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Nature of branching in electrohydrodynamic instability
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An electric field imposed on a bilayer of fluids that are stably stratified in the presence
of gravity leads to an instability manifested by interfacial deflections. For the case of a
perfect conductor underlying a perfect dielectric, an analytical expression obtained from
weak nonlinear analysis shows that sinusoidal deflections can only lead to subcritical
breakup. While this expression indicates that there is a transition wave number below
which supercritical saturation ought to occur, it can be shown that such wave numbers
cannot be geometrically accessed, thus precluding any supercritical saturation to steady
waves.
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I. PHYSICS AND BACKGROUND

Pattern formation due to electrohydrodynamic instability of an interface between conductors
and dielectrics is of relevance in the context of lithography [1]. This instability of an interface
between a conducting and nonconducting fluid under the influence of a vertical electric field was
first analyzed by [2] and electrohydrodynamics has been an active area of research ever since. In
this work, we focus our attention on the branching behavior of electrohydrodynamic instability of an
interface between two fluids. Whether an interface becomes unstable to steady wave patterns, i.e.,
to a supercritical branch, or whether it becomes subcritically unstable is of practical significance in
the patterning of fluids by electrohydrodynamics. Knowing the conditions and the physical reasons
for branching behavior are consequently of importance and the subject of the current study.

As depicted in Fig. 1, the fluids are confined between two rigid plates, where the bottom plate
is maintained at a constant voltage D and the top plate is grounded. The applied voltage difference
counteracts gravity, which then induces an instability where the conducting fluid assembles into an
array of pillars [3–6]. The instability is a consequence of competition between the applied constant
potential on the one hand and gravity and surface tension on the other hand. These competing
effects can lead to a minimum in a plot of D versus the wave number of the disturbance at the
onset of the instability [7]. It has been shown for a conducting-dielectric pair, the case under study,
that the viscosities of the fluids play no role at neutral stability ([8]; also see the Supplemental
Material [9] for a more general proof). Instead, the destabilizing applied potential is balanced by the
stabilizing gravity for low wave numbers, while for high wave numbers, surface tension counteracts
the destabilizing potential [7,10]. The competition with surface tension at high wave numbers is
reminiscent of the Rayleigh-Taylor (R-T) problem, which is known to lead to a subcritical instability.
However, the competition between gravity and electrostatic effects at low wave numbers in the
current study is reminiscent of other interfacial instability problems such as the Bénard-Marangoni
problem where the instability exhibits supercritical branching [11]. We therefore ask in this work
whether there is the possibility of supercritical to subcritical transition at some distinct wave number
or whether the instability is always of one of the two types.

There are several studies which are pertinent to the current work. In some of these studies,
experiments were performed with polymethylmethacrylate (PMMA) as the conducting fluid and
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FIG. 1. Schematic of electrostatic instability. The bottom fluid is a perfect conductor and the top fluid is a
perfect dielectric. The bottom plate maintains a constant voltage D and the top plate is grounded.

show that PMMA spans the gap between the electrodes upon instability [1,3], thereby indicating
subcritical branching. These experimental works were followed by linear stability analyses that
also explored the effect of conductivity and thickness of the polymeric fluid [5,12]. Stability of
thin polymeric films subject to electrostatic potential was investigated in the long wave limit by
[13]. The phenomenon was simulated using both perfect dielectric and leaky dielectric models
[14]. A similar study for a bilayer system consisting of two thin leaky dielectric films showed
that the viscosity ratio has a significant effect on the evolution of the instability [15]. Nonlinear
simulations of these thin bilayer films indicate the formation of pillar-like structures spanning the
gap between the electrodes [16], also indicative of subcritical instability. A detailed review of the
electrohydrodynamic instability in thin films can be found in [17] and [6].

Observations from the above works show that the pillar formation upon instability spans the
gap implying subcritical instability of the interface. The focus of this paper is to prove this
mathematically and to provide the physical rationale and conditions for this behavior. To achieve
this, we restrict ourselves to the case of a perfect conductor-dielectric pair with the objective of
seeking an analytical expression from which we can glean the physics of branching character. To this
end, a perturbation series is employed about the neutral state where the applied voltage difference
is advanced slightly beyond its critical value.

II. MATHEMATICAL MODEL

The mathematical model refers to a 2-D description of two incompressible, immiscible, Newto-
nian fluids of infinite lateral extent, lying between two rigid electrically conducting plates located
at −h� and h, across which a constant voltage difference, D, is applied (cf. Fig. 1). The bottom
fluid, represented by an asterisk, is assumed to be a perfect conductor while the top fluid is taken to
be a perfect dielectric. The governing equations use length and time scales given by h∗ and t = h�

U
and a potential scale given by D. Here, U is a characteristic velocity scale. It will be seen that the
velocity perturbations at the neutral stability state vanish and so the choice of U is ultimately of no
consequence in this study. The scaled potential field is given by

∇2ψ = 0. (1)

The potential field is subject to a constant value of unity at the bottom plate, i.e., at z = −1, while
the top plate at z = H is assumed to be grounded, where H = h/h�. The equations of motion are

δ jRe

(
∂v j

∂t
+ v j · ∇v j

)
= −∇p j + η j∇2v j − δ jGiz, (2)
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where the index j represents the bottom fluid (starred) and top fluid (unstarred). Here, G =
ρ�g(h�)2/μ�U , Re = ρ�Uh�/μ�, δ j = ρ j/ρ�, and η j = μ j/μ�. No slip and no penetration bound-
ary conditions are imposed on the rigid walls at z = −1 and z = H. The common interface is located
at z = ζ (x, t ). The velocity components at the interface are equal and the normal and tangential
components of the momentum balance hold, i.e.,

v� · n = U and v� = v, (3)

and

[[−p jI · n]] + [[η jTH · n]] − D(TM · n) = − 1

Ca
n∇ · n, where Ca = μ�U/γ . (4)

Here, the double brackets [[φ j]] represent φ� − φ, I is the identity tensor, and the interfacial speed,
U , the unit normal vector, n, and the unit tangent vector, t, are given by

U =
∂ζ

∂t[
1 + (

∂ζ

∂x

)2]1/2 , n = − ∂ζ

∂x ix + iz[
1 + (

∂ζ

∂x

)2]1/2 , and t = ix + ∂ζ

∂x iz[
1 + (

∂ζ

∂x

)2]1/2 . (5)

In Eq. (4), the hydrodynamic stress tensor, i.e., TH , takes its usual form, i.e., ∇v j + (∇v j )t and
the dimensional form of the Maxwell stress tensor, i.e., TM (cf. [14]), is given by TM = εε0EE −
1
2εε0E · EI, where E = −∇ψ is the electric field, ε is the relative permittivity of the fluid, and ε0 is
the permittivity of free space. The normal component of the Maxwell stress in dimensionless form
can be written as

(TM ·n) · n = D
2

[(∇ψ · n)2 − (∇ψ · t)2], (6)

where D = εε0D2/h�μ�U . For the case of a perfect conductor-dielectric model, there are no
tangential components of the Maxwell stress tensor that make a contribution (cf. [14]).

Four key dimensionless groups, i.e., Re, Ca, G, and D, evolve from the nondimensional govern-
ing equations and boundary conditions (1)–(6). In what follows, it will become evident that of these
groups, GCa and DCa will combine to form two principal dimensionless groups on account of the
base state being quiescent. Our aim is to determine the stability of this simple equilibrium base state
and analyze the nature of the bifurcation as we advance a control parameter, viz., D, from its critical
value. To this end, we determine the neutral stability conditions and then consider the steady state
nature of the branching.

III. NEUTRAL STABILITY

A linear stability analysis of the problem is performed by introducing small perturbations, ψ1,
v j

1, pj
1, and ζ1, about the quiescent base state, via the expansion ψ (x, z, t ) = ψ0 + ψ1(z) cos(kx)eσ t

and similar forms for v, p, and ζ . Here, k is the wave number of the disturbance and the subscript
“0” represents the base state fields. To obtain neutral stability, we take σ in the above expansion
to be zero on account of exchange of stability. A proof of this is available in the Appendix, where
it is also shown that the velocity perturbations are zero at neutral stability or the critical state.
This implies that the perturbations need not be other than hydrostatic under critical conditions
and is similar to other physical problems that are hydrostatically unstable (e.g., [18–21]). The
volume of the fluid is assumed constant, thus requiring that

∫ λ

0 ζ dx = constant, where λ = 2π
k

is the disturbance wavelength. Observe that v j
0 = 0 and the base state pressure gradient is thus

balanced by the gravitational body force, i.e., d pj
0

dz = −δ jG. The base solution for ψ0 is obtained as
ψ0 = 1 − z/H. As the perturbed velocity is zero we need to only consider the potential field and its
effect on the interfacial momentum balance. The linearized equations for the potential field in the
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(a) (b)

FIG. 2. D0Ca vs k2 obtained from Eq. (10). The case of air on top of water is assumed. Panel (a) is drawn
for H = 1 and B = 0, 1, and 5. Panel (b) is drawn for H = 1 and B = 5, taking k = nπ

w
, with n being the

horizontal mode index.

top fluid are given by (
d2

dz2
− k2

)
ψ1 = 0, (7)

where at z = 0 and z = H, we have ψ1 + dψ0

dz ζ1 = 0 and ψ1 = 0. Upon solving Eq. (7), we get

ψ1 = ζ1

H [− coth (kH) sinh (kz) + cosh (kz)]. (8)

To determine the neutral stability criteria, we turn toward the perturbed normal component of the
momentum balance along the interface, z = 0, i.e., Eq. (4),

− d p�
0

dz
ζ1 + d p0

dz
ζ1 − D dψ0

dz

dψ1

dz
= −k2

Ca
ζ1. (9)

Upon substituting the solution for ψ1, in Eq. (9), we get

(1 − δ)GCa︸ ︷︷ ︸
≡B

+k2 = DCa
k

H2
coth (kH). (10)

Here, (1 − δ)GCa (also known as the Bond number, B) and DCa, hereafter termed D0Ca at the
neutral point, can be grouped as pairs and are observed to be independent of the characteristic
velocity scale, U , and the viscosities, on account of the perturbed velocity fields being zero under
neutral conditions. Typical neutral stability curves obtained from Eq. (10) are shown in Fig. 2(a)
drawn for the example of air on top of water (fluid ∗). It can readily be seen from Eq. (10) that the
“dip” at high B is lost when B � 3/H2. Observe, for the case of large B, that on the falling branch
of the neutral stability curve, i.e., for low wave numbers, the electrostatic potential driving the
instability is balanced by gravity, while on the rising branch, i.e., for high wave numbers, the voltage
applied across the horizontal conducting walls is stabilized by interfacial tension. This stabilizing
effect of interfacial tension for high wave numbers is analogous to R-T instability of a fluid, wherein
the instability is always subcritical in nature. The balance between potential and gravity for low
wave numbers is reminiscent of the Bénard instability which is supercritical in nature. Now, not all
wave numbers in Fig. 2(a) are accessible. If the curves are monotonic as in the case of small B, the
accessible wave numbers are dictated by the horizontal dimensions of the fluid system. However,
if the curves display a minimum, the accessible wave numbers, k, depend on the horizontal modal
index, n, as displayed in Fig. 2(b) for a one-dimensional system of width, w, where we note that
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k = nπ
w

. Observe that there are values of w where two consecutive modes may coexist and that to
the left and right of these codimension-2 points the curves are nonmonotonic. These special points
and the accessible wave numbers in between will play an important part in the conclusions that we
shall raise in this study. Our interest, for any of the accessible wave numbers, is to find if and why
the instability is super- or subcritical. To determine the nature of the bifurcation, we carry out a
weak nonlinear analysis around the bifurcation point, i.e., the critical state.

IV. WEAK NONLINEAR ANALYSIS AND DISCUSSION

To determine the nature of the bifurcation, the dimensionless potential, D, is advanced from its
critical value, D0 by an amount ε, such that ε is defined by D = D0 + ε2

2 . The response of the

potential to an increase of the control variable D is given by ψ = ψ0 + εψ1 + ε2

2 ψ2 + ε3

6 ψ3 + · · ·.
Likewise for the other state variables such as pj and ζ . Observe that at O(ε), the first order problem
is identical to the perturbed problem at neutral stability given in Sec. III. Therefore at the reference
interface, z = 0, we get

Bζ1 − ∂2ζ1

∂x2
− CaD0

dψ0

dz

dψ1

dz
= 0, (11)

where ψ1 is given by Eq. (8). Hence, ζ1(x) is represented by ζ1(x) = ζ̂1 cos(kx), where ζ̂1 = A
and our objective is to determine the sign of A2, noting that a positive A2 indicates a supercritical
bifurcation and a negative A2 implies a subcritical bifurcation (cf. [22]).

The velocity field at the first order is zero as this problem is identical to the perturbed problem
which remains in hydrostatic equilibrium. This continues to be true for subsequent higher orders,
indicating that the nonlinear problem is an equilibrium problem bearing resemblance to other
nonlinear equilibrium problems [18,21]. Noting this, we turn toward the remaining equations at
O( ε2

2 ). The potential field is given by

∇2ψ2 = 0 (12)

subject to the following conditions:

ψ2 + ζ2
dψ0

dz
= −2ζ1

∂ψ1

∂z
+1 at z = 0 and ψ2 = 0 at z = H. (13)

The normal component of the momentum balance at the interface, z = 0, is

(p2 − p�
2)Ca + Bζ2 − ∂2ζ2

∂x2
− CaD0

dψ0

dz

∂ψ2

∂z
= CaD0T Maxwell

2 f , (14)

where T Maxwell
2 f consists of the forcing terms which are bilinear, also called (1,1) terms, because

they are products of terms with subscript 1 (cf. the Supplemental Material [9] for the expression of
T Maxwell

2 f ). The term (p2 − p�
2), is independent of x because the velocity field is zero. This term is

readily calculated by integrating Eq. (14) over a wavelength upon observing that the fluid volume
is conserved. The terms associated with D0 arrive from the expansion of the Maxwell stresses at
the second order. We note that all of the forcing terms at this order are bilinear combinations of
first order terms, i.e., (1,1) terms with the exception of the boxed term in Eq. (13). This implies that
the forcing terms are a superposition of second harmonics, i.e., cos(2kx) terms and x-independent
terms. Their projection onto the eigenspace, i.e., cos(kx), is zero and thus solvability at second order
is automatically satisfied. The boxed term in Eq. (13) is so identified as it is the sole reason for us
to determine A2 at the third order. At the second order, ψ2 and ζ2 are expressed as

ψ2 = ̂̂ψ2(z) cos(2kx) + ψ20(z) and ζ2 = ̂̂ζ2 cos(2kx), (15)
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where ̂̂ψ2(z) is given by

̂̂ψ2(z) =
̂̂ζ2 + (̂ζ1)2k coth (Hk)

H cosh(2kz) − coth (2Hk)(̂̂ζ2 + (̂ζ1)2k coth (Hk))

H sinh(2kz) (16)

and ̂̂ζ2 = −D0Ca(̂ζ1)2k2[cosh (2Hk) + 2]csch2(Hk)

4D0Cak coth (2Hk) − 2H2(B + 4k2)
(17)

and where ψ20(z) in Eq. (15) is given by

ψ20(z) =

⎛⎜⎜⎜⎜⎝− (̂ζ1)2k coth (Hk)

H2︸ ︷︷ ︸
ψA

20

− 1

H︸︷︷︸
ψ

f
20

⎞⎟⎟⎟⎟⎠z +
(

1 + (̂ζ1)2k coth (Hk)

H

)
. (18)

For a matter of convenience that will soon become apparent, we split the boxed term in Eq. (18) into
two parts. The first is free of ζ̂1 and is called ψ

f
20, and the other contains ζ̂1, called ψA

20.
At the third order the potential field is governed by

∇2ψ3 = 0 (19)

subject to ψ3 = 0 at z = H and the following condition at z = 0

ψ3 + ζ3
dψ0

dz
= −3ζ1

2 ∂2ψ1

∂z2
− 3ζ1

∂ψ2

∂z
− 3ζ2

∂ψ1

∂z
− 3ζ2ζ1

d2ψ0

dz2
− 3ζ1

3 d3ψ0

dz3
. (20)

The normal component of the momentum balance along the interface at z = 0 gives

(p3 − p�
3)Ca + Bζ3 − ∂2ζ3

∂x2
− CaD0

dψ0

dz

∂ψ3

∂z
= −9

∂2ζ1

∂x2

(
∂ζ1

∂x

)2

+ CaD0T Maxwell
3 f , (21)

where T Maxwell
3 f consists of the (1,2) and (1,1,1) forcing terms (cf. the Supplemental Material [9] for

the expression of T Maxwell
3 f ). Therefore, at this order, ψ3 and ζ3 are expressed as

ψ3 = ̂̂̂
ψ3(z) cos(3kx) + ψ̂3(z) cos(kx) and ζ3 = ̂̂̂

ζ3 cos(3kx) + ζ̂3 cos(kx). (22)

Here, the cos(kx) part of the third order problem alone plays a role in the determination of A2 due
to the requirement of the solvability condition at the third order [cf. the Supplemental Material [9]
for the solution of ψ̂3(z)]. Analogous to the second order problem, i.e., Eq. (14), the term (p3 − p�

3)
can be determined by integration of Eq. (21) and equals zero on account of the forms of Eq. (22).
At the third order, solvability requires that the inhomogeneous terms reside in the null space of the
homogeneous problem. This yields an expression for A2, the details of which may be found in the
Supplemental Material [9]. We get

1

A2
=

I︷ ︸︸ ︷
k tanh(kH)

8 sinh3(kH)
[3β sinh(kH) + β sinh(3kH) − 5k cosh(kH) + k cosh(3kH)]

−k coth(kH)

H︸ ︷︷ ︸
II

− 3k3H2 tanh(kH)

8D0Ca︸ ︷︷ ︸
III

(23)
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(b)

FIG. 3. Graph of D0Ca vs k2
transit on plots of the neutral stability curves for various horizontal modes n for

the case of B = 5 on the left and B = 1 on the right. Allowable wave numbers are to the right of the intersection
in (a) and are subcritical. In (b) the k2

transit line lies above the neutral stability curve for low B implying that all
wave numbers are subcritical.

with β = {k[cosh(2kH) + 2]csch2(kH)}/{[2 tanh(kH)(B + k2) − 6k2 coth(kH)]/(B + k2)}. Note
that B and H are inputs to Eq. (23). They are connected to the critical k and CaD0 using Eq. (10).
These quantities are then used in (23) to determine A2 and its sign, whence the nature of bifurcation.

A. Key observations from Eq. (23)

Several observations may be made. First, the reason for us to be able to calculate A2 at the third
order is due to the term ψ

f
20 in Eq. (18). This term arises from the correction of the base state at

the second order. Second, the term III in the expression for A2 corresponds to the trilinear capillary
term [first term on the right side of Eq. (21)] in the normal force balance at the third order. This
term is always negative indicating the subcritical nature of the bifurcation and plays a key role in
the high wave number regime, leading to subcritical branching upon instability. It is analogous to
a similar term in the R-T problem. Third, the term II is always negative and arises from ψA

20 in
Eq. (18). This term leads to subcritical instability even in the absence of the capillary effects, i.e.,
term III. Observe that this term is of O(k) unlike term III which is of O(k3) and so the presence of
this term leads to subcritical breakup for smaller k than would otherwise have been seen. Its origin

is entirely noncapillary in nature. Fourth, the term I can be traced back to ̂̂ζ2 in Eq. (17) which arises
from the normal force balance equation, (14), at the second order. This term contains B and is a
signature of the competition between stabilizing gravity and destabilizing electrostatic potential at
low wave numbers. This is the sole term that causes an altering of the sign of A2, leading to possible
supercritical saturation of the interfacial waves. In short, the subcritical nature of the bifurcation is
attributed to the capillary terms at the third order and to the second order Maxwell stresses, while
this is offset by gravity which counteracts electrostatic potential in the low wave number regime.
To see if this offset is powerful enough we set A2 to zero in Eq. (23) to determine the k2 where
a transition in bifurcation behavior could possibly occur. Denoting these k as ktransit and noting
that k = nπ

w
we draw the relationship of D0Ca vs k2

transit and view their intersection against the
corresponding neutral stability curves in Figs. 3(a) and 3(b) for the cases of B = 5 and B = 1. All
the allowable wave numbers are to the right of the intersections where B is large and are in regions
where the value of A2 is negative, i.e., subcritical regions. Likewise in the case where B is small
there are no intersections and again all allowable wave numbers must therefore lead to subcritical
instability. This means that the term I due to gravity cannot offset the negative nature of the other
two terms and we must always see subcritical instability. This result obtains no matter the value of
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FIG. 4. Figure 3(a) redrawn for the case of deep layers and B = 5.

B or H. To get a more interpretive formula and an analytical relation for the transit wave number
we appeal to a simpler case that retains the essential physics.

B. A simple interpretive formula for the special case of a deep dielectric layer

To further understand the nature of the bifurcation and to glean the physics from a simpler
formula, we consider a model where the dielectric fluid is very deep, i.e., much higher than the
wavelength of the disturbance. The following expression for A2 is obtained in the limit of large kH
from Eq. (23) [cf. the Supplemental Material [9] for the derivation of Eq. (24)]:

1

A2
= k

(
k + β

2

)
︸ ︷︷ ︸

I

− k

H︸︷︷︸
II

− 3k3H2

8CaD0︸ ︷︷ ︸
III

, where β = k
(B−2k2 )
(B+k2 )

. (24)

The companion neutral stability result in this limit is kD0Ca = (B + k2)H2.
Note that the terms I, II, and III in Eq. (24) arise in a manner similar to that of terms I, II, and

III in Eq. (23). The wave number corresponding to A2 = 0 leads to the formula ktransit = D0Ca
3H2 .

Figure 4 is the analog of Fig. 3(a) for the case of deep fluid layers, where it is observed that for
the case of n = 1 the transit line passes through the codimension-2 point between the n = 1 and
n = 2 neutral stability curves. This can also be proven by substitution of the ktransit formula into the
neutral stability result. We see as before that all accessible wave numbers result only in subcritical
instability. This result, whether we use Eq. (23) or Eq. (24), is chiefly due to the fact that the k2

transit
curve for n = 1 intersects the neutral stability curve to the left of the minimum, i.e., to the left of the
“dip.” Had it intersected to the right of the minimum, we might have seen supercritical saturation
of waves. The nature of the intersection, in this problem, is dominantly affected by term II in the
equation for A2. That is, the intersection to the left of the minimum is due to the electrostatic forcing
that is of O(k) overwhelming any possible effect of term I that is O(k2). Contrast this behavior
with the Rayleigh-Taylor instability of a soft gel, where it has been shown by the present authors
[23] that the k2

transit line intersects the neutral stability curve to the right of the minimum, depending
upon the strength of the elastic forces, affording the possibility of a supercritical instability.

It is noteworthy that the subcritical nature of the bifurcation in the current study is due to the
symmetric nature of the sinusoidal disturbances that lead to automatic solvability of Eq. (14) at the
second order. However, if hexagonal disturbances were considered (cf. the Christopherson forms
given in [24]), it can be shown directly from the solvability condition of Eq. (14) that the nature of
the bifurcation must be transcritical. Such a calculation is detailed in the Supplemental Material [9].
Likewise cylindrical waves will lead to subcritical pitchforks when nonaxisymmetric modes re-
sult and transcritical branching when axisymmetric modes result (cf. [25] for examples in other
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instability problems). It is also noteworthy that the branching behavior observed in the current work
stands in contrast with the Rayleigh-Taylor problem of a nonelastic fluid, also an equilibrium prob-
lem, where neither hexagonal nor cylindrical disturbances will give rise to transcritical bifurcation
as the Rayleigh-Taylor problem for a nonelastic fluid must always bifurcate subcritically.

V. SUMMARY

Using weak nonlinear analysis, it is shown that an electric field imposed on a bilayer of fluids
in the presence of gravity can only lead to subcritical instability of the interface. The analysis
employs regular perturbation where the perturbation parameter depends on the difference of the
applied potential and its critical value. We see that no matter the horizontal dimension of the fluid
layers or the Bond number, subcritical branching necessarily results. A simple expression for the
case of deep layers reveals that the subcritical nature of the instability is contributed dominantly
by electrostatic forcing, which is of O(k), and diminished curvature which is of O(k3), both being
enough to offset the supercritical nature offered by gravity, which is of O(k2). This study pertains
to a conducting-dielectric pair, allowing us to obtain a simple analytical expression that reveals the
nature of the bifurcation.
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APPENDIX: PROOF OF EXCHANGE OF STABILITY

In this Appendix we show that both the real and imaginary parts of the growth rate are zero and
that at neutral stability, σ = 0 also implies that the perturbed velocity and pressure fields are zero.
The base interface is taken to be flat but the geometry is taken to be of arbitrary shape. To this end,
we consider the vectorial form of the perturbed Navier-Stokes equations for both the fluids, upon
assuming perturbations that have a time variation of the form eσ t to obtain

σRe v�
1 = ∇ ·

−→−→
T ∗

1 + ∇ ·
−→−→
T M

1
∗ (A1)

and

σδ Re v1 = ∇ ·
−→−→
T 1 + ∇ ·

−→−→
T M

1 . (A2)

Here,

−→−→
T ∗

1 = −p�
1

−→−→
I +

−→−→
S�

1 and
−→−→
T 1 = −p1

−→−→
I + η

−→−→
S1 . (A3)

For the case of a perfect conductor and a perfect dielectric, ∇ ·
−→−→
T M

1
∗ = 0 and ∇ ·

−→−→
T M

1 = 0. We then
take the projection of Eqs. (A1) and (A2) with v j , the complex conjugate of the v j , and add the
resulting equations for each fluid. We obtain

σRe
∫

V0

v�
1 · v�

1 dV0 + σδRe
∫

V0

v1 · v1 dV0 = −
∫

S0

p�
1(v�

1 · −→no ) dA0 −
∫

S0

p1(v1 · −→no ) dA0

+
∫

S0

−→no ·
−→−→
S ∗

1 · v�
1 dA0 + η

∫
S0

−→no ·
−→−→
S 1 · v1 dA0 −

∫
V0

−→−→
S ∗

1 : ∇v�
1 dV0 −η

∫
V0

−→−→
S 1 : ∇v1 dV0, (A4)

where V0 and S0 represent the volume and interface of the reference domain, i.e., the unperturbed
domain and where no slip and no penetration have been used on the rigid surfaces. From Eq. (A4),
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we get

σRe
∫

V0

v�
1 · v�

1 dV0 + σδ Re
∫

V0

v1 · v1 dV0

=
∫

S0

( 1

Ca

∂2ζ1

∂x2
− (1 − δ)Gζ1 + Ddψ0

dz

∂ψ1

∂z

)
σζ 1 dA0

−
∫

V0

−→−→
S ∗

1 : ∇
−→−→
S ∗

1 dV0 − η

∫
V0

−→−→
S 1 : ∇

−→−→
S 1 dV0. (A5)

Likewise we have

σRe
∫

V0

v�
1 · v�

1 dV0 + σδRe
∫

V0

v1 · v1 dV0

=
∫

S0

( 1

Ca

∂2ζ 1

∂x2
− (1 − δ)Gζ 1 + Ddψ0

dz

∂ψ1

∂z

)
σζ1 dA0

−
∫

V0

−→−→
S ∗

1 : ∇
−→−→
S ∗

1 dV0 − η

∫
V0

−→−→
S 1 : ∇

−→−→
S 1 dV0. (A6)

Adding Eqs. (A5) and (A6), we can write

Real(σ )

[
Re

∫
V0

|v�
1|2 dV0 + δRe

∫
V0

|v1|2 dV0

−
∫

S0

( 1

Ca

∂2ζ1

∂x2
− (1 − δ)Gζ1 + Ddψ0

dz

∂ψ1

∂z

)
ζ 1 dA0

]

= −
∫

V0

−→−→
S ∗

1 : ∇
−→−→
S ∗

1 dV0 − η

∫
V0

−→−→
S 1 : ∇

−→−→
S 1 dV0. (A7)

Hence, Real(σ ) = 0 implies that v j
1 = 0 as a result of the last two integrals on the right-hand side of

Eq. (A7) being single signed. From the kinematic condition along the interface at z = 0 [Eq. (3)],
we deduce that σ = 0. This therefore implies that, under neural stability conditions, both the real
and imaginary parts of σ are zero and that both perturbed velocity fields are also zero.
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