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We conduct a series of three-dimensional computations to investigate the convective flow
generated by the interaction between the vertical solute gradient and the horizontal thermal
gradient. The first set of computations is carried out under a wide range of boundary values
considered by previous experimental studies, which mostly have a strongly stratified solute
gradient. Results show that the convection invariably develops into the so-called fully
developed flow composed of the largest number of horizontal convection layers under
all the conditions considered. Within each layer, there prevails an array of salt-finger
vortices. The multilayered structure changes with boundary values systematically, while
the convection layer bears a layer thickness so that the positive thermal buoyancy can
balance with the negative solute buoyancy. In the second set of computations, we consider
the boundary conditions so that the thermal buoyancy is much larger than the solute
buoyancy. In such a weakly stratified solute gradient and a thermal-diffusion-dominated
environment, the computational domain is filled with a sizeable convective circulation
while no salt finger occurs.
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I. INTRODUCTION

When a horizontal thermal gradient is applied on a bulk fluid stably stratified by a vertical solute
gradient, a series of horizontal convection layers form on the hot wall and develop towards the cold
wall when the thermal gradient exceeds the critical condition. The solute-rich and warm fluid moves
above the solute-poor and cold fluid within the convection layer, being conducive to a salt-finger
convection consisting of a series of vortices with axes pointing from the hot wall to the cold wall.
The salt-finger vortices are generated virtually simultaneously with the formation of the convection
layers. Both flows develop into a flow containing a large number of convection layers of almost
uniform thickness. This flow is the so-called the fully developed salt-finger convective flow and
we shall abbreviate it as the fully developed flow afterwards. The fully developed flow persists
for a while before the convection layers start to merge when the salinity distribution disperses
into relatively uniform. For details of the flow evolution, the reader is referred to, for example,
Refs. [1–5], among others.

In the early stage of research, most attention was paid to the formation of the convection layer
and the layer thickness measurement, which was supposed to be the characteristic length of the
convective flow. Chen et al. [2] proposed an empirical formula for the layer thickness,

hT = α�T

−βdS/dz
, (1)
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in which α and β are volumetric expansion coefficients due to heat and solute, respectively,
�T is the horizontal temperature difference applied, and dS/dz is the vertical solute gradient.
After measuring the layer thickness from a series of experiments having a vertical solute gradient
subjected to impulsive lateral heating of different scales, they concluded that the layer thickness
decreases from 0.97hT to 0.67hT when the thermal Rayleigh number Ra = gα�T h3/νκT increases
from 1.4 × 104 to 5.4 × 104, where g is the gravitational constant, h is the layer thickness measured
from experiments, ν is the kinematic viscosity, and κT is the thermal diffusivity. This conclusion
was supported by the experiments of Huppert and Turner [3] and Huppert et al. [6] that the
layer thickness decreases asymptotically to 0.6hT when Ra increases from 106 to 109. In these
experiments, the layer thickness was measured when the convective flow became fully developed.
Since that moment the flow consisted of the largest number of convection layers of virtually uniform
thickness, which was supposed to be the representative structure predominating the unsteady flow.

In addition to the layer thickness, the convection layer stability was another issue having been
explored. Kerr [7] conducted a stability analysis for the interleaving intrusion layer. He extended the
stability analysis by considering the salt finger and concluded that the salt finger is more unstable
than the interleaving layer while the two flows have a similar growth rate [8]. This conclusion was
confirmed by Chan et al. [5], who examined the transverse mode stabilities corresponding to the
convection layer and the longitudinal mode corresponding to the salt finger, that the longitudinal
mode is slightly more unstable than the transverse mode. They also illustrated that, for both
the transverse and longitudinal modes, the flow could be categorized into three different flow
regimes: thermal diffusion, salt finger, and solute diffusion. However, their stability analyses were
implemented in the two-dimensional domain, which was extended to three dimensional by Chang
et al. [9]. They concluded that the longitudinal mode is generally more unstable than the transverse
mode. Namely, the salt-finger flow is invariably less stable than the convection layer, while the
stability criteria of these two flows bear only a small difference. This conclusion explains why,
in most experimental studies, the formation of the convection layer and the salt finger occurred
virtually simultaneously.

Previous experimental studies showed consistently that the present convective flow is highly
nonlinear and unsteady. The linear stability analysis, however, can only examine the convective
flow at the onset. Nonlinear computation, accordingly, shall be pursued to gain the details of the
flow evolution. In doing so, Wirt and Liu [10] and Heinrich [11] carried out a series of finite-
difference computations for the narrow slot flow investigated in Thorpe et al. [1], while Lee and
Hyun [12] performed the computations in a wide-rectangular container. Kamakura and Ozoe [13]
computed the same flow while paying particular attention to the merging of adjacent convection
layers. Unfortunately, all these nonlinear computations were implemented in the two-dimensional
domain; namely, only the convection layer was studied while the salt finger was ignored.

The literature survey above illustrates, in general, that the experimental studies focused on the
fully developed flow, the stability analyses emphasized the competition between convection modes
at the onset, and the nonlinear computations examined the flow in the two-dimensional domain.
These results can hardly integrate into a complete picture of the change of the flow in the entire
development process, which can be obtained by pursuing an investigation into the unsteady flow in
the three-dimensional domain. Accordingly, in the present study, we conduct a series of nonlinear
computations in the three-dimensional domain to simulate the simultaneous occurrence of the
convection layer and the salt finger. Close attention will be paid to the unsteadiness of both flows
to investigate the physical insights. In the following, we first specify the mathematical formulation
and computational procedure in Sec. II. We then simulate an experimental case to examine the
three-dimensional flow structure and ensure the correctness of the computation in Sec. III. We show
in Sec. IV that the unsteady flow will invariably approach the fully developed flow and illustrate
its characteristics from different perspectives. To explore the flow unsteadiness, we investigate in
Sec. V the flow transition from the beginning to fully developed. In Sec. VI, we turn to examine the
flow in the thermal-diffusion regime in which neither the fully developed flow nor the salt finger
occurs. Finally, we summarize a conclusion in Sec. VII.
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FIG. 1. The computational domain and boundary conditions considered.

II. MATHEMATICAL FORMULATION AND COMPUTATIONAL PROCECEDURE

Consider a rectangular box of a height H, a width L, and a depth D, and the origin of the Cartesian
coordinate locates on the front-left corner of the box, as shown in Fig. 1. The box is enclosed with
six flat walls on which the no-slip condition applies. The temperatures at the two vertical side walls
fix respectively at Th and T0 while the heat insulation is prescribed at the other walls. Regarding
the solute boundary condition, no solute flux is allowed to conduct through the six walls. Within
the box, the fluid stratifies stably with a vertical solute gradient, having a low concentration S0 at
the top (z = H) and a high concentration Sh at the bottom (z = 0). The initial temperature of the
solution is uniformly T0 in the whole box. At the beginning of the computation, a temperature Th

higher than T0 is applied impulsively at the left wall (x = 0) while the temperature at the right wall
(x = L) remains at T0.

To compute the convective flow within the box, the continuity equation, the Navier-Stokes
equations, the heat transfer equation, and the solute transfer equation are simultaneously applied.
They are, respectively,

∇ · u = 0, (2)

∂u
∂t

+ u · ∇u = −∇p + Pr∇2u + Pr(RaT T − RaSS)k, (3)

∂T

∂t
+ u · ∇T = ∇2T, (4)

∂S

∂t
+ u · ∇S = 1

Le
∇2S. (5)

In the above equations, u = (u, v,w) is the velocity, k is the unit vector at the z direction, and the
Boussinesq approximation is considered to govern the buoyancy effect. After nondimensionalizing
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FIG. 2. The computational results simulating experiment 8 of Chen and Chen [4]. (a) The convection cells
on the transverse plane at y = D/2 and the longitudinal plane at x = L/2. (b) The computational results of the
solute (solid curve) and temperature (dashed curve) distributions at t = 39 min.

the equations with relevant characteristic scales, we end up with four physical parameters,

RaT = gα�T H3

νκT
, RaS = gβ�SH3

νκT
, Pr = ν

κT
, Le = κT

κS
, (6)

which are respectively the thermal Rayleigh number, the solute Rayleigh number, the Prandtl
number, and the Lewis number. In these parameters, g is the gravity constant, H is the height of
the box, �T = Th − T0 is the horizontal temperature difference between the two vertical walls,
ν is the kinematic viscosity, κT is the thermal diffusivity, �S = Sh − S0 is the solute difference
between the bottom and the top, and κS is the solute diffusivity. For the details of the derivation of
these equations, the reader may refer to Huang [14] or references therein. Regarding the boundary
conditions, as shown in Fig. 1, the nonslip condition is prescribed on the walls of the box, and
the constant temperature T = Th on the left wall and T = T0 on the right wall. No salinity flux is
allowed on all the walls, while heat insulation is applied on all the walls except the left and right
vertical walls.

We apply the finite-volume-based solver COMSOL Multiphysics to solve (2)–(5). We need first
to use the segregated solver to convert the nonlinear partial differential equations into the linear
ones, which are to be solved on each of the grid points. The algebraic multigrid solver is then
applied to solve (2) and (3) for the velocity and pressure. The direct solver is used to solve (4)
for the temperature and (5) for the salinity. The results will be used as the initial condition for the
computation of the next time step. The computational procedure consists of four steps: (a) specify
the physical domain and relevant assumptions, (b) prescribe the initial and boundary conditions,
(c) discretize the differential equations and build up the computational grid, (d) solve the matrix
equations and postprocess the numerical results. We used a desktop PC embedded with a 12-core
AMD Ryzen 2920X CPU and 32GB RAM. In general, to finish computing a case, one needs about
60 h of CPU time to get a result like Fig. 2(a) where the unsteady flow has evolved for 2400 s (or
2400 s afterward).

Before the computation begins, the fluid within the box is of a uniform temperature T0 and a linear
solute distribution S = Sh − �S(z/H ). When the computation begins, a temperature difference
�T is applied, together with relevant boundary conditions indicated in Fig. 1. The computations
are carried out in a rectangular box of H = D = 10 cm and L = 5 cm unless otherwise stated.
To obtain numerical results with acceptable accuracy and to finish the computation in reasonable
computational time, we made several test runs with different computational grids under various time
intervals. As a result, we chose a structured hexahedron grid with 50 elements (along the width L)
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TABLE I. The physical parameters considered by the experi-
ments of Chen and Chen [4] and the present computation. Please
note that for the computations, the unit of S is converted to mol/m3

and that of β is m3/mol, which is because of the need for dimen-
sional computations pursued by the present study.

Parameters Experiments/computations

D (cm) 10
L (cm) 5
H (cm) 10
�T (◦C) 10
S0 ∼ Sh 2–5 wt %(345–885 mol/m3)
ρ0 ∼ ρh (g/cm3) 1.014–1.036
ν (m2/s) 1.0035 × 10−6

α (◦C−1) 3 × 10−4

β 7.2 × 10−3 wt %–1 (4 × 10−5 m3/mol)
κT (m2/s) 1.42 × 10−7

κS (m2/s) 1.56 × 10−9

Pr 7
Le 91

×100 elements (height H) ×100 elements (depth D) and a time interval of 0.01 s to get a numerical
result of adequate accuracy.

III. SIMULATION OF AN EXPERIMENTAL CASE

We begin the investigation with the computation simulating the flow observed by experiment 8
of Chen and Chen [4] in which �T = 10 ◦C and �S = 3% corresponding to RaT = 2.11 × 108

and RaS = 1.52 × 109, respectively. Relevant parameters considered by both experiment and com-
putation are given in Table I. The purpose of this computation is twofold: to ensure the accuracy of
computation and to examine the three-dimensional flow structure.

At the beginning of the computation, the fluid in the box has a uniform temperature of 20 ◦C and
a temperature difference �T = 10 ◦C is impulsively applied on the left wall. Almost immediately,
a series of horizontal convection layers form simultaneously along the hot wall, and virtually at the
same time, an array of salt-finger vortices is generated in the convection layer to enhance the vertical
mixing. At t = 39 min, i.e., 39 min into the computation, the flow structure of Fig. 2 demonstrates
the velocity vectors taken on the longitudinal plane at x = L/2 and the transverse plane at y = D/2.
After examining the flow structures evolving with time, we found that the flow has reached a status
having the most significant number of convection layers. This flow was recognized as the fully
developed flow [2,4,5].

For such a fully developed flow as shown in Fig. 2(a), there are eight convection layers on the
transverse plane, which is the same as in Fig. 2 of Chen and Chen [4]. In most of the convection
layers, an array of salt-finger vortices prevails rigorously. The salt-finger vortices bear a wavelength-
to-thickness ratio λ/hC ≈ 0.8, which are of a similar shape to those shown in Fig. 3 of Chan et al.
[5] although they considered �T = 6 ◦C. However, in the top-most and the bottom-most layers,
the solute distribution is virtually uniform with a stable temperature gradient, implying that the salt
finger can hardly form.

The temperature distribution of Fig. 2(b) appears to be an S shape within each layer, which
is approximately symmetric to its horizontal centerline. Simultaneously, the solute distribution is
relatively uniform due to the mixing enforced by the salt finger. A region with a large solute gradient
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FIG. 3. The time evolutions of the kinetic energy per unit mass averaged over the longitudinal plane at
x = L/2 for different temperature differences. Curve A corresponds to �T = 27 ◦C, curve B to �T = 18 ◦C,
curve C to �T = 11 ◦C. The solid circles stand for the beginning of the fully developed flow and the open
circles for the ending of the flow.

at the interface between layers forms a steplike solute structure in the entire height, showing a
steplike vertical density structure in double-diffusive interleaving [7]. In comparison with Fig. 2(a)
of Chen and Chen [4], it finds that the solute distribution from computation is strikingly similar to the
experimental measurement. The overall solute gradient is negative, roughly reflecting the original
experimental values 5% at the bottom and 2% at the top, being equivalent to a solute gradient of
−0.3% cm–1 for a height of 10 cm. The mean temperature within the layer is about 4 ◦C higher than
the initial value 20 ◦C, which is because the hot fluid rises along the heated wall and collectively
cumulates the heat within each layer.

IV. FULLY DEVELOPED FLOW

The fully developed flow comprises multiple convection layers filled with salt-finger vortices,
as shown in Fig. 2(a). As we will illustrate, the fully developed flow has three features worth
elucidating in depth. They are (i) the timing of the fully developed flow, (ii) the layer thickness
under different boundary conditions, and (iii) the control of buoyancy balance on the layer thickness.
We examine these features by computing the flows generated under a wide range of boundary
conditions, and the results are depicted in the following.

A. Timing of the fully developed flow

The first feature to examine is the timing of the fully developed flow, specifically the
beginning and the end of the flow. In doing so, we explore the unsteadiness of the flow for the case
�T = 18 ◦C and �S = 540 mol/m3 corresponding to RaT = 3.80 × 108 and RaS = 1.52 × 109,
respectively, and investigate the time evolution of the averaged kinetic energy over the longitudinal
plane at x = L/2. The result is shown by curve B in Fig. 3. In computing the averaged kinetic energy
of a plane, we consider

Ke =
∑N

i=1

(
u2

i + v2
i + w2

i

)/
2

N
(7)
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FIG. 4. The velocity vectors in the transverse plane at y = D/2 and the longitudinal plane at x = L/2 for
the case �T = 18 ◦C. The subfigures show the flow at different times: t = (a) 100 s, (b) 375 s, (c) 700 s,
(d) 1770 s, (e) 2300 s.

in which Ke is the averaged kinetic energy per unit mass, N is the number of fluid particles (or the
grid points), and u, v, w are velocities in, respectively, the x, y, z directions. Since a fluid particle
corresponds to a computation grid point, there are N = 100 × 100 = 104 particles on a longitudinal
plane. On the other hand, we illustrate in Fig. 4 the velocity vectors on both the transverse plane at
y = D/2 and the longitudinal plane at x = L/2 at different times. In the following, we shall examine
these two figures simultaneously to look into the unsteadiness of the flow.

At the beginning of the computation, the fluid having a uniform temperature of 20 ◦C is applied
impulsively with a temperature difference �T = 18 ◦C on the left wall. Almost immediately, the
hot and solute-rich fluid starts to rise along the heated wall quickly [Fig. 4(a)] and the Ke increases
rapidly with time as well (curve B of Fig. 3). As soon as the heated fluid rises to a certain height,
it turns horizontally to advance into the bulk fluid with an inclined angle towards the bottom. The
tilted convection layer reflects the fact that when the fluid moves from the hot wall to the cold
wall, it becomes colder faster than it becomes solute poorer due to κT � κS . Consequently, the
fluid becomes denser and sinks gradually on the way towards the cold wall. Similar phenomena had
been reported by, for example, Chen and Chen (Figs. 1 and 2) [4]. In the present study, the wall
temperature increases impulsively by a fixed amount at the beginning of computation. There might
occur some interleaving instabilities from the heated wall according to the finite heating rates at the
wall, for example, the experiments of Tanny and Tsinober [15] and the discussion of Kerr [16]. This
issue may merit another study to investigate the details.

At t = 375 s, the Ke reaches a maximum where the flow is composed of six evenly spaced
convection layers. Within each layer, an array of salt fingers lines up, serving to exchange heat
and solute between the top and the bottom of the layer; see Fig. 4(b). After passing over the
maximum, the Ke first decreases rapidly because of the viscous dissipation resulting from the shear
at the interface. It then reaches another maximum at about t = 600 s, which is because, as shown in
Fig. 4(c) at t = 700 s, the two convection layers at the top merge into a single layer. The resultant
multilayer flow sustains stably for a long time. Accordingly, it was widely recognized as a fully
developed flow and was also considered a representative flow by previous experimental studies
[2,4,5].

After that, due to the viscous dissipation, the Ke of the fully developed flow decreases gradually
while the five-layer structure remains until it runs into another dramatic increase at t ≈ 1610 s,
as indicated by the open circle. It stands for the end of the fully developed flow because of the
dramatic increase of Ke resulting from another merge of the convection layers at both top and bottom
boundaries. The layer merge happening at the boundary is an inevitable outcome because the no-
solute-flux condition prescribed at both boundaries decreases the solute gradient dS/dz. According
to (1), a decrease of dS/dz leads to an increase of hT , which is materialized through the merging of
two layers.
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FIG. 5. The velocity vectors in the transverse plane at y = D/2 and the longitudinal plane at x = L/2
of the fully developed salt-finger convection flows under different �T while the other parameters remain at
�S = 540 mol/m3, H = 10 cm, L = 5 cm. (a) �T = 27 ◦C, t = 500 s; (b) �T = 11 ◦C, t = 1000 s.

The Ke reaches another maximum at t ≈ 1770 s when the flow is composed of three convection
layers, as shown in Fig. 4(d). The three-layer structure remains while the convection at the top and
the bottom layers reduces gradually, and the convection in the middle becomes more intense; see
Fig. 4(e). After that, the flow integrity starts to break down due to the merging of convection layers,
leading to a more turbulent status, which can hardly characterize any flow feature. As a result, the
Ke remains virtually the same for the rest of the computation.

To consolidate the scenario of the fully developed flow, we conduct another two computations to
examine the fully developed flow under different conditions, which are �T = 11 ◦C and 27 ◦C
corresponding to RaT = 2.32 × 108 and 5.70 × 108, respectively. For the case �T = 27 ◦C, as
indicated by the solid circle of curve A in Fig. 3, the fully developed flow occurs at t ≈ 500 s,
which is composed of three convection layers and the salt-finger vortices have a large aspect ratio
of height to width, as shown in Fig. 5(a). The velocity vectors at the transverse plane at y = D/2
show that the three convection layers invariably tilt from the hot wall to the cold wall, indicating that
the horizontal temperature gradient is so significant that the flow moves robustly from the hot wall
towards the cold wall. The flow ends at t ≈ 1450 s when the multilayer structure breaks down from
the top and bottom areas. For the case �T = 11 ◦C, as indicated by the solid and open circles of
curve C, the flow becomes fully developed at t ≈ 1000 s and ends t ≈ 1500 s . The fully developed
flow comprises seven convection layers at the most rigorous stage, as shown in Fig. 5(b). However,
due to the smaller �T applied, the layer thickness is thinner, and the flow is relatively tender.

B. Layer thickness under different boundary conditions

To study the second feature of the fully developed flow, we conduct a wide-range parametric
study by focusing on four parameters: �T = 10 ◦C, �S = 540 mol/m3, H = 10 cm, L = 5 cm. For
each case studied, one parameter will change while the others remain the same. For example, when
we consider the effect of �T , the �T changes from 8 ◦C to 30 ◦C by increasing 1 ◦C to advance
a case [or �T = 8(1)30 ◦C] while the other parameters remain the same. Consequently, there are
23 cases computed. When we study the effect of �S, �S = 5(50)1150 mol/m3 is considered so
that there are 23 cases computed. When the effect of H is studied, we have H = 4 (1) 20 cm , and
there are 17 cases computed. When the effect of L is examined, we have L = 1 (1) 15 cm, and
there are 15 cases computed. Consequently, there are a total of 78 cases computed. Note that the
�S = 540 mol/m3 is equivalent to that the solute is 2 wt % at the top and 5 wt % at the bottom, and
so on.

The first case investigated is the effect of �T . It is seen from the first row of Fig. 6 that a higher
�T leads to a larger layer thickness, which is because, for a flow generated with a higher �T ,
the salt fingers are thriving more rigorously and contain higher kinetic energy. As a result, it is
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FIG. 6. The convection layers on the transverse plane at y = D/2 under different boundary conditions. The
first row illustrates the effect of varying �T , from left to right: �T = 11, 15, 18, 20, 24, 27 ◦C. The second
row illustrates the effect of varying �S, from left to right: �S = 155, 205, 255, 305, 355, 405 mol/m3. The
third row illustrates the effect of varying H, from left to right: H = 18, 16, 14, 12, 10, 8, 6 cm. The fourth row
illustrates the effect of L, from left to right: L = 14, 8, 6, 4, 3, 2 cm.

necessary to have a thicker convection layer to accommodate these robustly active salt fingers. To
confirm this scenario, we define a layer thickness hC = H/n in which n is the number of convection
layers. By comparing the hC and the theoretical counterpart hT of (1), we obtain that hC ≈ 0.9hT for
�T = 11 ◦C and hC ≈ 0.78hT for �T = 24 ◦C, which are in good agreement with the measure-
ments of Chen et al. [2].

For the effect of �S, the results shown in the second row of Fig. 6 illustrate that the n increases
monotonically with increasing �S. More specifically, we have n = 2 for �S = 155 mol/m3, 4 for
205 mol/m3, 5 for 255 mol/m3, 6 for 305 mol/m3, 7 for 355 mol/m3, and 8 for 405 mol/m3. As a
result, the hC decreases from 0.89hT to 0.65hT as �S increases from 155 to 405 mol/m3, which is
also in agreement with (1) that hT decreases with a larger �S.

For the effect of H, the results at the third row of Fig. 6 illustrate that, when H varies from 18 to
6 cm, the n remains at 6 while the hC decreases to accommodate the reduction of H. For the effect of
L, for all the cases considered, the n also remains at 6, no matter how small the L is, as shown by the
fourth row of Fig. 6. This is because, when the fluid rises along the heated wall, it does not see the
cold wall when the box width is sufficiently large. We note that, since we keep �S constant when
the effect of H is considered, it accordingly leads to that a changing L is having a similar impact to
a changing H.
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FIG. 7. The layer thickness hT calculated from (1) accounted for by the straight line or the smooth curve
and those measured from the computational results under different boundary conditions. (a) h�T for varying
�T . (b) h�S for varying �S. (c) hH for varying H. (d) hL for varying L.

The flow patterns of Fig. 6 demonstrate that the layer thickness changes under different boundary
conditions, which raises a question about whether the scaling of the present computation may apply
well to the reduced-scale flows in the laboratory and the large-scale flows in oceans. To answer the
question, we first consider the flow around the iceberg in Arctic oceans investigated by Huppert
and Turner [17] who concluded that the freshwater from the melting iceberg is mainly contained
in the horizontal convection layers generated by the interaction between the horizontal temperature
gradient and the vertical salinity gradient. To quantify the characteristics of these convection layers,
Huppert and Turner [3] conducted a series of experiments in the laboratory with RaT ranging
O(105)–O(107), which is much larger than the critical RaT = 15 000 ± 2500 determined by Chen
et al. [2] while it is close to the iceberg under oceanographic conditions. They proposed that the
layer thickness measured in the laboratory follows the relation h = 0.65hT , which is generally
smaller than h = (0.81 ± 0.10)hT resulting from the experiments for 1.4 × 104 � RaT � 5.4 × 104

[2]. The above experimental results imply that the layer thickness h is smaller than the theoretical
prediction hT when RaT is larger, which is comply with the present computational results as
explained in the following.

For the 78 cases considered, we calculate the layer thickness by dividing the height of the box,
H = 10 cm, by the number of layers at the beginning of the fully developed flow. The results are
shown in Fig. 7 in which the effects of four boundary conditions are demonstrated separately by the
four subfigures. In each subfigure, there are two groups of data; one is the result from computation
denoted with symbols, the other is the result from the theory of (1) denoted with a straight line or a
smooth curve.

The first effect examined is the temperature difference �T shown in Fig. 7(a). By comparing
the computational and the theoretical results, we conclude that the layer thickness h�T varies in
the range h�T ≈ (0.65–0.94)hT by decreasing with increasing �T . According to the definition of
(6), the RaT corresponding to the range of �T of Fig. 7(a) varies from 8.28 × 104 to 6.21 × 105,
confirming that h�T /hT decreases with increasing RaT . Specifically, present computation shows
that h�T decreases from 0.94hT to 0.65hT when RaT varies from 8.28 × 104 to 6.21 × 105, which
is consistent with the experiment of Chen et al. [2] that h = (0.81 ± 0.10)hT when RaT lies in
1.4 × 104 � RaT � 5.4 × 104 in the quantitative sense.
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The first effect examined is the temperature difference �T shown in Fig. 7(a). By comparing
the computational and the theoretical results, we conclude that the layer thickness h�T varies in
the range h�T ≈ (0.65–0.94)hT , or h�T ≈ 0.78hT in average. According to the definition of (6),
the RaT varies from 2.32 × 105 to 4.59 × 107 when �T increases from 8 ◦C to 30 ◦C. This result
shows a good agreement with Huppert and Turner [3] that h�T = 0.65hT when RaT varies in
O(105)−O(107) as well as Chen et al. [2] that h = (0.81 ± 0.10)hT when RaT lies in 1.4 × 104 �
RaT � 5.4 × 104. The agreement above implies that the present computation can simulate the flow
in the laboratory as far as the scaling is concerned.

We note that the layer thickness measured in the laboratory is generally of a scale of 1 cm, while
that around the iceberg is of a scale of several meters or larger. Huppert and Turner [3] argued that
the convection layers generated in the laboratory can simulate those generated by an iceberg in the
ocean as long as the laboratory setup is scaled properly. Consequently, since the present computation
can properly simulate that in the laboratory, it is reasonable to infer that it can simulate the flow in
the ocean as well.

Regarding the effect of �S, as shown in Fig. 7(b), the layer thickness remains at h�S ≈ 0.68hT

when �S varies from 200 to 500 mol/m3. As �S increases further from 500 to 1000 mol/m3,
the layer thickness increases from h�S ≈ 0.75hT to h�S ≈ 1.52hT . Theoretically, as shown by (1),
the layer thickness hT decreases when the salinity gradient increases. In the computation, however,
the h�S mostly increases with �S, which is a result of the enhancement of the mixing between two
layers, as shown in the flow patterns of the second row of Fig. 6.

The other two effects stem from the geometry limitation of the computational domain. When
the effect of the height H is considered, as shown in Fig. 7(c), the layer thickness changes within
the range hH ≈ (0.8–0.9)hT . While the effect of the width L is considered, as shown in Fig. 7(d),
the change of layer thickness lies in the range hL ≈ (0.7–0.8)hT . In the case of an iceberg melting
in the ocean, the layer thickness follows well with the relation h = 0.65hT , beyond the ranges due
to the geometry limitations. This implies that in the ocean when there is no geometry limitation
applied, the layer thickness is mostly influenced by the vertical salinity gradient and the horizontal
temperature difference.

Finally, it is worth mentioning that the scale of the horizontal convection layer in the laboratory
is generally of an order of 1 cm [2–5]. The scale increases dramatically to 5–10 m in the ocean [17]
and about 1 m in the lake [18]. The larger layer thickness in the ocean and the lake is because the
salinity gradient is smaller [3]. This result follows well with the definition of the layer thickness (1)
that a smaller salinity gradient dS/dz leads to a larger layer thickness hT .

C. Control of buoyancy balance on the layer thickness

To examine the third feature, we calculate the Grashof numbers Grr and Grs of the convection
layer at fully developed flow, which are defined as

Grr = gα�T h3
C

ν2

hC

L
, GrS = gβ�S′h3

C

ν2

hC

L
. (8)

In the definitions above, �T is the temperature difference applied to the heated wall, �S′ is
the solute difference across the height of a convection layer, which is obtained by dividing the
vertical solute difference �S by the number of convection layers n; namely, �S′ = �S/n [5]. In
either experiment or computation, the layer thickness is usually not uniformly equal. We shall
accordingly consider the averaged layer thickness hC = H/n as the characteristic length for the
following calculations except as indicated otherwise.

Based on the definitions of (8), we calculate the 78 pairs of (Grr, Grs) of the fully developed flows
by using the physical parameters of Table I and the hC resulting from computations, and the results
are shown in Fig. 8 with solid symbols. It is seen that for all the fully developed flows examined,
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FIG. 8. The stability boundaries of the transverse mode (the curve with crosses) and the longitudinal mode
(the curve with open circles) predicted by Chang et al. [9] for Le = 100. Letter A denotes the thermal-diffusive
regime, B the salt-finger regime, C the solute-diffusive regime, and D the stable regime. The present compu-
tation simulates nine thermal-diffusive flows denoted by the nine empty diamonds, and 78 salt-finger flows
denoted by the other four solid symbols are the cases considered in Sec. IV B: the solid circle denotes the case
of changing �T , the solid square denotes changing �S, the solid triangle denotes changing H, the upside-down
solid triangle denotes changing L. All these 78 symbols scatter in the vicinity of the straight line Grr = Grs.
The experimental results of Chen et al. [2], Chen and Chen [4], and Chan et al. [5] are presented in the stability
map denoted respectively with an open star.

their corresponding (Grr, Grs) locate invariably in the vicinity of the straight line Grr = Grs. After
applying the Grr and Grs of (8), the hT of (1), and the relation between �S′ and �S, which is

�S′

�S
= hC

H
, (9)

we obtain

GrS

Grr
= hC

hT
. (10)

Physically, Grr = Grs means, in the convection layer, that the positive thermal buoyancy balances
with the negative solute buoyancy, which was the original assumption made by Chen et al. [2] to
derive the hT (1). Since, as shown by (10), Grr = Grs leads to hC = hT , one may accordingly imply
that the convection layer determines its thickness to maintain a buoyancy-balance status.

We also found that Grr = Grs of the fully developed flow applies well to previous experiments.
To show this finding, we calculate the (Grr, Grs) of three fully developed flows observed exper-
imentally. The first flow was observed in experiment 8 of Chen and Chen [4]; there were eight
convection layers in the box of a height of 9.5 cm, as shown in their Fig. 2. By applying the
experimental conditions �T = 10 ◦C and �S = 3% and relevant physical parameters of Table I,
we obtain Grr = 1.204 × 104 and Grs = 1.083 × 104. As shown by the blank star in Fig. 8, the
(Grr, Grs) locates slightly above the straight line Grr = Grs. The second flow was observed by
Chan et al. [5], who experimented with the same box under �T = 6 ◦C and �S = 3%. As shown
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FIG. 9. The (Grr, Grs ) of the cases under different boundary conditions. There are two groups of data
shown in the figure. The first group is the (Grr, Grs ) of the 78 cases considered in Sec. IV, which is shown
respectively by line A for �T = 8(1)30 ◦C, line B for �S = 5 (50) 1155 mol/m3, and line C for H = 4 (1)
20 cm and L = 1 (1) 15 cm. The second group is composed of three tracks of the changing (Grr, Grs ) at
different �T . They are line I for �T = 11 ◦C, line II for �T = 18 ◦C, and line III for �T = 27 ◦C. The flow
structures corresponding to line II are shown in Fig. 4. The solid circles are the (Grr, Grs ) of the fully developed
flows shown in Fig. 8.

in their Fig. 1, the flow was composed of 11 convection layers. After calculating, we obtain
Grr = 2.023 × 103 and Grs = 2.204 × 103, showing again that the (Grr, Grs) locates slightly below
the straight line Grr = Grs. The third flow was observed by Chen et al. [2], who experimented with
a larger box having a height of 29.85 cm, a length of 29.85 cm, and a width of 12.7 cm. Under the
conditions �T = 13.6 ◦C and �S = 12%, they ended up with a fully developed flow containing
13 convection layers, as shown in their Fig. 4. After calculating, we obtain Grr = 0.901 × 105 and
Grs = 1.466 × 105, showing that the (Grr, Grs) locates slightly below the straight line Grr = Grs.
These experimental results constantly confirm that the convection layer fully developed is in a
buoyancy-balance status.

V. BUOYANCY-BALANCE STATUS DURING TRANSITION

More interestingly, as we will show in this section, the buoyancy-balance status holds for the
fully developed flow and the flow during the transition. We elucidate this scenario by showing
the change of the (Grr, Grs) of the flows occurring through the unsteady process. The first case
considered is for �T = 18 ◦C, and the evolution of flow structure has been demonstrated in Fig. 4.
The (Grr, Grs) corresponding to each flow of Fig. 4 is calculated, and the results are shown by
line II of Fig. 9. Line II shows that, as the convective flow changes dramatically from a six-layer
formation at t = 100 s [Fig. 4(a)] to a three-layer formation at t = 2300 s [Fig. 4(e)], both Grr and
Grs change significantly from about O(104) to O(106), while the (Grr, Grs) remains in the vicinity
of the straight line Grr = Grs. This result applies to the other two cases �T = 11 ◦C and 27 ◦C
investigated in Sec. IV, as shown by lines I and III of Fig. 9, respectively.
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FIG. 10. The time evolutions of the kinetic energy averaged over three longitudinal planes: curve A is for
x = L/5, curve B for x = 4L/5, curve C for x = L/2. The case considered corresponds to Grr = 1 × 105 and
Grs = 1.0083.

We stressed in Sec. IV that the reason why the (Grr, Grs) stays in the vicinity of the straight line
Grr = Grs is because the convection layer intends to stay in a buoyancy-balance status as it evolves
with time. This scenario, however, does not hold before the layer formation begins. To show this,
we calculate the (Grr, Grs) of the 78 boundary conditions considered, and the results are shown as
lines A, B, and C in Fig. 9. Please note that the boundary condition reflects a status at the beginning
of computation when no convection layer has yet formed. It is seen that the (Grr, Grs) distributes
widely at the beginning, and most of them are away from Grr = Grs. Apparently, the physical
configuration before the convection layers form cannot offer an environment in which the buoyancy
balance can sustain. However, after the convection layers form, the convection layer adjusts its
thickness to keep the buoyancy-balance status valid. We note that, in calculating the (Grr, Grs) for
the status before the layer formation, the H is taken as the characteristic length, and the �S is used
to replace �S′.

We have now revealed a clear picture of the convective flow generated by applying a horizontal
temperature gradient to destabilize the vertically stable salinity gradient. After the instability is
triggered, the quiescent fluid becomes convective. It develops swiftly into a multilayer flow, which
is sustained in a buoyancy-balance status until it breaks down through a cascade of the merging
between layers. During the flow development, the (Grr, Grs) of the quiescent fluid decreases by
several orders of magnitude to that of the multilayer flow. It means that the physical configuration
under the boundary condition prescribed is far away from the buoyancy-balance status, which
resumes when the layer formation begins and is sustained in due course of the unsteady process by
changing the layer thickness. Consequently, the (Grr, Grs) of the convection layer locates invariably
in the vicinity of the straight line Grr = Grs, and the computed layer thickness hC is virtually the
same as the theoretical counterpart hT . More precisely, as long as the convection layer forms, it
maintains a buoyancy-balance status in which both Grr ≈ Grs and hC ≈ hT hold. Nevertheless, the
convective flow may not always develop into the multilayer flow, such as the case belonging to the
thermal-diffusion regime, as we shall show in the next section.

VI. FLOW IN THE THERMAL-DIFFUSION REGIME

The quiescent state at the beginning may not develop into a multilayered flow when the boundary
conditions are in an extreme situation, such as when the positive thermal buoyancy is much larger
than the negative solute buoyancy so that the (Grr, Grs) locates in the thermal-diffusion regime of
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FIG. 11. The convective flow patterns at different times. (a) 200 s, (b) 500 s, (c) 1100 s, (d) 1550 s,
(e) 3000 s. The velocity vectors account for the flow on the longitudinal plane at x = L/2 and the flow on
the transverse plane at y = D/2. The velocity vectors in (a)–(d) are of the same amplitude scale, while those in
(e) are magnified ten times to demonstrate the flow structure more clearly.

Fig. 8. In such a case, the convective flow development will differ from those investigated in Secs. IV
and V. To examine this difference, we conduct a set of computations for nine cases, which are �T =
0.166, 0.0166, 0.001 66 ◦C corresponding to Grr = 1 × 106, 1 × 105, 1 × 104 and �S = 1.25 ×
10–6, 1.25 × 10–7, 1.25 × 10–8 mol/m3 corresponding to Grs = 1.0083, 0.100 83, 0.010 083. The
(Grr, Grs)’s are shown by the open diamonds in Fig. 8, all of them located in the thermal-diffusion
regime. For these cases, we have Grr � Grs so that the positive thermal buoyancy is much larger
than the negative solute buoyancy. According to (1), it implies that hT � H , meaning that the
heated fluid will rise along the hot wall until it reaches the top wall, which in turn suggests that
the computational domain can only accommodate a single convection cell. Namely, the rectangular
box may fill up with a single large circulation.

In the nine cases investigated, we choose the case �T = 0.0166 ◦C (or Grr = 1 × 105) and
�S = 1.25 × 10–6 mol/m3 (or Grs = 1.0083) to illustrate the evolution of the thermal-diffusion
flow of regime A. We first show in Fig. 10 the time evolution of the Ke over three longitudinal
planes locating respectively at x = L/5, L/2, 4L/5. Results show that the change of Ke behaves in
an organized way, by going up and down with the period becoming shorter as time evolves. On
the other hand, the Ke at different planes reaches a maximum virtually at the same time, which is
because hT � H , so that the entire box is filled up with a large circulation, as shown in Fig. 11.

The velocity vectors shown in Fig. 11 are those of the transverse plane at y = D/2 and the
longitudinal plane at x = L/2. At t = 200 s, see Fig. 11(a), the fluid close to the left wall rises
rapidly until it impinges upon the top wall. It then turns right to move towards the cold wall and
descends along the cold wall until it touches the bottom, forming a complete circulation in the
rectangular box. At t = 500 s, the Ke reaches the first maximum, and the velocity vectors show a
more rigorous structure, implying that the circulation has a faster flow speed, as shown in Fig. 11(b).
At t = 1100 s, the Ke reduces to a minimum so that the flow slows down due to the fluid viscosity
that smears out the flow momentum, as shown in Fig. 11(c). At t = 1550 s, however, the Ke increases
to another maximum, which is because, as shown in Fig. 11(d), the convective flow separates into
two convection cells. After that, as shown in Fig. 11(e), the flow becomes turbulent while it slows
down due to the viscous dissipation. Note that the velocity vectors of Fig. 11(e) magnify ten times
as large as those of the other subfigures to show the flow structure more clearly.

VII. CONCLUSION

We have conducted a series of three-dimensional computations to study the convective flow
resulting from the interaction between a horizontal thermal gradient and a vertically stable solute
gradient. When the thermal gradient is larger than the critical, a multilayer convective flow is
generated. In each layer, an array of salt-finger vortices prevails, moving in the thermal gradient
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direction. Within the convection layer, there exist simultaneously the positive thermal buoyancy and
the negative solute buoyancy, which are in balance since Grr ≈ Grs, which in turn leads to hC ≈ hT ,
implying that the determination of the layer thickness is a direct result of the buoyancy balance
as well. This buoyancy-balance status sustains under a wide range of boundary conditions chosen
per those considered by previous experimental studies. However, when the boundary conditions
are selected for the case Grr � Grs the buoyancy-balance status does not hold. As a result, the
convective flow fills up the computational domain with a single large circulation, and no salt finger
exists. The single-circulation structure satisfies the definition of hT in (1) because α�T � β�S
leads to hT � H . Finally, we note that the present computations are done with dimensional units
while the results are presented with nondimensional parameters such as Grr and Grs for the
convenience of both comparison and explanation.
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