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The stability of a pulsatile quasi-two-dimensional duct flow was numerically investi-
gated. Flow was driven, in concert, by a constant pressure gradient and by the synchronous
oscillation of the lateral walls. This prototypical setup serves to aid understanding of
unsteady magnetohydrodynamic flows in liquid metal coolant ducts subjected to transverse
magnetic fields, motivated by the conditions expected in magnetic confinement fusion
reactors. A wide range of wall oscillation frequencies and amplitudes, relative to the
constant pressure gradient, were simulated. Focus was placed on the driving pulsation
optimized for the greatest reduction in the critical Reynolds number for a range of friction
parameters H (proportional to magnetic field strength). An almost 70% reduction in the
critical Reynolds number, relative to that for the steady base flow, was obtained toward
the hydrodynamic limit (H = 10−7), while just over a 90% reduction was obtained by
H = 10. For all oscillation amplitudes, increasing H consistently led to an increasing
percentage reduction in the critical Reynolds number. This is a promising result, given
fusion relevant conditions of H � 104. These reductions were obtained by selecting a
frequency that both ensures prominent inflection points are maintained in the base flow
and a growth in perturbation energy in phase with the deceleration of the base flow.
Nonlinear simulations of perturbations driven at the optimized frequency and amplitude
still satisfied the no net growth condition at the greatly reduced critical Reynolds numbers.
However, two complications were introduced by nonlinearity. First, although the linear
mode undergoes a symmetry-breaking process, turbulence was not triggered. Second, a
streamwise invariant sheet of negative velocity formed, able to arrest the linear decay
of the perturbation. Although the nonlinearly modulated base flow maintained a higher
time-averaged energy, it also stabilized the flow, with exponential growth not observed at
supercritical Reynolds numbers.
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I. INTRODUCTION

The aim of this paper is to assess the generation and promotion of turbulence in oscillatory
magnetohydrodynamic (MHD) duct flows. Motivation stems from proposed designs of dual purpose
tritium breeder/coolant ducts in magnetic confinement fusion reactors [1]. These coolant ducts
are plasma facing, hence subjected to both high temperatures and a strong pervading transverse
magnetic field [2]. At the same time, obtaining turbulent heat transfer rates is crucial to the long-term
operation of self-cooled duct designs [3]. This can be achieved by keeping the flow turbulent.
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Various strategies to promote turbulence in MHD flows include the placement of physical obstacles
of various cross sections [4–6], inhomogeneity in electrical boundary conditions [7], electrode
stimulation [8,9], and localized magnetic obstacles [10]. The approach to promote turbulence taken
in this paper is to superimpose a time periodic flow, of specified frequency and amplitude, onto
an underlying steady flow. The benchmark used, particularly in the linear analysis, is the critical
Reynolds number for the steady flow. The goal is to obtain the greatest reduction in the critical
Reynolds number (considered as the degree of destabilization) with the addition of a time-periodic
flow component of optimized frequency and amplitude. Ultimately, this approach seeks an estimate
of the lowest Reynolds number at which turbulence may be incited and sustained by the addition of
a pulsatile component to the base flow.

In MHD flows, the predominant action of the Lorentz force on the electrically conducting fluid
is to diffuse momentum along magnetic field lines [11,12]. When the Lorentz force dominates both
diffusive and inertial forces, the flow becomes quasi-two-dimensional (Q2D) [13–15]. In the limit
of quasistatic Q2D MHDs, the magnetic field is imposed and the Lorentz force dominates all other
forces far from walls normal to the field. Three dimensionality only remains when asymptotically
small in amplitude or in regions of asymptotically small thickness. The boundary layers remain
intrinsically three-dimensional. Hartmann boundary layers form on walls perpendicular to magnetic
field lines, with a thickness scaling as Ha−1 [12,16], while the thickness of parallel wall Shercliff
boundary layers scales as Ha−1/2 [17]. The Hartmann number Ha = aB(σ/ρν)1/2 represents the
square root of the ratio of electromagnetic to viscous forces, where a is the distance between Hart-
mann walls, B the imposed magnetic field strength, and σ , ρ, and ν the incompressible Newtonian
fluid’s electrical conductivity, density, and kinematic viscosity, respectively. Nevertheless, although
not asymptotically small, three-dimensionality in Shercliff layers remains small enough for Q2D
models to represent them with high accuracy [18]. The remaining core flow is uniform and well
two-dimensionalized in fusion relevant regimes [2]. A Q2D model proposed by Ref. [12] (hereafter
the SM82 model) is applied, which governs flow quantities averaged along the magnetic field
direction. In the Q2D setup, the Hartmann walls are accounted for with the addition of linear friction
acting on the bulk flow, valid for laminar Hartmann layers [12]. Shercliff layers still remain in the
averaged velocity field, even in the quasistatic limit of a dominant Lorentz force, of thickness scaling
as H−1/2 [17], where H = 2(L/a)2Ha is the friction parameter and L the characteristic wall-normal
length. The accuracy of the SM82 model is well established for the duct problem [19–21], with less
than 10% error between the Q2D and the three-dimensional laminar boundary layer profiles [18].

The linear stability of steady Q2D duct flow was analyzed by Ref. [17]. As the magnetic field
is strongly stabilizing, the critical Reynolds number for a steady base flow, beyond which modal
instabilities grow, scales as Recrit,s = 4.835 × 104H1/2 for H � 1000 [17,22,23]. The Reynolds
number Re = U0L/ν represents the ratio of inertial to viscous forces. In this paper, both transient
and steady inertial forces will be encapsulated in U0, a characteristic velocity based on both the
steady and oscillating flow components. Instability occurs via Tollmien–Schlichting (TS) waves
originating in the Shercliff layers. The instabilities become isolated at the duct walls with increasing
magnetic field strength [17,22], eventually behaving as per an instability in an isolated exponential
boundary layer [17,22,24]. To the authors’ knowledge, oscillatory or pulsatile Q2D flows have
yet to be analyzed under a transverse magnetic field. Weak in-plane fields have been analyzed for
oscillatory flows, although pulsatility was not considered [25,26].

The destabilization of hydrodynamic plane channel flows with the imposition of an oscillating
flow component was assessed by Ref. [27]. Using series expansions to evaluate Floquet expo-
nents, the range of frequencies that induce destabilization was determined. Womersly numbers
1 � Wo � 13 were destabilizing and Wo � 14 stabilizing, for low Reynolds numbers and pulsation
amplitudes, where the Womersly number Wo = ωL2/ν characterizes the square root of transient
inertial to viscous forces, and where ω is the pulsation frequency. The problem was revisited with
advanced computational power and techniques [28,29]. However, even large-scale Floquet matrix
problems struggled to adequately resolve larger-amplitude pulsations [28,29], as the required num-
ber of Fourier modes rapidly increases with increasing pulsation amplitude. Instead, direct forward
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evolution of the linearized Navier–Stokes equations is required. Improved bounds for destabilizing
frequencies of 5 � Wo < 13 were determined [29], with the optimum frequency for destabilization
at Wo = 7. The optimized amplitude ratio for the pulsation was also found to be near unity (steady
and oscillatory velocity maximums of equal amplitude) at lower frequencies [28]. In addition,
a small destabilization was observed at very high frequencies, for small pulsation amplitudes.
Although Ref. [28] did not focus on obtaining the maximum destabilization, an approximately 33%
reduction in the critical Reynolds number (relative to the steady result) was observed at the lowest
frequency tested, near an amplitude ratio of unity. Further improvement, with an approximately 57%
reduction in the critical Reynolds number [30], was attained by the imposition of an oscillation with
two modes of different frequencies. Given the size of the parameter space, there remains significant
potential to further destabilize both hydrodynamic and MHD flows, with single-frequency optimized
pulsations.

At lower frequencies, the perturbation energy varies over several orders of magnitude within a
single period of evolution [29,31]. This intracylcic growth and decay predominantly occurs during
the deceleration and acceleration phases of the base flow, respectively. The intracylcic growth
increases exponentially with increasing pulsation amplitude [29]. At smaller pulsation amplitudes,
a cruising regime [29] has been identified, where the perturbation energy remains of similar
nonlinear magnitude throughout the entire cycle. At larger pulsation amplitudes and at smaller
frequencies, a ballistic regime [29] was identified, where the perturbation energy varies by many
orders of magnitude over the cycle, and is propelled from a linear to nonlinear regime through this
growth. However, in full nonlinear simulations of Stokes boundary layers, an incomplete decay
of the perturbation over one cycle is observed [32]. This has little effect on growth in the next
cycle, thereby leading to either an intermittent or sustained turbulent state [32]. Thus, ballistic
regimes form an enticing means to sustain turbulence under fusion relevant conditions. To assess the
effectiveness of this strategy, we must understand the conditions of transition to turbulence in a duct
flow pervaded by a strong enough magnetic field to assume quasi-two-dimensionality. Specifically,
this paper seeks to answer the following questions:

(1) Will superimposing an oscillatory flow onto an underlying steady base flow still be effective
at reducing the critical Reynolds number in high H , fusion-relevant regimes?

(2) What pulsation frequencies and amplitudes are most effective at destabilizing the flow, both
hydrodynamically and toward fusion-relevant regimes?

(3) Are the parameters at which reductions in Recrit are observed viable for both SM82 modeling
and fusion relevant applications?

(4) Are reductions in Recrit sufficient to observe turbulence at correspondingly lower Re?
This paper proceeds as follows: In Sec. II, the problem is nondimensionalized and the base flow

for the duct problem derived in the SM82 framework. Particular focus is placed on the dependence of
the base flow on all four nondimensional parameters. Pressure- and wall-driven flows are compared
before determining the bounds for validity of the SM82 approximation for pulsatile flows. In
Sec. III A, the linear problem is formulated and both the Floquet and timestepper methods are
introduced. The long-term stability behavior is considered in Sec. III B, with particular focus on the
optimal conditions for destabilization. Intracyclic growth and the linear mode structure are analyzed
in more detail in Sec. III C. Section IV focuses on targeted direct numerical simulations (DNSs) of
the optimized pulsations. Emphasis is placed on comparing linear and nonlinear evolutions and
symmetry breaking induced by nonlinearity.

II. PROBLEM SETUP

A. Geometry and base flows

This study considers a duct with rectangular cross section of wall-normal height 2L (y direction)
and transverse width a (z direction), subjected to a uniform magnetic field Bez, see Fig. 1. The
duct is uniform and of infinite streamwise extent (x direction). A steady base flow component is
driven by a constant pressure gradient, producing a maximum undisturbed dimensional velocity
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FIG. 1. A schematic representation of the system under investigation. Solid lines denote the oscillating,
impermeable, no-slip walls. Short dashed lines indicate the streamwise extent of the periodic domain defined
by streamwise wave number α. Examples of the steady base flow component [U1,B(y); dashed line] and the
normalized total pulsatile base flow [(1 + 1/�)U (y, t ); 11 colored lines over the full period, 2π ] are overlaid
at H = 10, � = 10, Sr = 5 × 10−3, and Re = 1.5 × 104.

U1. An oscillatory base flow component is driven by synchronous oscillation of both lateral walls
at velocity U2 cos(ωť ), with maximum dimensional velocity U2. The pulsatile flow, the sum of the
steady and oscillatory components, has a maximum velocity over the cycle of U0. In the limits
Ha = aB(σ/ρν)1/2 � 1 and N = aB2σ/ρU0 � 1, the flow is Q2D and can be approximated with
the SM82 model [12,18]. A more detailed assessment of the the validity of the SM82 model follows
in Sec. II B. Normalizing lengths by L, velocity by U0, time by 1/ω, and pressure by ρU 2

0 , the
governing momentum and mass conservation equations become

Sr
∂u
∂t

= −(u · ∇⊥)u − ∇⊥ p + 1

Re
∇2

⊥u − H

Re
u, (1)

∇⊥ · u = 0, (2)

where u = (u, v) is the Q2D velocity vector, representing the z-averaged field, and ∇⊥ = (∂x, ∂y)
is the two-dimensional gradient operator. Four nondimensional parameters govern this problem: the
Reynolds number Re = U0L/ν, the Strouhal number Sr = ωL/U0, the Hartmann friction parameter
H = 2B(L2/a)(σ/ρν)1/2 and the amplitude ratio � = U1/U2. � = 0 represents a flow purely driven
by oscillating walls (no pressure gradient) and � → ∞ a pressure driven flow (no wall motion). The
Womersly number Wo2 = SrRe is sometimes used instead of Sr as a dimensionless frequency.

The nondimensional pulsatile base flow is U (y, t ) = γ1U1,B(y) + γ2U2,B(y, t ), where γ1 =
�/(� + 1) and γ2 = 1/(� + 1), following Ref. [28], with steady component U1,B(y) and oscillat-
ing component U2,B(y, t ). This work considers 1 � � < ∞. Thus, the magnitude of the steady
component of the base flow is never smaller than that of the oscillating component, ensuring
net transfer of tritium/heat is dominant. The nondimensional wall oscillation is cos(t )/�, and
the maximum velocity over the cycle U0 = max{y,t}(U ) = 1/(1 + 1/�) for � � 1 (henceforth,
� � 1). The normalized time tP = t/2π is also defined. To assess the degree of destabilization, the
Reynolds number ratio rs = [Re/(1 + 1/�)]/Recrit,s is defined, comparing the Reynolds number in
this problem to the critical Reynolds number for a purely steady base flow [17,22,23]. The wave
number is similarly rescaled, as αs = α/αcrit,s.

Instantaneous variables (u, p) are decomposed into base (U , P) and perturbation (û, p̂) com-
ponents via small parameter ε, as u = U + εû; p = P + ε p̂. The fully developed, steady parallel
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flow U1,B = U1,B(y)ex, with boundary conditions U1,B(y ± 1) = 0 and a constant driving pressure
gradient scaled to achieve a unit maximum velocity is [17]

U1,B = cosh(H1/2)

cosh(H1/2) − 1

(
1 − cosh(H1/2y)

cosh(H1/2)

)
. (3)

The fully developed, time periodic, parallel flow U2,B = U2,B(t, y)ex = U2,B(t + 2π, y)ex, with
boundary conditions U2,B(y ± 1) = cos(t ), ∂U2,B/∂t |y±1 = − sin(t ) expresses as

U2,B = Re

(
cosh[(r + si)y]

cosh(r + si)
eit

)
= b(y)eit + b∗(y)e−it , (4)

where the inverse boundary layer thickness and the wave number of the wall-normal oscillations are
represented by

r = [(SrRe)2 + H2]1/4 cos([tan−1(SrRe/H )]/2),
(5)

s = [(SrRe)2 + H2]1/4 sin([tan−1(SrRe/H )]/2),

respectively, i = (−1)1/2 and ∗ represents the complex conjugate. In the hydrodynamic limit of
H → 0, r = s = (SrRe/2)1/2. In the limit of H → ∞, at constant Re and Sr, r ∼ H1/2 and s → 0.
If Re is also varied, it must vary at a rate H p, with p � 1, for the limiting cases to differ. Note
that the oscillating component of the base flow depends only on two parameters (SrRe = Wo2 and
H). Although these choices mean the base flow is Re dependent, they allow Recrit to be found at a
constant frequency (constant Sr), as a constant Wo instead represents a constant oscillating boundary
layer thickness. Examples of the base flow at � = 1.2 are illustrated in Fig. 2, with the total pulsatile
profile plotted as (1 + 1/�)U (y, t ) to show oscillation about the steady component U1,B.

Both dominant transient inertial forces (large Sr) or dominant frictional forces (large H) are
capable of flattening the central region of the oscillating flow component. In Fig. 2(a), the oscillating
component is flattened by large transient inertial forces, while the steady flow still exhibits a curved
Poiseuille-like profile as H is small. Whereas, in Fig. 2(c), it is the large H value that is flattening
both the steady and oscillating flow components. However, inflection points, which are important
for intracyclic growth, are no longer present in Fig. 2(c), as H is large, but can be observed in the
boundary layers of Figs. 2(a) and 2(b), as Sr is large.

It is instructive to consider the velocity profile for the simpler problem of the SM82 equivalent
of an isolated Stokes layer, U (y, t ) = e−ry cos(sy − t ), where r and s remain as defined in Eq. (5),
except scaled by H−1/2 to account for the isolated boundary layer nondimensionalization. This
highlights the effects of r and s on the boundary layer, as the base flow becomes akin to a damped
harmonic oscillator. Increasing either H or SrRe increases r, in turn, and reduces the boundary layer
thickness. However, increasing H reduces s. Thus, inflection points are eliminated with increasing
H , and the boundary layer just appears as shifted exponential profiles, as is observed in Fig. 2(c).
Decreasing SrRe reduces s, and also eliminates inflection points, whereas increasing SrRe increases
s, promoting inflection points, but containing them within a thinner oscillating boundary layer.

It is also worth considering the pulsatile base flow in a broader context, as past literature is
divided on the method of oscillation. Among many others, Refs. [29,33] impose an oscillatory
pressure gradient, while Refs. [28,34] impose oscillating walls. For the unbounded, oscillatory
Stokes flow, the eigenvalues of the linear operator, with either imposed oscillation, have been proven
identical [35]. Furthermore, it has also been shown that (transient) energy growth is also identical
between the two methods of oscillation [36]. However, the full linear and nonlinear problems can
be shown to be identical. Defining a motionless frame G and a frame Ḡ in motion with arbitrary,
time varying velocity V (t ), the two frames are related through

x̄ = x −
∫

V dt, t̄ = t, ū = u − V . (6)

Under extended Galilean invariance, ∂ū/∂ x̄ = ∂u/∂x and Sr∂ū/∂ t̄ + (ū · ∇̄⊥)ū = Sr(∂u/∂t −
∂V/∂t ) + (u · ∇⊥)u [37]. In frame G, a constant driving pressure gradient, and oscillatory wall
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FIG. 2. Base flow profiles at � = 1.2. Equispaced over one period: oscillating component (left), (1 + 1/�)
rescaled pulsatile base flow (right). A black dashed line denotes the steady component, U1,B.

motion U (y ± 1, t ) = U2,B(y ± 1, t )/� are imposed. V (t ) = (U2,B(y ± 1, t )/�, 0) is selected so the
walls appear stationary, Ū (y ± 1, t ) = 0, in the moving frame Ḡ. Substituting the relations in Eq. (6)
into Eqs. (1) and (2), the governing equations in the moving frame become

Sr

(
∂ū
∂ t̄

+ ∂V
∂t

)
= −(ū · ∇̄⊥)ū − ∇̄⊥ p + 1

Re
∇̄2

⊥ū − H

Re
(ū + V ), (7)

∇̄⊥ · ū = 0. (8)
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As the pressure does not have a conversion relation, the driving pressure in the moving frame can
be freely chosen as

p̄(t ) = p + x

�

(
Sr

∂U2,B(y ± 1, t )

∂t
+ H

Re
U2,B(y ± 1, t )

)
. (9)

Substituting Eq. (9) into Eq. (7) and canceling yields

Sr
∂ū
∂ t̄

= −(ū · ∇̄⊥)ū − ∇̄⊥ p̄ + 1

Re
∇̄2

⊥ū − H

Re
ū, (10)

∇̄⊥ · ū = 0. (11)

Thus, in frame Ḡ, the governing equations, Eqs. (10) and (11), are identical to the governing
equations in G, Eqs. (1) and (2). However, in Ḡ the walls are stationary, and the pressure forcing p̄
is the sum of a steady and oscillatory component. Thus, the linear and nonlinear dynamics when the
flow is driven by oscillatory wall motion (G), or an oscillatory pressure gradient (Ḡ), are identical
in all respects, as they are both the same problem viewed in different frames of reference. These
arguments do not hold if H = 0 in the steady limit (� → ∞, U2,B = 0) or if the oscillation of both
walls is not synchronous. Note that the constant pressure gradient in the fixed frame could also be
considered as a constant wall motion for nonzero H . If so, the oscillations would be about a finite
wall velocity rather than about zero.

B. Validity of SM82 for pulsatile flows

With the pulsatile base flow established, the realm of validity of the SM82 model is assessed.
The dimensional equation governing the induced magnetic field b̌ is [38]

∂ b̌
∂ ť

= B0(ez · ∇̌)ǔ + (b̌ · ∇̌)ǔ − (ǔ · ∇̌)b̌ + 1

μ0σ
∇̌2b̌, (12)

where a background uniform steady field B0ez is imposed. The aim is to show that the induced
magnetic field diffuses Rm times faster than it locally varies, where the magnetic Reynolds number
Rm = μ0σU1L and where μ0 is the permeability of free space. The low-Rm approximation assumes
that one of the bilinear terms is much smaller than the diffusive term, |(ǔ · ∇̌)b̌| 	 |(μ0σ )−1∇̌2b̌|.
Once nondimensionalized by U1 and L, this imposes an Rm 	 1 constraint. This is well satisfied for
liquid metal duct flows, with Rm of the order of 10−2 [39,40]. Note that |B0(ez · ∇̌)ǔ| remains of the
same order as |(μ0σ )−1∇̌2b̌| when the background magnetic field is imposed.

The quasistatic approximation assumes |∂ b̌/∂t | 	 |(μ0σ )−1∇̌2b̌|. Note that a low Rm does not
necessarily imply that |∂ b̌/∂ ť | is small. Based on a typical out-of-plane steady velocity scale of
a/U1, |∂ b̌/∂ ť | may be reasonably assumed to scale as |(ǔ · ∇̌)b̌|, and thereby be small if Rm were
small. However, a pulsatile flow introduces an additional velocity timescale, based on the forcing
frequency, to also compare against. Hence, nondimensionalizing |∂ b̌/∂ ť | 	 |(μ0σ )−1∇̌2b̌| based
on a timescale of 1/ω yields a constraint on the shielding parameter Rω = μ0σωL2 	 1 [39]. This
translates to RmSr 	 1, or Sr 	 R−1

m , to ensure that diffusion of the induced field is not contained
to small boundary regions of the domain. Given Rm of 10−2 is typical of liquid metal duct flows at
moderate Reynolds numbers [39,40], since Rm = RePrm and the magnetic Prandtl number Prm =
νμ0σ is of the order of 10−6 for liquid metals [16], the shielding condition of Sr 	 R−1

m requires
Sr 	 100.

Furthermore, for the induced magnetic field to be treated as steady, the induced magnetic field
must vary rapidly relative to a slowly varying velocity field. This requires the Alfvén timescale (time
taken for the Alfvén velocity to cross the duct width) be much smaller than the pulsation (transient
inertial) timescale. The Alfvén velocity vA = B/(μ0ρ)1/2 = (NL/Rm )1/2(U1L/a) is expressed in
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terms of the interaction parameter NL = a2B2σ/ρU1L. Thus the Alfvén timescale is τA = a/vA =
(Rm/NL )1/2(a2/U1L), while the steady inertial timescale τI,L = L/U1 and the pulsation timescale
τP = 1/ω. Thus, τA/τI,L = (Rm/NL )1/2(a2/L2) and τA/τP = (Rm/NL )1/2Sr(U0/U1)(a2/L2). If
Sr(U0/U1) < 1, or equally Sr(1 + 1/�) < 1, no SM82 assumptions are in question. This requires
Sr < 1/2 at � = 1 (and Sr < 1 for � → ∞) at equivalent N � 1 and Rm 	 1 conditions as for a
steady case. Recall that Sr 	 100 was required from the shielding constraint.

Finally, the quasistatic approximation is only valid if Alfvén waves dissipate much faster than
they propagate. This is ensured if |∂ b̌/∂t | 	 |(μ0σ )−1∇̌2b̌| is satisfied when considering the last
remaining characteristic timescale, the Alfvén timescale τA = a/vA. This places a condition on the
Lundquist number S = (NLRm )1/2 = HaPr1/2

m 	 1. Given Prm of the order of 10−6 [16], and with
Rm of 10−2 [39,40], this translates to conditions on the interaction parameter and Hartmann number
of NL � 100 and Ha � 1000, respectively.

An additional component of the SM82 model is the Q2D approximation, which requires the
timescale for two-dimensionalization to occur via diffusion of momentum along magnetic field
lines, τ2D = (ρ/σB2)(a2/L2) = (1/NL )(a4/U1L3) [17], be much smaller than the inertial and pulsa-
tion timescales. These ratios are τ2D/τI,L = (1/NL )(a4/L4) and τ2D/τP = (Sr/NL )(U0/U1)(a4/L4).
Thus, if Sr < 1/2 for otherwise equivalent conditions as for a steady case, momentum is diffused
across the duct more rapidly by the magnetic field than by steady or transient inertial forces. The
SM82 approximation also assumes 1 	 Ha � 1000 and N � 1, NL � 100. These constraints can
be met with any H if a and L are chosen appropriately, as discussed in Ref. [23].

The SM82 model is more generally applicable to flows which exhibit a linear friction and a
strong tendency to two-dimensionalize. Axisymmetric quasigeostrophic flows, with frictional forces
imparted by Ekman layers, and Hele-Shaw (shallow water) flows, with Rayleigh friction, both tend
to two-dimensionality if the aspect ratio L/a is small. In these flows, a formally equivalent Q2D
model can be derived [7,41] (with the addition of a term representing the Coriolis force in the
quasigeostrophic case), although the physical meaning of the friction term differs, as do the bounds
of validity [23].

III. LINEAR STABILITY ANALYSIS

A. Formulation and validation

Linear stability is assessed via the exponential growth rate of disturbances, with unstable pertur-
bations exhibiting net growth each period. The linearized evolution equations,

Sr
∂û
∂t

= −(û · ∇⊥)U − (U · ∇⊥)û − ∇⊥ p̂ + 1

Re
∇2

⊥û − H

Re
û, (13)

∇⊥ · û = 0, (14)

are obtained by neglecting terms of O(ε2) in the decomposed Navier–Stokes equations. A single
fourth-order equation governing the linearized evolution of the perturbation is obtained by taking
twice the curl of Eq. (13) and substituting Eq. (14). By additionally decomposing perturbations into
plane-wave solutions of the form v̂(y, t ) = eiαx ṽ(y, t ), by virtue of the streamwise invariant base
flow U (y, t ), yields

∂ ṽ

∂t
= L −1

[
iα

Sr

∂2U

∂y2
− Uiα

Sr
L + 1

SrRe
L 2 − H

SrRe
L

]
ṽ, (15)

where L = (∂2/∂y2 − α2) and where the perturbation eigenvector ṽ(y, t ) still contains both expo-
nential and intracyclic time dependence. Integrating Eq. (15) forward in time, with a third-order
forward Adams–Bashforth scheme [42] and with the renormalization ‖ṽ‖2 = 1 at the start of each
period, forms the timestepper method. After sufficient forward evolution, all but the fastest growing
mode is washed away, providing the net growth of the leading eigenmode over one period. A
Krylov subspace scheme [43] is also implemented to aid convergence and provide the leading few
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TABLE I. � = 0, H = 0 cases validating and testing the resolution of the Floquet matrix method, consid-
ering the real part of even and odd modes separately. From Ref. [34], parameters convert as Sr = hBB06/ReBB06

and Re = 2hBB06ReBB06, where hBB06 = 16 and ReBB06 = 847.5. Nc accounts for the entire domain.

Nc (T = 300) Re(λ1) |% Error| T (Nc = 150) Re(λ1) |% Error|
50 0.4719273115651 3.02 ×101 200 0.9493815978240 4.04 ×101

100 0.6762032203289 6.39 ×10−3 250 0.6761968753200 5.45 ×10−3

150 0.6761968755932 5.45 ×10−3 300 0.6761968755932 5.45 ×10−3

Ref. [34], even 0.67616 0 0.67616 0
50 0.4689789806609 3.06 × 101 200 0.8329627125585 2.33 × 101

100 0.6756830883343 6.38 × 10−3 250 0.6756767389579 5.44 × 10−3

150 0.6756767389579 5.44 × 10−3 300 0.6756767389579 5.44 × 10−3

Ref. [34], odd 0.67564 0 0.67564 0

eigenvalues λ j with the largest growth rate (real component). The domain y ∈ [−1, 1] is discretized
with Nc + 1 Chebyshev nodes. The derivative operators, incorporating boundary conditions, are
approximated with spectral derivative matrices [44]. The spatial resolution requirements are halved
by incorporating a symmetry (respectively, antisymmetry) condition along the duct centreline, and
resolving even (respectively, odd) perturbations separately. Even perturbations were consistently
found to be less stable than odd perturbations.

The eigenvalues of the discretized forward evolution operator are also determined with a Floquet
matrix approach [28,34]. The exponential and time-periodic growth components of the eigenvector
are separated by defining

ṽ(y, t ) = eμFt
n=∞∑

n=−∞
ṽn(y)eint , (16)

with Floquet multiplier μF and harmonic n. This sum is numerically truncated to n ∈ [−T, T ], to
obtain a finite set of coupled equations

μṽn = − iα

Sr
(Mṽn+1 + M∗ṽn−1)

+
{

1

SrRe
L −1L 2 − H

SrRe
− in − iαγ1

Sr

[
L −1

(
U1,BL − ∂2U1,B

∂y2

)]}
ṽn, (17)

after substituting Eq. (16) into Eq. (15), where M = γ2[L −1(bL − ∂2b/∂y2)]. This system of
Chebyshev-discretized equations is set up as a block tridiagonal system, with the coefficients
of ṽn+1, ṽn and ṽn−1 placed on super, central and subdiagonals, respectively. Spectral derivative
matrices are built as before. The MATLAB function eigs is used to find a subset of eigenvalues of
the block tridiagonal system located near zero real component (neutral stability), with convergence
tolerance 10−14. Re and α are varied until only a single wave number, αcrit , attains zero growth rate,
at Recrit (for specified Sr, �, and H).

The numerical requirements for the Floquet and timestepper approaches are highly parameter
dependent. Validation against the hydrodynamic oscillatory problem [34] is provided in Table I.
Further assurance of the validity of the numerical method is provided in the excellent agreement
between pulsatile and steady Recrit values (e.g., rs → 1) at very small and large Sr in Sec. III B and
the agreement between the timestepper and Floquet growth rates shown in Sec. III B. Sporadic
resolution testing, post determination of Recrit, was also performed, with an example shown in
Table II.

As a rough guide, for the Floquet method, Nc varies between 100 and 400 and T between 100
and 600, with an eigenvalue subset size of around 200. For the timestepper, Nc varies between
40 to 240, with 105 to 4 × 107 time steps per period, and 6 to 4000 iterations. As discussed in
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TABLE II. Resolution test at H = 10, � = 10 (at large Re, and small Sr = 1.12 × 10−2). The Floquet
method was used to determine Recrit = 8.1243 × 105 and αcrit = 0.91137, at Nc = 200 and T = 400. This
Recrit and αcrit were input into the timestepper to validate the timestepper and the Floquet Recrit value (note the
neutrally stable growth rate Re(λ1) ≈ 0). Nc accounts for the entire domain with an even mode enforced.

Nc Time steps (per period) Iterations ‖ṽ‖2 (final iteration) Re(λ1) Im(λ1)

100 4 × 105 40 0.991293824970121 −0.001391699032636 0.962888347220989
140 4 × 105 20 1.000006449491397 0.000001028054446 0.955814791449918
180 4 × 105 20 0.999993672187703 −0.000001007773833 0.955795855565797
220 7 × 105 20 0.999993546425103 −0.000001027780526 0.955795848436100
240 106 10 0.999993662207549 −0.000001011050606 0.955795855979765

Refs. [28,29], with increasing pulsation amplitude (decreasing �), decreasing Sr and increasing
Re, the intracylcic growth can become stupendously large. The matrix method becomes problem-
atic when the intracylcic growth exceeds four to six orders of magnitude, while the timestepper
withstands approximately 10 to 15 orders of magnitude of intracylcic growth (the perturbation
norm ‖ṽ‖2 does not cleanly converge thereafter). Very roughly, for Sr � 10−3 and/or � � 2 and/or
Re � 105 when H � 10 the intracyclic growth was greater than even the timestepper could handle.
However, given the specific aims of this paper, this does not obstruct too large a fraction of the
parameter space we wish to explore.

B. Long-term behavior

A neutrally stable perturbation exhibits no net growth or decay over each cycle. Neutral stability
is first achieved at Recrit and αcrit as Re is increased. However, such a definition conceals the
intracylic dynamics, which strongly influence Recrit , as is further discussed in Sec. III C. Two key
results are shown in Fig. 3, considering the effect of varying H on Recrit . First, at large H , Recrit for
a purely steady base flow scales as H1/2, while all pulsatile cases scale as H p, with 1/2 � p < 1.
For large H , r is dominated by [(SrRe)2 + H2]1/4, which is always greater than H1/2. As the
isolated boundary layer thickness is defined by e−ry (Sec. II), increasing H stabilizes pulsatile base
flows more rapidly than steady base flows. Thus, the thinner pulsatile boundary layers are always
more stable than their thicker counterpart exhibited by steady base flows. Note that in the high
H regime, when the boundary layers are isolated for any frequency pulsation, the stability results
are defined solely by the dynamics of an isolated boundary layer, as observed in steady MHD or
Q2D studies [17,22,23,45], and for high frequency oscillatory hydrodynamic flows [34]. Second,
variations in the pulsation frequency and amplitude roughly act to translate the stability curves,
without significantly changing the overall trends (a slight change, the local minimums in Fig. 3(c),
are explained when considering Sr variations at fixed H shortly). At � = 100, differences between
pulsatile and steady results are not easily observed, confirming the accuracy of the Floquet solver.
The � = 10 curves overlay the steady trend at respective high and low frequencies of Sr = 1 and
Sr = 10−3. At Sr = 10−2, the flow is more unstable as H → 0, with rs → 0.8651. However, for
H � 2400 the additional stability conferred by thinner pulsatile boundary layers pushes rs above
unity. The pulsatile flow is then more stable than the steady counterpart. Note that so long as Recrit

varies as H p with p < 1 (as observed for all H simulated), then Re does not increase quickly enough
to offset the eventual s → 0 and r ∼ H1/2 trends as H → ∞. Eventually, the exponent p should
settle to 1/2, after which Recrit should vary as H1/2 for very large H > 104. At Sr = 10−1, the flow
is hydrodynamically more stable (rs → 2.4258 as H → 0) and is even more strongly stabilized at
higher H . The Sr = 10−1 curve in Fig. 3(c) is not smooth as different least stable modes become
dominant, as shown in the jumps in critical wave number, clearest in Fig. 3(d). In steady Q2D flows
[17,22,23], αcrit also scales with H1/2 for high H , like Recrit. However, perplexingly for the pulsatile
cases, the αcrit trends are as Hq, with a lower exponent than the steady case, q � 1/2.
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FIG. 3. Rescaled Recrit and αcrit as a function of H for 10−3 � Sr � 1 and � � 10. The steady (� → ∞)
results from Ref. [22] have been included for direct comparison in the top row (black dashed lines) and are
divided out to compute rs and αs in the bottom row.

Variations in rs as a function of Sr are depicted for various H under a weak pulsatility of � = 100
in Fig. 4(a) and at � = 10 in Fig. 5(a). The deviations from the steady Recrit are modest at � = 100
(between −1% and +4%). However, it helps provide a clearer picture of the underlying dynamics.
Considering the hydrodynamic case (approximated by H = 10−7) as an example, the steady Recrit is
approached (rs → 1) as Sr → 0. In this limit, transient inertial forces act so slowly that viscosity can
smooth out all wall-normal oscillations in the velocity profile over the entire duct within a single
oscillation period (2π ). Although large intracylic growth occurs during the deceleration phase of
the base flow (effectively due to an adverse pressure gradient), this is not augmented by additional
growth as inflection points are absent. Therefore, the growth is entirely canceled out by decay (due to
an equivalent-magnitude favorable pressure gradient) in the acceleration phase. With increasing Sr,
inflection points are present over a greater fraction of the deceleration phase, in spite of the action of
viscosity, and become more prominent, providing a reduction in rs. However, increasing Sr reduces
the effective duration of the deceleration phase of the base flow, leaving less time for intracyclic
growth. Thus, the local minimum in rs occurs when the benefits of promoting and maintaining
inflection points for a larger time (increasing Sr) is counteracted by reducing the duration of the
growth phase (decreasing Sr). However, although increasing Sr promotes inflection points, these
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FIG. 4. Variation in rs and αs as a function of Sr at � = 100, curves of constant H (arrows indicate
increasing H ). As Sr → 0 and Sr → ∞, the agreement with the steady result is further validation.

points also become increasingly isolated as the oscillating boundary layers become thinner. The
thinner boundary layers reduce constructive interference between modes at each wall, stabilizing
the flow [22]. Eventually, the oscillating boundary layers become so thin that they are immaterial
and rs drops to recover the steady value (Sr → ∞).

The other friction parameters are now considered. For larger H , as H is increased, the curves
in figure Fig. 4(a) shift to larger Sr. Increasing H smooths inflection points within the pulsatile
boundary layer. Recall that a pulsatile isolated SM82 boundary layer has the form e−ry cos(sy − t ),
and increasing H decreases s, thereby increasing the wavelength of wall-normal oscillations in the
base flow. Larger Sr values are then required to offset the larger H values, ensuring that inflection
points remain within the boundary layer, and provide enough intracylic growth to reduce rs. Thus,
the local minimum of rs does not strongly depend on H , although the corresponding Sr value
varies greatly. Importantly, for fusion relevant regimes, the percentage reduction in Recrit appears

FIG. 5. Variation in rs and αs as a function of Sr at � = 10, curves of constant H (arrows indicate increasing
H ). Dashed curve indicates restabilization and a second destabilization with increasing Re > Recrit at H = 10.
The stable region is below the continuous solid-dashed-solid curve.
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FIG. 6. Exponential growth rate as a function of α with increasing Re (8 × 104 through 8 × 105) at
H = 10, � = 10, comparing Sr. At Sr = 1.8 × 10−2 the TS-like mode does not become unstable, thus
Recrit = 6.40840 × 105 is much larger than Recrit = 8.50617 × 104 at Sr = 1.7 × 10−2. As additional vali-
dation, symbols (timestepper) show excellent agreement with curves (Floquet).

to steadily improve with increasing H , although the shift to higher Sr may eventually invalidate
the SM82 assumption requiring Sr < 1/2 for � � 1. The pulsatile boundary layers also become
increasingly isolated with increasing H , as r increases with H , resulting in the steady increase
in the maximum of rs. At � = 100, the variations in Recrit are small, with the Reynolds number
dependence of the base flow having little effect, relative to the Sr and H variations (this is not the
case at � = 10). As a last note, for � = 100, the smooth αs curves in Fig. 4(b) also show that the
variations in rs represent the same instability mode for all Sr (henceforth the TS-like mode).

At the lower � = 10, Fig. 5, the oscillating component plays a much greater role. The underlying
behaviors discussed for � = 100 still hold for smaller Sr, including the region of minimum rs, and
for much larger Sr. Furthermore, the local minimum in rs still becomes more pronounced with
increasing H , with an approximately 33.0% reduction in Recrit, compared to the steady value at
H = 10. H = 1000 could not be computed over a wide range of Sr at � = 10 but the partial data
collected (not shown) demonstrated a further reduction in rs of up to 42.4%.

The degree of stabilization at � = 10 is far more striking. The sudden jumps in αs, shown in the
inset of Fig. 5(b), indicate different instability modes. These modes are increasingly stable, with
much larger accompanying rs values (the H = 10 case peaks with an approximately 804% increase
over the steady Recrit). Because the Reynolds numbers are significantly far from the steady Recrit

values, the change in Reynolds number has had a noticeable effect on the base flow profiles. At
larger Reynolds numbers, the oscillating boundary layers become much thinner, so inflection points
are not positioned where they could underpin sizable intracyclic growth.

This explains the discontinuous change in rs with a slight shift in Sr. At fixed Sr, at Reynolds
numbers near the steady Recrit value, a TS-like mode is excited, but not necessarily unstable. The
TS-like mode is based on the instability of the steady flow, i.e., the TS wave. For Re > Recrit, its
exponential growth rate increases with increasing Reynolds number. However, the same increase in
Re increasingly isolates and thins the boundary layers, thus reducing the exponential growth rate.
The isolation of the boundary layers (the effect of Re on the base flow) eventually overcomes any
increases in exponential growth rate (the effect of Re on the perturbation). At higher Sr, when
the oscillating boundary layers are naturally further apart, the increased isolation prevents the
instability of the TS-like mode. This is shown at Sr = 1.8 × 10−2 in Fig. 6(b), or to the right of
the discontinuity in rs on Fig. 5(a). The sudden increase in rs in Fig. 5(a) reflects the stabilization
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FIG. 7. Neutral curves for various Sr, at � = 10, H = 10, with instability to the right of open curves. (a) Sr
from the steady result, to the first destabilization of the TS-like mode (unstable pocket) at Sr � 1.748 × 10−2.
(b) Dominance of the TS-like mode, and eventual vanishing of the restabilization region for Sr � 1.1 × 10−2.
(c) Instability for all Re > Recrit , including the local Recrit minimum (near Sr = 9 × 10−3). However, stable
pockets form at higher Re. The black dashed curves correspond to the steady base flow at H = 10 [22].

of the TS-like mode (another mode is destabilized at a much higher Re). At smaller Sr, the effect
of Re on increasing the growth rate allows the TS-like mode to become unstable, if only briefly at
Sr = 1.7 × 10−2 in Fig. 6(a). With further increasing Re, the isolation and thinning of the boundary
layers leads to the TS-like mode becoming stable again; the stable region is bounded by the dashed
curve in Fig. 5(a). At Sr = 1.7 × 10−2, a different mode becomes unstable at much higher Re, as
also shown in Fig. 6(a). This mode is a very similar to that at Sr = 1.8 × 10−2, so the dashed curve
in Fig. 5(a) follows the trend of increasing rs from the right of the discontinuity. Eventually, for all
Sr < 1.12 × 10−2 (H = 10, � = 10), with oscillating boundary layers that start out closer together,
at least one mode is unstable for all Re.

Further considering � = 10 and H = 10, neutral (zero net growth) curves at several Sr are pre-
sented in Fig. 7. The Sr = 1 neutral curve is indistinguishable from that of the steady base flow [22].
With decreasing Sr, the critical Reynolds number rapidly increases and the neutral curve broadens,
see Fig. 7(a). At Sr = 1.8 × 10−2, just to the right of the discontinuity, waviness in the neutral curve
reflects the excitation of multiple modes, as shown in Fig. 6(b). At Sr = 1.748 × 10−2, just to the left
of the discontinuity, the TS-like mode is first destabilized. The increasing isolation of the oscillating
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FIG. 8. Exponential growth rate as a function of α and Re (Recrit through 5 × 106). At low Re, only the
TS-like mode is unstable. After this mode restabilizes, multiple modes are excited, separated by sharp valleys.
These modes have negative growth for some Re at Sr = 1.12 × 10−2, but have positive growth at Sr = 8 ×
10−3. Solid lines denote positive growth; dotted lines negative. Zero growth is emphasized with a thick black
line on a gray intersecting plane.

boundary layers quickly restabilizes the flow, resulting in a very small instability pocket. Moving to
Fig. 7(b), with slight decreases in Sr, the (TS-like mode’s) instability pocket rapidly occupies more
of the wave number space, and the pocket terminates before it reaches the broader, pulsatile part
of the neutral curve at Sr = 1.12 × 10−2 (the leftmost point of the dashed curve in Fig. 5). With a
slight drop to Sr = 1.1 × 10−2, the two curves meet, with a small throat allowing a path through
wave number space with increasing Re that always attains positive growth. At Sr = 1.12 × 10−2,
also shown in Fig. 8(a), the TS-like mode (the first local maximum) initially peaks and then falls
away with increasing Re. A small band of Reynolds numbers fail to produce net growth (along the
line of six depressions in the wave-number space). Increasing Re, multiple pulsatile modes become
excited from the baseline spectrum and become unstable. At Sr = 1.1 × 10−2, the rising pulsatile
modes outpace the falling TS-like mode, so at least one mode always maintains positive growth, see
Fig. 8(b).

At Sr = 10−2, three stable pockets are observed, see Fig. 7(c). At lower Sr, the growth rates of the
TS-like mode decrease more rapidly, leaving only pulsatile modes in control of the neutral stability
behavior. Because these modes are excited in narrow resonant peaks in wave-number space, stable
regions can be present between the peaks. Thus, at lower Sr, multiple stable pockets surrounded
by unstable conditions form. Further reduction in Sr produces more resonant peaks, and more
interleaved stable pockets, as shown at Sr = 8 × 10−3 in Fig. 8(b). Further reducing Sr, for large
H and Re, reaches the limit of the capability of the timestepper to cleanly resolve the entire neutral
curves. By Sr = 10−3, the part of the neutral curve able to be computed is approaching that of the
steady base flow [22].

The influence of � is now considered. Over 1 � � � 100, different effects on rs are observed
at Sr = 1, Fig. 9(a), and at Sr = 10−2, Fig. 9(b). As Sr = 1, close to the steady limit, rs remains
near unity. At small H , only stabilization is observed for all � � 1. With increasing H , a slight
destabilization can be observed with increasing H , up to H ≈ 10. Further increasing H induces
restabilization. This echoes the Sr variation, where the local minimum shifts to smaller Sr for H �
10, and shifts back to larger Sr for H � 10. At higher H , H offsets Sr, so the results for the steady
base flow are only recovered at increasingly large Sr. On the other hand, at Sr = 10−2 in Fig. 9(b),
rs is far from unity, and the effect of varying the Reynolds number on the base flow must again
be considered. At smaller Re, the oscillating boundary layers are much thicker, with prominent
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FIG. 9. Variation in rs as a function of � � 1 at Sr = 1 and Sr = 10−2, curves of constant H (arrows
indicate increasing H ). Small Sr and � present significant potential for destabilization.

inflection points well placed to promote intracyclic growth. This part of the base flow becomes
increasingly dominant with decreasing �, favoring the destabilization of the TS-like mode. Given
that (SrRe)2 � H2, Recrit depends far more on the pulsatile process and only weakly on H , until
SrRe becomes small. However, the Recrit for the steady base flow strongly depends on H , so rs

reduces with increasing H . rs continues to decrease up to � � 1 for H � 10, matching well with
the conclusion of Ref. [28] that the maximum reduction in Recrit occurs near unity amplitude ratio.
At higher H , the magnitude of intracylic growth eventually limited computations (to � > 1). At
H = 100, Sr = 10−2 no local minimum is observed for � � 1. However, these results still indicate
that for H � 100 and � � 1, a 70 to 90% reduction in the critical Reynolds number is possible with
the addition of pulsatility. They further support that the percentage reduction in Recrit improves with
increasing H . The mode defining this local minimum, even at small �, still appears to be directly
related to the TS-like mode (as there were no sharp changes in the dominant α through the entire
Sr − � − Re space).

Given the results of Fig. 9(b), it is worth considering the maximum reduction in rs that can be
obtained via optimization of the pulsation over 10−4 < Sr < 1 and 1 < � < ∞. These have been
tabulated for increasing H in Table III. These optimized pulsations truly highlight how effective
pulsatility can be in destabilizing a Q2D channel flow, both at hydrodynamic conditions, with a
69.3% reduction at H = 10−7, all the way up to a 90.3% reduction at H = 10. Still larger percentage
reductions are predicted at higher H , as rs consistently decreases with increasing H .

C. Intracylcic behavior

This section is focused on processes taking place within each cycle that are obscured in the net
growth quantifications. All results in this section are at Recrit.

The TS-like mode at � = 100 and H = 100 is considered first, in Fig. 10, over a range of Sr.
The perturbation norm ‖ṽ‖2 is compared to EU(t ) = ∫

U 2 dy − 〈∫ U 2 dy〉t (taking the value of the
current base flow energy about the time mean solely to aid figure legibility). There are only simple,
sinusoidal energy variations at these conditions and perturbation energies remain order unity over
the entire cycle (akin to the cruising regime). The key result is that the phase difference between the
perturbation and base flow energy curves changes as Sr is varied. Measuring the phase difference
ψd of the local minimums of the perturbation and base flow energies appears most meaningful and
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TABLE III. Optimization of the pulsation (optimizing �, Sr, and α) for the greatest reduction in the rescaled
critical Reynolds number relative to the steady result. This is achieved at � just above unity and pulsation
frequencies similar to those of the local minimum for the TS-like mode, Figs. 4(a) and 5(a). Importantly,
the percentage reduction improves with increasing H , with over an order of magnitude reduction in critical
Reynolds number for H � 10.

H Recrit,s αcrit,s � Sr Recrit/(1 + 1/�) α rs αs % Reduction

10−7 5772.22 1.02055 1.29 7.8 × 10−3 1773.29 1.3812 0.3072 1.3534 69.28
0.01 5808.04 1.01991 1.29 7.8 × 10−3 1777.58 1.3804 0.3061 1.3535 69.39
0.1 6136.85 1.01435 1.29 7.8 × 10−3 1816.18 1.3823 0.2959 1.3628 70.41
0.3 6908.55 1.00291 1.27 7.6 × 10−3 1902.79 1.3857 0.2754 1.3816 72.46
1 10033.2 0.97163 1.24 7.2 × 10−3 2215.87 1.3980 0.2209 1.4388 77.91
3 21792.6 0.93194 1.19 6.3 × 10−3 3185.90 1.4343 0.1462 1.5391 85.38
10 72436.8 0.96833 1.19 5.6 × 10−3 7050 1.59 0.0973 1.6420 90.27

these values are annotated on Fig. 10. The perturbation energy variation exhibits a lag to the base
flow energy variation at Sr = 10−3, with ψd = −0.2446, and is closer to in phase by Sr = 10−2,
ψd = −0.1466 (the optimal Sr is 1.5 × 10−2 for minimising rs at � = 100). By Sr = 10−1, the
perturbation energy leads the base flow energy (positive ψd), and intracyclic growth in noticeably
smaller. Sr = 1 is close enough to the Sr → ∞ limit to produce negligible intracyclic growth. The
minimum in rs tends to occur when the perturbation and base flow energy growths are close to being
in phase. Thus, selecting the optimal Sr to minimize rs at a given � (and H) amounts to tuning the
frequency of the oscillating flow component to ensure growth in the base flow and perturbation
energies coincide.

The energy norms at � = 10, H = 10 are displayed in Fig. 11. At Sr = 10−3, Fig. 11(a), toward
the steady base flow limit, the variation of the perturbation is again a simple sinusoid, slightly
lagging behind the base flow energy variation, as for � = 100, Fig. 10(a). However, at � = 10,
the increase in intracylcic growth with reducing � can be clearly observed, eclipsing six orders of
magnitude. Thus, at lower � and Sr, a behavior akin to the ballistic regime is reached. At Sr = 10−2,
intracyclic growth remains large (the local minimum in rs occurs at Sr = 9 × 10−3). An additional
complexity in the form of a brief growth in perturbation energy (at tP ≈ 0.25) occurs during the
acceleration phase of the base flow and is not detected at Sr < 9 × 10−3. The additional growth
incurred by the presence of inflection points is somewhat obscured by the lower Recrit at Sr = 10−2.
Increasing Sr to 10−1, the TS-like mode is no longer the least stable. At this Sr, the intracyclic
growth is relatively small, likely falling in the cruising regime, while by Sr = 1 the intracylcic
growth again becomes trivial.

The linearized evolutions of the leading eigenvector are depicted over the period of the base
flow in Fig. 12. At � = 100, the dominant mode is the TS-like mode for all Sr, with a structure
that does not observably change with time, as shown in the accompanying animation [46]. The
amplitude variations are also small; many repetitions of the wave are visible at lower Sr as the
advection timescale is much smaller than the transient inertial timescale. Although the mode has a
very similar appearance to that of a steady TS wave, the additional isolation of the boundary layers
means that the H = 100 pulsatile mode resembles a H = 400 steady mode [22]. Once H is reduced,
separate TS waves are no longer observed at each wall, but appear as a single conjoined structure.
While at larger Sr, the H = 10, � = 10 mode structure still displays minimal time variation. Only at
Sr = 10−2 is significant unsteadiness observed, slightly towards the walls, and prominently during
the disruption of the decay phase (at tP ≈ 0.25). However, the general appearance of the structure
as a conjoined TS wave persists (this case is also animated [46]).

Finally, at H = 1, the optimized conditions (� = 1.24, Sr = 7.2 × 10−3) and nearby Sr are
considered, with the energy norms displayed in Fig. 13. A smaller � features staggering intracyclic
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FIG. 10. The perturbation norm (solid; black) and the base flow energy relative to the time mean (dashed;
red) over one period at critical conditions at H = 100, � = 100, for various Sr. The phase differences ψd

between the local minimums of each pair of curves are also annotated.

growth, with almost 24 orders of magnitude of growth at Sr = 10−3. Similar to previous cases,
at lower Sr the local minimum in perturbation energy significantly lags behind the minimum in
the base flow energy, ψd = −0.2380. However, an additional feature at smaller Sr and � is that
the perturbation decay is more rapid, and almost plateaus at low energies (with neither a smooth
transitioning from growth to decay nor sharp bounce back up). At the slightly larger Sr = 4 × 10−3,
the decay is not so rapid (decaying over 0.112 < tP < 0.653 compared to 0.008 < tP < 0.491),with
a sharp bounce back to growth and a smaller lag in the locations of the local minima, ψd = −0.0996.
At the optimized Sr = 7.2 × 10−3, the decay rate of the perturbation is matched to the period of the
base flow, the local minima in energy are close to coinciding (ψd = −0.0282), and so inflection
points are maintained throughout the deceleration phase (rs is then minimized). At larger Sr, the
perturbation energy leads the base flow energy (ψd = 0.0195), and the deceleration phase is not
used to its full extent.

The evolution of the optimized perturbation at H = 1 is shown in Fig. 14, and in a supplementary
animation [46]. From tP = 0, the perturbation is slowly growing, aided by the single large inflection
points present in each half of the domain. As these become less pronounced, the wings of the
perturbation are pulled in (tP = 0.2). By this point, inflection points in the base flow have vanished,
as the wall oscillation follows through to negative velocities, although a small amount of residual
growth is maintained. The pull of the walls on the central structure sweeps the wings forward (tP =
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FIG. 11. The perturbation norm (solid, black) and the base flow energy relative to the time mean (dashed,
red) over one period at critical conditions at H = 10, � = 10, for various Sr. The phase differences ψd between
the local minimums of each pair of curves are also annotated.

0.3) as the base flow velocity in the central region is smaller than the velocities near the walls. The
downstream pull of the walls acts to increasingly shear the structure, with perturbation decay until
tP = 0.738. The structure rapidly reorients to the wider forward winged structure just as inflection
points reappear in the base flow, near tP = 0.75. As these inflection points become more pronounced,
rapid growth occurs, while the wings are swept further forward.

IV. NONLINEAR ANALYSIS

A. Formulation and validation

We now seek to investigate the nonlinear behavior of the optimized pulsations at various H . As a
first step in investigating transitions to turbulence, the modal instabilities predicted in the preceding
sections are targeted by the DNS. Although linear or nonlinear transiently growing disturbances may
initiate bypass transition scenarios [47–51], the modal instability seemed the natural starting point.
Furthermore, if the modal instability has a large decay rate, linear transient growth mechanisms can
be strongly compromised [52], as observed for cylinder wakes in particular [53]. Finally, previous
work on steady Q2D transistions observed that only turbulence generated by a modal instability
[22,24] was sustainable in wall-driven channel flows.
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FIG. 12. The linear evolution of the leading eigenvector ṽ(y, t ) over one period. Linearly spaced contours
between ± max |ṽ| are plotted, solid lines (red flooding) denote positive values, dotted lines (blue flooding)
negative values, except for H = 10, Sr = 10−2, with logarithmically spaced contours between −15 and 15.
Perturbation norms ‖ṽ‖2 from Figs. 10 and 11 are overlaid.
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FIG. 13. The perturbation norm (solid, black) and the base flow energy relative to the time mean (dashed,
red) over one period at critical conditions at H = 10, � = 1.24, for various Sr. The Sr = 7.2 × 10−3 case
represents the optimized pulsation for this H , recalling Table III. The phase differences ψd between the local
minimums of each pair of curves are also annotated.

The DNS of Eqs. (1) and (2) is performed as follows. The initial field is solely the analytic
solution from Sec. II, u = U (y, t = 0). The initial phase did not prove relevant with either an
initial seed of white noise, or no initial perturbation. The flow is driven by a constant pressure
gradient, ∂P/∂x = γ1(cosh(H1/2)/(cosh(H1/2) − 1))H/Re, with the pressure decomposed into a
linearly varying and fluctuating periodic component, as p = P + p′, respectively. Periodic boundary
conditions, u(x = 0) = u(x = W ) and p′(x = 0) = p′(x = W ), are applied at the downstream and
upstream boundaries. The domain length W = 2π/αmax is set to match the wave number that
achieved maximal linear growth αmax. Synchronous lateral wall movement generates the oscillating
flow component, with boundary conditions U (y ± 1, t ) = γ2 cos(t ).

Simulations are performed with an in-house spectral element solver, employing a third-order
backward differencing scheme, with operator splitting, for time integration. High-order Neumann
pressure boundary conditions are imposed on the oscillating walls to maintain third order time
accuracy [54]. The Cartesian domain is discretized with quadrilateral elements over which Gauss–
Legendre–Lobatto nodes are placed. The mesh design is identical to that of Ref. [22]. The wall-
normal resolution was unchanged, although the streamwise resolution was doubled. Elements are
otherwise uniformly distributed in both streamwise and transverse directions, ensuring perturbations
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FIG. 14. Snapshots of the eigenvector expanded in the streamwise direction v̂ = ṽ(y, t ) exp(iαx) through
one cycle tP ∈ [0, 1] at H = 1, � = 1.24, Sr = 7.2 × 10−3. The base flow is overlaid (the black dashed line
indicates zero base flow velocity). Red flooding positive, blue flooding negative.

remain well resolved during all phases of their growth. The solver, incorporating the SM82 friction
term, has been previously introduced and validated [4,19,55,56].

Further validation, depicted in Fig. 15(a), is a comparison between the nonlinear time evolution
in primitive variables (the in-house solver, referred to as DNS in the future) and the linearized
evolution with the timestepper, introduced earlier. These are both computed using the Recrit and
αcrit from the Floquet method, at H = 10, � = 10 and H = 100, � = 100, both at Sr = 10−2 (cases
discussed in Sec. III C). Initial seeds of white noise have specified initial energy E0(t = 0) = ∫

û2 +
v̂2 d�/

∫
U 2(t = 0) d�, where � represents the computational domain. Linearity is ensured with

E0 = 10−6. The DNS settles after a short period of decay, and then attains excellent agreement
with the intracyclic growth curves from the linearized timestepper, both in magnitude and dynamics
over the cycle. The only difference is that for the � = 10 case, at small perturbation amplitudes (near
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FIG. 15. Resolution testing at critical conditions. (a) Comparison of nonlinear DNS (in-house solver, solid
lines) and linearized timestepper (dashed lines) at Sr = 10−2. An initial perturbation of white noise with E0 =
10−6 was applied to the DNS. (b) Nonlinear DNS with no initial perturbation of the H = 1 optimized pulsation
(� = 1.24, Sr = 7.2 × 10−3), varying polynomial order.

10−10) the nonlinear evolution cuts out and remains at roughly constant energy until the deceleration
phase of the base flow to begin growth again, while the linearized evolution continues on a smooth
decay-growth trajectory.

The resolution requirements are assessed by varying the polynomial order Np of the spectral
elements. Figure 15(b) depicts simulations, with no initiating perturbation, driven by the optimized
pulsation at H = 1, at critical conditions. Excluding the initial growth, which is always resolution
dependent, the agreement in the intracylic growth stages is excellent (see box out). The slight
differences predominantly originate from the initial growth stage, translating the curves with respect
to one another. Np = 19 was deemed sufficient for the pulsatile problem, as for the steady base flow
problem [22].

Fourier analysis is also performed in the nonlinear simulations, exploiting the stream-
wise periodicity of the domain. The absolute values of the Fourier coefficients cκ =
|(1/Nf )

∑n=Nf −1
n=0 f̂ (xn)e−2π iκn/Nf | were obtained using the discrete Fourier transform in MATLAB,

where xn represents the nth x location linearly spaced between x0 = 0 and xNf = W . f̂ may be û,
v̂, ω̂z = ∂ v̂/∂x − ∂ û/∂y or û2 + v̂2, depending on the property of interest. In the y direction, either
a mean Fourier coefficient c̄κ is obtained by averaging the coefficients obtained at 21 y values,
and taking Nf = 10000. Alternately, considering 912 y values, and taking Nf = 380, all except the
jth (and Nf − jth) Fourier coefficients were set to zero, cκ,¬ j = 0, and the inverse discrete Fourier
transform f̂ j = ∑κ=Nf −1

κ=0 cκ, je2π iκn/Nf computed. After isolating the jth mode in the physical domain
f̂ j , an assessment of the degree of symmetry within that mode was determined by computing

f̂s, j = (
∑m=Ny

m=0 [ f̂ j (ym) − f̂ j (−ym)]2)1/2, where ym represents the mth y location linearly spaced
between y0 = −1 and yNy = 0 − 1/(Ny − 1) and taking Ny = 912/2. Thus, a purely symmetric
mode has f̂s, j = 0 as f̂ j (ym)= f̂ j (−ym) for all ym.

B. Critical conditions

This section focuses solely on the minimum rs conditions of Table III, at Recrit. The first factor
is the role of the initial perturbation. Comparing a simulation without an initiating perturbation
(e.g., numerical noise), and simulations initiated with white noise of specified magnitude, Fig. 16,
yields two key results. The first is that all the initial energy trajectories collapse to the numerical
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FIG. 16. Effect of varying E0, between 100 and 10−10, on nonlinear evolution, compared to a case without
an initial perturbation [black dashed line in (a) and solid line in (b)] and a case linearly evolved (pink dot-
dashed line), for the optimized pulsation at H = 1, � = 1.24, Sr = 7.2 × 10−3. (a) Ev = ∫

v̂2d�. (b) E =∫
û2 + v̂2d�.

noise result within the first period of evolution, except E0 = 1 (slightly offset). For E0 < 1, the
perturbation energy decays no further than for the case initiated from numerical noise and plateaus
until the next deceleration phase of the base flow. Once this occurs, all energies grow in unison.
As the �, Sr optima are within the ballistic regime; they decay to linearly small energies every
period [29]. Hence, unless a transition to turbulence occurs in the first period of the base flow, the
initial energy has no influence on subsequent cycles. The second key result is that the linear and
nonlinear evolutions compared via Ev = ∫

v̂2d� are similar, see Fig. 16(a), while they are not via
E = ∫

û2 + v̂2d�, Fig. 16(b). In the second period of the base flow, the nonlinear intracyclic decay
is largely truncated. After another period, the nonlinear case saturates to relatively constant energy
maxima and minima [Fig. 16(b) inset]. Previous works [22,24] have shown that growth in v̂ is
stored in streamwise independent structures, û, in nonlinear modal and nonmodal growth scenarios
of steady Q2D base flows. A similar process occurs here, as further discussed shortly.

The lack of nonlinear net growth at the critical conditions for the remaining cases in Table III
is depicted in Fig. 17, again without specifying an initial perturbation. At higher H , nonlinear
intracyclic growth was smaller than expected (linearly, intracyclic growth increased with increasing
H at Re = Recrit). However, the final result of no net growth is still maintained, as expected at Recrit .
The only slight difference is that at higher H , and thereby larger Re, the maximum and minimum
energies reached are becoming inconsistent (see box-out). In the linear solver, such inconsistencies
would eventually limit the accurate computation of Recrit.

C. Supercritical conditions

Supercritical Reynolds numbers are briefly considered, again without specifying an initial pertur-
bation. As the base flow is Reynolds number dependent, only a 10% and a 20% increase (not shown)
in the Reynolds number were attempted, for the values of � and Sr that minimize rs for H � 10.
The overall behaviors at Re/Recrit = 1 (Fig. 17) and Re/Recrit = 1.1 (Fig. 18) are virtually identical,
even though exponential growth is predicted linearly at Re/Recrit = 1.1. Nonlinearly, the intracyclic
growth in the first period is large enough to reach nonlinear amplitudes, which quickly modulates
the base flow, resulting in the no net growth behavior. However, turbulence is not observed at these
supercritical conditions, with only some chaotic behavior following the symmetry breaking of the
linear mode. The severity of the decay in the acceleration phase may be the main factor preventing
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FIG. 17. Nonlinear evolutions of the optimized pulsations, at various H , from Table III. (a) Ev = ∫
v̂2d�.

(b) E = ∫
û2 + v̂2d�. The ultimate result of the nonlinear evolutions is no net growth at Recrit .

the transition to turbulence. However, the magnitude of H and Re could be a factor, since H < 3 are
unable to trigger turbulence for the case of a steady base flow at the equivalent Re/Recrit ratio [22].
Although higher H were able to trigger turbulence in the classical duct flow, the magnitude of the
Reynolds numbers were larger for the steady base flow, as optimising for minimum rs results in an
order of magnitude reduction in Recrit .

D. Role of streamwise and wall-normal velocity components

Two aspects of the nonlinear evolution are considered in more detail. The first is the slight
difference between the linear and nonlinear growth in v̂, observed in Fig. 16(a). Snapshots of
the v̂ velocity from the DNS are depicted in Fig. 19 over tP ∈ [1.5, 2.5]; the linear case at the
same conditions was shown in Fig. 14, over tP ∈ [0, 1]. An animation comparing these cases is

FIG. 18. Nonlinear evolutions of the optimized Sr and � for minimum rs, for various H , at Re/Recrit = 1.1.
(a) Ev = ∫

v̂2d�. (b) E = ∫
û2 + v̂2d�. These results are very similar to those at Re/Recrit = 1 (Fig. 17) in

spite of the fact that linearly, exponential growth is predicted.
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FIG. 19. Nonlinear evolution of v̂-velocity perturbation contours at H = 1, � = 1.24, Sr = 7.2 × 10−3

through one cycle tP ∈ [1.5, 2.5]. The base flow is overlaid (the black dashed line indicates zero base flow
velocity). Red flooding positive; blue flooding negative.

also provided [46]. When at small energies at tP = 1.61, the highly sheared structure along the
centreline of the nonlinear case has a very similar appearance to its linear counterpart (around
tP = 1.7). However, some higher wave number effects are still visible near the walls in the nonlinear
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case even at these small energies. The reformation of the nonlinear structure, as it spreads over
the duct (tP = 1.7–1.75) and as the wings pull forward (tP = 1.925), when inflection points form
in the base flow, are also very similar to the linear case. However, past tP ≈ 1.925, the linear
growth rate slightly diminishes, while the nonlinear growth rate remains higher, again recalling
Fig. 16(a). This is related to nonlinearity inducing a symmetry breaking of the linear mode, from
around tP = 1.965, with the region of positive v̂-velocity structure tilting downward and the region
of negative velocity tilting upward. Eventually, secondary structures separate from each core before
the structures eventually break apart around tP = 2.155. From tP = 2.22 through to tP = 2.5, the
decay induced by the downstream pull of the walls creates a single highly sheared structure along
the centreline, as for the linear case.

The second aspect of the nonlinear evolution is the limited decay of E = ∫
û2 + v̂2d�, of only

three orders of magnitude, compared to the 18 or so orders of magnitude of decay in Ev = ∫
v̂2d�

(Fig. 16 or 17). Snapshots of the û velocity from the DNS are shown in Fig. 20 over the first
two periods. An animation comparing the linear and nonlinear û velocity is also provided as
Supplemental Material [46]. The û perturbation is initially close to symmetric (see animation) with
a central positive streamwise sheet of velocity, bounded by two negative sheets at each wall. The
negative sheet of velocity near the bottom wall intensifies and expands to fill the lower half of
the duct, while pushing the positive sheet of velocity into the upper half of the duct, at tP = 0.22
(the sheet of negative velocity near the top wall almost vanishing). By tP = 0.6, the û perturbation is
close to purely antisymmetric. However, opposite-signed velocity near the walls begins encroaching
on the streamwise sheets around the time when inflection points form in the base flow. This
generates the linear mode observable at tP = 0.925. At tP = 0.965, the symmetry breaking observed
in v̂ is also observed in û, disrupting the linear mode. This disruption eventually eliminates the
positive velocity structures, leaving a wavy sheet of negative velocity, at tP = 1.3. Throughout the
acceleration phase of the base flow the sheet smooths out until it is streamwise invariant. This now
symmetric sheet of negative velocity stores a large amount of perturbation energy, that produces a
relatively large minimum û-velocity. This sheet acts as a modulation to the base flow, and is highly
persistent. Similar behaviors are observed in steady duct flows [22]. Throughout the linear growth
stage, the linear perturbation is able to form over the negative sheet, between tP = 1.9 to tP = 1.965,
before nonlinearity again breaks symmetry in the linear mode past tP = 1.965.

E. Symmetry breaking

The symmetry-breaking process was further analyzed by measuring the degree of symmetry
separately for each mode j, via f̂s, j = (

∑m=Ny

m=0 [ f̂ j (ym) − f̂ j (−ym)]2)1/2. This is depicted for v̂, û
and ω̂z in Figs. 21(a) through 21(c), while a measure of the y-averaged energy in each mode is
provided in Fig. 21(d). The key result is that when the nonlinear DNS had a similar appearance
and growth rate to the linear simulation (e.g., from tP ≈ 0.75 + q to tP ≈ 0.95 + q, for q = 0, 1, 2),
every resolved v̂ mode (κ = 0 through 100) is close to purely symmetric, Fig. 21(a). Once symmetry
breaking occurs, at tP ≈ 0.965, every odd v̂ mode (first, third, etc.) becomes antisymmetric. See
also see the vorticity measure, Fig. 21(c), for the first 50 or 60 modes. Thus, the symmetry
breaking does not appear to be connected to any asymmetry introduced by numerical noise in
the initial perturbation, as every mode becomes symmetric through the preceding linear phase.
The measure of symmetry in û is effectively the photo negative of v̂ (if v̂ is almost symmetric,
û is almost antisymmetric). The exception is the zeroth mode, which remains symmetric after the
first period. The zeroth mode stores a large amount of perturbation energy, Fig. 21(d), and decays
very slowly compared to the higher modes. Hence, the DNS measure of the perturbation energy
E closely resembles the energy in the zeroth mode. As a final note, although a large number of
modes become appreciably energized, the floor of the energy in the highest modes (after the base
flow modulation occurs) is not clearly raised, and no distinct inertial subrange forms (not shown).
Hence, as turbulence is not observed, it cannot initiate the symmetry breaking. However, exactly
how nonlinearity induces the symmetry breaking remains unknown.
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FIG. 20. Nonlinear evolution of û-velocity perturbation contours at H = 1, � = 1.24, Sr = 7.2 × 10−3

through two cycles tP ∈ [0, 2]. The base flow is overlaid (the black dashed line indicates zero base flow
velocity). Red flooding positive; blue flooding negative.

V. CONCLUSIONS

This work numerically investigates the stability of pulsatile Q2D duct flows, motivated by their
relevance to the cooling conduits of magnetic confinement fusion reactors. The linear stability over

053903-28



STABILITY OF PULSATILE QUASI-TWO-DIMENSIONAL …

FIG. 21. A measure of the symmetry in the zeroth through one-hundredth isolated streamwise Fourier
modes. (a) Wall-normal velocity perturbation. (b) Streamwise velocity perturbation. (c) In-plane vorticity
perturbation. Small values of the symmetry measure indicate the mode is almost symmetric (light blue), while
large vales indicate the mode is almost antisymmetric (orange/yellow). (d) The y-averaged Fourier coefficient
for each mode, based on f̂ = û2 + v̂2, compared to the DNS measure E = ∫

û2 + v̂2d�. Note that for modes
100 < κ � 5000, only every fifth κ is plotted.

a large Re, H , Sr, � parameter space was analyzed to both determine the pulsation optimized for the
greatest reduction in Recrit and more generally to understand the role of transient inertial forces in
unsteady MHD duct flows. At large amplitude ratios (� = 100, near the conditions of a steady base
flow), the effect of varying Sr was clearest. Increasing Sr lead to both more prominent inflection
points, acting to reduce Recrit , and thinner oscillating boundary layers, acting to increase Recrit .
Although more prominent inflection points generated additional growth during the deceleration of
the base flow, the effective length of the deceleration phase increases with decreasing Sr. Thus, by
tuning Sr (for a given H , �), the minimum Recrit is reached as the perturbation and base flow energy
variations fall in phase, so long as inflection points remain prominent. Furthermore, the percentage
reduction in Recrit always improved with increasing H , when free to adjust Sr. This observation,
that pulsatility was still effective at destabilizing the flow in (or toward) fusion relevant regimes,
satisfies the first question the paper put forward.

053903-29



CAMOBRECO, POTHÉRAT, AND SHEARD

At intermediate amplitude ratios (� = 10), the addition of the oscillating flow component lead to
large changes in Recrit compared to the steady base flow. At these amplitude ratios the effect of Re
on the base flow becomes important. Increasing Re reduces the oscillating boundary layer thickness
and restabilizes the flow for a small range of frequencies. Although the base flow became more
stable with increasing Re, a large enough Re was eventually reached to destabilize other instability
modes (different from the TS-like mode).

At smaller, near-unity amplitude ratios (equal steady and oscillating base flow maxima), the
largest advancements in Recrit over the steady value were observed. At H = 10−7, an almost 70%
reduction in Recrit was attained, while by H = 10, there was over an order of magnitude reduction
(90.3%). These improvements were attained at Sr of order 10−3, a region of the parameter space
more than amenable to both SM82 modeling, and fusion relevant applications. Particularly in the
latter case, a low-frequency driving force would be far simpler to engineer than a high-frequency
oscillation. These results answer the second and third questions put forth in the paper.

At these conditions, the onset of turbulence was not observed in nonlinear DNS. Within the first
oscillation period, the intracyclic growth was able to propel an initial perturbation of numerical noise
to nonlinear amplitudes. This modulated the base flow by generating a sheet of negative velocity
along the duct centreline. Although this modulated base flow had no effect on the growth of the
wall-normal velocity perturbation, it was able to saturate the exponential growth at supercritical
Reynolds numbers. Although turbulence was not triggered, the nonlinear growth was still a promis-
ing result. However, without a wider nonlinear investigtion of the parameter space, the capability
for Recrit reductions to translate to reductions in the Re at which turbulence is observed (the
fourth question put forward), remains partially unresolved. At nonlinear amplitudes, a symmetry
breaking process was observed within each cycle. The ensuing chaotic flow may naturally improve
mixing, improving cooling conduit performance, without the severe increase in frictional losses
accompanying a turbulent flow [57]. This is an avenue for future work.

Finally, the capability for the optimized pulsations to nonlinearly modulate the base flow within
one cycle favors linear transient growth as a strong contender for enabling bypass transitions to
turbulence. This is a key area of future research, as if the flow is transiently driven over a partial
oscillation cycle (and steadily driven thereafter), turbulence may be rapidly triggered. A caveat to
such a method is that it is the continually driven time periodic base flow which yields eigenvalues
with positive growth rates at greatly reduced Reynolds numbers. Without such an underlying base
flow, the leading eigenvalues may be strongly negative and severely limit any transient growth, as
for cylinder wake flows [53]. This may be particularly problematic if large amounts of regenerative
transient growth are the key to sustaining turbulent states [52,58], a point that also requires further
investigation.

Overall, the large reductions in Recrit, occurring in a viable region of the parameter space,
form too promising a direction to cease investigating. The first steps to this are to assess the heat
transfer characteristics of the pulsatile base flow, which may naturally be more efficient than the
steady equivalent, and investigating linear transient optimals. Other than linear transient growth,
the use of pulsatility in concert with one of the various Q2D vortex promoters [4–10] could aid in
sustaining turbulence. Past the Q2D setup, the full 3D duct flow could be tackled. In particular,
the interaction between the Stokes and Hartmann layers could result in new avenues to reach
turbulence. The reduced constriction of the full 3D domain may also aid in sustaining turbulence.
Note that for fusion applications, oscillatory wall motion is not viable. Therefore, in the context
of a 3D domain, oscillatory pressure gradients are more relevant (note that the fully nonlinear
wall- and pressure-driven flows are only equivalent in the 2D averaged equations). Lastly, with a
broader scope, even electrically conducting walls could be investigated. Although less prevalent in
self-cooled designs [2], the larger shear present in boundary layers forming on conducting walls pro-
vides conditions more susceptible to transitions to turbulence and larger turbulent fluctuations [59].
The interactions between flow pulsatility and electrically conducting walls could yield many new
insights.
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