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Predicting segregation of nonspherical particles
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Segregation, or demixing, of flowing mixtures of size-disperse noncohesive spherical
particles is well understood. However, most particle systems in industry and geophysics
involve nonspherical particles. Here, the segregation of bidisperse mixtures of millimeter-
sized particles having various shapes is characterized using discrete element method
simulations of gravity-driven free-surface granular heap flow. As a proxy for nonspherical
particles, we study mixtures of cylindrical particles that vary widely in both their length
and diameter ratios, including both disks and rods, as well as mixtures of cylindrical and
spherical particles. The propensity to segregate is measured with a segregation length scale
that characterizes the segregation velocity of the two species for these types of mixtures,
identical to the approach for mixtures of spherical particles. Surprisingly, segregation can
be predicted based solely on the volume ratio of the two species, regardless of particle
shape. The segregation length scale increases linearly with the log of the volume ratio for
volume ratios varying from 0.1 to 10 in the same way as it does for bidisperse mixtures of
spherical particles. Thus, segregation properties based on spherical particles can be directly
applied to nonspherical particles.

DOI: 10.1103/PhysRevFluids.6.054301

I. INTRODUCTION

Flowing mixtures of granular material, which are common in both geophysical processes and
industrial settings, tend to segregate, or demix, based on differences in material properties, including
size, density, surface roughness, and shape [1,2]. Nature often spontaneously sorts granular matter—
wind-generated sand dunes are typically well sorted, having particles of remarkably uniform size
[3]. In industrial processes, mixtures of species with different physical properties are often desirable
and segregation is typically unwanted. However, achieving homogeneous particle mixtures across
the wide variety of common particles varying in size, density, and shape is quite difficult. In
particular, predicting particle segregation across the infinite space of particle shape remains a largely
unmet challenge. Improved understanding of the drivers of segregation is necessary to effectively
reduce segregation through the design of equipment, particles, or particle mixtures [4,5]; however,
nearly all previous research on granular segregation has focused on spherical particles. Here we
study the segregation of bidisperse mixtures of cylindrical particles (disks and rods) as well as
mixtures of cylindrical particles and spherical particles with the broad goal of better understanding
and accurately predicting the segregation properties of mixtures of nonspherical particles.

Segregation of mixtures of one or more nonspherical particle species has been considered in
only a few previous studies. Matuttis et al. [6] experimentally evaluated two-dimensional (2D)
segregation of equal area circles and ellipses in a vertically vibrated box and found that the ellipses
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rise relative to the circles. Using discrete element simulations (DEM), He et al. [7] studied the
effect of the aspect ratio of ellipsoidal particles mixed with equal volume spheres on segregation in
a rotating tumbler. They found that depending on the ellipsoid aspect ratio, the ellipsoidal particles
could concentrate either in the tumbler center or at its periphery. However, they also found that a
mixture of equal volume oblate and prolate ellipsoids remains mixed. The segregation of cuboids
and spheres of equal edge length and diameter, respectively, in a rotating tumbler was considered by
Pereira and Cleary [8]. They found that the cuboids segregate toward the tumbler center, which they
attributed to differences in the surface flow velocities and energy dissipation rates of the two species.
A related study using DEM simulations of shape-bidisperse mixtures of spheres and equal-volume
cubes, cuboids, or ellipsoids by Lu and Müller [9] indicated that shape alone can generate radial
segregation in a rotating tumbler. Alizadeh et al. [10] demonstrated that segregation of irregular
particles (spray-dried detergent) in experiments could be accurately reproduced in DEM simulations
using glued-sphere particle representations.

Perhaps the closest study to the present work, though involving a much more limited range of
particles shapes, is a previous study by our group [11], which considers segregation of length-
bidisperse mixtures of equal diameter, rodlike particles in a quasi-2D bounded heap flow with
frictional sidewalls. The study revealed that longer rods tend to segregate upward in the flowing
layer while shorter rods tend to sink and that a continuum model of granular segregation devised
for spherical particles accurately predicts rodlike particle segregation. The model is based on the
advection-diffusion equation with an added term for segregation [1,2]:

∂ci

∂t
+ ∇ · (uci ) + ∂

∂z
(wp,ici ) = ∇ · (D∇ci ), (1)

where ci is the concentration of species i, u is the velocity field of the bulk flow, wp,i is the
segregation velocity (the p subscript is a remnant of its original application to percolation of
size-disperse particles), and D is the collisional diffusion coefficient. The advective and diffusive
terms depend on flow kinematics for which functional representations can be determined from DEM
results, theory (for simple geometries), or experiments. However, the segregation term, which is the
key ingredient necessary to successfully predict segregation in granular flows, is of interest here.
For bidisperse granular flows of spherical particles, the simplest form for wp,i for both size-varying
particles of equal density [2,12–14] and density-varying particles of equal size [15] is a simplified
version based on the kinetic sieving model of Savage and Lun [16] and can be expressed as

wp,i = Siγ̇ (1 − ci ), (2)

where γ̇ = ∂ux/∂z is the local shear rate (ux is the velocity in the bulk flow direction and z is in
the depthwise direction) and Si is the segregation length scale, which characterizes the segregation
propensity of a bidisperse mixture of particles. The segregation length scale for spherical particle
diameter ratios from 1/3 < R < 3 and density ratios from 1/10 < R < 10 is well approximated by

Si/ds = C ln (R), (3)

where ds is the diameter of the smaller species for size-bidisperse mixtures and the diameter for
density-bidisperse mixtures, and C is a constant [14,15].

The segregation continuum model of Eqs. (1)–(3), while developed using bounded heap flows
[13,14], is applicable to a wide range of flow geometries [2], including rotating tumblers [12,17],
chutes [18], wedge-shaped heaps [19], confined shear flows [20,21], and even more complicated
geometries such as hoppers [17,22,23]. Extensions of this bidisperse segregation model, i.e.,
Eqs. (1)–(3), accurately predict multi- and polydisperse flows of spherical particles [18,24–26]
and, with minor modification, flows of spherical particles with high overburden pressure [21].
We note that the linear dependence of the segregation velocity on concentration for spherical
particles [Eq. (2)] was developed for mixtures with similar species concentrations [13,14] but is
more accurately described for mixtures with widely varying species concentrations by a segregation
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FIG. 1. Depiction of the range of cylindrical and spherical particles sizes. The leftmost particle has length-
to-diameter ratio of 9 (rodlike), and the rightmost particle has a length-to-diameter ratio of 1/9 (disklike).

velocity model that is quadratic in concentration [27,28]. However, this greater level of fidelity is
unnecessary for most mixtures and flow conditions.

The primary goal of this study is to find a relation for the segregation velocity and its key
parameters for nonspherical particles that is analogous to Eqs. (2) and (3) for spherical particles,
expanding on the results of our short preliminary paper on this topic [29]. The wide range of
possible particle shapes makes the search for an appropriate model describing the dependence on
local conditions such as shear rate, γ̇ , and concentration, ci, challenging. Ideally, the model would
be similar to Eq. (2), although this model is based on kinetic sieving of spherical particles [16], an
approach that may not work as well for the infinitely large parameter space describing nonspherical
particles. Even if a model like Eq. (2) can be identified, an even more difficult problem is finding
the appropriate parameter (or parameters) analogous to Si in Eq. (2) that characterizes segregation
between two species of nonspherical particles. Ideally, Si for a pair of nonspherical particle species
would be a function of a single easily quantifiable ratio, similar to the size or density ratio for
spherical particles. However, there is a wide range of parameters upon which the segregation could
depend, including the shape factor (a measure of spherical equivalence), a characteristic length
scale or scales, the particle volume, or other particle characteristics, noting that in addition to
size and volume, a particle’s shape can also be described by sphericity, corner roundness, and
surface texture [30,31]. Considering the wide range of particles shapes that are possible, it seems
unlikely that a single ratio could effectively describe the segregation properties of particles that
could vary as widely as those shown in Fig. 1. The objective of this paper, therefore, is to establish a
general expression for the segregation velocity analogous to Eq. (2) and to develop an approach for
determining the dependence of a parameter like Si on the appropriate size and shape characteristics
of nonspherical particles analogous to Eq. (3), further extending and explaining our initial results
on this subject [29].

As a proxy for mixtures of arbitrary nonspherical particles, we consider millimeter-sized cylin-
drical particles (rodlike and disklike) as well as spherical particles. Cylindrical particles are used
because they are described by just two characteristic lengths, the diameter, d , and the axial length,
l , and yet can vary substantially in shape, as shown in Fig. 1. To characterize the propensity of a
particle mixture to segregate, we measure the segregation velocity wp,i for a wide range of bidisperse
mixtures of cylinders mixed with either other cylinders or with spheres to find an expression for wp,i

that is analogous to Eq. (2) for spherical particles. We then seek a universal parameter or parameters
analogous to Si [Eq. (3)] for spherical particles based on arbitrary particle size and shape differences
that characterize the propensity for segregation of nonspherical particles. The challenge in doing this
is to represent the character and degree of segregation over a broad multidimensional shape space,
even for cylindrical particles, in a relatively simple form.

II. SUPERELLIPSOID DEM SIMULATIONS

To investigate segregation of nonspherical particles, we conduct DEM simulations [32–36] of
bidisperse particles in a gravity-driven free-surface flow. Although there are many approaches to
simulating cylindrical particles [37–41], we use superellipsoid particles [7,8,11,38,42–48]. The
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particle shape is based on the inside-outside function for superellipsoids [49],

P(X ) =
(∣∣∣ x

a

∣∣∣
s
+

∣∣∣y

b

∣∣∣
s)t/s

+
∣∣∣ z

c

∣∣∣
t
− 1, (4)

where P(X ) = 0 defines the particle surface. Negative and positive values of P(X ) correspond to
the interior and exterior of the particle, respectively. The radii a, b, and c control the particle length
along the x, y, and z axis, respectively, and parameters s and t control corner sharpness in the xy plane
and normal to it, respectively, as well as particle shape. Different values of s and t generate different
shapes ranging from an octahedron (s = 1, t = 1), to a sphere (s = 2, t = 2), to cylinderlike (s = 2,
t � 8), to cuboids (s � 8, t � 8). Particles with either s < 1 or t < 1 are concave [49] and are not
considered here as they are incompatible with the contact detection algorithm we use, which is
described below.

For this study we use spherical particles with s = 2 and t = 2 and cylindrical particles with s = 2
and t = 8. Increasing t creates a sharper edge on cylindrical particles. However, values of t > 8
significantly increase simulation time but do not significantly affect the segregation characteristics
[38]. We consider mixtures of cylindrical particles with varying diameter ratios, RD, and length
ratios, RL. For mixtures of cylinders and spheres we use the diameter ratio and a modified length
ratio, RL′ = l/d, where l is the cylinder length and d is the sphere diameter. The range of particle
shapes examined in this study is illustrated in Fig. 1, which shows red rodlike and blue disklike
particles with maximum and minimum aspect ratios (length to diameter) of 9 and 1/9, respectively.
Also shown is a sphere sized relative to the cylindrical particles to illustrate the range of sizes of
cylindrical particles used for mixtures of cylindrical and spherical particles. Analytic expressions
for the volume and the moments of inertia of the superellipsoid particles used in the simulations and
for analysis can be found elsewhere, e.g., Refs. [50,51].

Critical to the accuracy of DEM, regardless of particle shape, is resolving particle contacts.
The methodology implemented here uses the greatest overlap of the contacting particle pair to
calculate the contact force vector, similar to DEM for spheres. For nonspherical particles represented
by the continuous inside-outside function P(X), P(X) < 1 represents the interior of the particle,
P(X) > 1 represents the exterior of the particle, and P(X) = 1 represents the particle surface. The
points generating the greatest overlap of particles i and j, Xc

i and Xc
j , respectively, are found by

independently minimizing the Lagrangian optimization problems [52,53]:

�i = Pj
(
Xc

i

) − λiPi(Xc
i ),

� j = Pi
(
Xc

j

) − λ jPj
(
Xc

j

)
. (5)

The contact detection algorithm is applicable to any P(X) that is twice differentiable, which is the
case for the superellipsoid particles used here [45,54]. To reduce the number of times the contact
algorithm is applied to noncontacting particles, contact screening algorithms of spatial hashing,
bounding sphere contact evaluation, and object oriented bounding box contact detection are used
[11,38].

Simulations are performed using an in-house DEM code on NVIDIA GTX Titan X GPUs
installed in a workstation computer running Ubuntu 14.04 LTS. Earlier versions of this code
were validated against experimental data from millimeter-sized spherical glass, ceramic, and steel
particles in bounded heap flows of size and density bidisperse flows [15,19–22,28]. Validation
for nonspherical particles is described below. Similar to DEM simulations of spherical glass
particles, the forces between contacting superellipsoid particles i and j are modeled using a
contact-only repulsive spring-dashpot model [32] for the normal force, Fn

i j = −knσ i j − 2ζnmeffv
n
i j ,

where the normal stiffness, kn = (π/tc)2 + ζ 2
n , and normal damping, ζn = − ln e/tc [34], parameters

are determined by the restitution coefficient, e = 0.8, and the binary collision time, tc = 10−3 s
(which is small enough to accurately model gravity driven flow of glass particles [13,35]), σ i j

is the directed particle overlap at the contact, meff = mimj/(mi + mj ) is the effective mass, and
vn

i j is the relative normal velocity at the contact point. The tangential contact force, F t
i j =
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FIG. 2. Schematic of the 2D bounded heap with periodic spanwise boundary conditions in the T -wide y

direction. The coordinate system is rotated by the repose angle α and rises at the heap-rise velocity vr . The
flowing layer shape is idealized, and its thickness is exaggerated for purposes of illustration.

min(μ‖Fn
i j‖, ‖kt	(vt

i j
t ) − 2ζtmeffv
t
i j‖)vt

i j/‖vt
i j‖, is the minimum of the Coulomb friction for

sliding contacts and the tangential spring-dashpot force (to emulate static friction) where kt = 2kn/7
and ζt = 2ζn/7 are the tangential stiffness and damping coefficients, respectively [34], vt

i j is the
relative tangential velocity at the contact, and 
t = tc/40 = 2.5 × 10−5 s is the simulation time
step [36]. Particle-particle and particle-wall contacts both use a friction coefficient of μ = 0.4.

III. SIMULATIONS AND VALIDATION

Simulations of a single-sided, quasi-2D bounded heap, shown schematically in Fig. 2, are
performed by vertically feeding an equal volume mixture of two particle species on one side of a box
(rectangular prism) with, except for validation simulations, a spanwise extent T/lmax = 8 and width
W/lmax = 200, where lmax is the diameter of the minimum bounding sphere of the larger particle
species. For superellipsoids, lmax = 2

√
a2 + c2. We study segregation in the steady state where the

heap spans the full width of the box, and particles flow in a thin “flowing layer” down the surface of
the heap toward the wall opposite the feed zone. The flowing layer (region above the dashed line in
the figure) has thickness δ. The geometry is periodic in the spanwise (y-) direction, unless indicated
otherwise, to avoid sidewall effects. The bottom bounding wall has a no-slip surface (i.e., particles
contacting it are immobilized) and a slope (30◦) approximately equal to the heap repose angle, α,
to reduce the total number of particles needed in the simulation. Particles fall onto the heap at a 2D
feed rate, q = Q/T , where Q is the volumetric flow rate. Particles are continuously deposited onto
the “static” heap from the bottom of the flowing layer. A steady-state flow is reached after the depth
of the flowing layer, δ, is greater than the depth of the heap, and the surface of the heap rises at a
steady rise velocity, vr = q/W . The coordinate system is at the upstream end of the flowing layer
and oriented with the x axis parallel to the free surface, the y axis in the spanwise direction, and the
z axis normal to the free surface. The coordinate system also rises at vr , so in its frame of reference
the flow and segregation are steady.

The DEM simulations for superellipsoid cylindrical particles are validated by comparing the
average species concentration deposited on the fixed bed below the flowing layer to experiments
with cylindrical nylon particles (E&T Fasteners, CA, USA) with dimensions given in Table I
and physical properties of density ρ = 1.15 g/cm3 and friction coefficient μ = 0.5 [55]. The
particles are dyed different colors using Rit DyeMore synthetic fabric dye so that they can be
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TABLE I. Measured cylinder dimensions (dimensions used in
validation simulations).

Diameter (mm) Length (mm)
Particle +/− 0.1 +/− 0.4

D1 6.3 (6.350) 3.2 (3.175)
R1 3.2 (3.175) 4.7 (4.750)
R2 3.2 (3.175) 12.7 (12.700)
R3 6.3 (6.350) 9.5 (9.525)

easily distinguished. An equal volume mixture of bidisperse particles are fed by an auger feeder
(Acrison, Inc., NJ, USA) onto the experimental quasi-2D bounded heap as described previously
[56]. The apparatus has a spanwise gap T = 3.8 cm between two glass plates, width W = 61 cm,
and a depth of 91 cm. Like the DEM simulations, a sloped lower boundary reduces the number of
particles required for the experiments. Two experiments are performed for each of the three cases
specified in Table II, and average results are reported. Validation simulations only use e = 0.5 to
determine particle stiffness and damping coefficients. The dimensions of the simulated particles are
the nominal manufacturer-specified values given in parentheses in Table I.

The deposited concentration is measured at the wall for both the experiments and the corre-
sponding DEM simulations. To ensure an accurate comparison, DEM simulations are performed in
a heap with geometry identical to the experimental apparatus, including planar, frictional sidewalls
rather than the periodic boundaries used for all other simulations. To quantify segregation, a digital
photograph of the side of the heap is used for the experiments and a POV-RAY [57] rendering of the
side of the heap is used for the simulations. The final state of the heap in experiment and simulation
for validation case 1 is shown in Fig. 3. The rodlike red particles (R1) deposit upstream in the heap,
and the disklike blue particles (D1) deposit closer to the downstream end wall. For each validation
case, the deposited concentration is calculated from the image (for experiment) or rendering (for
simulation) in the region between the parallel green lines in Fig. 3. Particles above the upper green
line are excluded because their distribution reflects the transient deposition of particles that occurs
after the feed stops, and particles below the lower green line are excluded because they are deposited
before the deposition of particles on the heap becomes steady. The length of the heap is split into 50
bins, each spanning the height of the evaluation area. The particle species represented by each pixel
is determined by comparing the dot product of the RGB vector of the pixel and a reference value
for the color of each species. The concentration of the two particle species at the wall is determined
by simply counting pixels associated with each species.

For each validation case, the deposited streamwise concentration profile of disklike particles
(D1) averaged across two experiments and from one simulation are shown in Fig. 4. The results
demonstrate that the DEM simulations capture the deposited particle concentration for the case
of frictional sidewalls. We therefore infer that the DEM simulations also correctly capture the
segregation behavior of superellipsoid particles for the periodic boundary case, which is used for
the remaining results to avoid ordering effects related to particles aligning to the sidewall [11], see
Sec. V.

TABLE II. Cases for DEM simulation validation (ratios from simulations).

Case Particles RD RL RV q (cm2/s) T/lmax W/lmax

1 D1, R1 0.5 1.5 0.4 26.3 5.4 85.9
2 D1, R2 0.5 4.0 1.0 22.7 2.9 46.6
3 D1, R3 1.0 3.0 3.0 22.7 3.3 53.3
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FIG. 3. Heap segregation in experiment (left) and simulation (right) for validation case 1 (see Table II)
with blue disklike (d = 6.3 mm, l = 3.2 mm) and red rodlike (d = 3.2 mm, l = 4.7 mm) cylinders. Example
particles and a magnified section of the sidewall are shown above each heap image. Average deposited
streamwise concentration profiles are calculated in the region between the two green lines.

IV. SEGREGATION IN BIDISPERSE MIXTURES OF CYLINDRICAL PARTICLES

To quantify the segregation, the results from each simulation are spatially and temporally
averaged to find the bulk and species velocity, u and ui, respectively, the segregation velocity wp,i,
and species concentration ci, throughout the flowing layer, as in previous studies [12,14,15,25,28].
For each output time step, quadrilateral bins oriented parallel to and rising with the free surface
are used to average DEM simulation data. Bin dimensions are lmax/2 in the depthwise direction,
2lmax in the streamwise direction, and T in the spanwise direction. Within each bin, flow kinematics
and species concentrations are averaged over all output time steps, noting that the bins remain fixed
relative to the surface of the flowing layer since their boundaries are defined with respect to the rising
reference frame. Particles overlapping multiple bins have their weighted partial volume applied to
each overlapped bin. The concentration of species i, ci, in a bin is defined as

ci =
∑

Vi, j

Vbin
, (6)

x/L

c D
1

0.5 10 0.5 10 0.5 100

0.5

1 (a) (b) (c)

FIG. 4. Deposited concentration at the wall of disklike particles D1 (d = 6.3 mm, l = 3.2 mm) for
equal volume concentration mixtures with three different rodlike particles from experiment (solid) and DEM
simulation (dashed) for validation cases (a) 1, (b) 2, and (c) 3, see Table II. The deposited concentration for the
example in Fig. 3 is shown in (a).
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FIG. 5. Segregation velocity, wp,i/γ̇ , vs 1 − ci from DEM simulation for d = 6.35 mm and l = 3.175 mm
cylinders (blue ◦) and d = 3.175 mm and l = 4.75 mm cylinders (red ×) for validation case 1, but with
periodic instead of frictional sidewalls. Linear least-squares fits to Eq. (2) (lines) provide a segregation length
scale value of |Si| = 0.44 mm. Data averaged into 0.02-wide concentration bins.

where Vi, j is the partial volume of particle j of species i and Vbin is the total volume of all particles
in the bin. The mean velocity of species i in a bin ui is volume weighted as

ui =
∑

ui, jVi, j∑
Vi, j

, (7)

where ui, j is the velocity of particle j of species i. The shear rate in a bin is calculated from the
streamwise velocity component as

γ̇ = 
u


z
, (8)

where 
u is the difference in the mean bin velocity between the target bin and the bin below it
divided by the bin height 
z. The local segregation velocity wp,i for each species i in each bin in
the flowing layer is calculated as

wp,i = wi − w, (9)

where wi is the mean species velocity and w is the mean velocity of all particles in the bin. We
note that the specific details of how the concentration and kinematic quantities are obtained are
not critical. In fact, we would expect that results obtained using the binning method described here
would be similar to those that would be obtained using coarse-graining methods [58]. We further
note that diffusion plays a small role in calculating the segregation velocity and can be safely ignored
here [28].

A. Segregation dependence on shear rate and concentration

We first investigate the dependence of segregation velocity on γ̇ and ci for mixtures of cylinders.
Figure 5 shows an example of the segregation velocity, scaled by γ̇ as in previous studies [14,28],
vs concentration for a bidisperse mixture of d = 3.2 mm and l = 4.7 mm cylinders (R1) and
d = 6.3 mm and l = 3.2 mm cylinders (D1), the same particles from validation case 1, for a
simulation with periodic sidewall boundary conditions. The data fall along two lines, one for each
of the species, that both go to zero at 1 − ci = 0. This result is consistent with Eq. (2) where the
segregation length scale Si is the slope from the linear least-squares fit of the data forced through
(0,0), consistent with the result for size bidisperse and density bidisperse spherical particles [14,15].
Note that the data include time-averaged values for wp,i/γ̇ vs 1 − ci through the entire flowing
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layer (all bins) during the steady filling (and segregation) associated with bounded heap flow. In
general, this data captures a wide range of values for wp,i, γ̇ , and ci because data are obtained at
different locations in the flowing layer. For the larger volume cylinders (D1), wp,i and Si are both
positive, indicating that they rise in the flowing layer, while for the smaller cylinders (R1), wp,i and
Si are negative, indicating that they sink in the flowing layer. This segregation drives large cylinders
toward the surface of the flowing layer where they are advected to the downstream portion of the
heap nearer the right wall, while small cylinders sink in the flowing layer and are deposited further
upstream on the heap. This is consistent with the results shown in Figs. 3 and 4(a), although the
segregation data in Fig. 5 are for periodic rather than frictional sidewall boundaries.

Similar results to those shown in Fig. 5 are found for all other particle mixtures considered here,
thereby demonstrating the validity of Eq. (2) for nonspherical particles as well as spherical particles.
This result is somewhat surprising, given that Eq. (2) is based on a simplification of a kinetic sieving
model for spherical particles [16]. On the other hand, it is reasonable that wp,i depends on the shear
rate, since relative motion of particles is necessary for segregation to occur, and the concentration
of the other particle species 1 − ci, since particles will only segregate if they interact with particles
of the other species.

With the understanding that Eq. (2) is valid for mixtures of cylindrical particles as well as
spherical particles, the challenge now is to understand the dependence of Si on particle shape.
Previous studies have shown that normalizing Si by a relevant particle length scale (the small particle
diameter ds for mixtures of spheres) allows Si to be represented solely as a function of a relevant
ratio of a particle property, such as the diameter or density ratio for spheres as indicated in Eq. (3)
[14,15,28]. For nonspherical particles, the appropriate length scale to nondimensionalize Si is not
obvious, although, like spherical particles, we would expect it to be on the order of the particle size
(as opposed to a length scale based on the dimensions of the experimental apparatus). For cylindrical
particles, candidate length scales include the diameter, length, diameter of a bounding sphere, and
diameter of an equal volume sphere. Of these, only the diameter of a bounding sphere and the
diameter of an equal volume sphere generalize to arbitrary particle shape. Although there is no clear
physical basis for which of the two to select, we use the diameter of the volume-equivalent sphere of
the smaller volume species, ds,eq = 2[3Vs/(4π )]1/3, where Vs is the volume of the smaller species,
as the characteristic particle length scale. Using any of the other characteristic particle length scales
does not improve, and in some cases greatly diminishes, the collapse of the data for the results
discussed below.

B. Cylindrical particle mixtures

With this background in place, we now consider the segregation, characterized by Si/ds,eq, of
bidisperse mixtures for a broad range of species A cylindrical particles and species B cylindrical
particles. First, we examine the dependence of Si/ds,eq on the length ratio, RL = lA/lB, and the
diameter ratio, RD = dA/dB. Figure 6 shows Si/ds,eq for 63 simulations in which the diameter of
particle species A equals the length of particle species B, i.e., dA = lB, for the reference particles of a
monodisperse mixture. We define R∗ = lB/dA as the reference ratio, which corresponds to the aspect
ratio of the monodisperse mixture when RL = RD = 1. In Fig. 6, R∗ = 1 and the corresponding
monodisperse mixture corresponds to a cylinder with diameter equal to its length (lower-right corner
of the figure). The length ratio, RL = lA/lB, is varied by increasing lA, and the diameter ratio, RD =
dA/dB, is varied by increasing dB. Moving up in the figure from the monodisperse mixture at the
lower right corner corresponds to A particles (shown in red) becoming longer (more rodlike), while
moving left corresponds to B particles (shown in blue) increasing in diameter (more disklike). The
upper-left corner of the figure corresponds to rodlike A particles and disklike B particles. The symbol
diameter in Fig. 6 is proportional to the magnitude of the segregation length scale for A particles,
SA/ds,eq, and colors are interpolated from the data points. The segregation length scale of species B,
which is not shown, is negative and nearly equal in magnitude to SA with an average rms deviation
from SA of 7% across all 63 measurements.
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FIG. 6. Nondimensional segregation length scale of the longer species A, SA/ds,eq, vs length ratio RL and
diameter ratio RD for R∗ = 1. Data symbol (◦) diameter is proportional to SA/ds,eq, and color contours are
interpolated from data points. The zero segregation contour (S = 0, black curve) corresponds closely to an
equal volume ratio, RV = 1 (dashed line). Representative particles of species A (red) and species B (blue) are
shown at each corner and the top of the equal-volume line.

Figure 6 shows that longer cylinders rise in the presence of shorter cylinders (upper right),
corresponding to SA/ds,eq > 0, and larger diameter cylinders rise in the presence of smaller diameter
cylinders (lower left), corresponding to SA/ds,eq < 0. Furthermore, segregation is strongest when the
volume of the two particles differs substantially at the upper-right and lower-left corners. Between
these two extremes is a region where the particles do not segregate (SA = SB = 0) and, consequently,
remain mixed. The corresponding contour (solid black curve) extends, as expected, through RD =
RL = 1 for a monodisperse (uniform) “reference mixture” at the lower-right corner. This suggests
that the relative volumes of particles A and B might determine the degree of segregation. To test
this hypothesis, we plot an equal volume ratio, RV = VA/VB = 1, line (dashed) in Fig. 6. This line
closely follows the SA = SB = 0 zero-segregation contour, confirming that particles having similar
volume remain mixed for this range of RD and RL, and for R∗ = 1. Particles with equal volumes are
shown at the top end of the dashed line to demonstrate how different the particle shapes can be that
remain mixed.

The dependence of segregation on the relative volumes of the two particle species can be further
explored by changing the reference ratio R∗. The variable space explored is shown in Fig. 7 for
1 < RL < 4, 1/3 < RD < 1, and 1/3 < R∗ < 3, where Fig. 6 corresponds to the red plane at R∗ = 1.
Each symbol in Fig. 7 represents a simulation for which the segregation length scale is measured
(325 total DEM simulations).

To explore this parameter space further, we conduct simulations in additional planes of the
variable space. First, consider planes analogous to that in Fig. 6 for R∗ = 1 but instead for R∗ = 1/3
and R∗ = 3 (green planes in Fig. 7). Figure 8(a) for R∗ = 1/3 corresponds to mixtures of disklike
cylinders with a monodisperse pair at the lower-right corner of the figure. Moving up in the figure
increases the length of particle A (red particles) so that by the top of the figure its length is 4/3 its
diameter. Moving left in the figure results in a larger diameter for particle B (blue). Thus most of
the particles considered here (except red A particles for RL > 3) are disklike. Again, it is evident
that mixtures with particles having larger differences in volume tend to segregate more, whether it
is longer particles in the upper-right or larger diameter disks in the lower left. Also evident is that
the solid contour for SA = 0 is well approximated by the dashed line corresponding to equal volume
particles.
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FIG. 7. RD, RL , and R∗ parameter space for mixtures of cylindrical particles where each circle represents
one of the 325 simulations performed. Colored constant-ratio planes correspond to data shown in Fig. 6 (red),
Fig. 8 (green), and Fig. 9 (blue).

Figure 8(b) for R∗ = 3 corresponds to monodisperse mixtures of rodlike cylinders. Moving up in
the figure from the monodisperse mixture at RL = RD = 1 increases the length of particle A (red),
making it even longer, while moving left in the figure results in a larger diameter particle B (blue),
though its length remains longer than its diameter. Hence, this figure represents mixtures of rods.
Like the previous two cases, mixtures with particles having a larger volume difference segregate
more (upper right and lower left), and the solid contour for SA = 0 nearly overlays the dashed line
for equal volume particles. Again, particles at the top end of the dashed line in Figs. 8(a) and 8(b)
demonstrate how much the particles that remain mixed can differ in shape.

A different perspective can be obtained by considering values for Si/ds,eq in the R∗-RD plane at
RL = 1.5 and in the R∗-RL plane at RD = 0.8 (blue planes in Fig. 7), shown in Fig. 9. The lower-left
corner of both figures corresponds to a reference ratio that is more disklike. Moving right in either
figure changes the reference particle from disklike to having an equal length and diameter in the
middle (R∗ = 1) to more rodlike on the right side of the figure. At the bottom of Fig. 9(a), particle
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FIG. 8. Dependence of SA/ds,eq on RL and RD for (a) R∗ = 1/3 and (b) R∗ = 3 (green planes in Fig. 7).
Symbol (◦) diameter is proportional to SA/ds,eq, and color contours are interpolated from data points. The zero
segregation contour (S = 0, black curve) again (as in Fig. 6) corresponds closely to an equal volume ratio,
RV = 1 (dashed line). Representative particles of species A (red) and species B (blue) are shown at each corner
and the top of the equal-volume line.
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FIG. 9. Dependence of SA/ds,eq on (a) R∗ and RD for RL = 1.5 and (b) R∗ and RL for RD = 0.8 (blue planes
in Fig. 7). Symbol (◦) diameter is proportional to SA/ds,eq, and color contours are interpolated from data points.
The zero segregation contour (S = 0, black curve) again (as in Figs. 6 and 8) corresponds closely to an equal
volume ratio, RV = 1 (dashed line). Representative particles of species A (red) and species B (blue) are shown
at each corner.

species B (blue) has a much larger diameter than species A (red), and moving up decreases the
diameter of species B until it equals the diameter of species A at the top of the figure. In Fig. 9(b),
moving up from the bottom of the figure increases the length of species A (red). In both figures, the
solid black contour for SA/ds,eq = 0 is nearly identical to the dashed line for equal volume particles.
The figures also demonstrate that R∗ has little effect on SA/ds,eq and that the variation in magnitude
of SA/ds,eq with changing RD is greater than the variation of SA/ds,eq with RL (in both cases the
ratio plotted on the vertical axis changes by a factor of 3). This is because the volume of cylindrical
particles depends quadratically on diameter but only linearly on length, resulting in a much larger
change in particle volume for the range of RD in the left figure than for the range of RL in the right
figure.

The close correspondence of the equal volume ratio line and the SA = 0 contours in Figs. 6,
8, and 9, and the related observation that larger volume particles always segregate upward while
smaller volume particles sink downward strongly suggests that the scaled segregation length scale,
Si/ds,eq, depends on the volume ratio RV = VA/VB. To test this hypothesis, Fig. 10 plots Si/ds,eq vs
RV for 325 simulations for all of the parameter combinations shown in Fig. 7. Note that there are
two data points for each simulation: one is for species A at a particular value of RV and another
for species B at 1/RV . Since there are so many data points, they are rendered semitransparent so
overlapping points are more intense in color. The segregation measured in terms of Si/ds,eq is, to
first order, linear with ln(RV ) and follows the same relationship as for spherical particles [Eq. (3)]
when the length scale ds is replaced by a spherical equivalent length scale for nonspherical particles
ds,eq and the diameter ratio is replaced by the volume ratio, which is shape independent. Thus,

Si/ds,eq = C∗ ln(RV ). (10)

For cylindrical particles, Eq. (10) has a slope corresponding to CC = 0.080 ± 0.004 (95% confi-
dence interval), where the subscript C corresponds to mixtures of cylindrical particles. While there is
some scatter in Fig. 10, it is remarkable that the segregation of cylindrical particles varying so widely
in shape and size, i.e., spanning the range shown in Fig. 1 for rods and disks, can be condensed to
this simple correlation.
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FIG. 10. Scaled segregation length scale, Si/ds,eq, vs volume ratio RV for data from simulations with
cylindrical species mixtures indicated in Fig. 7. Symbols are semitransparent, so regions with overlapping
symbols are more intense in color. Error bars correspond to the rms deviation of the fit for Si/ds,eq in Eq. (2).
Slope of linear least-squares fit to Eq. (10) (line) is CC = 0.080.

C. Mixtures of cylindrical and spherical particles

To further test the dependence of segregation on volume ratio for two particle species, we
also conduct DEM simulations for mixtures of cylindrical particles and spherical particles to
determine the corresponding values of Si/ds,eq. Results are shown in Fig. 11(a) for 54 simulations
of bidisperse mixtures of cylinders (species A) and spheres (species B) spanning diameter ratio
1/2 � RD = dA/dB � 2 and length to diameter ratio 1/2 � RL′ = lA/dB � 2. The parameter space
for bidisperse mixtures of spheres and cylinders, disregarding absolute size, is fully characterized
by RL′ and RD.

As with mixtures of cylindrical particles, the particle species with the greater volume segregates
upward, and the particle species with the smaller volume sinks. And again, the equal volume particle
line nearly matches the SA = 0 contour, indicating that the relative volumes of the cylindrical
particle and spherical particle determine the degree of segregation. This is confirmed in Fig. 11(b),
which shows that Si/ds,eq depends linearly on ln(RV ) with a slope for cylinder-sphere mixtures
(subscript CS) CCS = 0.084 ± 0.006, similar to the result for mixtures of cylinders (CC = 0.080) in
Eq. (10).

V. DISCUSSION

A. Universal relation for cylindrical and spherical particle mixtures

Data from 325 simulations of bidisperse mixtures of cylinders (1 � RL � 4, 1/3 � RD � 1, and
1/3 � R∗ � 3) and 54 simulations of bidisperse mixtures of spheres and cylinders (1/2 � RL′ � 2
and 1/2 � RD � 2) provide strong support for our observation that the volume ratio between
particle species differing in shape is the primary factor controlling the degree of segregation.
This point is further amplified by additionally considering the dependence of Si/ds on RV for
size-bidisperse mixtures of spheres. Using data from previous work [14] and applying the same
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FIG. 11. (a) Nondimensional segregation length scale, SA/ds,eq, vs RL′ and RD for cylindrical particle (A)
in bidisperse mixtures of cylinders and spheres. Symbol (◦) diameter is proportional to SA/ds,eq, and color
contours are interpolated from data points. The zero segregation contour (S = 0, black curve) again (as in
Figs. 6, 8, and 9) corresponds closely to an equal volume ratio, RV = 1 (dashed line). Representative particles of
species A (cylinders, red) and species B (spheres, blue) are shown at each corner. (b) Si/ds,eq vs RV for bidisperse
mixtures of cylinders and spheres. Error bars correspond to the rms of the fit for Si/ds,eq in Eq. (2). Slope of
linear least-squares fit to Eq. (10) (line) is CCS = 0.084, where the subscript CS corresponds to mixtures of
cylinders and spheres.

methodology to determine the slope of Si/ds,eq vs ln(RV ), we find CS = 0.086 ± 0.002 for spherical
particle mixtures.

The similarity between the fit coefficients in Eq. (10) as a function of RV for mixtures of
cylinders (CC = 0.080), cylinders and spheres (CCS = 0.084), and spheres (CS = 0.086) suggests
that the effect of particle shape on segregation is relatively small compared to volume effects. This
conclusion is further supported by Fig. 12, which plots all the data for these three types of mixtures.
In addition, we include Si data from a previous study of equal diameter rods varying in length in
a bounded heap flow with frictional sidewalls [11]. The degree of collapse is remarkable given the
range of particle size and shape combinations as well as the different DEM simulation parameters
and methods. Fitting the 525 individual simulations in Fig. 12 including the data for mixtures of
spherical particles [14], but excluding mixtures of rods with frictional sidewalls [11], to Eq. (10)
gives C∗ = 0.082 ± 0.003. We note that in addition to the volume ratio RV , we also considered
several other ways to characterize the two particle species, including surface area, projected surface
area in the direction of segregation, and sphericity, but none collapse the data better than RV for
mixtures of cylinders, mixtures of cylinders and spheres, and mixtures of spheres.

The values for C∗ and the associated coefficients of determination R2 of the fit for each type of
particle mixture are provided in the second and third columns of Table III. The fits (R2) for the
segregation rate for mixtures of cylinders (C) or mixtures of cylinders and spheres (CS) are not
as good as those for spherical particles (S). The increased variability of the segregation rate for
nonspherical particles is likely related to the secondary effect of particle shape.

In an attempt to account for the shape effect with the goal of better collapsing the data, we
evaluate modifying the particle volume ratio through multiplication or division by other shape
characteristics, specifically, the surface area ratio, the ratio projected surface area in the direction of
segregation, the sphericity ratio, and the aspect ratio, to determine if including any of these ratios
results in a better collapse of the data. Most of these modifications lead to a diminished collapse
(smaller R2), except for multiplying by the surface area ratio RSA or dividing by the sphericity
ratio RSph, which are both indicated in Table III. However, these both only have a negligible
effect on the collapse of the data, as indicated by the coefficients of determination R2. From this
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FIG. 12. Nondimensional segregation length scale, Si/ds,eq, vs volume ratio RV for bidisperse mixtures
of cylinders (red ◦), cylinders and spheres (blue �), spheres (black ×) [14], and cylinders with frictional
sidewalls (green �) [11]. The linear least-squares fit to the data (line) for all types of mixtures to Eq. (10) has
slope C∗ = 0.082.

result, we conclude that of these parameters, volume ratio is the simplest effective parameter to
collapse the data. Thus Fig. 12 and Table III demonstrate that, to first order, the segregation of
bidisperse mixtures of cylindrical particles or cylindrical and spherical particles in which the particle
orientation is relatively stable can be modeled as the segregation of a mixture of volume-equivalent
spheres. Furthermore, Eq. (10) can be used as a universal relation to estimate Si/ds,eq for spheres,
cylinders, and combinations thereof using C∗ = 0.082.

While the dependence of the segregation velocity on the volume ratio is clear, the physics
associated with this result is not. The segregation is clearly not a result of the mass difference
because the larger volume particle, which segregates upward, has a greater mass. Furthermore, the
volume occupied by the larger volume particle has a higher mass density than the same volume
occupied by the smaller particle species because of voids between the smaller particles, so this is
clearly not a buoyancylike effect. In previous studies of single intruder particle segregation, the
volume ratio of a single intruder sphere to a spherical particle in a bed of particles undergoing shear
determines the direction of segregation. This reverses from upward to downward at a volume ratio
of about 64, so that the large intruder particle sinks as a result of increased weight relative to the

TABLE III. Constant C∗ and coefficient of determination R2 for Eq. (3) for various mixtures of cylinders
(C) and spheres (S).

RV RV RSA RV /RSph

Mixture C∗ R2 C∗ R2 C∗ R2

C 0.080 0.829 0.046 0.831 0.073 0.821
CS 0.084 0.876 0.050 0.871 0.080 0.855
S [14] 0.086 0.975 0.052 0.975 0.086 0.975
All 0.082 0.894 0.050 0.900 0.081 0.898
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upward contact forces from the bed of smaller particles [59]. However, this volume ratio (64) is well
above the volume ratios considered here.

Further demonstrating the complexity of the physics associated with segregation, in bidisperse
mixtures of spherical particles that vary in both volume and density, the segregation direction
depends not only on the volume ratio and density ratio, but also on the species concentration
[60–63]. Therefore the physics of segregation is, at least in part, dependent on both the geometry,
generated by the volume difference, and the mass (or density) difference between particle species,
each driving segregation in different directions. But this complex interaction is not understood even
for single intruder particles in spherical particle systems. It not only depends on relative sizes and
densities, but also seems related to both particle contacts and flow kinematics [59]. The physics is
potentially even more complicated for the more diverse particle contact interactions associated with
nonspherical particles.

Returning to the validation examples in Fig. 4, validation case 2 (middle figure) corresponds
to particles with RV = 1, which implies that segregation should be minimal. Nevertheless, the
deposited concentration for particle D1 is somewhat below 50% in the upstream half of the heap
(small x/L) and gradually increases to slightly above 50% near the downstream end wall (large
x/L) in both simulation and experiment, which clearly indicates that some segregation is occurring.
However, this is a result of the sidewalls. When the same particles are simulated with periodic
sidewall boundary conditions, no segregation occurs, as expected from the volume ratio, and the
deposited concentrations of both species are equal (and necessarily, invariant) along the entire length
of the heap. This result demonstrates that sidewall boundaries affect segregation, consistent with
previous results for spheres [19,64,65], and is discussed in more detail for nonspherical particles in
the next section.

Further note that in validation case 2, the sidewalls promote segregation when RV predicts no
segregation, while the data for mixtures of equal diameter rods varying in length [11] suggests that
the sidewalls reduce segregation relative to the prediction based on RV (green diamonds in Fig. 12).
The wall effect may be amplified in the case of rodlike particles because they tend to align their axes
with the wall and disklike particles tend to align their circular faces against the wall. In both cases,
these results demonstrate how bounding walls can affect the segregation.

B. Continuum segregation model for nonspherical particles

Now that the segregation length scale Si can be predicted for mixtures of nonspherical par-
ticles, the next question is if the advection-diffusion-segregation continuum model, Eq. (1), can
be successfully applied. To answer this we consider the validation cases in Table II. The model
uses kinematics (based on flow rate and ds,eq) of spherical particles in a quasi-2D bounded heap
[13,14,66], flow depth measured from DEM simulation (4.5Lmin for cases 1 and 3 and 4Lmin for
case 2, where Lmin is the minimum length or diameter of the simulated particles), and the diffusion
coefficient for volume-equivalent spherical particles (D = 0.055γ̇ d̄eq, where d̄eq is the mean, local
volume-equivalent spherical particle diameter) [67]. It is important to note that the model may be
somewhat less accurate when the volume ratio is near 1 and shape effects are more significant [9],
or in cases when particle orientation is evolving, such as the flowing layer in rotating tumblers.
However, once the distribution of particle orientation is established, the model should be applicable
to a wide range of gravity-driven free-surface flows, just as it is for spherical particles [2].

Figure 13 compares the concentration of D1 particles deposited on the heap averaged across
the span from the DEM simulation results for each validation case (solid black curve) and that
predicted from the continuum model using both the value for Si measured from DEM results for
that case (solid blue curve) and the value predicted by RV via Eq. (10) (dashed blue curve). The
results are remarkable. For validation case 1, both the measured and predicted values for Si correctly
capture the approximate magnitude of deposited concentration and the location of the interface
(cD1 = 0.5) between higher concentrations of each particle species deposited on the heap. Similarly,
for validation case 3, the value for Si predicted from Eq. (10) captures the correct concentration
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FIG. 13. Deposited concentration averaged across the span of disklike particles D1 (d = 6.3 mm, l =
3.2 mm) for equal volume concentration bidisperse mixtures with three different rodlike particles from DEM
simulation (black) and from Eq. (1) using the value for Si measured directly from the simulation (solid blue)
and the predicted Si from Eq. (10) (dashed blue) for validation cases 1 (a), 2 (b), and 3 (c), see Table II.

magnitude and location of the interface between higher concentrations of each particle species.
For validation case 2, where there should be no segregation (RV = 1), the measured value for Si

correctly captures the regions of higher species concentration for wall-bounded flow. However, as
noted earlier, the predicted value for Si based on RV = 1 predicts no segregation (cD1 = 0.5) because
wall effects are not taken into account. In fact, for all cases, the value of Si predicted from Eq. (10)
is slightly less than the value of Si directly measured for the validation cases, so the deposited
concentration is slightly reduced in magnitude. However, this is a consequence of the validation
cases having planar sidewalls, while the value for Si predicted from Eq. (10) is based on simulations
with periodic boundary conditions to avoid sidewall effects. In spite of this, the results shown in
Fig. 13 further validate the predictive capability of the continuum segregation model [Eq. (1)] and
the segregation velocity model [Eqs. (2) and (10)], as well as demonstrate that the models can predict
segregation of nonspherical particles when they are treated as volume-equivalent spherical particles.

C. Reconciling with results for mixtures of sphere and cuboids

Finally, we discuss our findings in light of a recent study examining mixtures of cuboid and
spherical particles in a rotating tumbler [8]. For cuboids with edge length equal to the sphere
diameter, the authors report that the spheres segregate upward in the flowing layer and accumulate
at the tumbler periphery [8]. This outcome is counter to the expectation for segregation based
on the volume ratio RV , as the volume of the cuboid is larger than the volume of the sphere.
To better understand this result, we simulate an equal volume mixture of equal size cuboids
(t = s = 8, a = b = c = 1 mm) and spheres (t = s = 2, a = b = c = 1 mm), corresponding to
RV = 1.8 (accounting for the rounded edges of the superellipsoid cuboid in the volume) in bounded
heap flow with both periodic and frictional sidewalls.

Figures 14(a) and 14(c), with frictional sidewalls, have a segregation pattern opposite to that
expected based on RV , matching the observation in the rotating tumbler [8]. That is, the con-
centration of spherical particles, cs, deposited on the heap increases moving downstream. Close
examination of the data in this case reveals that the deposited concentration of spherical particles
varies across the span with highest concentration near the frictional sidewall. On the other hand,
although the segregation is weak with periodic boundaries, shown in Figs. 14(b) and 14(d), the
concentration of spheres deposited on the heap decreases slightly with downstream position, as
expected for the smaller volume spherical particles. In this case, the measured segregation length
scale is Si/ds,eq = 0.033, compared to the predicted value of Si/ds,eq = 0.048 based on RV = 1.8
in Eq. (10). This difference, while significant, is not unreasonable when considered in light of the
context of the range of particle shapes and values for Si/ds,eq in Fig. 12.

The impact of sidewalls is evident in the magnified image of the particles at the sidewall.
The red cuboidal particles align with a face parallel to the frictional sidewall [Fig. 14(a)], which
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FIG. 14. DEM heap flow simulations of mixtures of spheres (blue) and cuboids (red) with (a) frictional
sidewalls and (b) periodic sidewalls. Average concentration of deposited spheres cs vs streamwise position x/L
for (c) frictional sidewalls and (d) periodic sidewalls. Magnified particle images are shown for a portion of the
flow along the sidewall (a) and along the periodic plane (b).

stands in sharp contrast to the random orientation evident with periodic sidewalls [Fig. 14(b)].
This boundary-driven alignment of the particle orientation at the sidewalls appears to explain the
“reversed” segregation in Fig. 14(c) and in tumbler flow with sidewalls [8].

VI. CONCLUSIONS

In this paper we present a detailed study of the degree of segregation over the multidimensional
shape space for bidisperse mixtures of cylindrical particles, cylindrical and spherical particles, and
spherical particles. We find that characterizing the propensity for segregation is much simpler than
might be expected given the richness of the parameter space. First, the segregation velocity depends
only on the shear rate and the concentration of the particle species [Eq. (2)], just as is the case
for mixtures of spherical particles. Second, the segregation length scale Si that characterizes the
propensity for segregation depends only on the volume ratio of the two particles via the simple
relation Si/ds,eq = C∗ ln(RV ), Eq. (10), where C∗ = 0.082 is a universal constant across a wide range
of cylindrical and spherical particle mixtures. The dependence of the segregation on the volume ratio
of the particles aligns with a recent study that found that the primary driver of the lifting segregation
force for a spherical intruder in a bed of spherical particles follows a buoyancylike scaling [59].

The similarity between the segregation rate for mixtures of particle species as different as cylin-
ders (disklike and rodlike), spheres and cylinders, and spheres and spheres suggests that predicting
segregation between differently shaped particles may be as simple as determining RV , especially
considering the diversity of the particle shapes and sizes shown in Fig. 1. It seems reasonable
that generally spheroidal-like particles including those having faceted surfaces, ellipsoidal particles,
tablet- or capsule-shaped particles, and seed- or grain-shaped particles would likely follow the same
volume-ratio-based relation for the segregation velocity. After all, these particle shapes rarely differ
from one another as much as the extreme examples of disks and rods differ from one another in
Fig. 1, all of which follow the simple volume-ratio-based relation for Si. Further study is needed
to confirm this prediction, but if broadly applicable, such a relationship between RV and Si [i.e.,
Si/ds,eq = C∗ ln(RV )] would be of great benefit to continuum modeling of segregation. However, this
relationship may change drastically for extreme particle shapes, such as concave shapes, which can
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interact through very different mechanisms, including cohesive interlocking behavior, for extremely
large aspect ratio rods (fibers) that strongly align with the flow, or for other particle shapes that have
the potential to locally jam.

Further study will be necessary to determine the range of volume ratios (near RV = 1) over which
shape effects, such as those observed in the segregation of equal volume ellipsoids and spheroids [7]
and of equal volume spheres with cubes, cuboids, and ellipsoids [9], are significant. Also of interest
is determining if the segregation rates for bidisperse mixtures of cylindrical particles can be applied
to multidisperse and polydisperse mixtures, similar to how the segregation rate between bidisperse
mixtures of spherical particles can be applied to mixtures with more than two constituent species
[18,24–26]. And finally, the influence of lateral bounding walls which, as shown here, can reverse
the segregation direction compared to laterally unbounded flows for small RV , needs to be better
understood and characterized.

The results presented in this paper, particularly Fig. 12 and Eq. (10), demonstrate that the
segregation of an important subset of all nonspherical particle mixtures, namely, cylinder mixtures
and sphere-cylinder as well as sphere-sphere mixtures, can be simply predicted based on the relative
volumes of the particles regardless of particle shape.
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