
(x, z, θ, t ) = −∂P

∂z
(x, z,−θ, t ) at z = 0, 1. (19)

However, this set of boundary conditions is unable to capture the wall accumulation [34,45].
Periodic conditions for θ are

P|θ=0 = P|θ=2π ,

∂P

∂θ
|θ=0 = ∂P

∂θ
|θ=2π .

(20)

The initial condition for P is formally given as

P|t=0 = P(0)(x, z, θ ), (21)

which according to the GTD theory [35] does not influence the long-time solution for the dispersion
process as long as the initial patch is released in a compact range. As we are concerned about the
steady state dispersion, a specific initial condition is not required.

III. SOLUTIONS FOR THE GENERALIZED TAYLOR DISPERSION MODEL

A. Local and global space

As a channel is mostly associated with a longitudinal length scale much greater than its transverse
scale, the longitudinal dispersion process is of great interest. According to the one-step GTD method
[34], the global space Q and local space q are chosen as

Q � {x}, q � {z, θ}. (22)

The conservation equation (13) can be recast as

∂P

∂t
+ [Pes cos θ + Pe f U (z)]

∂P

∂x
− Dt

∂2P

∂x2
+ LP = 0, (23)

where L is an operator in local space q defined as

LP � Pes sin θ
∂P

∂z
− Dt

∂2P

∂z2
+ ∂ (θ̇P)

∂θ
− ∂2P

∂θ2
.

The integration of P over the local space is denoted as

〈P〉 �
∫ 1

0
dz

∫ 2π

0
dθ P(x, z, θ, t ), (24)

which represents the mean concentration of microorganisms in the longitudinal direction ex.

B. Zeroth-order longitudinal moment

The long-time asymptotic state of the zeroth-order longitudinal moment of P is

P∞
0 (z, θ ) � lim

t→∞

(∫ +∞

−∞
P(x, z, θ, t ) dx

)
, (25)

which is the steady local distribution in the local space q. The boundary conditions for P∞
0 are the

same as those for P. According to the GTD theory, P∞
0 satisfies

LP∞
0 = 0, (26)
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which can be solved by a Galerkin method with basis functions satisfying the reflective boundary
conditions.

In basis functions construction, variables separation is more complicated under the Robin type
boundary conditions. Following Jiang and Chen [34], we decompose P∞

0 into

P∞
0 = PaG0, (27)

where

Pa = exp

[
Pes sin θ

(
z − 1

2

)
Dt

]
. (28)

The boundary conditions for G0 can be obtained by substituting Eq. (27) into Eq. (17):

∂G0

∂z
= 0 at z = 0, 1. (29)

Equation (26) becomes

L0G0 = 0, (30)

where L0(·) � 1
Pa
L(Pa(·)). G0 and its first derivative with respect to θ also satisfy the periodic

condition

G0|θ=0 = G0|θ=2π ,

∂G0

∂θ

∣∣∣∣
θ=0

= ∂G0

∂θ

∣∣∣∣
θ=2π

. (31)

G0 can be also solved with basis functions satisfying the Robin boundary conditions (29).

C. Overall drift and dispersivity

As basic phenomenological macrotransport properties of a dispersion process, the overall drift
velocity Ud and the Taylor dispersivity coefficient DT are important to understand the process. The
long-time solutions for Ud and DT in the longitudinal direction describe the drift velocity above the
mean flow and the effective diffusivity. Ud and DT can be defined as [35]

Ud � lim
t→∞

dM1

dt
, (32)

DT � 1

2
lim

t→∞
d

dt

(
M2 − M2

1

)
, (33)

where Mi is the ith moment of 〈P〉:
Mi �

∫ ∞

−∞
xi〈P〉dx i = 0, 1, 2 . . . . (34)

Generalized Taylor dispersion theory indicates that Ud and DT are subject to

Ud = 〈
P∞

0 Vx
〉
, (35)

DT = Dt + 〈bVx〉, (36)

where Vx is the overall longitudinal speed of microorganisms:

Vx(z, θ ) = Pe f U + Pes cos θ ; (37)

b is a function independent of time to be determined and satisfies

Lb(z, θ ) = P∞
0 (Vx − Ud ), (38)

〈b(z, θ )〉 = 0. (39)

054502-7



WANG, JIANG, CHEN, TAO, AND LI

For the reflective boundary conditions, the boundary conditions and periodic conditions for b are
the same as those for P [Eqs. (18)–(20)]. For the Robin boundary condition, b is also decomposed
in the same way as P∞

0 :

b = PaGb, (40)

where Gb satisfies

L0Gb(z, θ ) = G0 (Vx − Ud ). (41)

The boundary conditions and periodic condition for Gb are the same as those for G0 stated in
Eqs. (29) and (31). b (for reflective boundary conditions) and Gb (for Robin boundary conditions)
can be solved with similar procedures to solving P∞

0 and G0, respectively, and the results are
expressed by a series of the basis functions.

IV. RESULTS AND DISCUSSION

The dimensionless velocity profile of the horizontal plane Poiseuille flow is

U (z) = 6z(1 − z) − 1. (42)

A. Vertical distribution

The vertical distribution of the microorganisms is calculated by

〈
P∞

0

〉
O =

∫ 2π

0
P∞

0 (z, θ ) dθ. (43)

We note that vertical distribution of gyrotactic microorganisms in a horizontal plane Poiseuille flow
has been investigated by several researchers [37,38]. For example, with the local mean swimming
orientation and diffusion tensor obtained from Stokes dynamics of interacting cells, Ishikawa [37]
examined the evolution of the vertical distribution of an initially uniformly distributed cell patch.
However, due to the employed local equilibrium hypothesis, the concentration at the upper wall
became unrealistically high and the steady state could not be accurately obtained.

Bearon et al. [17] indicated an exponential distribution for spherical gyrotactic microorganisms in
horizontal unidirectional flows by analyzing the effective vertical transport equation. In the current
notion, the distribution can be written as

P∞
0 (z, θ ) = λ

2πPes(eλ/Pes − 1)
e

λz
Pes . (44)

We note that the exponential distribution is unrelated to the swimming direction of the microor-
ganisms, therefore it satisfies the reflective boundary conditions of probability (18). However, the
exponential distribution is only valid for cases when the translational diffusivity is neglected, i.e.,
Dt = 0. As shown in Fig. 2, the exponential distribution (44) is close to the results under the re-
flective boundary conditions in the current paper. But this distribution does not satisfy the reflective
boundary conditions of probability gradient (19) which we impose to satisfy the zero-total-flux
condition. Not only that, the probability gradient normal to the boundary is nonzero, i.e., it does not
satisfy the zero-total-flux condition (16) if Dt �= 0.

1. Influences of the bias parameter and swimming Péclet number

We first discuss the spherical swimmers (α0 = 0), which resemble most algae. The bias param-
eter λ reflects the strength of gravitaxis, which drives the microorganisms to swim upwards, for
example, λ ≈ 2 for C. nivalis [52,53] and λ ≈ 1.79 for Volvox [54] and H. akashiwo [55]. We take
four different values for λ with the shape factor α0 fixed at zero. Pes and Pe f are nondimensionalized
parameters involving the channel height, swimming velocity, flow velocity, and rotational diffusiv-
ity. For example, in a channel with depth H∗ = 1 cm and mean velocity U ∗

m = 6.3 × 10−3 m s−1,
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(a) (b) (c)

FIG. 2. Vertical distributions 〈P∞
0 〉O of spherical microorganisms under the reflective boundary conditions

with zero translational diffusivity (Dt = 0). Swimming Péclet numbers Pes at left, middle, and right are 0.1, 1,
and 10, respectively. λ denotes the bias parameter of microorganisms. “Asymptotic” denotes the exponential
distribution (44).

C. nivalis with V ∗
s = 6.3 × 10−5 m s−1 and D∗

r = 0.067 s−1 yields Pes = 0.1 and Pe f = 10. We
change Pes and Pe f within several magnitudes in our analysis.

As shown in Fig. 3, in all cases, reflective boundary conditions do not lead to wall accumulation:
the vertical distributions of spherical nongyrotactic swimmers (α0 = 0, λ = 0) are uniform, which
can be predicted by their unbiased movement irrespective of strain and gyrotaxis as expected in
Eq. (5). The dynamics of this kind of swimmers is similar to that of passive Brownian particles.
With a nonzero bias parameter, microorganisms are gyrotactic and exhibit gravitactic focusing. The

(a) (b) (c)

(d) (e) (f)

(h)(g) (i)

FIG. 3. Vertical distributions 〈P∞
0 〉O of spherical microorganisms under the reflective boundary conditions.

Swimming Péclet numbers Pes at left, middle, and right are 0.1, 1, and 10, respectively. Flow Péclet numbers
Pe f at top, middle, and bottom are 0.1, 1, and 10, respectively. Dt = 1/6 in all cases. λ denotes the bias
parameter of microorganisms.
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gravitactic focusing near the upper surface of microorganisms with larger λ is more obvious, as
depicted in Figs. 2 and 3. As λ gets larger, the concentration near the water surface increases while
the concentration in the bottom part and middle part decreases.

Another phenomenon that can be seen by comparing the subfigures in Figs. 2 and 3 is that, in the
absence of translational diffusivity, gravitactic focusing near the water surface is weakened as Pes

increases; however, with a constant translational diffusivity, gravitactic focusing shows nonmono-
tonic variation as a function of Pes. This can be understood by considering the idealized “stone
skipping” behavior of microorganisms near the walls: when a microorganism swims upwards to the
wall, it cannot pass through the wall, and due to the imposed reflective boundary conditions it will
subsequently swim downwards to the bulk of the channel; after a while, it swims upwards again due
to gyrotaxis. In the absence of translational diffusivity, if the swimming ability (quantified by Pes) is
weak, microorganisms take a shorter distance to swim upwards again and the gyrotactic focusing is
more intensive in the final steady state, as shown in Fig. 2. However, when a constant translational
diffusivity is applied, the variation becomes nonmonotonic. As shown in Fig. 3, the gyrotactic
focusing is most intensive at moderate swimming ability (Pes = 1). When the swimming ability
is weak, the translational diffusion dominates over the gravitactic focusing induced by swimming;
when the swimming ability is strong, the stone skipping also inhibits gravitactic focusing; only in
a moderate range of swimming ability does gravitactic focusing reach its maximum. Additionally,
the flow Péclet number Pe f can affect the concentration profile near the upper wall. As depicted
in Figs. 3(g) and 3(h), the concentration decreases as z → 1. In these cases, gravitactic focusing is
greatly inhibited by the strong near-wall shear.

2. Influence of the shape factor

In the discussion above, we only consider the vertical distribution of spherical microorganisms.
Spherical microorganisms are only subject to the rotation of the ambient fluid while elongated
microorganisms are also subject to the strain as expected in Eq. (5). To explore the influence of
shape factor α0 on the vertical distribution, we fix the bias parameter λ at 2 and change α0 from 0 to
1. Nonzero α0 is often related to bacteria such as E. coli and C. crescentus, but some algae are also
anisotropic in shape, at least if their flagella are considered.

As shown in Fig. 4, when the flow Péclet number Pe f is not too large (� 1), vertical distributions
of all microorganisms with various shape factors are almost identical. However, in Figs. 4(g)–4(i),
i.e., when Pe f is large, the vertical distributions of microorganisms with different α0 exhibit
significant differences: the slenderer the microorganisms, the more obvious the accumulation at
the upper wall. This can be attributed to the shear alignment effect, which can be intuitively
understood by analyzing the orientational distribution of microorganisms. As shown in Fig. 5,
in the orientation space, the concentration of microorganisms near θ = π and 0 (also θ = 2π ),
becomes more intensive with larger α0. It can be readily understood by considering the Jeffery
rotations under which the elongated microorganisms prefer to swim horizontally both upstream and
downstream. Microorganisms with smaller α0 suffer weaker strain effect and have a more uniform
distribution in the orientation space. It should be noted that in Fig. 4(i) the concentration of highly
elongated microorganisms near the bottom is also higher than that of spherical microorganisms. It
can be explained by the fact that part of extremely slender (α0 = 1) and highly active (Pes = 10)
microorganisms can easily reach and be also trapped near the bottom wall, where the local shear is
as high as in the upper wall.

B. Drift and dispersivity

1. Influence of the swimming Péclet number

We now characterize the drift Ud and dispersivity DT of gyrotactic microorganisms as a function
of Pes. It can be clearly seen in Figs. 6 and 7 that the drift Ud shows nonmonotonic variation as a
function of the swimming Péclet number Pes, namely, a transition between positive correlation and
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(a) (b) (c)

(d) (e) (f)

(h)(g) (i)

FIG. 4. Vertical distributions 〈P∞
0 〉O of microorganisms under the reflective boundary conditions with fixed

bias parameter λ = 2. Swimming Péclet numbers Pes at left, middle, and right are 0.1, 1, and 10, respectively.
Flow Péclet numbers Pe f at top, middle, and bottom are 0.1, 1, and 10, respectively. Dt = 1/6 in all cases. α0

denotes the shape factor of microorganisms.

(a) (b) (c) (d)

(e) (f) (g) (h)

(k) (l)(j)(i)

FIG. 5. P∞
0 (z, θ ) of microorganisms in the local space q under the reflective boundary conditions. First

row, Pe f = 0.1; second row, Pe f = 1; third row, Pe f = 10. The left two columns are for nongyrotactic
microorganisms and the right two columns are for gyrotactic microorganisms with λ = 2. α = 0 in the first
column and third column and α = 1 in the second column and fourth column. Pes = 1, Dt = 1/6 in all cases.
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Overall drift Ud and dispersivity DT as functions of swimming Péclet number Pes under the
reflective boundary conditions with fixed shape factor α0 = 0. Top, Pe f =0.1; middle, Pe f = 1; bottom,
Pe f =10. In all cases, Dt = 1/6.

negative correlation can be found. As clearly indicated in the definition (35), the drift Ud includes
two parts: the advection part 〈P∞

0 Pe f U 〉 and the swimming part 〈P∞
0 Pes cos θ〉, both of which are

determined by the local distribution P∞
0 . For the advection part, it can be further simplified to

Pe f
∫ 1

0 U 〈P∞
0 〉Odz, which can be directly determined by the vertical distribution 〈P∞

0 〉O. As shown in
Fig. 3, the gravitactic focusing is most intensive at a moderate Pes. Evidently, the intensive gravitac-
tic focusing greatly enhances the drift due to the fast local advection speed. For the swimming part,
because the microorganisms considered in Fig. 6 are spherical, their orientational distribution is not
strongly polarized, as shown in Fig. 5. The nonpolarized orientational distribution has a negligible
contribution to the overall drift Ud . Based on the discussion above, the nonmonotonic variation of
Ud as a function of Pes can be understood. Also, we can expect that, as Pes continues increasing,
Ud will tend to zero, which means a uniform vertical distribution and the center of the cells cloud
moving along with the average flow.
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Overall drift Ud and dispersivity DT as functions of swimming Péclet number Pes under the
reflective boundary conditions with fixed bias parameter λ = 2. Top, Pe f = 0.1; middle, Pe f = 1; bottom,
Pe f = 10. In all cases, Dt = 1/6.

Similarly, the dispersivity DT can be also divided into two parts: the swimming-induced dis-
persivity and the advection-induced dispersivity. However, unlike the drift Ud , the dispersivity DT

shows nonmonotonic variation as a function of Pes only when the background flow is strong,
i.e., Pe f = 10. The monotonic variations in Figs. 6(b), 6(c) 7(b), and 7(c) are dominated by the
swimming-induced dispersivity, which is positively correlated to the swimming ability Pes. In this
swimming-dominated region, DT shows negligible variation when we change Pe f from 0.1 to 1, as
shown in Figs. 6(b), 6(c) 7(b), and 7(c). However, the nonmonotonic variations of DT in Figs. 6(f)
and 7(f) illustrate the importance of the advection-induced dispersivity when Pe f is large. As shown
in Fig. 3, increasing Pes from 0.1 to 1 enhances the gravitactic focusing. When the background
flow is strong, i.e., in the advection-dominated region, the enhanced gravitactic focusing leads to
a decrease in advection-induced dispersivity and a decrease in overall dispersivity: the classical
shear-enhanced (Taylor) dispersion is undermined. As the swimming Péclet number Pes continues
increasing and the dispersivity is dominated by the swimming part, the overall dispersivity DT again
shows a positive correlation with Pes.
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2. Influence of the bias parameter

As shown in Figs. 6(a), 6(c) and 6(e), Ud is negatively related to the bias parameter λ. As
discussed in Sec. IV A 1, the gravitactic focusing is more intensive when λ is larger, and more
microorganisms concentrate near the upper wall than in the bulk. The intensive gravitactic focusing
results in a negative drift Ud to the mean flow. In Figs. 6(b), 6(d) and 6(f), the DT-Pes curves
of microorganisms with different bias parameters are almost the same. In other words, the bias
parameter has little effect on the overall dispersivity but significantly affects the overall drift.

3. Influence of the shape factor

To characterize the influence of the shape anisotropy, we fix the bias parameter λ = 2 and change
α0 in [0,1]. The influence of the shape factor α0 on Ud is rather complex. As discussed in Sec. IV A 2,
a larger shape factor α0 will enhance the accumulation at the walls. Thus slender microorganisms
would have larger drift to the mean flow if we only consider the advection. However, in contrast to
Fig. 7(e), slender microorganisms have a smaller drift to the mean flow in Figs. 7(a) and 7(c).
This nonmonotonic behavior can be understood by considering the orientational distribution of
microorganisms when the swimming effect is dominant, which is the situation in Figs. 7(a) and 7(c).
When swimming is dominant, the drift is mainly contributed by 〈P∞

0 Pes cos θ〉. We have realized
that slender microorganisms have polarized orientational distribution with nearly equal likelihood
of upstream swimming and downstream swimming. This polarized swimming behavior is the cause
of smaller drift to the mean flow when the swimming is dominant. Instead, when the advection is
dominant, slender microorganisms with more intensive accumulation at walls have a larger drift to
the mean flow.

We now discuss the influence of shape anisotropy on the overall dispersivity. When Pe f is
not large, as shown in Figs. 7(b) and 7(d), microorganisms with different shape anisotropy show
negligible difference regarding their dispersivity. It is evident that microorganisms with smaller
α0 have more uniform vertical distribution and subsequently larger advection-induced dispersivity.
However, due to the shear alignment, microorganisms with larger α0 have more polarized orien-
tational distribution and hence have a larger swimming-induced dispersivity. The neutralization
of these two effects leads to the indistinguishable overall dispersivity of microorganisms with
different shape anisotropy. The situation is different when Pe f is large: with a large Pe f , the
orientational distribution of elongated microorganisms is highly polarized, as shown in Fig. 5.
Although the strength of shear-induced dispersion cannot be fully taken as it is taken by the spherical
microorganisms, the polarized orientational distribution enables elongated ones to diffuse more
rapidly.

C. Influence of wall accumulation

The Robin type boundary conditions have been used to account for the wall accumulation
[27,44,45]; here we present an analysis of the effect of the wall accumulation on the dispersion
process. We also keep Dt = 1/6 under the Robin type boundary conditions to avoid the singularity
when Dt → 0.

As shown in Fig. 8, under the Robin type boundary conditions, even the nongyrotactic spherical
microorganisms have nonuniform distribution: concentration near the boundaries is higher than in
the bulk. This is in contrast to the uniform distribution under the reflective boundary conditions.
Instead of being balanced by the specular reflection flux under the reflective boundary conditions,
the swimming flux is balanced by the diffusion, which requires higher concentration near the
boundaries.

The influence of gyrotaxis intensity λ on the vertical distribution is similar to that under the
reflective boundary conditions: increasing λ enhances gravitactic focusing. However, the swimming
ability Pes has a different influence on the vertical distribution compared with the cases under the re-
flective boundary conditions. Larger Pes means a stronger swimming ability or equivalently stronger
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(a) (b)

(c) (d)

FIG. 8. Vertical distributions 〈P∞
0 〉O of microorganisms under the Robin type boundary conditions. Pes at

left and right are 0.1 and 1, respectively. Pe f at top and bottom are 0.1 and 10, respectively. Dt = 1/6 in all
cases.

confinement. Under the Robin boundary condition, the greater swimming-induced probability flux
at the boundaries induces more intensive accumulation [56], which can be seen by comparing
Figs. 8(a) and 8(b). In contrast, under the reflective boundary conditions, the microorganisms are
reflected further and thus have no wall accumulation.

It can be seen clearly from Fig. 8 that the increased Pe f leads to a decreased wall accumulation for
nongyrotactic microorganisms and a decreased gravitactic focusing for gyrotactic ones. However,
this variation is not obvious under the reflective boundary conditions, as shown in Fig. 4. This
difference is due to the reduced wall accumulation; namely, as Pe f increases, the rapid rotation of
particles suppresses the wall-normal polarization and wall accumulation, as can be seen clearly in
Fig. 9.

For the shape anisotropy α0, it enhances the accumulation at the upper wall, as shown in Fig. 8,
but the enhancement is significant only when Pe f is large, corresponding to a strong shear alignment
effect.

The drift Ud and dispersivity DT under the Robin boundary conditions are characterized as
functions of the flow Péclet number Pe f in Fig. 10. Ud of different microorganisms can be well
understood by considering their vertical and orientational distribution. As shown before, shape
anisotropy enhances accumulation near the walls, thus elongated microorganisms have larger drift to
the mean flow. We can qualitatively account for the crossed lines in Figs. 10(a) and 10(c) considering
the concentration variation as the flow is increased. In weak flows, gyrotaxis overwhelms shape-
anisotropy-induced accumulation, thus gyrotactic microorganisms have larger drift to the mean flow.
In strong flows, the situation is the opposite. Thus the most elongated nongyrotactic microorganisms
(α0 = 1, λ = 0) have smaller drift to the mean flow at first and then larger.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 9. P∞
0 (z, θ ) of microorganisms in the local space q under the Robin type boundary conditions.

First row, Pe f = 0.1; second row, Pe f = 1; third row, Pe f = 10. The left two columns are for nongyrotactic
microorganisms and the right two columns are for gyrotactic microorganisms with λ = 2. α = 0 in the first
column and third column and α = 1 in the second column and fourth column. Pes = 1, Dt = 1/6 in all cases.

(a)

(c)

(b)

(d)

FIG. 10. Overall drift Ud and dispersivity DT as functions of swimming Péclet number Pe f under the Robin
type boundary conditions. Top, Pes = 0.1; bottom, Pes = 1. Dt = 1/6 in all cases.
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The nonmonotonic variations of Ud as a function of Pe f can be understood by considering
two different influential effects. First, we neglect to consider the variation of concentration when
Pe f increases, because more microorganisms are distributed in the near-boundary regions than in
the bulk for both gyrotactic and nongyrotactic types, thus Ud decreases. Second, we consider the
variation of concentration alone; as shown in Fig. 8, concentration in the bulk of both gyrotactic and
nongyrotactic microorganisms increases as Pe f increases, which increases Ud . With the analysis
above, the nonmonotonic variations of Ud as a function of Pe f can be understood.

Additionally, upstream swimming (negative drift) and the transition to downstream swimming
of nongyrotactic microorganisms are studied by several researchers [27,40,45,57,58]. Specifically,
we note that the upstream swimming in our paper is in the flow-fixed frame, which may contain the
upstream swimming in the laboratory-fixed frame at very small Pe f . A detailed analysis of upstream
swimming of active particles can be seen in the paper of Peng and Brady [27], where the Robin type
boundary conditions are also imposed.

The dispersivity DT is nearly monotonic as a function of Pe f . For the situation depicted in
Fig. 10(b), advection-induced dispersivity is dominant because of negligible swimming-induced
dispersivity (Pes = 0.1). In this situation, the differences between the vertical distributions of dif-
ferent microorganisms, as depicted in Fig. 8(c), are small in magnitude compared to the differences
depicted in Fig. 8(d), which explains the negligible differences of overall dispersivity. However,
as Pes gets larger, the differences between vertical distributions of microorganisms become more
significant, i.e., differences between advection-induced dispersivity become more significant. In
the meantime, swimming-induced dispersivity characterized by the orientational distribution also
becomes influential. These two effects lead to the crossed and nonmonotonic lines in Fig. 10(d).

V. CONCLUSIONS

This paper extends the one-step GTD theory to the active dispersion process of gyrotactic
microorganisms in a horizontal plane Poiseuille flow. With two sets of basis functions satisfying
the reflective and the Robin type boundary conditions, respectively, the local distribution, vertical
distribution, drift, and dispersivity are obtained by the corresponding series expansion.

This paper has analyzed the influence of the gravitactic focusing and the wall accumulation on
the dispersion process. A detailed analysis regarding the bias parameter, swimming Péclet number,
shape factor, and velocity of ambient flow is carried out. The gravitactic focusing is first analyzed
alone by imposing the reflective boundary conditions which exclude the near-boundary accumula-
tion effect. Second, to account for the near-boundary accumulation effect, the Robin type boundary
conditions are also considered. The major difference between the reflective boundary conditions and
the Robin type boundary conditions, i.e., the difference between considering gravitactic focusing
alone and considering both accumulation effects, is the influences of swimming ability. In the
absence of translational diffusivity, i.e., Dt = 0, the asymptotic exponential distribution of Bearon
et al. [17] is consistent with our results: the gravitactic focusing is enhanced by decreasing the
swimming ability (decreasing stone skipping). When a constant translational diffusivity is applied,
the gravitactic focusing shows nonmonotonic variation as the swimming ability increases: when the
swimming ability is weak, the intensive gravitactic focusing is weakened by translational diffusion;
when the swimming ability is strong, the stone skipping also inhibits gravitactic focusing; only in
a moderate range of swimming ability does gravitactic focusing reach its maximum. In contrast,
under the Robin type boundary conditions, the accumulation at the upper wall is enhanced when
swimming ability increases because of the wall accumulation mechanism. A larger bias parameter
induces more intensive gravitactic focusing at the upper wall. Slender gyrotactic microorganisms
are subject to the shear alignment effect, which polarizes the orientational distribution and induces
greater concentration at the upper wall.

The drift is the weighted average of the local flow speed plus longitudinal swimming speed. In
a Poiseuille flow, either the wall accumulation or the gravitactic focusing leads to a negative drift
to the mean flow. Generally speaking, the more intensive the accumulation at walls is, the larger

054502-17



WANG, JIANG, CHEN, TAO, AND LI

the drift to the mean flow is. Therefore, the drift can be enhanced by increasing the bias parameter
and the shape factor. Notably, due to the change in the local space distribution, a transition between
upstream swimming and downstream swimming of nongyrotactic microorganisms can be found in
a moderate range of Pe f . We note that this upstream swimming is in the flow-fixed frame, which
may contain the upstream swimming in the laboratory-fixed frame.

The dispersivity should be analyzed in conjunction with the relative strength of swimming-
induced dispersivity and advection-induced dispersivity. The swimming-induced dispersivity and
the advection-induced dispersivity are highly coupled with the shape factor, flow Péclet number,
and swimming Péclet number, leading to nonmonotonic variations of the total effective dispersivity.

This paper provides results for the dispersion process of gyrotactic microorganisms in a horizon-
tal Poiseuille flow. However, this paper only focuses on the long-time asymptotic state; the evolution
process containing anomalous diffusion regimes is not considered. The idealized reflective boundary
conditions are only mathematically meaningful for microorganisms. The Robin type boundary
conditions, although they can partially explain some phenomena, did not consider the complex
behaviors of microorganisms at walls [59] and do not hold for the zero translational diffusivity limit
Dt = 0. For microorganisms transport in flows with free surfaces, which is also of great importance
to practical applications like thin phytoplankton layers [60], the boundary conditions are more
complex due to the diverse dynamics at different surfaces [61–63]. Further work can be done in
the research of boundary conditions at both the individual level and the continuum level.
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APPENDIX A: COMPARISON WITH INDIVIDUAL-BASED METHOD

We compare our solution with individual-based method (IBM). The dimensionless governing
equations for the position and orientation of a swimmer are discretized in a forward Euler scheme:

�x = Pe f U�t + Pes cos θ�t + �xB,

�z = Pes sin θ�t + �zB,

�θ =
(

−1

2
Pe f

∂U

∂z
+ 1

2
α0Pe f

∂U

∂z
cos 2θ + λ cos θ

)
�t + �θB,

(A1)

where �t is the time step. �xB and �zB ∼ N (0, 2Dt�t ) and �θB ∼ N (0, 2�t ). Let (xn, zn, θn)
denote the nth step coordinates of a swimmer; the reflective boundary conditions implemented in
IBM are

zn → 2 − zn, θn → −θn, if zn > 1,

zn → −zn, θn → −θn, if zn < 0,
(A2)

where → denotes assignment. For the Robin type boundary conditions, the corresponding treatment
in IBM is

zn → 1, θn → θn, if zn > 1,

zn → 0, θn → θn, if zn < 0,
(A3)

which is the potential-free algorithm [64]. We use 105 particles and a time step �t = 10−4 to
ensure good data. The particles are initially located at z = 1/2 with their orientations θ uniformly
distributed in [0, 2π ). As shown in Figs. 11–13, the results of GTD and the results of IBM are in
good agreement.
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(a) (b)

(c) (d)

FIG. 11. P∞
0 (z, θ ) of microorganisms in the local space q. First row: Reflective boundary conditions.

Second row: Robin type boundary conditions. Left column: Results of GTD. Right column: Results of IBM.
In all cases, Pes = 1, Pe f = 10, α0 = 1, λ = 2, Dt = 1/6.

APPENDIX B: BASIS FUNCTION

To perform the series expansion, we seek the basis functions satisfying the reflective boundary
conditions, and then we obtain the solution with the Galerkin method. For the eigenfunctions of the
operator

M = ∂2

∂z2
+ ∂2

∂θ2
(B1)

(a) (b)

FIG. 12. Vertical distribution 〈P∞
0 〉O and orientational distribution 〈P∞

0 〉V of microorganisms under differ-
ent boundary conditions. In all cases, Pes = 1, Pe f = 10, α0 = 1, λ = 2, Dt = 1/6.
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(a) (b)

FIG. 13. Evolution and steady state of drift Ud and dispersivity DT.

on the local space that satisfy the reflective boundary conditions, bounded and periodic conditions
can be used as the basis functions. The inner product of given functions f and g is

( f , g) �
∫ 1

0
dz

∫ 2π

0
f (z, θ )g(z, θ )dθ. (B2)

M is a self-adjoint operator under the conditions (18)–(20).
The eigenfunctions for M are

Ar cos(nπz),

Br cos(nπz) cos(mθ ),

Br sin(nπz) sin(mθ ),

(B3)

where m = 1, 2, . . ., n = 0, 1, 2, . . ., and

Ar =
⎧⎨
⎩

√
1

2π
, n = 0,√

1
π
, n �= 0.

(B4)

Br =
⎧⎨
⎩

√
1
π
, n = 0,√

2
π
, n �= 0.

(B5)

The reflective basis given in (B3) is orthogonal and normalized; then P∞
0 can be expanded into

P∞
0 (z, θ ) =

∞∑
i=1

qie
r
i (z, θ ), (B6)

where er
i are the functions given in reflective basis, and qi are coefficients to be determined by a

Galerkin method. In our calculation, the series expansion is truncated up to n = m = 20, which can
capture the gravitactic focusing in the vertical direction.

Similarly, for the eigenfunctions of operator M on the local space that satisfy the Robin type
boundary conditions, bounded and periodic conditions can be used as the basis functions for G0.
The eigenfunctions under the Robin type boundary conditions are

AR cos(nπz),

BR cos(nπz) cos(mθ ),

BR cos(nπz) sin(mθ ),

(B7)
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where m = 1, 2, . . ., n = 0, 1, 2, . . ., and

AR =
⎧⎨
⎩

√
1

2π
, n = 0,√

1
π
, n �= 0.

(B8)

BR =
⎧⎨
⎩

√
1
π
, n = 0,√

2
π
, n �= 0.

(B9)
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