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Drag analysis with a self-propelled flexible swimmer
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Fish swim by undulating their body to ensure propulsion. In steady state, thrust is
balanced by a total drag force, whose dominant terms depend on the Reynolds number
and on the flow regime. If skin friction prevails on pressure drag in the laminar regime, and
conversely in the turbulent regime, it is not clear how important is the contribution of the
vortex-induced drag in both regimes. In this article, we tackle both flow regimes within the
same numerical framework to address this question and the relevant scaling laws at play.
In particular, we show in the turbulent regime that the combination of both the pressure
and vortex-induced drags sets the Strouhal number between 0.2 and 0.4 following the
thrust and drag balance, in very good agreement with natural swimmers. In the laminar
regime, the vortex-induced drag can be neglected in most cases. If not, we rationalize the
correction and show that our two-dimensional swimmer needs to account for a significant
amplification of the drag force to match the biological data.

DOI: 10.1103/PhysRevFluids.6.053101

I. INTRODUCTION

Nature provides an intriguing form of propulsion based on traveling undulatory body waves
as observed in many fish species [1]. The choice of gait parameters is of interest to understand
if fundamental trends can be identified in all swimmers. The work of Bainbridge [2,3] suggested
that swimming speed U was proportional to tail beat amplitude A with amplitude increasing with
frequency up to a maximum of about 0.2L. Likewise, he corroborated that the swimming speed
was proportional to the tail beat frequency f or angular frequency ω = 2π f , for a given body
length [2]. Following Bainbridge, Webb and Kostecki [4] also identified a linear relation of tail beat
frequency to swimming speed which was found to be proportional to the product of f and Ar [5].
Triantafyllou introduced the use of Strouhal number St = f A/U to characterize fish swimming [6,7]
and he showed that for flapping foils, an optimum in efficiency is observed around a St of 0.25–0.35
[8]. This almost constant Strouhal number hypothesis has been challenged in living animals: tailbeat
frequency and amplitude were measured on American eels Anguilla rostrata by Tytell [9] who
found that the eels always swam with near constant St for a given swimming speed, but varied the
amplitude and frequency along isocontours of constant St. More recently, Eloy et al. elaborated on
Triantafyllou by showing the choice of optimal St was in fact a function of drag coefficient and
they established that for increasing drag coefficients, optimal St increased [10]. In this optimization
process, they exploited a viscous drag equal to twice that of a laminar or turbulent flat plate.

Actually, the constancy of the Strouhal number around 0.3 [6,11–13] is found in the high
Reynolds numbers, or turbulent, regime with typical Re larger than approximately 3000 [12]. This
indicates a correlation with the nature of the drag force, dominated by “inertial” drag over skin
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friction. With a balance between a thrust per unit depth scaling as ρ f 2A2L with L the fish length,
and a drag per unit depth scaling as ρU 2L and ρU 2L/

√
Re in the turbulent and laminar regimes,

respectively [12], simple scaling relations are derived:

Re ∝ Sw
4
3 or St ∝ Sw− 1

4 for Re < 3000,

Re ∝ Sw or St ∝ constant for Re > 3000
(1)

with the Reynolds number Re = UL/ν, the swimming number Sw = ωAL/ν, and the kinematic
viscosity ν. The swimming number can be interpreted as a Reynolds number based on the transverse
velocity of the undulating tail. This rather simplistic approach was successful in predicting the
swimming speed over seven orders of magnitude of the Reynolds number [12]. In addition, fish are
very efficient swimmers since the values of the Strouhal number in the turbulent regime match what
is expected if the propulsive part of the fish works at maximal efficiency [14]. In the same vein and
on the example of fishlike artificial swimmers, the constancy of the ratio A/L = A� ∼ 0.2 could
be rationalized as the minimum energy expenditure to swim [13]. On the other hand, calculations
based on potential flows give ideas of the relevant forces at play associated to the undulations of a
swimmer. In the small amplitude regime, we expect the dynamical pressure to be proportional to A
at the leading order. As the swimmer’s body makes a local angle with the direction of motion that
scales as A�, projecting the force induced by the pressure onto the direction of motion leads to a total
force proportional to A2. Calculations performed with rigid [15] or flexible [16] objects oscillating
at small amplitude reveal terms proportional to 1, U and U 2. As a consequence, dimensional
analysis leads to longitudinal forces scaling as ρLA2 f 2, ρUA2 f , and ρU 2A2/L, respectively. The
first scaling is propulsive and corresponds to the thrust generated by the added mass accelerated by
the swimmer. It has been validated with experimental systems such as heaving foils [17], pitching
foils [18], foils combining both of them [14], and flexible robotic fish [19]. The second and third
scalings give resistive forces associated to the shedding of vortices in the wake of the swimmer.
The term ρUA2 f measures the drag induced by the unsteady motion, while the term ρU 2A2/L
is related to the equivalent force exerted on an inclined stationary hydrofoil in a steady flow (the
so-called lift-induced drag). In addition, we expect terms in A4 associated to larger amplitudes
or three-dimensional (3D) effects [20]. The two contributions of the vortex-induced drag are not
accounted for in the relations (1) and we question here the relevance of these two terms, both
in the turbulent and laminar regimes. We first consider the turbulent regime. Simple dimensional
analysis shows that the Strouhal number depends on A� and CP only [13,19], with CP the pressure
drag coefficient that weights the drag expression. In the small-amplitude regime, experiments with
flexible panels or robots show that the Strouhal number is in fact independent of the swimming
velocity and of the tail beat frequency [13,17,19], and simple models of locomotion retrieve that
the Strouhal number scales as

√
CP [21]. By measuring separately the thrust and the pressure drag

experimentally with a robotic fish, Gibouin et al. [19] noticed that St is constant only for small
A� and increases as A� increases, which is different from what is expected by the simple force
balance of Eq. (1). Our hypothesis is that this trend can be associated with the two contributions
of the vortex-induced drag. If A � L these contributions can be neglected with respect to pressure
drag, but this does not hold necessarily as A ∼ L. In addition, even though values of the pressure
drag coefficient CP are difficult to infer from experiments since they require measurements when
fish do not make any movement, data collected either with dead fish or during gliding deceleration
for a large variety of species (salmon, herring, and trout [22]; cods [23]; bluegill [24]; dolphins
[25,26]; others reviewed by [24]) suggest that this coefficient ranges between 0.003 and 0.1 in the
turbulent regime. These values span over several orders of magnitude and are significantly smaller
than unity, which opens the question of the relevance of the vortex-induced drag in the final force
balance and how it affects the second scaling in Eq. (1). In particular, we will show that accounting
for the vortex-induced drag in the force balance sets St � 0.3 for A� � 0.2 whatever the value of
the pressure drag coefficient. This result is in agreement with observations performed with natural
swimmers.

053101-2



DRAG ANALYSIS WITH A SELF-PROPELLED FLEXIBLE …

In the laminar regime, drag is expected to be dominated by skin friction. Lighthill [22] speculated
that the boundary layer of swimmers is thinned by their transverse motions such that an increase
in skin friction drag is seen as part of what is referred to as the “Bone-Lighthill boundary layer
thinning hypothesis.” Ehrenstein and Eloy [27–29] investigated this hypothesis for the laminar flow
regime both numerically with a two-dimensional (2D) and 3D direct numerical simulation (DNS)
code and analytically: they conclude that the drag increase is proportional to the square root of
the perpendicular velocities [27]. Pursuing this further with a 3D boundary layer model and 3D
numerical results, they found a 40% increase in skin friction drag analytically and between 70%
and 100% greater skin friction numerically [27,28]. It is thus not clear how the enhancement of
skin friction, as compared to the one obtained with a regular Blasius boundary layer, affects the
first scaling relation in Eq. (1), nor how this component of the total drag force compares to the
vortex-induced drag component.

In this article, we exploit numerical simulations to address the questions relative to the various
drag at play in undulating swimmers. Using a 2D viscous CFD approach, Carling et al. repre-
sented an early attempt to perform solved motion, self-propelled swimming with an imposed body
deformation [30] which inspired numerous other authors [31,32]. The use of inviscid boundary
element (panel) methods has seen widespread use in studying swimming. Pedley and Hill used
2D vortex lattice approach with vortex particles to represent the wake [33]. In the same vein, we
use the 2D unsteady panel method described in [34] to simulate a self-propelled flexible swimmer
and address the role of the several components of the drag force in the scaling relations. Imposed
deformations permit to isolate the hydrodynamic problem from the coupled fluid-structure problem
present in swimming, but solved deformations are interesting to understand the true behavior of
flexible swimmers. Tytell et al. [35] used a lattice Boltzman approach to consider the influence of
body stiffness on the propulsion of a Lamprey-type 2D swimmer. Maneuvering has been considered
by [36] using a 2D panel method similar to the one employed in this work to study swimmers
undergoing maneuvers. This can be taken a step further by considering control algorithms to have
the swimmer correct its behavior to achieve the desired course [37].

II. METHODOLOGY

A. Swimmer deformation and fluid problem

The swimmer is modeled by a 2D flexible but nonextensible curve representing its spine as shown
in Fig. 1(a). An imposed traveling wave of deformation is imposed along the swimmer’s length. The
lateral displacement relative to the center of mass is of the form

y(s, t ) = 0.5A( s
L + ε)

1 + ε
sin

(
2π

λ
s − ωt

)
, (2)

where λ is the wavelength, L is the body length, A is the tail beat amplitude taken from minimum
to maximum transverse displacement, t is the time, ω is the angular frequency, s is the curvilinear
position along the swimmer with s = 0 at the head, and s = L taken to be the tail. The constant ε

alters the proportion of the tail amplitude exhibited by the head. ε and λ/L are set to 0.25 and 1,
respectively, as typical values [30]. The center of mass is situated at s = L/2. The influence of the
location of this center of mass does not drastically change the swimming gaits [21].

A 2D, unsteady panel method with a vortex particle representation of the wake [38,39] is
implemented to numerically solve the fluid problem and account for the Kutta condition at the
trailing edge of the swimmer (s = L). We approximate the swimmer boundaries with 20 flat,
constant strength, dipole panels whose end nodes are placed along the spinal curve [34]. The Kutta
condition is enforced by shedding a point vortex at each time step. The swimmer is immersed in
idealized water of density ρ = 1000 kg m−3. The fluid is inviscid and no parasitic drags, skin friction
nor pressure drag, are initially present.
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(a)

(b)

FIG. 1. (a) The swimmer is modeled by a inextensible, flexible, thin curve which is discretized into fluid
panels with its wake represented by point vortices. (b) Typical temporal evolution of the horizontal (blue) and
vertical (orange) velocity components of the center of mass, obtained for the parameters M = 100 kg m−1,
L = 1 m, Cp = 0.01, A� = 0.2, and ω = 2π rad s−1.

Finally, the system moves following the second law of Newton and the velocity �U of the center
of mass is given by

Md �U (t )/dt = �FH (t ) + �FD(t ), (3)

where M is the mass per unit span of the swimmer, �FH is the force per unit span calculated by
the solver due to the fluid-structure interaction, and �FD is the contribution of the parasitic drag
(Sec. II B). This introduces another dimensionless quantity, the dimensionless mass M/ρL2. We
have checked that this quantity does not modify the steady-state swimming velocity U as long as
M/ρL2 � 1, as already observed for rigid swimmers [21], but impacts the time of the transient
regime. Note that �FH accounts for the fluid-swimmer interaction as a whole. We expect this force
to have both positive components that contribute to the total thrust with the scaling ρLA2 f 2 per
unit span as well as negative components that contribute to the drag, the so-called vortex-induced
drag. Simulations stop when the steady state is reached. In the small-amplitude limit and in the
turbulent regime characterized by a pressure drag coefficient CP (Sec. II B), the transient time
scales as M

ωρLA
√

CP
as shown with a simple model of self-propulsion [21]. We remark here that this

2D approximation omits finite-size effects, that might be important in 3D flows, like described in
[40,41]

In practice, all simulations are stopped once the swimming velocity stabilizes to its steady-state
value. Typically, simulations were run between 100 and 500 oscillation periods for large and
small amplitudes, respectively. Multiplying the simulation duration by 10 did not alter the results;
we estimate the error below 1%. In Fig. 1(b), we show the typical transient of the locomotion
velocity, before converging towards its steady regime. For large time, U (t ) reaches a constant value,
modulated by a periodic signal, with a frequency doubled with respect to the driving deformation
[21].

In Secs. III A and III B, we take M = 100 kg m−1 and L = 1 m. In Sec. III C, simulations were
performed with M = 0.08 kg m−1 and L = 0.08 m. These choices are subjective but not restrictive
since results will be given in terms of dimensionless quantities.
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B. Parasitic drag force

The aforementioned model is purely inviscid and does not account for any parasitic drag. This
force per unit span is added in Newton’s laws with two contributions, skin friction and pressure
drags:

FD(t ) = 1

2
ρ(2L)U (t )2(CP + CF ), (4)

where U (t ) is the instantaneous velocity of the swimmer’s mass center, CF = 4
3

α√
Re(t )

measures
the skin friction coefficient with α = 1 the value for a Blasius flat plate, and CP the pressure drag
coefficient. We have used two well-established expressions for the parasitic drag valid for motionless
bodies. Both of them are weighted by dimensionless coefficients, respectively α and CP, that can
be systematically and easily varied all along the study. On the other hand, the vortex-induced drag
is associated to the deformation of the swimmer and quantifies the difference with respect to a
motionless body. This component of the total drag is directly measured from the calculation of the
flow and will be characterized in what follows.

The two terms introduced in the parasitic drag need clarifications. First, as stated in the Intro-
duction, values of the pressure drag coefficient CP are below unity. In the turbulent regime we will
consider values between 0 and 0.1. Second, α > 1 will be used to represent the drag amplification
of Bone-Lighthill boundary layer thinning in the skin friction term, which originates from finite-size
effects [27–29]. In these references, the authors show that α should be proportional to the square
root of the ratio of the transverse and longitudinal velocities, and we consequently varied α between
the values 1 and 16, to account for this effect on the boundary layer and cover the values proposed
in the aforementioned references.

Finally, the two terms have the same weight if Re ∼ (4α/3CP )2. With typical values α ∼ 1
and CP ∼ 0.01, a transition occurs around Re ∼ 104 between a skin friction dominated drag and
a pressure dominated drag. This value seems consistent with the value 3000 observed for natural
swimmers [12] but actually it depends a lot on the exact values of α and CP. In fact, we will see
that α ∼ 4 for natural swimmer in the framework of our approach and that the value of the drag
force does not vary much with CP in the turbulent regime as long as the vortex-induced drag is
accounted for. In what follows, we will set CP = 0 to study the laminar regime (Re � 103–104) and
CF = α = 0 to study the turbulent regime (Re � 103–104).

III. RESULTS

A. Vortex-induced drag

First, we study the case CF = CP = 0 as a reference. Although the parasitic drag equals zero,
the total drag is nonzero due to the oscillation of the hydrofoil. From a simple scaling analysis, we
expect St to be a function of A� only since the other dimensionless quantities ε and λ/L are fixed.
To check the consistency of the simulations we vary both A� in the range [0–0.3] and the Swimming
number in the range [102–108] that covers both the laminar and turbulent flow regimes. First, we
plot St as a function of Sw in Fig. 2(a). As expected, St is independent of Sw and is a function of A�

only. The relation between St and A� is displayed in Fig. 2(b) where we see that all the data collapse
on a single curve. St seems proportional to A� at the leading-order approximation, but one higher
term is needed at least to account for the trend.

As described in the Introduction, the vortex-induced drag force exhibits two contributions in the
small-amplitude regime: the first one is similar to those of a stationary hydrofoil in a steady flow
(the so-called lift-induced drag) which scales as ρU 2A2/L, while the second one appears through
unsteady motions which in turn behaves as ρUA2 f . With a thrust per unit span scaling as ρLA2 f 2,
the horizontal momentum balance leads to a relation between St and A�:

St2 = k2(A�)2 + k1StA�, (5)
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(a)

(b)

FIG. 2. Strouhal number without any parasitic drag. (a) St as a function of Sw. (b) St as a function of
A� = A/L. The solid line is the linear interpolation in the small-amplitude regime (A� < 0.1). All the data from
the (a) have been represented here.

with k2 and k1 two numerical factors. This simple balance predicts that for unimportant parasitic
drag the Strouhal number is proportional to the ratio A�:

St = pA� with p = k1

2

(
1 +

√
1 + 4

k2

k2
1

)
(6)

a proportionality constant. Analysis of data provided by simulations of rigid hydrofoils [42,43]
suggests that this proportionality relation could hold whatever the geometry of the swimmer in the
small-amplitude regime with a proportionality constant around unity. In our geometry, it is evaluated
in the small-A� limit (A� < 0.1) from Fig. 2 and p = 0.965 ± 0.004. From Eq. (6), k1 = p − k2/p
and we take k1 = 0.965 − k2/0.965 in what follows. We will discuss the moderate A� regime in the
next section.

B. Pressure drag and turbulent regime

If we add a pressure drag characterized by a constant drag coefficient CP, we expect now St to
be a function of both A� and CP. The variations of the Strouhal number are represented in Fig. 3
with CP varying between 0 and 0.1 and A� varying between 0 and 0.3. In the limit A� → 0, the
contribution of the vortex-induced drag should be negligible and we expect the thrust per unit span
scaling as ρLA2 f 2 to be balanced by the pressure drag per unit span scaling as ρCPLU 2, or simply
St2 ∝ CP. In the general case, if we assume that we can simply add the contributions of the pressure
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(a)

(b)

FIG. 3. (a) Strouhal number St as a function of A� = A/L for several values of CP. (b) Color plot
representing St as a function of both A� = A/L and CP.

and vortex-induced drags, we should expect

St2 = k2(A�)2 + k1StA� + k0CP + g(A�, St), (7)

where g(A�, St) is the function that accounts for large-amplitude effects in the vortex-induced drag.
The coefficients k0, k1, and k2 are inferred by restricting our analysis to the small-amplitude regime:
given k1 = p − k2/p, we can reorganize the equation in

p
St

A�
= −k2 + k0

pCP

A�(St − pA�)
. (8)

In Fig. 4(a), p St
A� is plotted as a function of pCP

A�(St−pA� ) . In the limit A� < 0.1, there is a very good linear
relation that is fitted with k0 = 0.910 ± 0.004 and k2 = 0.729 ± 0.002, and k1 = 0.210 ± 0.002
consequently. For larger A� we observe a deviation from the linear trend that emphasizes the role
of g(A�, St), which is estimated from the relation (7). In Fig. 4(b), g/St2 is plotted as a function of
A� to evaluate the relative contribution of the large-amplitude effects. As expected, there is a main
trend but no perfect collapse since g(A�, St) is expected to depend on both A� and St, two quantities
that can not be dissociated.

Here, important remarks come into sight when dealing with the turbulent regime. We first notice
that for A� ∼ 0.2, i.e., the value measured on natural fish in the turbulent regime, the Strouhal
number is found between 0.2 and 0.4 whatever CP between 0 and 0.1. This range matches exactly to
that observed for natural swimmer: the combination of both the pressure and vortex-induced drags
gives a Strouhal number insensitive to the drag coefficient. This is rationalized by the fact that the
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(a)

(b)

(c)

FIG. 4. (a) p St
A� as a function of pCP

A� (St−pA� ) . The linear interpolation is performed on the data with A� < 0.1.

The disk symbols represent the numerical points with A� < 0.1, while the crosses A� � 0.1. (b) g/St2 as a
function of A� for all the data. (c) St as a function of A� for all the data [open squares, as reported from
Fig. 3(a)] and its comparison with the small-amplitude limit using disks, predicted by Eq. (9).

term ρU 2A2/L dominates the vortex-induced drag per unit span. Since the ratio A� ∼ 0.2 is fixed
for most fish, this contribution scales as ρLU 2 as does the pressure drag. The relative contribution
of the pressure and vortex-induced drags, respectively, depends on the exact value of CP but does
not lead to significant variations of St in the range of CP characterizing fish.

Concerning the contribution of the large-amplitude effects, it reaches around 15% whatever CP,
as A� � 0.2. We can deduce that most of the total drag force is accounted for by small-amplitude
effects. We evaluate the three contributions by taking A� = 0.2 and St = 0.3; in that case k1A�St ∼
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0.013 and k2(A�)2 ∼ 0.029. Hence, the pressure drag term k0CP becomes dominant for CP ∼ 0.046.
Solving the equation (8), we get

St = A�(p2 − k2) + √
(A�)2(k2 + p2)2 + 4k0 p2Cp

2p
. (9)

We remark here that as A� becomes high enough, the pressure drag is not dominant anymore, and
we deduce that the Strouhal number becomes proportional to A� following Eq. (6). The comparison
of the small-amplitude regime given by Eq. (9) and the data of the simulation is plotted in Fig. 4(c).

As a last comment, we recall that ε and λ/L were not varied systematically but we do not expect
significant effects. Leading-edge suction is not captured in our approach, nevertheless, it might play
a significant role in the thrust for some fishes [44]. This could modify the value of the coefficients
to some extent and this contribution could be implemented in our model as a future improvement.
3D effects are also disregarded in our purely 2D approach and could modify the coefficient k1 and
k2. Given the good agreement between the simulations and natural fish, we do not expect significant
modifications. In addition, 3D flows could also require higher-order terms, for instance, proportional
to A4 as proposed by Raspa et al. [20], and modify the g function.

C. Skin friction drag and laminar regime

Now we set CP = 0 and vary α to consider the influence of proportionally increasing the added
Blasius flat plate drag from its unmodified value (α = 1) to reach the drag amplification observed
by [27–29] in the laminar regime. In order to estimate the effect of the coefficient α, A� is first
set to 0.025 and Sw varied systematically in the range [101–104] by varying f . The resulting
Re(Sw) curves are shown in Fig. 5(a). The exponents of the power law are consistent with the
expected value 4

3 whatever α. In a second study, the same simulations are performed with A� = 0.2
[Fig. 5(b)]. Actually, α ∼ 4 gives the best interpolation of the biological data reviewed by [12].
This value is significantly larger than that expected by the thinning of the Bone-Lighthill boundary
layer, as described in [27–29]. In order to check our approach, we have also displayed in Fig. 5
the results obtained from direct numerical simulations (DNS) presented in [12], using both 2D
and 3D swimmers. For 2D DNS, the best value for α is close to 3, while it increases to almost
5 in 3D DNS. Part of this difference can be rationalized with influence of some 3D geometrical
effects than can not be accounted for by 2D approaches. It appears that the simple Blasius friction
captures well the scaling for swimming. Hence, the rudimentary approach of coupling unsteady
panel method with the skin friction seems to be very efficient to predict the swimming locomotion.
In the moderate-amplitude case, we observe a slight deviation from the trends obtained in Fig. 5(a)
and the exponent of the scaling law increases from 1.2 for α = 1 to 1.34 for α = 16. We conjecture
these slope changes as the effect of the vortex-induced drag. For α = 16 the skin friction seems to
be the only dominant drag; as α is decreased, the vortex-induced drag modifies the force balance and
decreases the exponent (we recall that an exponent 1 is expected if the vortex-induced drag becomes
dominant). We exploit our balance approach to account for this feature. In the laminar regime, we
expect the following expression to account for the skin friction:

St2 = k2(A�)2 + k1StA� + k3
4

3

α√
Re

+ g(A�, St), (10)

where k1 and k2 are the constants introduced previously, and k3 another numerical factor. In the
small-amplitude regime, the nonlinear function g(A�, St) is neglected and the Strouhal number
writes

St = 1

2
k1A�

(
1 +

√
1 + 4

k2

k2
1

+ 16αk3

3
√

Rek2
1 (A�)2

)
, (11)
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(a)

(b)

(c)

FIG. 5. (a) Re as a function of Sw. Data of the swimmer are given for several α between 1 and 16 and
A� = 0.025. The biological data of the laminar regime and the interpolation by a power law [12] are represented
as well. (b) Same figure but A� = 0.2 in simulation. For both figures, we have exhibited results from direct
numerical simulations both in 2D and 3D geometries shown in [12], with A� = 0.25. (c) St/(A�) as a function

of
√

4
3 α1/2Re−1/4(A�)−1 for all the data in (a) (A� = 0.025 in blue) and (b) (A� = 0.2 in red). The solid line is

the model of Eq. (11) with k3 = 0.937. The dotted line represents a proportionality law with a factor
√

k3 =
0.968 ± 0.002. The dashed line represents St/(A�) = p = 0.965. Inset: logarithmic scales.
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which tends to the expression St = pA� [Eq. (6)] as Re tends to infinity. In the opposite limit where
the skin friction dominates the drag, the Strouhal expression becomes

St = 2

√
k3

α

3
Re−1/4. (12)

Equation (11) is tested in Fig. 5(c) by plotting St/(A�) as a function of
√

4
3α1/2Re−1/4(A�)−1 for

all the data of Figs. 5(a) and 5(b). Everything collapses on a single master curve. The crossover

between the two limit regimes occurs around
√

4
3α1/2Re−1/4(A�)−1 ∼ 1 and the best fit of the data

in the skin friction dominated regime leads to k3 = 0.937 ± 0.004.
By taking A� = 0.2 and Re = 3000 (typical value at the onset of the turbulent regime), we

find that the skin friction drag is always dominant in the laminar regime as long as α > 1.6. This
emphasizes why the scaling law introduced by [12] is robust. In addition, we can now give a more
precise argument to discriminate between the laminar and turbulent regime and clarify the remark
in Sec. II B. In the turbulent regime, we expect St ∼ 0.3. In the laminar regime St ∼ 2.2Re−1/4 with
α ∼ 4. This leads to a transition around 3000 as observed in nature [12].

IV. CONCLUSIONS

In this article, we have exploited numerical simulations to question the influence of various
drags at play in the force balance of an undulating swimmer. By varying the dimensionless tail beat
amplitude A� and the Swimming number, we have studied the impact of the pressure drag, the skin
friction, and the vortex-induced drag. In the laminar regime, typically Re � 3000, we show that the
vortex-induced drag might be neglected as long as the magnitude of the skin friction is large enough,
i.e., α > 1.6, which is the case for natural swimmer with a value for α around 4. This estimate is
at least twice as large as the prediction proposed by Ehrenstein and Eloy in [27,28] and shows that
our 2D swimmer needs to account for a significant amplification of the drag force to match the
biological data. In the turbulent regime, typically Re � 3000, we show that the combination of both
the pressure and vortex-induced drags sets the Strouhal number between 0.2 and 0.4 following the
thrust and drag balance, in very good agreement with natural swimmers.
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