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Xiao-Ming Li,1,2,3 Shi-Di Huang ,1,3 Rui Ni,2,* and Ke-Qing Xia 1,2,3,†

1Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace
Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong, China

3Guangdong Provincial Key Laboratory of Turbulence Research and Applications,
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology,

Shenzhen 518055, China

(Received 9 September 2020; accepted 27 April 2021; published 13 May 2021)

We report an experimental study of Lagrangian velocity and acceleration in turbulent
Rayleigh-Bénard convection using particle tracking velocimetry, with the Rayleigh number
Ra spanning from 5.4 × 108 to 1.3 × 1010. The measurements were made in two represen-
tative regions of a cylindrical convection cell with aspect ratio unity, where an abundant
amount of thermal plumes are passing through constantly. The results are compared with
those obtained in the cell’s central region, where plumes are passing through much less
frequently. It is found that the probability density functions (pdf’s) of the three velocity
components almost collapse with each other and follow Gaussian distribution for all the
regions in the high Ra range, but they behave differently and deviate from the Gaussian
function for lower Ra numbers. For the acceleration, the pdf’s in all the regions exhibit
a stretched exponential form, but for lower Ra cases the amount of stretching is much
more pronounced in the plume-abundant regions as compared to that in the cell center.
This difference is more evident in terms of acceleration variance: for Ra � 4.3 × 109, the
acceleration variances in the plume-abundant regions are larger than those in the central
region and show a different Ra-dependent power law. As Ra number increases, the accel-
eration variances obtained in different regions gradually merge into a single master curve
that follows the Heisenberg-Yaglom prediction for homogeneous and isotropic turbulence.
A consistent transitional behavior is also observed in the kinetic energy dissipation rate.
Through a detailed examination of the possible balance relations between acceleration and
other small-scale properties, our results show that the acceleration in the plume-abundant
regions is balanced with a combination of thermal and kinetic energy dissipation rates,
which suggests that the turbulent flow in these regions is governed by a mixed dynamics
with contributions from both thermal plumes and turbulent background fluctuations. This
picture is supported by a modified Heisenberg-Yaglom relation and also by the scaling
behaviors of the Eulerian structure functions in the inertial range. The observed transitional
behaviors can be understood as a result of the evolution in the circulation path of the large-
scale flow, which changes from an ellipse to a more squarish shape with increasing Ra.
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I. INTRODUCTION

Turbulent convection occurs widely in nature and in industrial processes, such as circulations
in oceans and atmosphere, cooling of electronic devices, and ventilation of buildings. Turbulent
Rayleigh-Bénard (RB) convection, a fluid layer heated from below and cooled from above, has
been a paradigm for studying the general mechanism of convection phenomena [1–4]. A prominent
feature of turbulent RB convection is the ubiquity of thermal plumes [see Fig. 1(a)]. These coherent
structures are generated from the thermal boundary layers and they are found to play important roles
in various dynamic processes of the turbulent convective flow.

Through simultaneous measurements of local velocity and temperature, it is revealed that thermal
plumes are dominant heat carriers in turbulent convection [5,6]. This was later confirmed by
measurements of heat transport using a mobile temperature sensor [7] and the local heat flux data
obtained from numerical simulations [8]. Recent studies even demonstrated that thermal plumes can
be manipulated to control global heat transfer efficiency [9–11]. Such manipulation is essentially
based on modifying the statistical and geometrical properties of thermal plumes, which have been
also investigated in a number of studies [12,13]. It is shown that thermal plumes are “cliff-ramp”
structures and their statistical properties exhibit log-normal distribution [14,15]. Through direct
visualization of thermal plumes, it is further found that their geometrical and other physical
properties, such as area, length, and “heat content,” also exhibit log-normal distributions [16–18]. In
order to examine plumes more quantitatively, several extraction schemes have been developed, using
certain criteria that are combinations of plume-related quantities, such as temperature, velocity,
vorticity, and thermal dissipation rate [19–21]. These studies enrich our understanding of thermal
plumes and their role in heat transport of turbulent convection.

Thermal plumes also play a primary role in the formation and the dynamics of the large-scale
circulation in the system, known as the “wind of turbulence” [22–26]. Therefore, it is crucial to
understand how thermal plumes supply energy to the turbulent wind [2,27–30]. As thermal plumes
have temperature contrast with the background fluid, it is natural to expect that they provide energy
to the turbulent wind via their buoyancy. This is somewhat supported by the turbulent energy
production P = −〈uiu j〉∂Ui/∂x j measured by the particle image velocimetry technique [31–33].
The overall positive value of turbulent energy production implies that the turbulent wind in RB
convection is not driven by Reynolds stresses as in some other types of turbulent flows [34], which
leaves the buoyancy force associated with thermal plumes as the most plausible driving source. In
fact, by assuming a balance between buoyancy and drag forces, several low-dimensional models
successfully reproduced some dominating features of the wind [35,36]. However, a later study
found that the turbulent energy production contributed by buoyancy flux is much smaller than that
due to shear force [37]. This is in line with an experimental study of a dye concentration field
in turbulent RB convection [38]. It is found there that all the geometric properties of this passive
scalar measured in a plume-abundant region, which are presumably buoyancy-dominant, manifest
no effect of buoyancy force. These studies are mostly based on some inferences or estimations, so
direct measurements are needed.

One direct method to examine how thermal plumes supply energy to the turbulent wind is to study
the small-scale phenomenology [2,39]. In particular, a commonly examined quantity is the nth-order
Eulerian velocity structure function (SF) Sn(r) = 〈|�u(r)|n〉 ∼ rζn , where �u(r) is the Eulerian
velocity increment with a separation scale r. Based on simple dimensional analysis, the scaling
exponent ζn in the inertial range for nonbuoyant flows is expected to obey the Kolmogorov theory
as ζn = n/3 when intermittency is neglected [40], and if buoyancy force becomes dominant, ζn is
replaced by the Bolgiano-Obukhov (BO) scaling, i.e., ζn = 3n/5 [41,42]. Therefore, by evaluating
the power-law scaling of the SF, the role of buoyancy in the plume-abundant regions could be
revealed. In the past decades, numerous efforts have been devoted to the search for the so-called
BO scaling in turbulent RB convection, but a conclusive evidence for its existence is still missing
[43–50].

053503-2



LAGRANGIAN VELOCITY AND ACCELERATION …

(a) (b) (c)

FIG. 1. (a) A typical shadowgraph image of turbulent RB convection measured at Ra � 1 × 1010 and Pr =
4.3. The squared boxes indicate the two measurement regions with abundant plumes passing through. (b) and
(c): Sketches of the experimental setups for particle tracking measurements in the bottom and sidewall regions,
respectively. The light green indicates the laser beam and the dark green indicates the measurement volume.

On the other hand, to investigate the driving dynamics, one can take the Lagrangian approach
rather than the Eulerian one and examine the Boussinesq equations directly,

∂u
∂t

+ (u · ∇)u = −∇P
ρ

+ ν∇2u + αgδT ẑ, (1)

where u and P are the velocity and pressure fields, respectively, and αgδT ẑ is the buoyancy term
under the Boussinesq approximation. Note that the substantive derivative term in the equations is
just the acceleration of a fluid parcel, a quantity that has become reliably measurable with the rapid
development of Lagrangian particle tracking technique [51–59]. Therefore, one may also examine
the acceleration properties to address the issue raised above: Do thermal plumes directly drive
the turbulent wind in RB convection via buoyancy force? Of course, this approach is difficult for
experiments, as directly measuring the pressure term in the equations is technically challenging.
However, we can reasonably resort to some analytical relations to examine whether, and if so
how, the acceleration could be balanced with different forces. Indeed, in a previous study, we
have demonstrated that the acceleration variance in the center region of turbulent RB convection,
where plumes are rarely passing by, is balanced by kinetic energy dissipation rate directly [56]. This
indicates that the turbulent flow in this region is governed by the Heisenberg-Yaglom relation that
holds for homogeneous and isotropic turbulence with the pressure gradient being dominant [60,61].

In the present paper, we will use similar approaches to investigate the Lagrangian properties in
the plume-abundant regions. Our results show that the acceleration in these regions is not balanced
with local buoyancy force but a combination of thermal and kinetic energy dissipation rates, which
suggests that the corresponding turbulent flow is governed by a mixed dynamics with contributions
from both thermal plumes and turbulent background fluctuations. This picture is supported by
a modified Heisenberg-Yaglom relation and also the scaling behaviors of the Eulerian structure
functions in the inertial range.

II. EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUES

The experiments were carried out in a cylindrical convection cell with height H and diameter D
both being 19.2 cm, so the aspect ratio is unity. The sidewall was made of transparent Plexiglas with
designed flat windows placed at suitable positions for particle tracking measurements. The heating
power was supplied to the bottom copper plate with a resistive film heater and the temperature of the
top copper plate was regulated by a circulator, so that the temperature difference �T across the fluid
layer can be adjusted precisely. The Rayleigh number Ra = αg�T H3/νκ was varied from 5.4 ×
108 to 1.3 × 1010, where g is the gravitational acceleration; α, ν, and κ are the thermal expansion
coefficient, the kinematic viscosity, and the thermal diffusivity of the working fluid (deionized water
here), respectively. To achieve this Ra number range, the Prandtl number Pr = ν/κ was changed a
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little from 6.1 to 4.3, which would not affect the main conclusion of the present study with a focus
on the Ra dependence [56].

The measurements were made in two representative plume-abundant regions as indicated in
Fig. 1(a), with their edges being ∼1.5 cm away from the bottom plate and the sidewall of the
convection cell, respectively. For the sake of easy presentation, they are denoted as bottom and
sidewall regions, respectively. Note that for the present Ra and Pr ranges, the thicknesses of the vis-
cous and thermal boundary layers are ranging from 0.46 ∼ 0.78 cm [62] and 0.04 ∼ 0.15 cm [63],
respectively. Therefore, the measurement regions are well outside the boundary layers for all the
cases in the present study, and the measured Lagrangian properties are not affected by the boundary
layer dynamics. Moreover, in order to eliminate the influence of the complex three-dimensional flow
dynamics [1,57], we tilted the convection cell by a small angle to lock the turbulent wind in a fixed
azimuthal plane.

The Lagrangian particle tracking system mainly consists of three high speed cameras with a
resolution of 1024 × 1024 pixels2 and a pulsed Nd:YLF laser with a wavelength of 527 nm. The
cameras were placed in three distinct angles and their arrangements are shown in Figs. 1(b) and
1(c). The measurement volumes for both the bottom and sidewall regions were about (5 cm)3, so
that the spatial resolution is at least one order of magnitude smaller than the Kolmogorov length
scale η = (ν3/〈εu〉)1/4 in the present study (around 0.5 ∼ 2.0 mm), where 〈εu〉 is the kinetic energy
dissipation rate obtained from the second-order Eulerian SFs (shown below). The Stokes number for
the polyamid particles used (diameter = 50 μm, density = 1.05 g/cm3) ranges from 10−4 to 10−3.
Thus, the particles can be safely considered as tracers. Depending on the Ra number for a particular
run, the camera frame rate for data acquisition varied from 50 Hz to 100 Hz, which is sufficient to
resolve the Kolmogorov timescale τη = (ν/〈εu〉)1/2 (around 0.5 ∼ 3.0 seconds). Typically, a total
measurement time of ∼40 minutes was made for each Ra, corresponding to at least several tens of
the turnover time of the turbulent wind [64]. This allowed us to obtain at least 107 valid events for
each Ra, so the results should be statistically converged in the present study.

Before making the measurements, a calibration process is required to build up a transforming
relation between the positions in the acquired image and in real space. To be specific, a staircase-
shaped target with 99 calibration dots manufactured on its surface was first put into the measurement
regions of the convection cell. Then the target was illuminated by a homemade LED array and
viewed by three cameras simultaneously. Because the position information of the calibration dots
in real space is given by the manufactured drawing, so we can use this information and the acquired
image of calibration dots to obtain the coordinates and orientations of the three cameras through
an optimization program. These camera parameters determine how we reconstruct the positions of
tracer particles from the acquired image to the real space, based on which we further obtain their
trajectories. The velocity and acceleration are then calculated by applying a differentiating-filtering
Gaussian kernel to the trajectories of tracer particles [52,53]. For other details about the particle
tracking method, please refer to our previous work [56]. The data of that study obtained in the
central region of the convection cell (denoted as center region) are also used here for comparison.

It is worth pointing out that the temperature fluctuations in the convective flow can cause fluctu-
ations in the optical index of the fluid, which would have an effect on the velocity and acceleration
measurements. To evaluate this effect quantitatively, we developed a method by tracking the static
dots on the calibration target as “particles.” In the case without temperature fluctuations, the detected
positions of the calibration dots in the acquired images should be stationary; i.e., their “velocity” and
“acceleration” should be zero. However, because of the fluctuations in temperature (and thus optical
index), the detected positions of these dots also fluctuate with time. With the virtual “trajectories”
of the detected dots, we can calculate the corresponding “velocity” and “acceleration.” These
results provide a quantitative evaluation of the effect of optical index variations on the velocity
and acceleration measurements. In our previous study, we have used this method to demonstrate
that this effect is negligible in the central region of the convection cell [56]. For the regions with an
abundant amount of thermal plumes, we made a similar evaluation. Because the effect is presumably
stronger for larger temperature fluctuations (directly related to the global temperature difference
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. The probability density functions (pdf’s) of the three normalized velocity components measured in
different regions and at three representative Ra numbers, where k = x, y, and z. From top to bottom: Center
region [(a), (b), (c)], sidewall region [(d), (e), (f)], and bottom region [(g), (h), (i)]. Left panel: Ra � 6 × 108;
middle panel: Ra � 1.3 × 109; right panel: Ra � 1 × 1010. For all the pdf’s, red circle, blue triangle, and black
square represent the x, y, and z components, respectively.

�T ), we tested the case for �T = 31.6 ◦C, which is the highest �T for Pr = 6.1 explored in the
present study. It is found that the maximum difference between the detected and true positions of
the calibration dots is smaller than 0.05 mm, corresponding to one pixel in the present experiment.
The so obtained maximum root-mean-square (rms) velocity and acceleration are 0.25 mm/s and
0.14 mm/s2, respectively. These values are much smaller than the typical values for real tracer
particles (3.75 mm/s for velocity and 1.87 mm/s2 for acceleration) obtained at the same �T .
Therefore, we conclude that the effect of optical index variations on the velocity and acceleration
measurements can be safely ignored in the present study.

III. RESULTS AND DISCUSSION

A. Velocity statistics

We first compare the Lagrangian velocity statistics measured in different regions. Figure 2 shows
the probability density functions (pdf’s) of the three velocity components normalized by their own
rms values at three representative Ra numbers. It is found that, for the highest Ra cases, the three
velocity components nearly fall on top of each other, and their shapes can be described by a Gaussian
function approximately, regardless of the measurement regions. However, when it goes to smaller
Ra cases, while the behavior in the bottom region is almost qualitatively the same, those in the
center and sidewall regions become apparently different: the three components do not collapse well
anymore, and their shapes are found to be non-Gaussian and asymmetric. These results suggest
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FIG. 3. The Reynolds number Rerms measured in different regions as a function of the Ra number. The
data are calculated from the rms value of the Lagrangian velocity and compensated by a Pr−2/3 dependence
according to the model proposed by Grossmann and Lohse [27–30].

that the Lagrangian velocity in these regions have been affected by the inhomogeneity of the mean
flow, as pointed out in the study by Liot et al. [57]. To our knowledge, their study was the only
experimental work focusing on the Lagrangian velocity statistics in turbulent convection before.
Their measurement was made in the central region of an octagonal convection cell with Ra = 2.0 ×
1010 (close to our highest Ra) and Pr = 4.4, but the measurement volume was so large that both the
bulk flow and part of the large-scale mean flow were captured simultaneously in their study. They
found that the pdf of the vertical velocity follows the Gaussian distribution, which is consistent with
our present results; however, the two horizontal components are found to be highly non-Gaussian,
which is attributed to the inhomogeneity and unsteadiness of the mean flow. On the other hand,
Eulerian measurements revealed Gaussian-like pdf’s for all the velocity components in the central
region, but the behaviors in the bottom and sidewall regions were found to be deviated from the
Gaussian form and become asymmetric [65,66]. The results obtained in different studies are not
fully consistent, plausibly due to the fact that the experiments were conducted in different sizes of
measurement volumes and even in convection cells with different geometries; thus different flow
dynamics might be involved. Further dedicated experiments are needed to fully resolve this issue.

Based on the rms values of the Lagrangian velocity, we can further calculate the Lagrangian
Reynolds number in different regions as shown in Fig. 3. The data are compensated by a Pr−2/3

dependence according to the model proposed by Grossmann and Lohse (GL model) [27–30]. It
is seen that the data obtained in the bottom and sidewall regions are overall undistinguished from
each other, but they are both slightly larger than the results measured in the central region for the
low Ra range. This marginal difference in the magnitude of Rerms between the plume-abundant
regions and the center region leads to a visible difference in the Ra-dependent scaling exponent.
To be specific, if a power-law fitting is attempted to the data in different regions, we obtain
Rerms = 0.026 Ra0.55±0.01Pr−2/3 for the center region and Rerms = 0.053 Ra0.52±0.02Pr−2/3 for the
plume-abundant regions. These scaling exponents are close to the values obtained in previous
studies (varying from 0.4 to 0.5; see [1] for a review and also a recent study on this issue [67]).
We do not have a clear explanation as to why the scaling exponents for these regions are larger
than the free-fall-type value of 0.5, but observations of Re (Ra) scaling steeper than 0.5 are not
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. The probability density functions (pdf’s) of the three normalized acceleration components mea-
sured in different regions and at three representative Ra numbers, where k = x, y, and z. From top to bottom:
Center region [(a), (b), (c)], sidewall region [(d), (e), (f)], and bottom region [(g), (h), (i)]. Left panel:
Ra � 6 × 108; middle panel: Ra � 1.3 × 109; right panel: Ra � 1 × 1010. For all the pdf’s, red circle, blue
triangle, and black square represent the x, y, and z components, respectively.

uncommon in previous studies [62,68–72]. In view of this, the physical origin of the abnormal Re
(Ra) scaling deserves in-depth investigations in the future.

B. Acceleration statistics

Now we examine the Lagrangian acceleration statistics. Figure 4 shows the pdf’s of the three
acceleration components normalized by their own rms values at three representative Ra numbers,
which are the smallest, medium, and highest Ra in the present study. We found that all the pdf’s
exhibit symmetric and stretched exponential shape as in other types of turbulent flows [52,73],
indicating the strong intermittency of the flow. A somewhat unexpected finding here is that the
vertical acceleration and the lateral ones almost fall on top of each other for all the cases, even in
the plume-abundant regions. These results not only suggest that the acceleration properties in these
regions are hardly affected by the mean flow, but also indicate that they are largely isotropic, at
least in terms of first-order quantities. This behavior is in strong contrast to the Lagrangian velocity
statistics as found in Fig. 2. It is noteworthy that the Lagrangian velocity and acceleration statistics
do not necessarily manifest the same flow dynamics, which has been shown in the experimental
study by Liot et al. [57]. In a previous numerical Lagrangian study of turbulent convection [74], it
is found that the lateral accelerations have much flatter tails than the vertical one, which is ascribed
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FIG. 5. The vertical acceleration variance as a function of Ra measured in different regions. The open stars
are taken from another experimental study [58] for comparison, which were measured in the plume-abundant
region (pink star) and the center region (magenta star) of a similar convection cell, respectively. Black solid line:
〈a2

z 〉 ∼ Ra1.54±0.08 for the data measured in the plume-abundant regions with Ra � 4.3 × 109. Dark-yellow
solid line: 〈a2

z 〉 ∼ Ra2.55±0.11 for the data measured in the center region. The blue dotted line and red dash-dotted
line are the results calculated from 〈a2〉buoy = 〈(αgδT )2〉 for the bottom and sidewall regions, respectively. See
text for the explanation.

to the vortical motions induced by thermal plumes. We do not observe this anisotropy here, which
may be attributed to two factors: (i) in the numerical study, the statistics was taken over the whole
volume, so many more plume-related events were captured; (ii) the different aspect ratios used in
the two studies can result in different large-scale rolls and thus different spatial distribution of the
plumes [59].

Nevertheless, we do find appreciable differences in the acceleration pdf’s measured in different
regions: while the pdf’s obtained in the center region are almost identical for different Ra, the tails of
the pdf’s in the plume-abundant regions evolve with Ra number and stretch much more heavily for
the lower Ra cases. For example, as shown in Fig. 4, the tails of the pdf’s measured in the bottom
region reach as far as 60 standard deviations at Ra � 6 × 108; as Ra increases to 1.3 × 109, the
tails become relatively narrower and they eventually become similar with the results in the center
region at Ra � 1 × 1010. A similar feature is observed in the pdf’s obtained in the sidewall region,
though the tail stretching is not as strong as those in the bottom region. As a higher probability of
observing large values of acceleration is a manifestation of more thermal plumes passing through
the measurement volume [59,74], the pdf’s in the plume-abundant regions suggest that there could
be a different Lagrangian dynamics induced by thermal plumes for the lower Ra cases.

To reveal this different Lagrangian dynamics quantitatively, we plot in Fig. 5 the acceleration
variance as a function of Ra number. Since the pdf’s of the three acceleration components are nearly
the same, we just focus on the vertical component for ease of presentation. It is seen from Fig. 5
that, while the acceleration variance in the center region can be well described by a single power
law 〈a2

z 〉 ∼ Ra2.55, the data in the plume-abundant regions exhibit two distinct regimes separated by
Ra � 4.3 × 109. To be specific, for the lower Ra regime, the acceleration variance in the plume-
abundant regions has a larger magnitude than that in the center region. This is consistent with the
finding in a previous experimental study [58]. As Ra number increases, their difference in magnitude
becomes smaller, and the data obtained in different regions start to follow approximately the same
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trend for Ra greater than 4.3 × 109. To quantify this transitional behavior, we performed a power-
law fit to the data in the plume-abundant regions with Ra � 4.3 × 109 and the scaling exponent
turns out to be 1.54, which is in sharp contrast to the value of 2.55 obtained in the center region.
The different power laws imply that the Lagrangian acceleration in the plume-abundant regions with
lower Ra should be governed by a different mechanism.

We first check whether this difference could be attributed to the effects of buoyancy force, which
would be a natural candidate in turbulent RB convection. To do this, we assume that the acceleration
is entirely generated by the buoyancy force. According to Eq. (1), the acceleration variance averaged
over the measurement volume can be expressed as 〈a2〉buoy = 〈(αgδT )2〉. Here, δT = (T − 〈T 〉) is
the instantaneous temperature difference for a fluid parcel and it can be obtained from the rms value
of temperature fluctuation measured in the same volume, i.e., σT =

√
〈(δT )2〉, which we adopt

from results measured in the bottom and sidewall regions under conditions similar to those in the
present study [5,6]. The values of 〈a2〉buoy thus obtained are shown as the blue dotted line and the
red dash-dotted line, respectively for the bottom and sidewall regions, in Fig. 5. It is clear that
the estimated 〈a2〉buoy are much smaller in magnitude than, and different scaling-wise from, the
directly measured values. This suggests that the turbulent flow in the plume-abundant regions is
not directly driven by local buoyancy force, which is in agreement with the analysis of local force
balance in a recent numerical simulation [75]. Since the viscous term in Eq. (1) is negligible in the
regions outside boundary layers [54,76], the pressure gradient term becomes the remaining plausible
candidate.

C. Kinetic energy dissipation rate

It is extremely difficult, if impossible, to measure the pressure field generally in turbulent flows.
However, we can resort to some analytical relations to understand how acceleration could be
balanced when pressure gradient is dominant. The most well-documented one is the Heisenberg-
Yaglom (HY) relation 〈a2〉 = a0〈εu〉3/2ν−1/2, where a0 is the acceleration Kolmogorov constant
[60,61]. In a previous study [56], we have found that the vertical acceleration variance in the center
region follows the description of HY relation, indicating that the turbulent flow in this region is
governed by forces arising from turbulent background fluctuations rather than buoyancy force. Here,
we would like to examine whether the HY relation also holds in the plume-abundant regions.

To check this, we need to obtain the kinetic energy dissipation rate in the plume-abundant regions
first. This can be calculated from the exact relations for the second-order longitudinal and transverse
Eulerian SFs: SL

2 (r) = 〈εu〉r2/15ν and SN
2 (r) = 2〈εu〉r2/15ν, which are valid for homogeneous and

isotropic turbulence in the dissipative range. The acceleration pdf’s shown in Fig. 4 suggest that the
plume-abundant regions may be approximately considered as locally homogeneous and isotropic.
This is confirmed by the plateaus and the collapse of compensated SFs in the range with r � η, as
shown in the inset of Fig. 6. This local isotropy and homogeneity are reasonable as our Lagrangian
statistics are obtained within sufficiently small scales. Note that the data scatters in the smallest
scales (mostly the first three points) are likely caused by insufficient statistics, as the probability
is pretty low to find velocity pairs with very small separation r. From the plateau height of the
compensated SFs, we obtain in Fig. 6 the Ra dependence of the kinetic energy dissipation rate. The
data are normalized by Pr1.15 as suggested in our previous study [77], which has a negligible effect
on the Ra-dependent scaling. It is seen that, notwithstanding the data scatter, the kinetic dissipation
rate in the plume-abundant regions also exhibits a transitional behavior: for Ra � 4.3 × 109, the
data can be fitted by a power law as 〈εu〉 ∼ Ra1.34, whereas for higher Ra, the data begin to follow
the power-law trend as found in the center region. According to Grossmann and Lohse [27–30], the
kinetic energy dissipation rate should scale as Ra1.25 when plume dynamics is dominant, and the
power law 〈εu〉 ∼ Ra1.50 will take over when turbulent background fluctuations become significant.
The measured 〈εu〉 ∼ Ra1.34 relation seems to suggest that the flow dynamics in the plume-abundant
regions for lower Ra might be determined by both thermal plumes and turbulent background
fluctuations.
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FIG. 6. The Ra dependence of the kinetic energy dissipation rates measured in different regions. The
data are compensated by Pr1.15 according to [77]. Black solid line: 〈εu〉 ∼ Ra1.34±0.07 for the data measured
in the plume-abundant regions with Ra � 4.3 × 109. Dark-yellow dashed line: 〈εu〉 ∼ Ra1.55±0.02 for the data
measured in the cell center. Inset: Examples of the longitudinal (solid inverted triangle) and transverse (open
upright triangle) second-order Eulerian structure functions compensated by the dissipative range scaling r2 and
2r2, respectively. They are measured in the plume-abundant regions for Ra � 1.9 × 109 (lower data set) and
Ra � 5.6 × 109 (upper data set). The blue horizontal lines indicate the plateau heights that are used to calculate
the kinetic energy dissipation rates.

With the directly measured kinetic energy dissipation rate, we now check whether the HY relation
holds in the plume-abundant regions. For Ra � 4.3 × 109, as with previous results obtained in the
cell’s central region, the HY relation predicts that 〈a2〉 ∼ 〈εu〉3/2 ∼ Ra2.33±0.03, which is compatible
with the directly measured result 〈a2

z 〉 ∼ Ra2.55±0.11. However, for Ra below 4.3 × 109, the Ra
scaling predicted by the HY relation is 2.0 ± 0.1, which differs appreciably from the fitting exponent
1.54 ± 0.08 found in Fig. 5. To understand this discrepancy, we recall that the HY relation is derived
for homogeneous and isotropic turbulence and assuming that the acceleration depends only on the
kinetic energy dissipation and the viscosity. Considering the fact that thermal plumes in turbulent
RB convection are both buoyant and thermal objects, the thermal dissipation rate should also be
taken into account for the flow dynamics in the plume-abundant regions. In analogy to the different
assumptions made respectively for the Kolmogorov and BO theories [40–42], we consider the
scenario that the thermal dissipation rate εθ takes over the role of the kinetic energy dissipation
rate; i.e., the flow dynamics is entirely dominated by thermal plumes. In this case, dimensional
analysis leads to a relation analogous to the HY equation: 〈a2〉 = aθ (α2g2〈εθ 〉)3/4κ1/4, where aθ is
a new acceleration constant. For the Ra dependence of thermal dissipation rate, it has been found
to be 〈εθ 〉 ∼ Ra1.67±0.03 for all the regions outside the boundary layers [50,78]. By substituting
this result into the modified HY relation, we obtain 〈a2〉 ∼ 〈εθ 〉3/4 ∼ Ra1.25±0.02, which still differs
obviously from the experimental finding 〈a2

z 〉 ∼ Ra1.54±0.08. Notice that the measured exponent 1.54
is somehow in between the two predicted exponents (i.e., 2.0 and 1.25); it is natural to argue that the
acceleration depends on both the thermal dissipation and the kinetic energy dissipation. Then similar
dimensional analysis leads to another form of HY relation: 〈a2〉 ∼ 〈εθ 〉3/8〈εu〉3/4 ∼ Ra1.63±0.05.
The predicted exponent 1.63 is much closer to the measured value of 1.54 if the experimental
uncertainty is taken into account, suggesting that indeed both the thermal and kinetic dissipations
may play a role in this Ra range. In other words, the scaling exponent is determined by the relative
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(a) (b)

(c) (d)

FIG. 7. The compensated second-order longitudinal Eulerian structure functions measured in the plume-
abundant region (black square) and the center region (red cross). Left panel: Compensated by r2/3; right panel:
compensated by r4/5. Top panel: Ra � 1.9 × 109; bottom panel: Ra � 7.0 × 109. The blue horizontal lines are
used to guide the eye.

contributions from thermal plumes and turbulent background fluctuations, which is consistent with
the Ra-dependent behavior of the kinetic energy dissipation rate aforementioned. In this context, the
scaling exponents obtained here are effective values in the corresponding Ra ranges. This is in line
with the central spirit of the prevalent models for turbulent convection proposed by Grossmann and
Lohse [27–30].

The mixed dynamics picture reminds us of a previous study of Eulerian SFs in turbulent thermal
convection under similar conditions [45]. By arguing that the energy cascade in the plume-abundant
region is a result of the co-action of buoyancy and inertial forces, the authors of that study derived
scaling exponents ζn = 2n/5 for the Eulerian SFs Sn(r) in the inertial range. Since Eulerian and
Lagrangian frameworks are just two complementary approaches to describe fluid motions, the
second-order Eulerian SF S2(r) constructed from the present Lagrangian data in the plume-abundant
regions should follow the 4/5 scaling for the lower Ra cases. Indeed, as shown in Fig. 7, a clear
plateau is observed when S2(r) measured in the plume-abundant regions at Ra � 1.9 × 109 is
compensated by r4/5; however, as Ra becomes larger than the transitional value of 4.3 × 109, a
compensation with r2/3 is preferred. On the other hand, for the center region, both data at lower and
higher Ra cases are consistent with the classical Kolmogorov scaling for homogeneous and isotropic
turbulence. Therefore, these Eulerian results are fully consistent with the Lagrangian acceleration
and energy dissipation rate, and thus support the mixed dynamics scenario discussed above. Mixed
dynamics in terms of local balance of a somewhat different nature has also been observed in a
recent study [79]. In that case, different local force balances lead to different functional forms of
temperature fluctuation profiles in different regions (plume eruption versus wind shearing) of the
convection cell.
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IV. CONCLUSION

In summary, we have made an experimental study of Lagrangian velocity and acceleration in the
plume-abundant regions of turbulent RB convection. It is found that the pdf’s of the three velocity
components collapse with each other and follow Gaussian distribution for all the regions in the
high Ra range, but they behave differently and deviate from the Gaussian function for lower Ra
numbers. The Reynolds number Rerms based on the rms velocity has a Rayleigh number scaling
with exponent 0.52 in the plume-abundant regions, close to the value of 0.55 obtained in the region
where plumes pass through much less frequently. By comparing with the data obtained in different
regions of the convection cell, we found a different flow dynamics induced by thermal plumes, as
manifested by the changes in the stretched tails of the acceleration pdf’s, the Ra dependence of the
acceleration variance, and also the kinetic energy dissipation rate. Through a detailed examination of
the possible balances between acceleration and other small-scale properties, our results show that the
acceleration in the plume-abundant regions is balanced with a combination of thermal and kinetic
energy dissipation rates, which suggests that the turbulent flow in these regions is governed by a
mixed process with contributions from both thermal plumes and turbulent background fluctuations.
This picture is supported by the scaling laws of the Eulerian second-order structure functions in the
inertial range. Thus, our present Lagrangian study has shed light on the role of thermal plumes in
driving flow in turbulent RB convection.

Finally, we discuss the physical origins of the mixed dynamics and the transitional behaviors at
Ra � 4.3 × 109. First of all, it is important to point out that even in the plume-abundant regions,
thermal plumes could not occupy the whole volume, and turbulent background fluctuations always
exist. So it is not surprising to observe that flow properties measured in these regions are governed
by a mixed dynamics from both plumes and turbulent background. Another more important fact is
that the flow path of the large-scale circulation (LSC, or the organized motion of thermal plumes)
continuously evolves with increasing Ra [64,80]. As a result of this evolution, the geometric
structure of the LSC changes from an ellipse positioned diagonally across the convection cell to
a more squarish shape [64]. This means that as Ra increases, the organized motion of thermal
plumes becomes closer to the periphery of the convection cell. On the other hand, because the
measurement volumes in the present study were spatially fixed with their edges being ∼1.5 cm away
from the bottom plate and the sidewall, thermal plumes will eventually move out of the measurement
regions for higher Ra cases. Indeed, based on the flow path of the LSC given in [64], most of the
thermal plumes have been moved out of the measurement regions at Ra � 4.3 × 109 in the present
study. Consequently, the relative contributions of thermal plumes and turbulent background also
change with increasing Ra, and the turbulent background becomes dominant when Ra is larger than
4.3 × 109. Therefore, the transitional behaviors observed in the present study can be understood as
a result of the evolution in the flow path of the LSC or changes in flow structure morphology.
It is noteworthy that, due to this morphological change in flow structure, a transition between
two types of Re (Ra) scaling based on Eulerian measurements has also been observed in some
previous studies [67,81]. In this context, one should study the flow dynamics pertaining to thermal
plumes via conditional statistics as suggested in Ref. [49]. This requires spatial information of both
temperature and velocity being measured simultaneously, which remains technically inaccessible
for the requirements of the present study in terms of resolution and accuracy.
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