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Diffusiophoresis is the movement of colloidal particles due to a gradient in the con-
centration of a solute. Previous studies on diffusiophoresis have focused largely on
one-dimensional colloid transport due to the gradient of a single electrolyte. Recent
studies have considered two-dimensional geometries including dead-end pores, multiple
electrolytes, and a background flow field due to diffusioosmosis. In this work, we develop a
model of the time-dependent diffusiophoretic compaction of colloids in a two-dimensional
pore due to the gradient of multiple electrolytes in tandem with a diffusioosmotic slip-
driven background flow field, which builds upon these recent studies by combining each of
these effects. We simulate this model for varying properties of the pore walls and colloidal
particles. Furthermore, we conduct experiments varying the initial ion combinations and
total solute concentration, which show good qualitative agreement with the simulations.
Our results indicate that diffusiophoretic compaction can be increased or decreased by
manipulating electrolyte combinations, total solute concentration, wall charge, and particle
diffusivity; each effect can modify the particle velocity, with varying strength, in unison or
in opposition to the other effects. By offering a larger toolbox to manipulate colloidal
particles, our results on diffusiophoretic and diffusioosmotic motion in tandem and in
the presence of multiple electrolytes can be exploited for lab-on-a-chip and biophysics
applications.

DOI: 10.1103/PhysRevFluids.6.054201

I. INTRODUCTION

Diffusiophoresis refers to the spontaneous motion, typically 1–10 μm/s, of colloidal particles
driven by a gradient in solute concentration. It was discovered for nonelectrolytes by Derjaguin
et al. [1] and for electrolytes by Dukhin et al. [2]. For electrolyte solutions, concentration gradients
of cations and anions with different diffusivities set up a local electric field, generating a nonzero
electrophoretic contribution to the diffusiophoretic velocity of charged particles [3]. The concen-
tration gradient of solutes also produces a local gradient in osmotic pressure near the surface of
the particles, causing chemiphoretic migration. Typically, observations of diffusiophoresis occur
because of a combination of these two contributions. Many theoretical and experimental studies
of diffusiophoresis focused on valence-symmetric solutes in two-ion electrolytes (e.g., LiCl, NaCl,
KCl, etc.) [3–15]. For these systems, in the thin double-layer approximation, the electrophoretic
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FIG. 1. Schematic of the transport of colloidal particles inside a pore in the presence of a three-ion solute
concentration gradient. An example of a microscopic view of a single colloidal particle is shown to the right.
The ion concentration gradients induce a diffusioosmotic slip velocity, which generates a flow field vf in the
solution, as well as a diffusiophoretic velocity vDP on the particles. The net velocity of the particles vp =
vDP + vf is a superposition of diffusiophoretic and fluid velocities. The pore at τ ≈ 0 shows the initial state
of the colloidal particles in a nonzero solute gradient, and the pore at τ ≈ 1 shows the colloidal particles in a
compacted state after the ions have diffused throughout the length of the pore.

contribution is proportional to the diffusivity difference factor β = (D+ − D−)/(D+ + D−), where
D+ and D− denote, respectively, the diffusivities of the cation and anion.

Many recent studies consider diffusiophoresis in a dead-end pore configuration, which effectively
creates (an approximate) one-dimensional transport of colloids and solutes under a controlled
concentration gradient [13,16–21]. In such a geometry, the observation of particle migration is
achieved by either tracking a peak location of the distribution, or measuring the extent of compaction
of particles into the pores. Since the channel walls are also charged surfaces, diffusioosmotic flow
of the aqueous phase is created along the pore walls. This slip velocity generates a nonuniform flow
of liquid in the pores to maintain the continuity (zero net flux of the bulk liquid) [16,17]. Therefore,
the advective particle motion that is observed in the pores is a combination of diffusiophoresis and
the local flow velocity induced by the diffusioosmotic wall slip.

In this article, we investigate the motion of polystyrene (PS) particles in a dead-end pore
geometry, and analyze using numerical simulations the two-dimensional motion under the influence
of multiple electrolytes. Several recent studies employed multi-ion configurations [22–24], showing
spontaneous migration of colloids in the concentration gradient. However, the reports do not provide
a systematic understanding of the effect of multiple ions or varying the surface potential [13]
of the experimental materials, nor do they account for the two-dimensional contribution of the
diffusioosmotic wall slip. We present theoretical models and experiments for compaction of colloids
in a pore with charged walls and multiple solutes. The two-dimensional numerical simulations,
which consider varying surface potential, varying particle diffusivity, and the presence of three ions
(Na+, K+, and Cl−) in the solution, are compared with experimental measurements.

II. MATHEMATICAL MODEL

We consider a two-dimensional pore geometry shown in Fig. 1, where x spans 0 → � and y
spans −h → h, such that h � �. The pore is connected to a main channel that acts as a reservoir.
We assume that the pore is initially filled with an electrolyte solution containing sparse colloidal
particles. To induce a diffusiophoretic motion, an ion concentration gradient is set up by flowing a
different electrolyte solution in the main channel. The concentration gradient evolves with time and
the colloidal particles subsequently compact through diffusiophoresis; see Fig. 1. The solutions
consist of two electrolytes, NaCl and KCl, and their concentrations are varied in the pore as
well as the main channel to investigate the effect of multiple electrolytes on diffusiophoresis and
diffusioosmosis. For simplicity, we assume that the finite Debye length effects are negligible (see
Ref. [13] for more details). To model the diffusiophoretic process, we solve for the concentrations
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of electrolytes undergoing advective diffusion (described in Sec. II A) and of colloids undergoing
diffusiophoresis in response to the electrolyte diffusion (described in Sec. II B). Although individual
elements of these kinds of experiments and simulations have been reported previously, this report
integrates all of the elements into one study. We note that we do not utilize a three-dimensional
model since the differences between two- and three-dimensional predictions are relatively
minor [25].

A. Transport of multiple solutes

Since NaCl and KCl share a common anion, we describe the concentrations Ci and diffusivities Di

of the three ions in the electrolyte solution as Na+ (i = 1), Cl− (i = 2), and K+ (i = 3). To nondi-
mensionalize the equations, we define ci = Ci/C0, X = x/�, Y = y/�, τ = tD1/�

2, Di = Di/D1,
and V = v�/D1 (for all velocities), where C0 is a characteristic concentration, � is the length of the
pore, and D1 = 1.33 × 10−9 m2/s is the diffusivity of Na+ in water [26].

The Nernst-Planck equation relates the concentration of the ith ion to its flux and a background
fluid velocity field according to [27]

∂ci

∂τ
= −∇ · (Ji + Vfci ), (1)

where ∇ = (∂/∂X )êX + (∂/∂Y )êY and Vf is the nondimensional fluid velocity. The nondimensional
flux J = j�/(D1C0) is given by

Ji = −Di(∇ci + zici∇� ), (2)

where the nondimensional electric potential is � = eψ/(kBT ) and zi is the valence of the ith ion. We
invoke that the solution is electrically neutral and has zero electric current, which can be expressed
by the following two equations:

3∑
i=1

zici = 0 (3)

and
3∑

i=1

ziJi = 0. (4)

Combining Eqs. (2) and (4) yields the form of the gradient of the electric potential:

∇� = −
∑3

i=1 ziDi∇ci∑3
i=1 z2

i Dici

. (5)

Furthermore, the background fluid velocity Vf arises in our system from the diffusioosmotic
wall slip with velocity [28] Vs = VsêX , i.e., only in the direction parallel to the pore walls. The
dimensional slip velocity vs = εk2

BT 2/(e2μD1) f (�w, Di,∇ciw), where ε = 6.8 × 10−10 F/m is the
electrical permittivity of the solution, kB = 1.38 × 10−23 J/K is the Boltzmann constant, T = 298 K
is the absolute temperature, e = 1.6 × 10−19 C is the elementary charge, and μ = 1.0 × 10−3 Pa s
is the solution viscosity (assumed constant). Therefore, Vs = α f (�w, Di,∇ciw), where we define

α ≡ εk2
BT 2

e2μD1
. (6)

We adopt the approximate form [29] for f (�w, Di,∇ciw) to write

Vs = −α

(∑3
i=1 ziDi

∂ciw
∂X∑3

i=1 z2
i Diciw

�w + 1

8

∑3
i=1 z2

i
∂ciw
∂X∑3

i=1 z2
i ciw

�2
w

)
, (7)
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where �w is the zeta potential of the wall and ciw is the concentration of the ith ion at the wall. We
note that while the expression in Eq. (7) is only valid for |�w| � 1, it can be utilized for moderate
zeta potentials with reasonable accuracy [29].

We consider the pore wall to have a constant surface charge, which requires that its zeta
potential depends on concentration, i.e., �w = �w(ciw(X, τ )) for i = 1, 2, and 3. We note that
polymeric surfaces are most accurately represented by a charge regulation boundary condition [30].
However, such a boundary condition needs additional parameters and thus we invoke the constant
charge boundary condition, which is reasonable for polystyrene particles and polydimethylsiloxane
(PDMS) walls, as our previous study [13] demonstrates for a wide range of NaCl concentrations.
Because we assume a constant surface charge, the following condition holds [29]:

3∑
i=1

ciw[exp (−zi�w) − 1] = constant. (8)

In the thin double-layer limit, the background fluid velocity field is determined by the Stokes
equation [31]

∇2Vf = ∇P, (9)

where P is the nondimensional pressure acting on the fluid. The narrow pore geometry (� � h)
allows us to neglect the pressure gradient in the Y direction, as is common in the lubrication
approximation. To acquire the X direction pressure gradient, we assume there is zero volumetric
flux through a cross section of the pore. This gives an expression for the X -direction fluid velocity
[25]:

VfX = Vs

2

[
3

(
Y

h/�

)2

− 1

]
. (10)

Since Vs = VsêX , the incompressibility condition ∇ · Vf = 0 then yields an expression for the Y -
direction fluid velocity:

VfY = −Y

2

∂Vs

∂X

[(
Y

h/�

)2

− 1

]
. (11)

Equation (10) indicates that VfX = Vs at the walls (Y = ±h/�) and VfX = −Vs/2 at the center line
(Y = 0). Therefore, the axial fluid velocity changes sign to ensure zero flow rate through a cross
section of the pore.

B. Transport of colloidal particles

Next, we consider the transport of a dilute suspension of colloidal particles due to the advective
diffusion of multiple solutes described in Sec. II A. Similarly to Eq. (1), we describe the transport
of the particles with nondimensional concentration n = N/N0, for a given initial concentration N0,
by

∂n

∂τ
= ∇ · (Dp∇n − Vpn). (12)

The nondimensional particle diffusivity is Dp = Dp/D1 and the nondimensional colloidal particle
velocity is Vp. We assume that the particles move relative to the fluid owing to diffusiophoretic
transport, so that the particle velocity can be written

Vp = VDP + Vf. (13)
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We know the fluid velocity from Eqs. (7), (10), and (11). The diffusiophoretic velocity can be
evaluated as [29]

VDP = α

(∑3
i=1 ziDi∇ci∑3
i=1 z2

i Dici

�p + 1

8

∑3
i=1 z2

i ∇ci∑3
i=1 z2

i ci

�2
p

)
, (14)

where �p is the zeta potential of the particle and α remains the same as in Sec. II A. Equation (14)
is equivalent to the diffusioosmotic velocity given by Eq. (7) after transforming to the reference
frame of the particle and replacing ciw with ci. We solve for �p by adjusting Eq. (8) to the case of a
colloidal particle with constant surface charge according to

3∑
i=1

ci[exp (−zi�p) − 1] = constant. (15)

Equations (1) and (12) are therefore coupled by Eq. (13). A full solution for n(X,Y, τ ) along with
ci(X,Y, τ ) can be obtained numerically for given boundary conditions.

III. COMPUTATIONAL SYSTEM

We implemented a numerical PDE solver for the coupled Eqs. (1) and (12). The solver is
implemented in MATLAB (ver. 2017b) [32] based on an implicit finite-volume scheme. To determine
�w(ciw) from Eq. (8), we introduce parameters �∗

w and c∗
iw. Therefore, constant surface charge can

be described as
3∑

i=1

ciw[exp (−zi�w) − 1] =
3∑

i=1

c∗
iw[exp (−zi�

∗
w) − 1], (16)

where by changing �∗
w and c∗

iw, we can represent different wall properties. Similarly, to obtain
�p(cip) from (15), we introduce �∗

p and c∗
i such that

3∑
i=1

ci[exp (−zi�p) − 1] =
3∑

i=1

c∗
i [exp(−zi�

∗
p ) − 1]. (17)

We summarize all the parameters and their values used for our computations in Table I.

A. Computing solute concentrations

We consider the case of a solution initially containing only KCl outside of the pore with a solution
containing only NaCl inside the pore; the concentrations are chosen to be equal. Our solver first
calculates the solute concentrations c1, c2, and c3. We take as initial conditions

c1(X,Y, τ = 0) = 1, c2(X,Y, τ = 0) = 1, c3(X,Y, τ = 0) = 0, (18)

and boundary conditions

c1(X = 0,Y, τ ) = 0, c2(X = 0,Y, τ ) = 1, c3(X = 0,Y, τ ) = 1, (19)

∂ci

∂X
(X = 1,Y, τ ) = 0,

∂ci

∂Y
(X,Y = ±h/�, τ ) = 0, where i ∈ [1, 2, 3], (20)

where the open end of the pore is located at X = 0, impermeable walls are located at X = 1 and
Y = ±h/�, and the aspect ratio is set to �/h = 10. Outside of the open end of the pore, there is a
reservoir of motionless fluid that serves to accept Na+ and to supply K+. The Na+ ions are initially
present only inside of the pore while K+ is initially present only outside of the pore, i.e., in the
reservoir. The Cl− ions are initially present in equal concentrations inside and outside of the pore.
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TABLE I. Nondimensional parameters for computing the solute concentrations c1, c2, and c3 and colloidal
particle concentration n. The prefactor is α = εk2

BT 2/(e2μD1), where ε = 6.8 × 10−10 F/m is the electrical
permittivity of the solution, kB = 1.38 × 10−23 J/K is the Boltzmann constant, T = 298 K is the absolute
temperature, e = 1.6 × 10−19 C is the elementary charge, and μ = 1.0 × 10−3 Pa s is the solution viscosity
(assumed constant), and D1 = 1.33 × 10−9 m2/s is the diffusivity of Na+ in water [26].

Parameter Symbol Value(s) used

Aspect ratio �/h 10, 20
Maximum initial solute concentration C0 1 mM, 10 mM
Valence of Na+ z1 1
Valence of Cl− z2 −1
Valence of K+ z3 1
Diffusivity of Na+ D1 1
Diffusivity of Cl− D2 1.52
Diffusivity of K+ D3 1.467
Diffusivity of colloidal particles Dp 10−4, 10−3, 10−2

Wall reference concentration of Na+ c∗
1w 5

Wall reference concentration of Cl− c∗
2w 5

Wall reference concentration of K+ c∗
3w 0

Wall reference potential �∗
w −4, −2, 0, 2, 4

Particle reference concentration of Na+ c∗
1 5

Particle reference concentration of Cl− c∗
2 5

Particle reference concentration of K+ c∗
3 0

Particle reference potential �∗
p −3

Prefactor α 0.334

We first present results typical of the time evolution of the cations and anions. Figure 2 shows
the results for the aforementioned initial conditions and for �∗

w = −4. The color maps shown in
Figs. 2(a)–2(c) illustrate the transport of solutes. The steepest gradients are seen at early times (here
τ = 0.1), whereas the gradients are smaller already at τ = 0.5 and very weak as the concentration
approaches steady state (τ = 2.0). The fluid velocity vector field resulting from the diffusioosmotic
wall slip is included on top of each color map. Notably, the X component of each vector field
reverses direction near the walls, which is characteristic of a slip-velocity-induced flow field.
Figures 2(d)–2(f) show the Y -averaged concentration 〈ci〉(X, τ ) of each ion. From Figs. 2(a)–2(c) we
observe that there is no strong variation in the concentration of any of the ions along the Y direction,
so the Y -averaged concentration is an accurate representation of the concentration throughout the
pore. We see in Fig. 2(d) that Na+ tends toward zero concentration at longer times, while we observe
in Fig. 2(f) that the K+ tends toward the initial concentration of the Na+. From Fig. 2(e), we see
that the Cl− undergoes a slight increase in concentration from its initial value and then a decrease
back. This is an effect that is not present when treating the diffusion of the two solutes NaCl and
KCl as independent [35]. In that case, the concentration of Cl− would remain at its initial value.

B. Computing colloidal particle concentration

After evaluating ci(X,Y, τ ), we calculate the evolution of the colloidal particle concentration n.
We considered the case of a particle suspension initially in the pore with no particles in the solution
outside the pore. Thus, we take the initial condition

n(X,Y, τ = 0) = 1, (21)

and the boundary conditions

n(X = 0,Y, τ ) = 0,
∂n

∂X
(X = 1,Y, τ ) = 0,

∂n

∂Y
(X,Y = ±h/�, τ ) = 0, (22)
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FIG. 2. Simulated codependent diffusion of two solutes, NaCl and KCl, which share a common anion. We
consider the three ions Na+ (c1), Cl− (c2), and K+ (c3) diffusing in a finite pore geometry with diffusioosmotic
wall slip. Initial and boundary conditions are c1(X,Y, τ = 0) = 1, c2(X,Y, τ = 0) = 1, c3(X,Y, τ =
0) = 0, c1(X = 0,Y, τ ) = 0, c2(X = 0,Y, τ ) = 1, c3(X = 0,Y, τ ) = 1,

∂ci
∂X (X = 1,Y, τ ) = 0,

∂ci
∂Y (X,Y =

±h/�, τ ) = 0. (a)–(c) Show the concentration of each respective ion as a color map of the pore at three different
times. Each color map also includes a vector plot of the fluid velocity Vf induced by the diffusioosmotic wall
slip. (d)–(f) Show the Y -averaged concentration of each respective ion at the same three times. Note that the
vertical axis of (e) spans a much smaller range than the vertical axes of (d) and (f). We use the parameters
�/h = 10, �w = −4, and those identified in Table I.

where the pore geometry and the solute boundary conditions are the same as described in Sec. III A.
See the Supplemental Material, movie 1, for an example simulation [33].

Our numerical simulations allow us to calculate the change in the particle distribution in space
and time. For example, Fig. 3 shows the particle velocity Vp = VDP + Vf for a particle diffusivity
of Dp = 10−4 and each wall reference potential �∗

w given in Table I. Figures 3(a)–3(e) show the
colloidal particle velocity vector field for each respective wall reference potential. As expected,
Fig. 3(c), corresponding to zero wall reference potential and therefore to zero wall charge, has
no fluid velocity contribution and reduces to a strictly one-dimensional profile. Figures 3(a) and
3(b), which correspond to negative reference wall potentials and therefore to negative wall charge,
have a velocity field which diverges from the center line at all times. Figures 3(d) and 3(e),
which correspond to positive reference wall potentials and therefore to positive wall charge, have
a velocity field which converges toward the center line at the early time and slightly diverges at
the two later times. Figures 3(f)–3(j) show the Y -averaged colloidal particle velocity magnitude
for each respective reference wall potential at three different times. Notably, the velocity for each
value of wall reference potential quickly decays in magnitude such that it is less than half of its
value at τ = 0.1 by τ = 0.5. Figures 3(f) and 3(g), which correspond to negative reference wall
potentials, are slightly lower in magnitude than Figs. 3(h)–3(j), which have non-negative reference
wall potentials. This response is expected, as the leading-order term of the diffusioosmotic slip
velocity reverses sign when the wall charge reverses sign, which causes the fluid velocity to subtract
less from the diffusiophoretic velocity and possibly add to it.

Next, we explore the consequence of changing the particle diffusivity. Figure 4 shows the
colloidal particle concentration for a wall reference potential of �w = −4 and each particle dif-
fusivity Dp given in Table I. Figures 4(a)–4(c) show the concentration in the pore using a color
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FIG. 3. Simulated colloidal particle velocity Vp, which is the sum of the diffusiophoretic velocity VDP

and the fluid velocity Vf. A finite pore geometry is considered with initial condition n(X,Y, τ = 0) = 1
and boundary conditions n(X = 0,Y, τ ) = 0, ∂n

∂X (X = 1,Y, τ ) = 0, ∂n
∂Y (X,Y = ±h/�, τ ) = 0. Each wall ref-

erence potential given in Table I was simulated. (a)–(e) Show the velocity vector fields. (f)–(j) Show the
Y -averaged colloidal particle velocity magnitude 〈||Vp||〉. Three values of time are used to show the system
immediately following the initial conditions, at an intermediate stage, and approaching steady state. We use the
parameters �/h = 10, Dp = 10−4, with other values given in Table I.

map. As expected, the contribution of the fluid velocity field decreases as the relative diffusivity
increases. The lowest value of relative diffusivity [Fig. 4(a)] results in parabolic contours of the
concentration and the highest value [Fig. 4(c)] approaches one-dimensional transport, where the
particles diffuse too quickly to be impacted by the two-dimensional fluid velocity. Figures 4(d)–4(f)
show the Y -averaged colloidal particle concentration for the three values of particle diffusivity.
The concentration reaches higher values of compaction for lower relative diffusivity. Figure 4(d),
corresponding to the lowest value of relative diffusivity, has the narrowest peaks in Y -averaged
particle concentration. Figure 4(f), corresponding to the highest value of relative diffusivity, has the
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FIG. 4. Simulated colloidal particle concentration n for different particle diffusivities Dp. A finite pore
geometry is considered with initial condition n(X,Y, τ = 0) = 1 and boundary conditions n(X = 0,Y, τ ) =
0, ∂n

∂X (X = 1,Y, τ ) = 0, ∂n
∂Y (X,Y = ±h/�, τ ) = 0. The wall reference potential is �∗

w = −4. (a)–(c) Show
the concentrations for each particle diffusivity in the pore using a color map. (d)–(f) Show the Y -averaged
concentrations for each particle diffusivity. Three values of time are used to show the system immediately
following the initial conditions, at an intermediate stage, and approaching steady state. We use the parameters
�/h = 10, �w = −4, with other values given in Table I.

broadest peaks. However, the value of the compaction near the dead end of the pore (X = 1) is
comparable for the three diffusivities.

IV. DEAD-END PORE EXPERIMENTS

In this section we report experiments that we can compare with the numerical results in the
preceding section. We use a dead-end pore geometry to perform compaction experiments [34],
analogous to the configurations considered in the simulations. Polystyrene (PS; Invitrogen) particles
of diameter 1 μm are suspended in electrolyte solutions with volume fraction 2.6 × 10−4. Microflu-
idic channels are prepared by standard soft lithography and by bonding the PDMS channels to glass
slides. The width, height, and length of the main channel and the pores, respectively, are 750 μm,
150 μm, and 5 cm, and 100 μm (= 2h), 50 μm, and 1 mm (= �) [35]. We initially fill the pores
with the particle suspension. Then, we introduce an air bubble into the main channel at a volumetric
flow rate of 400 μL/h, which is followed by the second electrolyte solution without particles. Once
the two solutions come in contact with each other, the mean flow rate is reduced to 20 μL/h,
corresponding to a mean flow speed 〈u〉 = 50 μm/s (syringe pump; Harvard Apparatus). Every
experiment is repeated three to four times to gain confidence in the quantitative measurements.

The fluorescent images are obtained by using 5× magnification (numerical aperture 0.12) on the
inverted microscope (Leica DMI4000B). The depth of field is approximately 60 μm, which means
that, with best focus, the obtained images are two-dimensional projection of the pores, as the pore
height is 50 μm. These image data are suitable for comparison with the numerical simulations.
Due to the diffusioosmosis near all walls, such two-dimensional representation of the pores is
not identical for different pore heights [36]. For this study, we do not include the details of such
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TABLE II. Initial conditions of the solute concentrations for experiments.

Experiment Main channel Pore

i 10 mM KCl 2.5 mM NaCl, 7.5 mM KCl
ii 10 mM KCl 5 mM NaCl, 5 mM KCl
iii 10 mM KCl 7.5 mM NaCl, 2.5 mM KCl
iv 10 mM KCl 10 mM NaCl
v 1 mM KCl 1 mM NaCl
vi 5 mM KCl 5 mM NaCl

three-dimensional effects. The chosen geometry allows consistent control of the test parameters,
and we obtain clear trends from the experiments listed in Table II.

In order to obtain the two-dimensional intensity data from the experiments, we overlaid five pores
(100 μm × 1 mm) from each experiment using the OR operator from ImageJ. Then the average
of three experiments is plotted in the X -Y plane and compared with the results of the numerical
simulations. Such image intensity calculations show that the measurements do not perturb the
particle mass conservation in the system (Fig. 9). The intensity in each experiment was normalized
by the mean gray value at time τ = 0.

Compaction experiments were performed for six different initial conditions of the solutes, as
given in Table II. Figures 5–8 compare observed data and simulated data for each of the experimental
conditions. The simulations were conducted as described in Sec. III A but with corresponding
initial conditions. The parameters were set according to Table II, with aspect ratio �/h = 20,
dimensionless particle diffusivity Dp = 10−4, dimensionless particle reference potential �∗

p = −3
[25], and dimensionless wall reference potential �∗

w = −4 [25]. The results in Fig. 5 show the
simulated and experimental time evolution of the colloid concentration for condition iv from
Table II. The experimental data qualitatively match the trends in the simulated data well throughout
time, including the parabolic contours due to the diffusioosmotic slip-induced flow field [Figs. 5(a)
and 5(b)] but show some quantitative differences [Figs. 5(c) and 5(d)]. For the Y -average and
center-line (Y = 0) particle concentrations [Figs. 5(c) and 5(d) and later plots], moving averages
of periods 40 and 100 are applied, respectively, to reduce the noise in the intensity data. Below we
further compare the experiments and simulations for three different sets of conditions to examine
different physical effects in the system.

In the first set of experiments, we maintained a concentration of 10 mM KCl in the main channel
(i–iv). To examine the effect of multiple ions on diffusiophoresis of PS particles, we varied the NaCl
and KCl concentrations inside the pore such that the total initial electrolyte concentration is also 10
mM (Table II). Effectively, the concentration gradient of KCl is highest for condition iv and lowest
for condition i. The comparison between the conditions i–iv and the numerical simulations is shown
in Fig. 6. Two-dimensional (2D) profiles of the particle distribution at τ = 0.5 for conditions i–iv
[Figs. 6(a)–6(d)] show qualitative agreements between experiments and simulations. Under larger
concentration gradients, we observe a larger diffusiophoretic velocity and consequently a deeper
compaction of the particles into the pores. The trend is also observed in the graphs of the Y -averaged
and center-line (Y = 0) particle concentrations plotted along the pore length [Figs. 6(e) and 6(f)].

We note that the absolute compaction distance of the particles is larger in the experiments as
compared to the model. The data in Figs. 6(a)–6(d) suggest that the difference may arise due to the
complicated flow structure near the pore inlet. In experiments, there is a flow at finite speed in the
main channel, which interacts with advective-diffusive ion transport at the pore inlet. This effect is
not captured through the reservoir boundary condition, as assumed in our model. In addition, due to
the pressure gradient in the experimental fluid flow, streamlines at the pore inlet are curved and can
penetrate into the pore [20], generating a region of mixing that causes smaller diffusioosmotic slip
near the pore inlet. In the model calculations, we assume a parabolic velocity profile for the liquid
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FIG. 5. Comparison between the experimental (solid) and simulated (dashed) time evolution of the colloid
concentration for an initial condition of 10 mM KCl in the main channel and 10 mM NaCl in the pore, which is
condition iv from Table II. (a) Shows the experimental images of the pore and (b) shows the simulated data at
various values of τ . The experimental data qualitatively match the trends in the simulated data well throughout
time, including the parabolic contours due to the diffusioosmotic slip-induced flow field [(a) and (b)] but shows
some quantitative differences [(c) and (d)]. (c) Shows the Y -averaged colloid concentrations vs X for each value
of τ . (d) Shows the center-line (Y = 0) colloid concentrations vs X for each value of τ .

flow everywhere and neglect complicating velocity profile effects near the pore inlet. Nevertheless,
these effects do not change our analyses of multi-ion diffusiophoresis.

We next demonstrate the effect of the magnitude of the initial solute concentration of KCl
and NaCl, as shown in Fig. 7, which compares experimental conditions iv and v. A lower initial
concentration of solutes (1 mM), while maintaining the concentration ratios between the solutes,
causes an increase in colloid compaction. In order to maintain constant electrical charge, the zeta
potential of the colloidal particles and the walls increases in response to the lower electrolyte
concentration [Eqs. (8) and (15)]. In the 2D plots [Figs. 7(a) and 7(b)], we observe sharper parabolic
profiles with 1-mM electrolytes [Fig. 7(b)]. This is an indication of stronger diffusioosmosis and
diffusiophoresis, confirming the effect of increased surface potentials on the wall and the particles.
We note that such effect would not have been captured by the numerical simulations if we had
assumed a constant zeta potential (on both the particles and the walls).

Next, we compare the conditions ii and vi in order to demonstrate the effect of the background
solute (Fig. 8). The condition ii consists of 5 mM KCl in the main channel and 5 mM NaCl in
the pores, with an additional background 5 mM KCl in the entire system. Without this background
5 mM KCl, condition vi causes a greater solute gradient, which increases the colloidal compaction.
Therefore, the background electrolyte decreases diffusiophoresis. Similar to the results shown in
Fig. 7, the sharper parabolic profile in Fig. 8(b) than 8(a) is due to the larger surface potential.
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FIG. 6. Comparison between the experiments (solid) and simulations (dashed) for initial conditions of 10
mM KCl in the main channel varying pore concentrations: 2.5 mM NaCl and 7.5 mM KCl, 5 mM NaCl and
5 mM KCl, 7.5 mM NaCl and 2.5 mM KCl, and 10 mM NaCl, which are conditions i–iv from Table II. We
note that, for each condition, the total concentration of Cl− is conserved and the concentrations of Na+ and
K+ are varied. (a)–(d) Compare the simulated data (top) with experimental images at τ = 0.5. These four
experiments demonstrate that creating a larger concentration gradient of KCl increases colloidal compaction.
The experimental data qualitatively match the trends in the simulated data well throughout time, including
the parabolic contours due to the diffusioosmotic slip-induced flow field [(a)–(d)] but show some quantitative
differences [(e) and (f)]. (e) Shows the Y -averaged colloid concentrations versus X for each condition. (f)
Shows the center-line (Y = 0) colloid concentrations versus X for each condition.

(a)

X
0 0.5 1

Y
X X

iv
v

iv
v

n

n
(Y

=
0)

(b)

(c) (d)

iv

v

FIG. 7. Comparison between the experiments (solid) and simulations (dashed) for initial conditions of 10
mM KCl in the main channel and 10 mM NaCl in the pore, and 1 mM KCl in the main channel and 1 mM NaCl
in the pore, which are conditions iv and v from Table II. The comparison demonstrates the effect of absolute
concentration. (a), (b) Compare the simulated pores (top) to the experimental images at τ = 0.5 for conditions
iv and v, respectively. We observe deeper colloidal compaction with lower ion concentrations because of a
change in the zeta potentials. The experimental data qualitatively match the trends in the simulated data well
throughout time, including the parabolic contours due to the diffusioosmotic slip-induced flow field [(a) and (b)]
but show some quantitative differences [(c) and (d)]. (c) Shows the Y -averaged colloid concentrations versus
X for each condition. (d) Shows the center-line (Y = 0) colloid concentrations versus X for each condition.
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FIG. 8. Comparison between the experiments (solid) and simulations (dashed) for initial conditions of 10
mM KCl in the main channel and 5 mM NaCl and 5 mM KCl in the pore, and 5 mM KCl in the main channel
and 5 mM NaCl in the pore, which are conditions ii and vi from Table II. The comparison demonstrates the
effect of the background solute. (a), (b) Compare the simulated pores (top) to experimental images at τ = 0.5
for conditions ii and vi, respectively. We see deeper colloid compaction in the absence of background KCl
because lower ion concentrations result in larger zeta potentials. The experimental data qualitatively match the
trends in the simulated data well throughout time, including the parabolic contours due to the diffusioosmotic
slip-induced flow field [(a) and (b)] but show some quantitative differences [(c) and (d)]. (c) Shows the
Y -averaged colloid concentrations versus X for each condition. (d) Shows the center-line (Y = 0) colloid
concentrations versus X for each condition.

The two-dimensional simulations have qualitative agreement with the trends of the experiments.
However, quantitative measures including the location of the maximum of the Y -averaged colloid
concentration and center-line colloid concentration, the width of the peak of the Y -averaged colloid
concentration and center-line colloid concentration, and the magnitude of the colloid concentration
cannot be predicted within reasonable accuracy. We observe that the center-line colloid concentra-
tions compare quantitatively better to the experiments than Y -averaged colloid concentrations. This
is likely because the pore inlet effects distort the average. In particular, we believe that the singularity
in the description of diffusioosmotic velocity yields an unphysically large fluid velocity near the
pore inlet, which causes significant colloid transport along the pore walls to the pore inlet, away
from the bulk. This would explain the discrepancy for both the center-line colloid concentration and
the Y -averaged colloid concentration. In future, we hope to resolve this discrepancy by solving the
Navier-Stokes equation for fluid motion near the pore inlet.

V. CONCLUSIONS

In this study, we modeled the time-dependent diffusiophoretic compaction of colloids due to
the gradient of a multi-ion solute with a diffusioosmotic slip-driven background flow field. We
simulated this system with varying wall and particle properties. This demonstrated that the sign and
magnitude of the pore wall charge (Fig. 3) and the magnitude of the particle diffusivity (Fig. 4) can
be selected to manipulate the direction and magnitude of the particle velocity by modifying the flow
field or the level of interaction between the particles and the flow field. We conducted experiments
to determine the effect of the total solute concentrations (Fig. 7) and the presence of a background
electrolyte (Fig. 8) and found good qualitative agreement with simulations.

Our results indicate that while the average motion of the particle is governed by the diffusio-
phoretic process, the dispersion of the particle is dominated by diffusioosmosis; see Fig. 4. In
addition, these processes can be tuned by modifying the magnitude and direction of ion gradients;
see Figs. 5–8. These findings can be applied, for instance, to improve our understanding of biological
processes where charged macromolecules are transported through channels in the presence of ion
gradients [37]. Our results on diffusioosmotic background flow may be relevant in energy storage
and desalination devices where charge gradients of multiple and multivalent ions are readily present
[38–40]. Finally, diffusiophoresis and diffusioosmosis in tandem in multiple ionic gradients are
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FIG. 9. Mean intensity from the overlaid pore images is plotted versus time. The particle mass conservation
in the compaction experiments is maintained after overlaying results from five pores.

important for ion-exchange membranes [41] and colloidal focusing and delivery in lab-on-a-chip
applications [15,23].
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APPENDIX: PARTICLE MASS CONSERVATION IN EXPERIMENTS

In the image analysis, we overlay five pores from each experiment to obtain continuous particle
distribution. In compaction experiments, particle concentration in the pore is conserved over time
with little leakage due to the diffusioosmosis. For the fluorescent images obtained under a consistent
imaging condition, overlaying five pores did not affect the conservation of the intensity (Fig. 9),
which is a measure of particle concentration. Therefore, we use the five-pore-overlaid image as
representative data for each experiment.
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