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The direct monitoring of a rotating detonation engine (RDE) combustion chamber has
enabled the observation of combustion front dynamics that are composed of a number of
corotating and/or counterrotating coherent traveling shock waves whose nonlinear mode-
locking behavior exhibits bifurcations and instabilities which are not well understood.
Computational fluid dynamics simulations are ubiquitous in characterizing the dynamics
of the RDE’s reactive compressible flow. Such simulations are prohibitively expensive
when considering multiple engine geometries, different operating conditions, and the
long-time dynamics of the mode-locking interactions. Reduced-order models (ROMs)
provide a critically enabling simulation framework because they exploit low-rank structure
in the data to minimize computational cost and allow for rapid parametrized studies and
long-time simulations. However, ROMs are inherently limited by translational invariances
manifest by the combustion waves present in RDEs. In this work, we leverage machine
learning algorithms to discover moving coordinate frames into which the data are shifted,
thus overcoming limitations imposed by the underlying translational invariance of the
RDE and allowing for the application of traditional dimensionality reduction techniques.
We explore a diverse suite of data-driven ROM strategies for characterizing the complex
shock wave dynamics and interactions in the RDE. Specifically, we employ the dynamic
mode decomposition and a deep Koopman embedding to give modeling insights and
understanding of combustion wave interactions in RDEs.
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I. INTRODUCTION

A rotating detonation engine (RDE) is a novel combustion engine that uses detonative heat
release, a nearly constant-volume process, as the dominant mechanism of energy addition to the
reactive, compressible fluid flow, contrasting deflagration-based constant-pressure heat addition
typical of aerospace engines. The RDE offers a number of advantages for application in propul-
sion or land-based power generation, including mechanical simplification, broad operability limits
[1,2], the potential for increased thermal efficiency [3,4], and the reduction of propellant pumping
requirements [5,6]. The operating dynamics of the RDE includes corotating and counterrotating
coherent combustion wave fronts of varying number which interact to produce a rich set of nonlinear
dynamics and instabilities. Recent modeling efforts have focused on phenomenological models [7,8]
that are capable of reproducing and characterizing the RDE dynamics and bifurcations observed
in experiments. This includes models that characterize the nucleation and formation of combustion
pulses, the solitonlike interactions between these combustion fronts, and the fundamental underlying
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FIG. 1. (a) Schematic of the RDE. (b) Schematic of one time slice of video data, viewing down the axis
of rotation of the RDE. (c) Same time slice as in (b) viewed in an (x, t ) plot, with each column of the data in
time constructed by integrating the pixel intensity along the annulus. (d) Demonstration of the peak detection
and clustering necessary to model the wave speeds with UnTWIST. (e) Preliminary processing of (c) using the
UnTWIST algorithm. (f) Refining processing of (e) with the UnTWIST algorithm, which then becomes the
basis for a suite of data-driven models.

Hopf bifurcation to periodic modulation of the waves [8]. The goal of the present work is to
characterize the dynamics of the combustion wave front interactions directly from experimental
data, specifically with the goal of developing reduced-order models (ROMs) for characterizing the
origins of dynamic instabilities in RDEs. We will explore several leading techniques in data-driven
optimization (i.e., machine learning) of varying complexity.

Rotating detonation engine hardware is designed to amplify thermoacoustic instabilities asso-
ciated with reacting flows in circular and/or periodic geometries. For thrust-producing RDEs, the
typical design is an annular combustion chamber [see Fig. 1(a)]. Fuel and oxidizer are supplied
through independent feeds into the head end of the annulus, where they promptly mix to form a
combustible medium. An ignition source (spark plug) initiates a chemical reaction that quickly and
locally releases energy into the fluid. Supposing the geometry of the engine and the rate of heat
release allow for a local accumulation of energy (Rayleigh’s criterion), sharp gradients in pressure
and density (and therefore temperature) form. This creates a feedback loop where chemical kinetics
are further accelerated by the increase in temperature, which in turn releases more energy into the
fluid. This process saturates once all propellant is locally consumed and combustion halts. However,
in the RDE, the sharp gradients in pressure and density form traveling shock waves strong enough
to autoignite propellant. These shock-reaction structures, or detonation waves, move supersonically
about the periodic chamber of the RDE, consuming the newly injected and mixed propellant in its
path. The detonations continuously propagate so long as a sufficient amount of mixed propellant
exists in its path to overcome dissipative effects (exhaust, for example). A number of experimental
RDE programs have detailed the effects of geometry, injection schemes, and fueling conditions
[2,9–11] on the RDE dynamics.

The detonations follow attractorlike dynamics that is the manifestation of underlying multiscale
balance physics of the driven-dissipative RDE [12]. The RDE is similar in nature to mode-locked
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lasers [13,14], where global gain and loss dynamics produces a similar cascading bifurcation
diagram of mode-locked states [15]. In this context, the mode-locked structures of the RDE are clas-
sified as autosolitons, or stably propagating nonlinear waves where the local physics of nonlinearity,
dispersion, gain, and dissipation exactly balance. These physics are multiscale in nature: The local
fast scale of combustion provides the energy input to generate the mode-locked state, while the slow
scales of dissipation and propellant regeneration shape the waveform and dictate the total number
of detonation waves. Thus, the global multiscale balance physics give the detonations their mode-
locking properties, not exclusively the frontal dynamics prescribed by classical detonation theory.

These properties have been experimentally observed at the University of Washington High
Enthalpy Flow Laboratory using a gaseous methane oxygen 76-mm flow-path outside diameter
RDE, as described in previous works [7,8,16]. This experimental apparatus is unique in that
the RDE tested is fully modular and that the apparatus exists in a closed system. The modularity of
the RDE allows for parametric testing of engine geometries (flow-path lengths and annular gaps)
and injectors (varying injection scheme, orifice count, and total injection area) with respect to varied
propellant feed rates and stoichiometry. Because the entire apparatus is closed, it is implied that both
the inlet and outlet boundary conditions of the combustor are able to be set and are controlled
here to give rise to stable traveling wave dynamics. The inlet boundary condition is implicitly
set via a desired flow rate and propellant mixture, thereby constraining the manifold pressures.
The outlet boundary condition is set via controlling the back pressure of a large (approximately
4 m3) dump volume. Finally, the exhaust routing of the engine has allowed for the installation
of an optical viewport approximately 2 m downstream of the exit plane of the combustor. Each
experiment consists of four main phases. First, a prepurge of inert diluent, typically nitrogen, floods
the system. Second, the diluent is shut off and propellant begins to flow through the combustor.
Third, chemical reactions are triggered, typically via an automotive spark plug or a predetonation
tube. In a successful experiment, the self-organization of traveling waves occurs and persists so
long as propellant is flowing into the combustor. Finally, the propellant is shut off and diluent is
reintroduced into the combustor. For each experiment, a high-speed camera records the duration
of the “hot” portion of the run, including the ignition event, the transient mode-locking phase, and
steady operation of the combustor. The experiments exhibited in this manuscript are representative
of modes of operation and transients observed in this experimental apparatus. These experimental
spatiotemporal dynamics are taken from Koch et al. [7,8,16].

Computational fluid dynamic simulations have been heavily relied upon to diagnose the RDE
flow fields. These simulations vary from periodic two-dimensional “unwrapped” rectangular
domains [17–19] to full detailed three-dimensional engine geometries [20–23]. From these sim-
ulations, the canonical RDE flow field is obtained [a cartoon of which is shown in Fig. 1(a)] and
relevant metrics can be extracted, such as thrust, specific impulse, available mechanical work, and
thermodynamic efficiency [3,24]. However, long-time parametric simulations of RDE dynamics is
prohibitively expensive since both the fastest physics (the detonation front) and the slowest physics
(mixing and/or exhaustion) need to be adequately resolved for proper system behavior. Thus,
simulations need to be run for several, if not dozens or hundreds, of cycles (or until the physics of
the slowest scales are fully developed). The computational cost of simulations can quickly become
prohibitive and it typically requires high-performance computing architectures for even moderate
lengths of simulation time. Consequentially, ROMs have been developed, with varying degrees of
success, for recreating the RDE canonical flow field [25,26], predicting thermodynamic trends [27],
predicting application-based propulsive performance [28], or reproducing the dynamics of the waves
[7,8,29,30]. However, because of the multiscale nature of the RDE and the intricate interactions
of its fundamental physical processes, these modeling efforts are often constrained to geometry,
propellant, or mode-specific operating regimes, with the imposition of wave topology or detonation
structure. In an alternative approach, experiments allow us to build ROMs directly from data. To
further ease computational burden in the study of RDE flow fields, recent work [7] has indicated
that the relevant flow physics can be fully captured by in a single dimension, eliminating the need
to compute over the full three-dimensional flow domain.
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In order to construct ROMs of the combustion-front dynamics, one must first move to a frame of
reference of the mode-locked states. Reduced-order models exploit the intrinsic low-rank structure
of the simulation data in order to create more tractable models for the spatiotemporal evolution
dynamics. Typically, ROMs leverage the singular value decomposition (SVD) to produce a linear
dimensionality reduction [31,32], whereby a dominant set of correlated modes provide a subspace
in which to project the partial differential equation dynamics [33–35]. Low-energy modes are then
truncated and the governing equations are projected onto the remaining high-energy modes to create
an approximate and low-dimensional model. Dimensionality reduction and modal decomposition
approaches have been well studied and are extremely efficient [33–38]. However, SVD-based ROMs
are typically compromised by traveling wave physics, which represent an underlying translational
invariance. Thus a growing body of literature is aimed at producing mathematical architectures that
are capable of determining the traveling wave frame of reference of the underling wave [39–42].
While these works are critical to addressing the shortcomings of traditional methods, they are
limited to applications with constant wave speeds or knowledge of the underlying physics. Mendible
et al. [43] recently developed an unsupervised machine learning procedure for transport-dominated
systems characterized by traveling waves. This method can be applied with or without knowledge of
the governing equations, providing an interpretable mathematical architecture for ROMs exhibiting
traveling wave phenomenon. This algorithmic infrastructure can be used to extract the intrinsic fea-
tures associated with the RDE front evolution, uncovering a coordinate system where it is possible
to obtain low-order models. We then leverage a selection of machine learning algorithms to explore
the dynamics prescribing the ubiquitous RDE front interactions. Importantly, the methodology is
data driven in that the ROMs are constructed entirely from detailed experimental observations. This
work is part of a growing body of literature that is bringing emerging technology in machine learning
to bear on problems in fluid mechanics [44–46].

II. DETONATION WAVE TRACKING WITH UNTWIST

It is widely known that transport phenomenon such as traveling waves impair the effectiveness
of traditional dimensionality reduction methods, mainly due to an issue of separation of space
and time variables [32,39–42]. While an approach like the method of characteristics can be used
when governing equations are known, this experimental framework necessitates a system-agnostic
method. One numerical approach to resolve this issue is to shift the frame of reference from the
laboratory frame to a moving coordinate frame that matches the speed of the traveling waves. Once
the traveling quantities have been made stationary in this way, efficient traditional methods such as
proper orthogonal decomposition (POD) can be utilized for dimensionality reduction.

In order to build reduced-order models on the RDE data, rife with traveling shock fronts,
it is necessary to preprocess it by aligning these traveling waves in time. Here we employ the
unsupervised traveling wave identification with shifting and truncation (UnTWIST) [43] algorithm
to perform this preprocessing step. This method allows for a data-driven and interpretable model for
the speeds of the traveling shock fronts, as well as separable low-rank modes, providing an intuitive
insight into the physics of the system. A basic overview of UnTWIST and its implementation is
described here. For further details and a complete algorithm, refer to [43].

A. UnTWIST method

Similar to other methods, UnTWIST learns a moving coordinate frame, given by the speed of a
traveling wave. This holds the wave of interest stationary within the coordinate frame, allowing for
models to be built for that particular wave. Unique to UnTWIST is the ability to learn physically
relevant wave speeds directly from the data with little knowledge of underlying dynamics. It allows
for a wide variety of physics, including linear, nonlinear, nonconstant, and nonsmooth wave speeds,
to be considered. To do so, UnTWIST relies on an optimization over a user-input library of potential
wave speed functions to learn this coordinate frame. This library may include any number of linear
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FIG. 2. (a) Example of a traveling wave data set. (b) Wave peak points (xi, ti ) identified using a ridge
detection, shown overlaid with the waves. (c) Wave peak points clustered into wave groups using spectral
clustering. Once these points are identified and clustered, a model is fit to each based off of a user-provided
library of candidate linear or nonlinear functions.

or nonlinear functions. If expert knowledge of the system is available, a judicious choice of functions
is possible. In many cases, simple functions such as sinusoids and polynomials suffice. Inclusion of
many candidate functions will increase the computational cost of the algorithm; therefore, a balance
between completeness and the size of the library must be found.

To execute the optimization on wave profile data u(x, t ), two main steps are first performed:
(i) ridge detection to learn the location in (x, t ) space of the traveling wave fronts or peaks and
(ii) spectral clustering to divide the points (xi, ti ) into groupings for each wave. For example, these
two steps are shown in Fig. 2.

Once the wave fronts are identified and separated, the data are assembled into the optimization.
We construct matrices X and T using the (x, t ) locations of the wave fronts in u(x, t ), where T
contains the values of t evaluated for each function in the user-defined library. The cost function is
given by

min
C,B,W∈�

1

2
W � ‖X − TC‖2

2 + λR(B) + 1

2ζ
‖C − B‖2

2, (1)

where W is the weighting matrix that serves to mask wave peak points for clustering into wave
groups. With values of 0 or 1, each row of W corresponds to each wave peak point (xi, ti ) and each
column corresponds to a given wave. Values in C are the coefficients of the speed models that are
discovered for each wave. A row of C corresponds to a wave and columns give the coefficients of
each term in the model library T, which multiply together to generate the wave speed models. It is
desirable for C to be sparse, i.e., to have few nonzero terms, to glean an interpretable, physically
realistic model for the wave speeds. Rather than placing a sparsity constraint on C directly, the
constraint can be relaxed by introducing an auxiliary matrix B, which is close to C. The matrix B
is directly forced to be sparse via a regularizing function R(·), relieving the burden on C to meet
both sparsity and accuracy goals. The hyperparameter λ is chosen to calibrate the sparseness of
auxiliary matrix. The hyperparameter ζ is chosen to enforce the closeness of C and B, ensuring that
the solution C itself is also sparse. These two hyperparameters are tuned in tandem in order to meet
sparsity and accuracy requirements of the model. This optimization presents a large search space
over multiple parameters and is not guaranteed to be convex. Sparse relaxed regularized regression
[47] is used to minimize the cost function because of its ability to handle nonconvexity and its
computational efficiency compared to similar sparsity-promoting optimization schemes.

Once the model coefficients C are learned, they can be used to shift each time segment of data in
order to align the data into one wave group’s moving coordinate frame. The mask matrix W allows
for easy separation of the wave fronts for this alignment. Once the data are aligned into the new
coordinate frame, traditional dimensionality reduction methods can easily be applied and can be
expected to reveal extremely low-rank modes for the “straightened” wave or wave group.
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FIG. 3. Preprocessing step using UnTWIST. (a) Example of an original data set, presenting fast-moving
shock fronts and a long-time series relative to the spatial dimension. (b) Ten-time-step segment of (a) showing
approximately linear-speed shock front propagation. (c) Wave peak points identified and separated. (d) Linear
models of the shock wave speeds. (e) Data from (a) shifted into the average wave speed, dictated by the models
identified in (d), which reveals the relevant interactions between the shock waves.

B. UnTWIST applied to RDE data

An example of the UnTWIST algorithm applied to snapshots of RDE data can be seen in Fig. 3.
UnTWIST was applied in two steps for each data set presented. The models we build are based
on time series that are long relative to the spatial dimension, with between 1000 and 10 000 time
steps relative to 180 or 360 spatial points. The snapshots also contain wave fronts that travel on a
fast timescale relative to the slow timescale of the relevant dynamics [see Fig. 3(a)], necessitating an
extreme shift in order to shift into a straightened wave coordinate frame. Because of the fast-moving
fronts and long-time series, the UnTWIST algorithm was applied in two steps, a preprocessing step
and a refining step, with different inputs for each.

For the preprocessing step, only ten time steps of the data are considered, as seen in Fig. 3(b).
Using the UnTWIST algorithm and the identified wave peak points as shown in Fig. 3(c), we obtain
the best linear-speed model for each wave [Fig. 3(d)]. A single linear-speed shift, the average of the
speed models, is applied to original data for the entire time series and gives Fig. 3(e). This first shift
reveals critical underlying dynamics of the shock wave interactions.

After the first shift is performed, a second refining shift can be used with a more diverse library
of potential wave speed models to completely align the data for building low-rank models. The
refining shift is performed similarly to the first shift, but we now include potential wave speed
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FIG. 4. Refinement step using UnTWIST. (a) Data shifted into the coordinate frame of the first (yellow)
wave. (b) Corresponding first mode of a robust dimensionality reduction of the shifted data in (a) compared
to the first mode of the original data. The shifted mode shows a clear shock front where the first wave is
straightened and a smaller artifact where the second wave exists, whereas the original data mode reveals no
interpretable structures within the data. (c) Data shifted into the coordinate frame of the second (orange) wave.
(d) First mode from dimensionality reduction of the second wave frame, showing the same shock front shape
in the correct position, and artifact of the first wave. Higher modes of the unshifted dimensionality reduction
are not shown, but similarly do not indicate soliton structure.

functions such as sinusoids, polynomials, exponentials, and nonlinear combinations of these terms.
For the example shown in Fig. 4, sinusoids and exponentials were included in the candidate function
library. Once the models were computed, the data were shifted into n refined coordinate frames, one
for each shock wave.

The outcome of the second shift can be seen in Fig. 4. Each coordinate frame allows one shock
wave to appear stationary at a time. The shifted data are now aligned in a manner that is amenable
to traditional dimensionality reduction methods, such as POD. An example of the first mode of a
robust dimensionality reduction [48] of the shifted data is shown in Figs. 4(b) and 4(d), compared
to the first mode of the POD of the original (laboratory frame) data. Here we only explore the first
segment of the time series, before the bifurcation point.

This provides an example of how UnTWIST is used on a particular data set in order to align
the traveling waves to uncover low-rank representations of their wave fronts. The same steps have
been used to process various data sets. While UnTWIST can align these wave fronts into more
amenable coordinate frames for dimensionality reduction of the wave field as a whole, it is also of
great interest to study the linear and nonlinear interactions between wave fronts in RDEs. Using
similarly aligned data and the wave speeds and locations throughout the time series, we explore
models of the shock wave interactions in the following section.

III. DATA-DRIVEN MODELS OF ROTATING DETONATION FRONT DYNAMICS

The ability to automate the discovery of a moving coordinate system pinned to a shock front
allows for a wide range of reduced-order modeling possibilities. In what follows, we utilize
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data-driven modeling strategies that reduce the dynamics to simple models that characterize the
observed interactions of the rotating detonation waves. Experiments show that these interactions
can range from simple linear dynamics to more complicated nonlinear dynamical interactions. Our
choice of methods allow us to characterize the full range of observed data.

A. Linear dynamics: Dynamic mode decomposition

The dynamic mode decomposition (DMD) [49–52] is an alternative to the POD reduction
typically used in ROMs. It not only correlates spatial activity, but also enforces that various low-rank
spatial modes be correlated in time, essentially merging the favorable aspects of POD in space and
the Fourier transform in time. Thus, in addition to performing a low-rank SVD approximation, it
further performs an eigendecomposition on a best-fit linear operator that advances measurements
forward in time in the computed subspaces in order to extract critical temporal features. The DMD
algorithm is a least-squares regression. In its simplest form [51], one can consider two sets of
measurement data u,

X =

⎡
⎢⎣

...
...

...

u1 u2 · · · um−1
...

...
...

⎤
⎥⎦, X′ =

⎡
⎢⎣

...
...

...

u′
1 u′

2 · · · u′
m−1

...
...

...

⎤
⎥⎦, (2)

where the primed data are advanced �t into the future compared to its unprimed counterpart. Exact
DMD computes the leading eigendecomposition of the best-fit linear operator A relating the data

A = X′X†, (3)

where the dagger represents the Moore-Penrose pseudoinverse. This gives a least-squares fit to the
best linear model fitting the data whose solution is

uk =
n∑

j=1

φ jλ
k
jb j = ��kb, (4)

where φ j and λ j are the eigenvectors and eigenvalues of the matrix A, respectively, and the
coefficients b j are the coordinates of the initial condition u0 in the eigenvector basis. The eigenvalues
λ of A determine the temporal dynamics of the system. It is often convenient to convert these
eigenvalues to continuous time ω = ln(λ)/�t , so the real parts of the eigenvalues ω determine
growth and decay of the solution and the imaginary parts determine oscillatory behaviors and their
corresponding frequencies. The eigenvalues and eigenvectors are critically enabling for producing
interpretable diagnostic features of the dynamics.

A simple DMD model is computed by stacking one time shift as

X =
[

x(t1) x(t2) · · · x(tm−2)
x(t2) x(t3) · · · x(tm−1)

]
, X′ =

[
x(t2) x(t3) · · · x(tm−1)
x(t3) x(t4) · · · x(tm)

]
(5)

and utilizing a variable projection method to compute an optimized DMD [53]. This simplified
DMD formulation circumvents many of the biases introduced by standard DMD algorithms [49–52]
by directly fitting an exponential solution. Figure 5 shows the true distance between the shock fronts
compared to discovered DMD model, using one pair of modes to approximate the dynamics.

B. Nonlinear dynamics: Lotka-Volterra model

Although there are many interacting wave dynamics that appear to be described by simple
harmonic motion, i.e., linear oscillators well captured by DMD, the RDE also produces dynamics
that is strongly nonlinear in nature. Figure 6(a) presents three RDE shock fronts interacting in an
oscillatory manner. When shifted into the coordinate frame of the top wave, shown in Fig. 6(b), it is
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FIG. 5. True distance between the shock wave fronts compared to the linear DMD model.

clear that the middle and lower waves exhibit sharp periodic changes in wave speed with respect to
the top wave. Such oscillations are beyond a simple linear description.

The Lotka-Volterra equations, also known as the predator-prey equations, are a coupled pair of
nonlinear equations often used to model population changes in two species and are given by

dy

dt
= αy − βyz, (6)

dz

dt
= δyz − γ z, (7)

where α, β, δ, and γ are positive real parameters controlling the growth and decay of y (prey) and
growth and decay of z (predators), respectively. A Lotka-Volterra model may be a good candidate
to describe the dynamics in this system, not least because of its capture of the periodic changes with
sharp peaks. Preliminary analytical models for traveling waves within RDEs [7] indicate a similar
form: By eliminating the spatial dependence in these equations, which is achieved in practice by
processing with the UnTWIST algorithm, this model is phenomenologically equivalent to the Lotka-
Volterra model. Additionally, the Lotka-Volterra model intuitively fits the nature of the data. The
competition between combustion and regeneration of the propellant gives the analogous dynamics,
where the prey is the reactant and the predator is combustion. One wave’s acceleration combusts
more fuel along the annulus and therefore leads to the other waves’ deceleration due to lack of fuel
regeneration, similar to how an increase in predator population results in a decrease in prey.

We explore these nonlinear dynamics by fitting a Lotka-Volterra model to the peak locations of
the middle and lower waves. We take y and z to be the locations of the two traveling waves from

FIG. 6. (a) Example data set in the laboratory frame. (b) Same data set shifted into the coordinate frame
learned by UnTWIST using linear models for wave speed for both the preprocessing and refinement steps.
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FIG. 7. Lotka-Volterra model for the two traveling waves in Fig. 6. Yellow and orange indicate the true
peak locations y and z of the two wave fronts of the data set in the shifted frame, respectively, and black shows
the Lotka-Volterra model. The parameters α = 0.07, β = 0.13, δ = 0.10, and γ = 0.05 yield a well-fitting
model for the two waves which compete for resources.

Fig. 6(b), using the negative of the middle wave to orient the sharp peaks in the positive direction.
Parameters for the best-fit model were determined via a Nelder-Mead simplex optimization and were
found to be α = 0.07, β = 0.13, δ = 0.10, and γ = 0.05. The first 500 time steps were used as a
training set. The error was computed over these time steps as the Frobenius norm of the difference
between model and true [y, z]. The resulting model, with forward-time prediction for testing data
from time 501–1000 can be seen in Fig. 7. This model proves to be a good fit for the periodic
nonlinear dynamics of wave interactions, with the frequency matching through to the end of the test
data set.

The Lotka-Volterra model is only one of a potential wealth of interpretable nonlinear models
that may describe and give insight into the physics governing the RDE. An interesting avenue of
future work is to automate the identification of nonlinear dynamics, for example, using the sparse
identification of nonlinear dynamics (SINDy) [54] algorithm. SINDy has been widely applied
to identify reduced-order models for fluid systems [55,56], including those with predator-prey
dynamics [57], and is a promising candidate for obtaining low-order models of RDE dynamics.

C. Deep Koopman theory

In the following, ROMs based on Koopman theory are explored that do not rely on an explicit
dimensionality reduction technique and can therefore avoid translational invariances. Koopman
theory postulates that any nonlinear dynamical system can be lifted by the means of a nonlinear
and time-invariant functional, oftentimes referred to as observables, into a space where its time
evolution can be described by linear methods. It was first introduced in the seminal paper for
Hamiltonian systems [58] but later generalized to continuous-spectrum systems [59]. Even then
it was of considerable importance as a building block for advances in ergodic theory [60–64].
Koopman theory has experience renewed interest in the past two decades [65–67].
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Letting u(t ) be the collected measurements at time t and ψ be the time-invariant observable
functional, Koopman theory dictates that a linear operator K always exists such that

Kψ (u(t )) = ψ (u(t + 1)).

Note that K is usually referred to as the Koopman operator and might in practice be infinite
dimensional as in, for example, chaotic systems.

Recent applied research has focused on algorithmic approaches to estimate the Koopman op-
erator from measurement data. Early approaches relied on autoencoder structures [68–72] and
solved an optimization objective, usually by means of gradient descent, usually composed of terms
that encourage linearity in “Koopman space” and reconstruction performance. These approaches
were extended in various ways. For example, Bayesian neural networks as encoders were utilized
to extend Koopman theory to the probabilistic setting [73]. Furthermore, Champion et al. [74]
relaxed the linearity requirement and allowed for sparse dynamics in the latent space. Because
linearity in Koopman space is part of the optimization objective, these approaches are usually only
approximately and locally linear, which in turn impedes their ability to predict far into the future.
A more recent approach called Koopman forecast [75] is linear in Koopman space by construction
and does not require training an encoder network. In order to overcome its nonlinear and nonconvex
objective, the Koopman Forecast algorithm employs gradient descent in conjunction with the fast
Fourier transform. In the following, variants of the Koopman Forecast algorithm are introduced and
their efficacy in modeling rotating detonation waves is evaluated.

1. Koopman Forecast algorithm

The Koopman Forecast algorithm provides the tools to approximate the Koopman operator from
data that is assumed to be quasiperiodic. The quasiperiodicity assumption in turn restricts the
Koopman operator to have purely imaginary eigenvalues, i.e., the Koopman operator describes a
stable linear dynamical system.

Note that for any linear system y(t ) with purely imaginary eigenvalues the following holds:

y(t ) ∝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos(ω1t )
...

cos(ωnt )
sin(ω1t )

...

sin(ωnt )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

:= �(ωt ).

Because of this, the Koopman Forecast algorithm solves the following optimization problem:

E (�ω,�) =
T∑

t=1

‖u(t ) − f�(�(ωt ))‖2
2.

In this case, f� is some nonlinear function parametrized by �, for example, a neural network. Thus,
colloquially speaking, the Koopman Forecast algorithm fits a neural network driven by a linear
oscillator to data. Because of the nonlinearity of f , the objective E is notoriously difficult to solve
for ω. However, as laid out in [75], by exploiting periodicities in temporally local loss functions in
conjunction with coordinate descent, globally optimal values in the direction of ωi can be obtained.
Specifically, for every t , the temporally local loss function ‖u(t ) − f�(�(ωt ))‖2

2 is periodic in 2π
t .

Thus, it is sufficient to sample each temporally local loss function within its first period in order to
reconstruct E . The reader is referred to [75] for a more thorough discussion of this technique.

2. Temporal Koopman Forecast with spatial decoder

In the following, we will show how the Koopman Forecast with a spatial decoder can alleviate the
problem of translational invariance. For this, a spatial decoder function f� is devised that converts
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Time
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FIG. 8. Graphical depiction of the Koopman Forecast algorithm with one underlying frequency. Colloqui-
ally speaking, the Koopman Forecast algorithm resembles a neural network driven by a linear oscillator.

time into space. As f� we choose a fully connected feedforward neural network with the topology
2 → 32 → 32 → 180 and tanh nonlinearity in intermediate layers. The output dimensionality is
180 because space is sampled at 180 locations. The input dimensionality is 2 because we assume the
system to be driven by a single frequency. Figure 8 shows graphically the setup for the experiment.
Note that f� can learn and preserve the nonlinear interactions between waves but because it is a
neural network, it is difficult to extract interpretable information about the nature of the nonlinear
interactions. Figure 9 shows the spatiotemporal prediction of the system into the future [Fig. 9(b)]
against the true data [Fig. 9(a)], with Fig. 9(c) comparing a single time slice. The algorithm
correctly explains approximately 75% of the variance. Considering the measurements are obtained
by experimentation and therefore exhibit a considerable amount of noise, the Koopman Forecast
algorithm seems to perform well.

3. Spatiotemporal Koopman Forecast

The Koopman Forecast model paired with a spatial decoder seems to explain the data reasonably
well. However, because f� is a neural network, it is hard for practitioners to understand what the
algorithm has learned, i.e., the model gives little insight apart from the extracted frequency. In the
following a more idealized model will be introduced that is less flexible but also more interpretable.
The assumptions of the model are the following: We assume that N modes interact linearly and
that both modes travel at a constant speed. Specifically, we model the data as a superposition of N
rotating or shifted modes mi.

Let u(x, t ) denote the wave height at position x and time t . Mathematically speaking, we assume

u(x, t ) =
N∑
i

mi( fi(t ) + x),

where fi(t ) is a time-dependent function that models the offset of mode i at time t . In the next step,
we incorporate the knowledge that spatial boundary conditions are periodic. Assume that u ∈ [0, K].
We can find a periodic parametrization of mi as

mi(x) = gθi

([
sin

(
2π
K x

)
cos

(
2π
K x

)
])

,
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FIG. 9. (a) Original data in the laboratory coordinate frame, showing training data from times t = [0, 1200)
and testing data from times t = [1200, 1400], and a broader view of the testing data set. (b) Prediction of the
Koopman Forecast algorithm over the same testing time. (c) Comparison of the prediction of the wave shape
using the Koopman Forecast algorithm to the ground truth wave shape at an example time step of t = 1300.

with θi the model parameters of the ith mode (e.g., weights of a neural network). Note that this
parametrization is periodic in K because

mi(x + K ) = gθi

([
sin

(
2π
K x + 2π

)
cos

(
2π
K x + 2π

)])
= mi(x).

If we now assume that the offset of the ith mode increases at a constant speed ωi, we can rewrite
u(x, t ) as

u(x, t ) =
N∑
i

gθi

([
sin

(
2π
K x + ωit

)
cos

(
2π
K x + ωit

)])
.

Let � = {θi}N
i=1. Fitting u(x, t ) to measured data y(x, t ) requires solving

E (�ω,�) =
∑

t

∑
x

[y(x, t ) − u(x, t )]2.
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FIG. 10. (a) Prediction of the modal Koopman model on the same data from Fig. 9(a). (b) and (c) Inferred
modes. Note that, colloquially, (a) = (b) + (c). (d) Inferred modes at the same time step and the aggregate
prediction (mode 1 plus mode 2) in comparison to the ground truth measurement data at an example time
t = 1300.

Solving this optimization objective for ω is again notoriously difficult as it is not only nonconvex
but also nonlinear. However, note that for every x and t , [y(x, t ) − u(x, t )]2 is again periodic in 2π/t .
Therefore, a strategy analogous to the Koopman Forecast algorithm can be employed to solve for ω.

Figure 10 shows the results when N = 2, i.e., when two additive modes are assumed. The modal
Koopman model is considerably stiffer as it only explains 65% of the variance in comparison to the
Koopman Forecast algorithm, which explains 75%. However, the increase in stiffness also results
in an increase of interpretability. The algorithm allows us to decompose the data into the corotating
and counterrotating modes [Figs. 10(b) and 10(c)]. This enables practitioners to examine and study
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modes individually. Figure 10(d) shows the prediction of the individual modes, the aggregate
prediction (mode 1 plus mode 2), and ground truth, respectively.

These two Koopman models prove to be useful tools in reduced-order modeling for RDE data,
giving reconstructions and predictions which provide a number of advantages. Primarily, the models
are extremely low rank, representing the entire wave field in only two modes for the case of Fig. 10.
The models also prove to be applicable on RDE dynamics that behave linearly and nonlinearly,
preserving important nonlinear wave interactions. Another advantage of the Koopman approach is
that the methods are robust to noise that is rife in the experimental RDE data, effectively acting as a
denoising filter as can be seen in Fig. 11(g). However, there is a lack of interpretability in the wave
interactions learned in the Koopman algorithms. This limits the use of Koopman and neural network
architecture in gaining intuition into the physics at play in the RDE system. While methods such
as UnTWIST may not perform as robustly in determining and separating modes in traveling wave
systems, they are able to provide more insight into the underlying dynamics.

IV. DISCUSSION AND CONCLUSIONS

Data-driven ROMs are of growing importance across the engineering, physical, and biological
sciences given our increasing ability to exploit emerging sensor technologies to observe and quantify
complex dynamical systems. Building models directly from observational data is at the forefront
of data-driven science and engineering [32] and addresses the increasing need for interpreting
and utilizing a large amount of data [76]. Importantly, good ROMs require that an appropriate
coordinate system be used in order for a low-rank representation of the dynamics to be achieved
[33]. Invariances, particularly rotational and translational, present significant challenges in making
ROM models useful for spatiotemporal systems. Simple traveling waves compromise standard
ROM architectures, thus requiring additional methods to handle the translational invariance [32,39–
42]. More recently, automated methods have been developed to handle traveling waves [43]. The
so-called UnTWIST method uses spectral clustering and machine learning techniques to provide
a reference frame pinned to a traveling wave. While the relevant RDE traveling wave dynamics
is fully described in one dimension, other open problems exist which demand higher-dimensional
translations to be captured. At present, there is a dearth of literature to approach translations in
higher than one dimension, and this is an interesting avenue for future work.

We have shown that the UnTWIST method can be used on observational data of a rotating
detonation engine to find a coordinate system that is pinned to any desired detonation wave. The
transformation gives a rotating coordinate system which is amenable to constructing ROMs that
characterize the detonation front interactions. The ROMs are constructed from observational data,
requiring no previous physics knowledge of the complex multiscale physics driving the combustion
dynamics themselves. Chiefly, the most advantageous aspect of this approach is that it is able
to separate the wave groups cleanly and provide a clear representation of the waves traveling in
each direction. This is particularly useful in the RDE: The traveling wave shapes and velocities
give a direct, though qualitative, indication of wave strength, chemical reaction rate, and relative
strengths of dissipative effects. Wave strength can be inferred by base-to-peak amplitude of the
waves, corresponding to a shock jump condition. The chemical reaction rate can be related to a
chemical length scale and is typically observed as the distance from the shock front to the point of
greatest luminosity, i.e., the peak of the waveform. Finally, the rate of decay of the expansion side
of the waves relates to the timescales associated with expelling the burnt combustion products away
from the combustion zone.

Moreover, UnTWIST allows a diversity of model reduction techniques to be applied. We demon-
strated three modeling approaches: (i) the DMD for building the best-fit linear dynamics model, (ii)
a Lotka-Volterra model for constructing nonlinear dynamical system models for the detonation wave
interactions, and (iii) a deep Koopman model that uses a neural network to map the time dynamics
to Fourier temporal behavior in order to characterize the dynamics. All three modeling paradigms
are relevant as the RDE data and detonation front interactions exhibit dynamics that range from
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FIG. 11. Comparison of the true measurements to the prediction of the Koopman Forecast algorithm.
(a) Full time series of original data in the laboratory frame. (b) Short-time series showcasing the nonlinear
interactions between wave fronts, as they do not run parallel to the white guideline. (c) Data shifted into the
coordinate frame learned through UnTWIST. (d) Prediction of the same data as in (c) using the Koopman
Forecast algorithm. (e) and (f) Koopman Forecast shifted back into the laboratory frame, compared to (a) and
(b), respectively. It is clear in (f) that the nonlinear interaction between the waves is well preserved. (g)
Comparison of the learned model to the true data at one time slice, t = 500, showcasing the robustness to
noise and the denoising effect of the model.
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approximately linear to strongly nonlinear. Such models provide reductions that enable exploration
of the complex and multiscale dynamics of the reactive, compressible fluid dynamics of RDEs.

The architecture presented here emphasizes the critical components necessary for data-driven
physics discovery, specifically the joint discovery of coordinates and parsimonious models that
represent interpretable and extrapolatory models of the physics. Given the recent emergence of
RDE data and the lack of theory characterizing detonation wave interactions, our data-driven
method gives the beginnings of physical insights of the dynamics within RDEs. This proves to be a
promising first step for exploring data-driven models for similar transport-dominated experimental
data. Discovered models allow for engineering design and suggest control strategies that can be
imposed in order to manipulate the output of RDE. They can also better inform engineering of
the thermodynamic work loop [12] in order to optimize engine performance. This work shows that
these engineering challenges can be approached even if a detailed physics model is not available or
if the computations are intractable.
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