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Correspondence of max-flow to the absolute permeability of porous systems
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The absolute permeability of porous media is an important parameter for various techno-
logical applications ranging from ground water hydrology to hydrocarbon recovery to mi-
crofluidics. There are scaling relationships between the geometric structure of a porous do-
main and its absolute permeability within a given class of structure. However, there exists
no universal relationship between permeability and structure. We use network models of
porous domains and apply the max-flow min-cut theorem to extract insights into the struc-
tures that most influence absolute permeability. The max-flow min-cut theorem states that
the maximum flow through any network is exactly the sum of the edge weights that define
the minimum cut. We hypothesize that the min-cut can be related to network permeability.
We demonstrate that flow in porous media can be modeled as described by the max-flow
min-cut theorem, which provides an approach to measure the absolute permeability of
three-dimensional digital images of porous media. The max-flow of a network is found
to correspond to its absolute permeability for over four orders of magnitude and identifies
structural regions that result in significant energy dissipation. The findings are beneficial for
the design of porous materials, as a subroutine for digital rock studies, the simplification of
large network models, and further fundamental studies on the structure and flow properties
of porous media.

DOI: 10.1103/PhysRevFluids.6.054003

I. INTRODUCTION

Absolute permeability is a fundamental parameter that quantifies the ease at which fluid flows
through a porous domain [1,2]. It is a key design parameter for reservoir engineering, membrane
systems, microfluidics, drug transport, packed bed reactors, soil systems, and various other porous
medium applications [1,3–7]. The internal structure of porous materials is extremely diverse,
ranging from isotropic to anisotropic domains, length scales ranging several orders of magnitude
(submicrometer to meter), and topological structures with various degrees of connectivity [8–10].
Permeability is known to scale with porosity (or void fraction φ) for a given class of structure near a
critical limit [11]. This scaling is widely applied via the Kozeny-Carman equation despite common
errors observed for natural porous media [12–14]. These errors occur because porosity alone does
not capture differences in pore size, surface area, and connectivity of the void space, which are
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critical parameters controlling flow [15]. The structural complexity of porous media presents a
significant challenge when trying to infer the absolute permeability of a porous system from porosity
alone [16]. To reexamine the relationship between porous medium structures and permeability,
we propose a graph theory approach [17] to study the max-flow min-cut of networks derived
from three-dimensional x-ray microtomography (microcomputed tomography) images. While this
work is aligned with previous pore-network modeling [18] and direct simulation [19] studies, the
approach presented here provides an alternative perspective on the structural characteristics that
control permeability, and thus a means to optimize and study porous structures, predict permeability
from structure alone, and/or develop subroutines for optimization of numerical simulations.

It is well understood that the connectivity, porosity, surface area, and roughness of a porous struc-
ture strongly influence its absolute permeability and that one of these parameters alone is insufficient
to characterize a medium [2]. One approach has been to modify the Kozeny-Carman equation via
incorporation of fractal geometry characterization of the pore space [14,20]. Alternatively, perco-
lation theory (in particular) has been used to study a wide variety of flow and transport problems
[21]. For example, Katz and Thompson demonstrated that for geological materials permeability K
is correlated to a critical pore radius rc, which is the radius of the largest sphere that can percolate
through the sample, defined as

K = cr2
c

σ

σ0
, (1)

where c is a constant, σ is the electrical conductivity of a brine-saturated sample, and σ0 is the
electrical conductivity of the brine [22]. In Eq. (1), rc captures the governing length scale and the
formation factor σ/σ0 captures other morphological dependences. As shown by Scholz et al. for
quasi-two-dimensional systems, the formation factor can be replaced by the genus per grain of the
porous media to provide

K = cr2
c

(
1 − χ0

N

)α

, (2)

where N is the number of grains, χ0 is the Euler characteristic, and α is a scaling parameter [23].
The Euler characteristic is a topological measure that describes the connectivity of an object [9].
In addition, other works have found correlations between porosity and permeability for a given
class of structures and/or incorporated additional morphological features, such as the Minkowski
functionals [16,24–26]. Although these formulations linking structural features of porous media
to permeability are elegant, it has so far proven difficult to apply these formulations uniformly
to materials of different classes and dimensionalities or to anisotropic materials given that the
directionality of flow networks is not well captured by structural statistics.

We propose that flow in porous media can be generalized and modeled as described by the max-
flow min-cut theorem, which relates the flow capacity through a weighted directed graph (max-flow)
to a set of edges that disconnect it (min-cut); furthermore, the min-cut represents the subset of the
porous medium network that dictates permeability. This will be demonstrated by testing a range of
porous structures and demonstrating that energy loss is maximum across the min-cut. Likewise, we
demonstrate that the max-flow corresponds to the absolute permeability of porous systems and that
the min-cut provides structural characteristics that are key to understanding porous medium flow.

II. THEORY

A. Pore-network modeling

The absolute permeability K of a porous material is defined by Darcy’s law as

K = μqL

A(Pin − Pout)
, (3)

where μ is the fluid viscosity, q is the total flow rate, L is the net distance from the inlet to the
outlet, A is the cross-sectional area, and P is the pressure [1]. Equation (3) provides no way to relate
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the porous structure to permeability because it is a continuum-scale formulation. In practice, flow
experiments are commonly conducted to determine K , while the pore structure is treated as a black
box [27], even though it is well known that permeability is highly dependent on the underlying
porous structure [15]. Recent developments in pore-scale modeling and simulation, however, are
providing further insights into the topological and geometrical structures that influence absolute
permeability [28].

With pore-scale imaging, numerical simulation of flow within a given porous domain can be
conducted to determine K [12]. With such an approach, the collective influence of pore geometry
and topology on flow is captured. One method to solve for flow and pressure in a porous system
is to decompose it into a network of pore throats and bodies [18,29] modeled by a graph with
weighted nodes and edges. The absolute permeability of the rock calculated by using such a network
is defined as KPNM in the rest of the manuscript. In this graph, pore throats are edges and pore bodies
are nodes and flow occurs through the edges. Therefore, the entire porous domain is defined by a
graph G where the incidence matrix I (G) provides the connectivity relationship between edges and
nodes; see Ref. [17] for formal definitions. This approach provides a unique opportunity to apply
graph theory to better understand how absolute permeability is influenced by the porous structure
of the media, as discussed in the next section. In the following text, we further explain how flow is
modeled in G.

Hydrodynamic flow through G is calculated by considering the mass conservation principle,
defined at each node i as ∑

j

qi j = 0, (4)

where qi j is the flux through the edge connecting node i to node j and the sum is taken over all
the edges incident to i. Flux can be defined by considering the conductivity C of edge e between
connected nodes as

qi j = Ci j

μLi j
(Pi − Pj ), (5)

where coupled indices i j are an alternative representation of a particular edge e (e = i j). This
notation requires that two pores are connected by only one throat. If there are multiple throats
connecting two pores, these should be replaced by a single edge with effective conductivity and
length values.

For laminar flow through a tube, conductivity is given analytically by the Hagen-Poiseuille
equation defined as

Ci j = 1
8πr4

i j, (6)

where r is the throat radius. The cylindrical shape of the throats is chosen for simulation instead of
implementing shape factors to keep the model simple for this particular study. Based on Eq. (4), a
linear system of equations describing the material balance around each node is defined as

P = �−1
w b, (7)

where P is an array of unknown pressures at each node, �w is the discrete Laplacian matrix weighted
by Ci j/μLi j , and b is an array with F and −F at the inlet and outlet nodes, respectively, and zero
for all other nodes. For graph G, �w is found by

�w = IW IT , (8)

where W is a diagonal matrix of the hydraulic conductivity of each edge and I is the incidence matrix
of G. The system of equations is solved for P at each node and then Eq. (3) is used to determine
absolute permeability. Considering the number of arithmetic computations required to solve Eq. (7)
by Gaussian elimination with N nodes, the complexity is O(N3). By using a sparse matrix approach,
however, the complexity can be reduced to O(V N ), where V is the mean vertex degree.
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FIG. 1. Simple graph with flow F and local hydraulic conductivities C1 and C2 for the edges. Flow is
distributed along the edges such that frictional energy loss is minimized.

B. Max-flow min-cut

The max-flow min-cut theorem represents a duality between the maximum flow passing through
a network from source to sink and the total capacity of a minimum cut for the network. A cut is
any subset of edges whose removal disconnects the source from the sink and the total capacity is
the sum of capacities (weights) of a subset of edges. The theorem has been applied to a variety
of combinatorial optimization problems [30–33]. Finding max-flow corresponds to solving a linear
problem, analogous to the linear system of equations used to solve flow through a network model
[33,34]. The simplest abstraction of a porous medium is the decomposition of its structure into a
discrete set of edges and nodes [35] where flow is along the edges between the nodes. Flow fe

through each edge is controlled by local hydraulic conductivity Ce and the total flow F through the
network is governed by an upscaled effective hydraulic conductivity of the entire network. For the
simple network displayed in Fig. 1, the mechanical energy balance between enthalpy and frictional
energy from node y to x is

E = �P

ρ
=

∑
e

Xe f 2
e =

∑
e

Ee, (9)

where ρ is the fluid density, �P is the pressure drop between two nodes, Xe is an empirical friction
factor for edge e, and Ee is the energy loss for a particular edge e. The total flow is also governed
by F ∝ CT �P, where CT is the upscaled effective hydraulic conductivity. The local flows fe are
distributed along the edges such that E for the entire system is minimized. The flow is easily shown
to be unique by solving a linear system of equations using the conservation of mass principle. The
edges that take the largest fe while maintaining a minimum E are the edges contributing significantly
to energy dissipation. These edges are key structural features of the network that contribute to
absolute permeability.

For instance, a simple graph depicted in Fig. 2 consists of eight edges and seven nodes. Each
edge is characterized by a maximum flow capacity represented by the edge width and additionally
annotated by the capacity magnitude. The external nodes labeled as y and x are the source and sink,
correspondingly. Considering this particular graph, the total max-flow capacity of the min-cut subset
is 3, which is equal to the total max-flow capacity of the whole graph. Various search algorithms
can be used to find the min-cut subset, as discussed in the next paragraph.

For graph G, edge weights are defined by Eq. (6). We hypothesize that the total weight of the
edges Ct from the min-cut corresponds to the effective hydraulic conductivity of the network. To
find the min-cut of G, we use the Edmonds-Karp algorithm from the NetworkX PYTHON package
[36]. The resulting max-flow capacity Ct is treated as the network permeability by

KEdm = Ct

A
, (10)

where A is the samples cross-sectional area. A derivation of Eq. (10) is provided in the Appendix.
The Edmonds-Karp algorithm is a modified version of the standard Ford-Fulkerson algorithm and
has a runtime complexity of O(M2N ), where M is the total number of edges. However, more
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FIG. 2. Simple two-dimensional example that illustrates how the max-flow min-cut theorem can be
employed.

advanced algorithms that approximate max-flow on undirected graphs can achieve complexity of
O(N3/2) with the fastest known algorithm breaking the O(N3/2) complexity barrier [33].

Overall, the source code for the presented workflow is available via the GitHub
repository in [37].

III. POROUS MEDIA

We used porous medium images from the Network Generation Comparison Forum [38] provided
by the National Laboratory for X-ray Micro Computed Tomography (CTLab) at the Australian
National University. The images consist of a silica sphere pack, Castlegate sandstone, an uncon-
solidated sand pack, and Mt. Gambier limestone. Each data set is a cubic segmented image of
5123 voxels. The silica sphere pack (φ = 0.38) consists of 1.59-mm-diameter beads imaged at
17.5 μm resolution. The Castlegate sample (φ = 0.21) is an outcrop sandstone from southeastern
Utah, USA that was imaged at 5.6 μm resolution. The sand pack (φ = 0.36) is a poorly sorted
unconsolidated fluvial sand from southern Australia imaged at 9.2 μm resolution. Mt. Gambier
limestone (φ = 0.42) is a fossiliferous outcrop carbonate imaged at 3.0 μm resolution. All of the
porous systems are displayed in Fig. 3.

In addition to the imaged porous systems, a selection of artificial porous systems were generated
to provide a broader range of permeability values. The artificial media were generated using a
method implemented in the PYTHON package PoreSpy [39]. The method generates an image by
randomly placing amorphous blobs within a three-dimensional domain to a specified porosity. The
generated images were 5123 voxels in size. Figure 4 presents the range of porous systems that was
generated.

IV. RESULTS AND DISCUSSION

The pore network extracted for the Castlegate sandstone is displayed in Fig. 5 along with the
edges and min-cut in Fig. 6. The pressures within each node and edge are also displayed in both
figures. The pressure gradient is observed to be slightly nonuniform across the sample where the
gradient is stronger along the bottom right of the sample than the top right. This difference can
be observed as a slight diagonal plane indicated by a transition from high pressure (dark red) to
intermediate pressures (pink). This plane also corresponds to the throats (edges) that were identified
as the min-cut, as can be observed in Fig. 6.

The distributions of edge (throat) radii for the min-cut subsets are compared to the critical radius
rc for each real rock sample (see Fig. 7). The critical radius is calculated from the digital image
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FIG. 3. Porous media utilized for the study: (a) silica sphere pack, (b) Castlegate sandstone, (c) unconsoli-
dated sand pack, and (d) Gambier limestone. The displayed images are 512 × 512 pixels and black represents
void space.

as the largest sphere that can percolate through the pore space [40], which corresponds to rc from
Eq. (1). The edge radii along the min-cut are generally less than rc, with rc typically matching the
maximum values of edge radii within the min-cut. The histograms also demonstrate that a large
number of smaller edges contribute to the max-flow, while only a significantly smaller number of
larger edge radii also contribute. These larger edge radii correspond to rc; however, the smaller
edges also contribute to the max-flow and are likely to make an important contribution to absolute
permeability, as will be discussed when considering energy loss within the min-cut.

In Fig. 8 we compare the absolute permeabilities determined by max-flow [Eq. (10)] to those
determined by pore-network modeling [Eq. (3)]. For a range of permeabilities spanning five orders
of magnitude, there is agreement between KEdm and KPNM with an average error of around 25%.
These results suggest that the total weight of the edges in the min-cut corresponds to the absolute
permeability and that in most cases, max-flow provides permeability values that are slightly less than
that provided by solving the pore-network model. Permeability values for the real rock samples are
provided in Table I, showing that KEdm underpredicts permeability within a range of relative errors

TABLE I. Permeability of real samples obtained using pore-network modeling and the max-flow min-cut
theorem.

Sample KPNM (darcy) KEdm (darcy) Relative error

silica sphere pack 419.41 355.54 0.15
Castlegate sandstone 0.23 0.19 0.18
unconsolidated sand pack 10.68 10.13 0.10
Gambier limestone 3.62 1.49 0.59
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FIG. 4. Two-dimensional slices of artificial three-dimensional porous samples generated using PoreSpy
where B is blobbiness and φ is porosity. The displayed images are 512 × 512 pixels and black represents void
space. The image resolution is 1 μm per pixel.

from 0.15 to 0.59. Relative error is measured as (KPNM − KEdm)/KPNM. Overall, the trend between
KEdm and KPNM is consistent for the tested real rock samples and artificial porous domains.

The min-cut is a contraction of the edges to a single subset. This means that the min-cut spans
from the inlet node at Pin to the outlet node at Pout, analogous to a bundle of capillary tubes or
throats in parallel. For example, in Fig. 2, the min-cut subset includes edges 2 and 1 and all other
edges are contracted, which would result in a min-cut network similar to that presented in Fig. 1.
The max-flow Ct of the min-cut subset is 3. The implication is that an effective conductivity of Ct

is applied over the entire network, which results in a constant pressure gradient. Depending on the
specific geometrical parameters of the network, this assumption results in differences between KPNM

and KEdm. For networks with relatively straight flow paths but a large variation in edge conductivities
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FIG. 5. Pore network extracted from the image of Castlegate sandstone.
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FIG. 6. Throat (edge) energy loss of Castlegate sandstone. Pore nodes are hidden while min-cut throats are
highlighted.

along the flow path, a constant pressure gradient along the sample is not expected. As demonstrated
in the Appendix, this type of network results in KPNM > KEdm. For networks with highly tortuous
paths, where the total flow length is greater than the macroscopic sample length L, the contrary is
expected, as demonstrated in the Appendix, i.e., KPNM < KEdm. As observed in Fig. 8, the dominant
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FIG. 7. Comparison of min-cut throat (edge) radii distribution of real porous media with their critical pore
radii: (a) silica sphere pack with rc = 228.5 μm, (b) Castlegate sandstone with rc = 15.8 μm, (c) unconsoli-
dated sand pack with rc = 45.9 μm, and (d) Gambier limestone with rc = 32.7 μm.

054003-8



CORRESPONDENCE OF MAX-FLOW TO THE ABSOLUTE …

10−13 10−12 10−11 10−10

KPNM, m2

10−13

10−12

10−11

10−10

K
E

d
m

,m
2

artificial

diagonal

(a)

(b)

(c)

(d)

FIG. 8. Comparison between absolute permeability determined by max-flow min-cut theory KEdm and
solving the pore-network model KPNM: (a) silica sphere pack, (b) Castlegate sandstone, (c) unconsolidated
sand pack, and (d) Gambier limestone.

outcome is that KPNM � KEdm, which suggests that the variation in edge conductivities along the
flow path is the main geometrical feature of the network that results in the observed discrepancy.

The energy loss over the entire sample and that occurring in the min-cut can be compared to
observe where the most energy dissipation occurs. We evaluate the average energy loss per throat
Eav and per throat length EL

av as

Eav =
∑M

e EeLe∑M
e Le

, (11)

EL
av = MEav∑M

e Le

, (12)

where M is the number of edges that can correspond to the entire sample or a min-cut subset.
The values are reported in Table II, where both averaging methods demonstrate that significantly
more energy dissipation occurs across the min-cut than that observed on average in the sample. The
reported deviation value is the relative difference between the min-cut and the entire domain. As
shown in Eq. (9), the energy dissipation corresponds to a pressure drop resulting in a 2.51–16.3
times pressure drop across the min-cut compared to that observed on average in the entire sample.

TABLE II. Average energy loss per throat and per throat length for the min-cut and the entire sample.

Eav (102 J/kg) EL
av 106 J/(kg m)

Sample Entire Cut Deviation Entire Cut Deviation

silica sphere pack 10.57 29.77 2.82 1.07 2.52 2.36
Castlegate sandstone 0.08 0.49 6.23 0.05 0.25 5.12
unconsolidated sand pack 0.48 1.21 2.51 0.17 0.35 2.11
Gambier limestone 0.55 8.89 16.3 0.48 5.45 11.46
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This is also qualitatively observed in Figs. 5 and 6, where it can be observed that a significant
pressure drop occurs over the min-cut subset.

When comparing Tables I and II there is an observable trend between relative error and the
deviation between energy dissipation across the entire sample and that across the min-cut subset.
Take, for example, Gambier limestone, which has the highest relative error of 0.59 and highest
deviation of 11.46. This links back to the min-cut being a contraction of the edges to a single
subset. For fluid flow the conductivity and the distance from inlet to outlet determines the pressure
drop. When a highly dissipative min-cut is identified, this conductivity is applied over the entire
sample length to determine the pressure drop and subsequent permeability. However, there are fewer
dissipative regions in the sample, and thus the actual pressure drop over the sample would be smaller.
Therefore, KPNM > KEdm is a common outcome, as observed in Fig. 8 and explained further in
the Appendix.

V. CONCLUSION

By using the max-flow min-cut theorem, we have demonstrated that an entire pore network can
be represented by a subset of parallel edges (min-cut) that is roughly 50 times less than the entire
number of edges in the network. We are able to make the following key observations relevant to the
min-cut of edges.

(i) Energy dissipation is significantly more along the min-cut than that observed on average
throughout an entire porous structure.

(ii) The min-cut domain consists of edge radii less than or equal to the critical radius obtained
from percolation theory.

(iii) The max-flow corresponds to absolute permeability for over four orders of magnitude.
(iv) The min-cut can be treated as parallel edges, unlike a pore network, where the edges are

connected in an arbitrary way.
(v) The relative difference between permeability estimated by Eq. (10) and the value obtained

from Eq. (3) can be explained by the variation in edge conductivities and the tortuosity of the
flow path.

Future work should focus on the issue of how the pore-network simplification process impacts
both the Laplacian solution for P and the min-cut max-flow determination. The network model
in the presented work is the same for both computations, so it does not introduce any issues
here. However, network generation is likely to introduce discrepancies when results of physical
experiments and/or direct numerical simulations are compared to the min-cut max-flow of a
network model, as observed in previous works on pore-network models that compare simulation
results to physical measurements [41,42]. To address this issue, further work is required to determine
topological parameters that are stable during network simplification to provide reliable insights into
the physical relation between effective properties and pore-space topology. In our opinion, persistent
homology would be a fruitful path forward in this respect [40,43,44].

The computational time for the min-cut solution is more demanding than solving the linear
system of equations using a sparse matrix. The solution, however, provides a richer set of details
on structural characteristics that impact absolute permeability, and thus porous medium flows. The
max-flow min-cut algorithm could be used as a subroutine for numerical methods applied to porous
media images. There are many ways to account for hydraulic conductance through various shape
factors. To tune direct flow simulations, it can be enough to first vary hydraulic conductance using
only the min-cut subset, which is a fast and simple procedure. This would be especially beneficial
for large pore networks, greater than 10003 nodes. In addition, the identification of structural
domains that cause significant energy dissipation provides a means to design and optimize porous
systems for various applications, such as filtration, microfluidics, and/or packed bed reactors. For
direct simulations of flow on microcomputed tomography images, regions of high dissipation could
also highlight regions with numerical error and/or resolution issues that need to be identified
to improve simulation and/or image segmentation quality. Tight constrictions in porous medium
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images that are not fully resolved but contribute significantly to absolute permeability could result
in simulation error. Segmentation quality and grid refinement within the min-cut domain would
be important considerations for accurate numerical simulations and could be performed efficiently
in an iterative way before applying to the entire domain. Finally, the max-flow min-cut theorem
provides a way to characterize flow at a given length scale, providing a means to simplify a porous
network into a basic subset that impacts flow. These findings demonstrate how the max-flow min-cut
theorem can be used to study porous medium flows providing an alternative perspective on the
structural characteristics that impact absolute permeability and applied approaches for digital rock
studies.
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APPENDIX: RELATING KPNM AND KEdm

We start with Eq. (3). As before, L and A are the length and cross-sectional area of the core
sample, q is the overall flow rate which is held constant at the inlet and outlet with values of F
and −F , respectively, and Pin − Pout is the resulting pressure drop across the sample. For a network
model, this pressure difference is found by solving the system of linear equations (7), which reflects
the connectivity of the network and involves the edge weights Ci j/μLi j as parameters. We will use
KPNM to refer to the permeability computed with this method.

Our minimum-cut approximation for permeability KEdm = Ct/A is derived as follows. We know
that the flux through the minimum cut edges can be added in parallel (no edges are connected in
series) and that the total flux through the min-cut is the same as the value F maintained at the inlet
and outlet. Using (5), we see that

K = μL

A

1

Pin − Pout

∑
cut

Ci j
Pi − Pj

μLi j

= 1

A

∑
cut

[
Ci j

L

Pin − Pout

Pi − Pj

Li j

]
.

If we now assume that the ratio L/�P is constant across the whole sample, we see that

K � 1

A

∑
cut

Ci j = KEdm. (A1)

In the calculations of KPNM and KEdm summarized in Fig. 8, we see that this approximation is
surprisingly good and that for most but not all samples KPNM > KEdm.

To understand the geometric parameters influencing the difference between KPNM and KEdm we
consider the simple model of two pipes in series. As a network model, we have three nodes vin, v,
and vout and two edges e1, joining vin to v, and e2, joining v to vout. The conductivities associated
with these edges are given by C1 > C2 and lengths are L1 and L2. We will allow the possibility that
the sample length L < L1 + L2.

Solving the system of equations defined by �wP = b, we find the pressure at v is a free parameter
and that

Pin = F
μL1

C1
+ Pv,

Pout = −F
μL2

C2
+ Pv, so Pin − Pout = μF

[L1

C1
+ L2

C2

]
.
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Using this pressure drop in the expression for permeability, we obtain

KPNM = L

A

C1C2

L1C2 + L2C1

= C2

A

L

L2 + L1
C2
C1

.

Since we choose C1 > C2, the first term in the above expression is KEdm and the second term
determines how well KEdm approximates KPNM.

We can make two limiting case studies of the relative values for L1, L2, L, C1, and C2.
(i) Suppose the pipes are straight and the same length so that L1 = L2 = l and L = 2l . Then

KPNM = KEdm
2

1 + C2
C1

,

and we see that if C1 = C2, then KPNM = KEdm, while in the limit C1 � C2, KPNM → 2KEdm.
(ii) Now suppose C1 = C2, but the pipes are not straight so (L1 + L2)/L = τ > 1 with τ being a

tortuosity parameter. Then

KPNM = KEdm
L

L1 + L2
= KEdm

τ
.

The first case above suggests that for porous medium samples with fairly straight flow paths, but a
large variation in the conductivities along a flow path, we expect KPNM > KEdm. The second case
shows that for KPNM < KEdm, the sample should have highly tortuous flow paths with their total
length much greater than the macroscopic sample length L.
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