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Fish swim by undulating their bodies. These propulsive motions require coordinated
shape changes of a body that interacts with its fluid environment, but the specific shape co-
ordination that leads to robust turning and swimming motions remains unclear. To address
the problem of underwater motion planning, we propose a simple model of a three-link fish
swimming in a potential flow environment and we use model-free reinforcement learning
for shape control. We arrive at optimal shape changes for two swimming tasks: swimming
in a desired direction and swimming towards a known target. This fish model belongs
to a class of problems in geometric mechanics, known as driftless dynamical systems,
which allow us to analyze the swimming behavior in terms of geometric phases over the
shape space of the fish. These geometric methods are less intuitive in the presence of drift.
Here, we use the shape space analysis as a tool for assessing, visualizing, and interpreting
the control policies obtained via reinforcement learning in the absence of drift. We then
examine the robustness of these policies to drift-related perturbations. Although the fish
has no direct control over the drift itself, it learns to take advantage of the presence of
moderate drift to reach its target.

DOI: 10.1103/PhysRevFluids.6.050505

I. INTRODUCTION

Fish swim through interactions of body deformations with the fluid environment. A fish assimi-
lates sensory information about its own body and the external environment and produces patterns of
muscle activation that result in desired body deformations [see Fig. 1(a)]. How these sensorimotor
decisions are enacted at the physiological level, at the level of neuronal circuits, remains unclear
[1–4]. Animal models, such as the Danio rerio zebrafish [5–7], as well as robotic and mathematical
models [8,9], provide valuable insights into the sensorimotor control underlying fish behavior.
Such understanding offers enticing paradigms for the design of artificial soft robotic systems in
which the control is embodied in the physics [10,11]. Embodied systems sense and respond to their
environment through a physical body [12,13]; physical interactions with the environment are thus
vital for sensing and control. In fish, the dynamics of the fluid environment is essential both at an
evolutionary time scale—in shaping body morphologies [14] and sensorimotor modalities—and at
a behavioral time scale. Fish bodies are tuned to exploit flows [15,16]. Body designs and undulatory
motions have been examined in computational and semianalytical models of fluid-structure interac-
tions [17–21], including models of body stiffness and neuromechanical control [22,23]. The fish’s
ability to integrate multiple sensory modalities such as vision [24–26] and flow sensing [27,28] are
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(a) (b)

(c)

FIG. 1. Model-free reinforcement learning and the three-link fish. (a) Illustration of sensorimotor feedback
loops in fish. Motor commands generated in the nervous system activate the musculoskeletal system, resulting
in deformations of the body. Body deformations, through interaction with the fluid environment, lead to
swimming; meanwhile, sensory modalities provide sensory feedback to the nervous system. The dashed arrow
between musculoskeletal and sensory systems indicates somatic sensing used to assess whether previous motor
commands were successfully executed. Other reflexive or preflex signals could also be at play [2,27,46].
(b) Three-link fish swimming in quiescent fluid. Locomotion variables (x, y, β ) are set in a laboratory fixed
frame, while the shape variables (α1, α2) and target variables (ρ,ψ ) are set in a body frame symbolizing
egocentric control and learning. (c) To apply model-free reinforcement learning to our problem, we only need
to set the appropriate state, observation, action, and reward variables based on our fish model.

essential to behaviors ranging from rheotaxis [29–31] to schooling [32–35]. Recent developments
prove that machine learning techniques are highly effective in addressing problems of flow sensing
and fish behavior [36–43].

A central problem in fish behavior, which is also relevant for underwater robotic systems, is
gait design or motion planning: what body deformations produce a desired swimming objective?
The answer requires an understanding of how the numerous biomechanical degrees of freedom
of the fish body are coordinated to achieve the common objective. Mathematically, this problem
is often expressed in terms of an optimality principle: find control laws that optimize a desired
objective, such as maximizing swimming speed or minimizing energetic cost [17,18,44]. But how
these control laws are implemented in the nervous system, and how they are acquired via learning
algorithms, are typically beyond the scope of such methods. As these optimization methods rely on
an internal model of the dynamics, different computational results have been obtained by varying the
specification of the physical model of the fish, the performance metric, and the control constraints
[17,18,44,45].

Model-free reinforcement learning (RL) of embodied systems offers an alternative framework
for gait design that is mathematically and computationally tractable [47–49]. In this framework,
the fish’s world is divided into a body controlled by a learning agent and an environment that
encompasses everything outside of what the agent can control. The agent can be viewed as an
abstract representation of the parts of the fish responsible for sensorimotor decisions. In RL, the
agent must learn from experience in a trial-and-error fashion. Specifically, repeated interactions of
the body with the environment enable the agent to collect sensory observations, control actions,
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and associated rewards. The goal of the agent is thus to learn to produce behavior that maximizes
rewards, and the process is model-free when learning does not make use of either a priori or
developed knowledge of the physics of the system. The learned feedback control law, called a policy,
is essentially a mapping from sensory observations to control actions. This mapping is nonlinear and
stochastic, and, by construction, rather than providing a single optimal trajectory, it can be applied
to any initial condition and transferred to conditions other than those seen during training such as
when the body or fluid environment are perturbed [50].

Here, we employ RL to design swimming gaits. We use an idealization in which the fish is
modeled as an articulated body consisting of three links, with front and rear links free to rotate
relative to the middle link via hinge joints [44,45,51–54]. In describing the physics of the fish, we
cede the complexity of accounting for the full details of the fluid medium in favor of considering
momentum exchange between the articulated body and the surrounding fluid in the context of a
potential flow model [44,45,52,53]. This model is a canonical example of a class of under-actuated
control problems whose dynamics can be described over the actuation (shape) space using tools
from geometric mechanics [44,55–58]. Specifically, swimming motions can be represented by the
sum of a dynamic phase or drift, and a geometric phase over the shape space of all body deformations
[45]. In the geometric phase case, a geometric connection, defined as vector fields over the actuation
shape space, maps infinitesimal shape changes into infinitesimal rigid motions of the whole body.
From a motion control perspective, this geometric framework is advantageous in that it provides
tools for gait analysis and manual design of control policies over the full shape space [54]. These
geometric tools also provide an intuitive way for direct and interpretable visualizations of the
RL-based policies. Here, we visualize the RL policies as vector fields over the shape space. This
framework leads to a straightforward interpretation of the RL policy: given an observation of its own
shape, the fish’s action needs to follow the corresponding vector in the shape space. A trajectory or
realization of the RL policy arises from locally following these vectors to achieve a desired global
task. These tools also allow us to probe the optimality and behavior of the RL policy in light of the
physics of the system and in comparison to manually designed policies over the fish shape space.

II. MATHEMATICAL MODEL OF THE THREE-LINK FISH

Consider a three-link fish as shown in Fig. 1(b). Rotations of the front and rear links relative to the
middle link are denoted by the angles α1 and α2 such that (α1, α2) fully describe all possible body
deformations. We constrain the swimming motions to a two-dimensional plane, and let (x, y) and
β denote the net planar displacement and rotation of the fish body, such that (ẋ, ẏ) and β̇ represent
the linear and rotational velocities of the fish in the inertial frame [the dot notation (̇ ) = d ( )/dt
represents differentiation with respect to time t]. We also introduce the linear velocity (v1, v2)
expressed in a co-rotating body frame attached to the center of the middle link,

v1 = ẋ cos β + ẏ sin β, v2 = −ẋ sin β + ẏ cos β. (1)

The total linear momentum (px, py) and total angular momentum π of the body-fluid system are
expressed in the inertial frame, and they are related to their counterparts (P1, P2) and � in the
body-fixed frame as follows:

px = P1 cos β − P2 sin β, py = P1 sin β + P2 cos β, π = �. (2)

In potential flow, it is a known result that the total linear and angular momenta of the body-fluid
system can be expressed in terms of the body geometry and velocity, via the so-called added mass
matrices [44,45,59]. Expressions for the added mass matrices of the three-link fish when the links
are hydrodynamically decoupled (coupled only geometrically through the holonomic constraints at
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the joints) are derived in detail in Appendix A. The total momenta (P1, P2) and � are given by⎡
⎣P1

P2

�

⎤
⎦ = Ilock

⎡
⎣v1

v2

β̇

⎤
⎦ + Icouple

[
α̇1

α̇2

]
, (3)

where Ilock is the locked mass matrix at a given shape of the fish [see Eqs. (A6)–(A9)] and Icouple is
the mass matrix associated with shape deformations [see Eq. (A10)].

In the absence of external forces and moments on the fish-fluid system, the total momenta (px, py )
and π are conserved for all time. Conservation of total momentum yields, upon inverting Eqs. (2)
and substituting into Eq. (3),⎡

⎣v1

v2

β̇

⎤
⎦ = I−1

lock

⎡
⎣ cos β sin β 0

− sin β cos β 0
0 0 1

⎤
⎦

⎡
⎣px

py

π

⎤
⎦ − I−1

lockIcouple

[
α̇1

α̇2

]
. (4)

If we further substitute Eqs. (1) into Eq. (4), we arrive at three coupled first-order equations
of motion for x, y, and β given α1 and α2. The control problem consists of finding the time
evolution of shape changes (α1(t ), α2(t )) that achieve a desired locomotion task (x(t ), y(t )) and
β(t ). Specifically, a swimming gait is defined as a cyclic shape change (α1(t ), α2(t )), with period
T , that results in a net swimming (x(t ), y(t )) or turning β(t ) of the fish body.

This model is a canonical example of a class of under-actuated control problems whose dynamics
can be described over the shape space using tools from geometric mechanics [44,55–57]. On the
right-hand side of Eq. (4), the first term represents a dynamic phase or drift and the second term
represents a geometric phase over the fish shape space (α1, α2) [45]. The geometric phase is best
described in terms of the local connection matrix A [45,54], which is a function only of the shape
variables α1 and α2,

A =
⎡
⎣A11 A12

A21 A22

Aβ1 Aβ2

⎤
⎦ := −I−1

lockIcouple. (5)

Each row of A describes a nonlinear vector field over the shape space, giving rise to three vector
fields A1 ≡ (A11, A12), A2 ≡ (A21, A22), and Aβ ≡ (Aβ1, Aβ2) over the (α1, α2) plane as shown in
Fig. 2(a). In driftless systems, net locomotion is fully controlled by the fish shape changes as dictated
by the connection matrix A. However, in the presence of drift, shape control is not sufficient to
determine the fish motion in the physical space, which is then affected by the drift term in Eq. (4).

III. GEOMETRIC PHASES

Geometric phases are defined as the net locomotion (x, y, β ) that results from prescribed cyclic
shape changes in the (α1, α2) plane at zero total momentum (no drift). Inverting Eqs. (1) and
substituting Eq. (5) into Eq. (4) at zero total momentum, we arrive at⎡

⎣ cos β sin β 0
− sin β cos β 0

0 0 1

⎤
⎦

⎡
⎣ ẋ

ẏ

β̇

⎤
⎦ =

⎡
⎣A11 A12

A21 A22

Aβ1 Aβ2

⎤
⎦[

α̇1

α̇2

]
. (6)

Motions (x, y, β ) in the physical space are obtained by integrating Eq. (6) with respect to time.
Rotations are directly proportional to the line integral of the vector field Aβ as evident by integrating
the last equation in Eq. (6),

β(T ) − β(0) =
∮

C
dβ =

∮
C

(Aβ1 dα1 + Aβ2 dα2). (7)
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(a) (c)

(b) (d)

FIG. 2. Using connection matrix for simple gait design. (a), (b) Rows of connection matrix A give us three
vector fields, A1 ≡ ∂v1/∂αi, A2 ≡ ∂v2/∂αi, and Aβ ≡ ∂β̇/∂αi, the curl of which yields three corresponding
scalar fields. Magnitude of the scalar fields are normalized to be within [−1, 1]. Value of the scalar fields can
facilitate the design of simple swimming and turning gaits, as shown by black and green circles, respectively.
Six body configurations, each corresponding to points marked by black and green ◦, �, and �, are sketched for
additional clarity. (c), (d) Fish that start with body centered at the origin of the x-y plane and follow the same
gait circle swim and/or turn in different directions in the physical space depending on initial body shapes; the
initial shape is depicted in blue at the end of each trajectory.

Here, T is the time period for going around the closed trajectory in the shape space once. Using
Green’s theorem, we get

β(T ) − β(0) =
∫∫ (

∂Aβ2

∂α1
− ∂Aβ1

∂α2

)
dα1 dα2 =

∫∫
curl2(Aβ ) dα1 dα2. (8)

Here, curl2 denotes the two-dimensional curl as a scalar field over the (α1, α2) plane. The scalar
field curl2(Aβ ) provides an intuitive tool for understanding the effect of a cyclic shape deformation
on the net rotation of the fish: net rotations are proportional to the integral of curl2(Aβ ) over the
area enclosed by a closed shape trajectory (see Fig. 2). However, translational motions (x, y) are
not directly proportional to the area integrals of curl2(A1) and curl2(A2), but to a combination of all
three integrals coupled through the fish rotational dynamics as evident from Eq. (6). This coupling
is clear when the equations of motion for x and y in Eq. (6) are written in scalar form,

ẋ = [A11α̇1 + A12α̇2] cos β − [A21α̇1 + A22α̇2] sin β,

ẏ = [A11α̇1 + A12α̇2] sin β + [A21α̇1 + A22α̇2] cos β. (9)

Despite this complication, the scalar fields defined by curl2(A1), curl2(A2), and curl2(Aβ ), shown
in Fig. 2(b), are informative of the net translational (x, y) and rotational β motions of the fish. To
illustrate the utility of these curl fields, we show two examples of cyclic shape changes depicted in
black and green lines. A fish changing its shape following the black line undergoes zero net rotation
because the area integral of curl2(Aβ ) is identically zero, but it swims forward in the (x, y) plane.
The net displacement per period is a conserved quantity, whereas the direction of motion depends
on a combination of the fish initial shape (α1(0), α2(0)) and initial orientation β(0) as shown in
Fig. 2(c). Here, we consider three different initial shapes, depicted by the markers ◦, �, and �,
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all at β(0) = 0. Similarly, shape deformations following the green line lead to net reorientations in
the physical space, as shown in Fig. 2(d). Evidently, no net motion occurs if the shape trajectory
is degenerate, that is, does not enclose an area in the shape space. Furthermore, a rescaling of time
does not affect the net motion of the fish, only the speed at which the fish completes these cyclic
shape changes.

In Fig. 2 and hereafter, the equations of motion are nondimensionalized using the total length of
the fish and the total mass in the head-to-tail direction of the straight fish as the characteristic length
and mass scale. Specifically, we set the total mass of the fish body to be equal to the added mass
(actual mass of the fish is negligible). We leave the time scale unchanged because the characteristic
time depends on the speed of shape changes, which is a control parameter to be determined by the
controller.

The scalar fields curl2(A1), curl2(A2), and curl2(Aβ ) over the shape space encode information
about the net locomotion of the fish in a driftless environment, and can be used to design simple
swimming and turning gaits as shown in Fig. 2. However, these geometric tools do not allow for a
straightforward design of control policies for arbitrary motion planning [52,54], and they are even
less instructive in the presence of drift. Next we consider an RL driven approach for motion control.

IV. MOTION CONTROL VIA REINFORCEMENT LEARNING

We use RL to train the three-link fish on two different tasks: (i) to swim parallel to a desired
direction in a driftless environment and (ii) to swim towards a target point located at a distance ρ

and angular position ψ from the fish nose, with ρ and ψ expressed in the fish frame of reference
[Fig. 1(b)]. Given the rotational symmetry of the fish-fluid space, in the first task, we fix the desired
direction to be parallel to the x-axis without loss of generality. For the second task, we first train the
fish in a driftless environment, then introduce drift and train again in the presence of drift. The first
task allows for direct comparison of the performance of the trained policy to manually designed
policies in the context of geometric mechanics as described in Sec. III. The second task allows
for evaluation and comparison of the performance of the driftless and drift-aware policies under
environmental perturbations.

Central to any RL implementation are the notions of the state of the system, the observations
given to the learning agent, the actions taken by the agent, and the rewards given to the agent in light
of its behavior. The state st of the fish-fluid-target system at a time t is given by the fish position and
orientation in inertial frame (x, y, β ), its shape (α1, α2), and the target position relative to the fish,
(ρ,ψ ) [see Figs. 1(b) and 1(c)]. As sensory input, we provide the fish a set of observations based
on its proprioception of its own shape α1 and α2, as well as an egocentric observation of the task;
namely, for controlling the direction of swimming, the fish knows the desired swimming direction
relative to itself ψ = −β, and for swimming towards a target, it knows the relative angular position
ψ of the target point. This yields a set of observations ot = (α1, α2, ψ )t . Additionally, when training
in the presence of drift, the magnitude and direction of the drift vector (px, py) are also provided
as observations. As control action, the fish has direct control of its shape using the rate of shape
changes as actions at = (α̇1, α̇2)t . With this choice of action, the control can be projected onto the
shape space and directly compared to the geometric mechanics approach. We constrain the value of
the actions to be between −1 and 1 rad per unit time, and we impose limits on the joint angle so that
α1 and α2 are only allowed to change between −2π/3 and 2π/3 rad to avoid self-intersection.

In RL, the decision making process is modeled as a stochastic control policy πθ (at |ot ) that
produces actions at given observations ot of the state of the fish-fluid system. The policy is
parametrized by a set of parameters θ to be optimized. An optimal policy is learned to produce
behavior that maximizes rewards. We use a dense shaping reward; that is, the fish is given a reward
at every decision time step. Specifically, we set the reward to be the distance the fish travels in
the desired direction towards the target state. For learning to swim parallel to the x-axis, we use
the reward rt = xnose,t+1 − xnose,t , which is the change in the fish nose position along the x-axis.
Note that this choice of reward function breaks the head-tail symmetry of the fish favoring higher
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reward when turning towards the positive x-axis. For learning to swim towards a target, the reward
rt = ρt − ρt+1 is based on the change in the relative distance ρ from the fish nose to the target. The
return Rt = ∑∞

t ′ γ t ′−t rt ′ is defined as the infinite horizon objective based on the sum of discounted
future rewards, where γ ∈ [0, 1] is known as the discount factor; it determines the preference for
immediate over future rewards. We set γ = 0.99 to make the fish foresighted. The goal is to arrive
at an optimal set of parameters θ that maximizes the expected return J (πθ ) = Eπ [

∑∞
t=0 γ t rt ] for

a distribution of initial states. Here, the expectation is taken with respect to the distribution over
trajectories π (τ ) induced jointly by the fish dynamics, viewed as a partially observable Markov
decision process, and the policy πθ (at |ot ). One approach to solving this optimization problem is to
use a policy gradient method that computes an estimate of the gradient ∇θJ for learning. Policy
gradient methods are widely used to learn complex control tasks and are often regarded as the most
effective reinforcement learning techniques, especially for robotics applications [60–64]. Here, we
use a specific class of policy gradient methods, known as actor-critic methods [65,66] where the
fish learns simultaneously a policy (actor) and a value function (critic). We implement this method
using the clipped advantage proximal policy pptimization (PPO) algorithm proposed in [67]. This
algorithm ensures fast learning and robust performance by limiting the amount of change allowed
for the policy within one update. A pseudocode implementation of the PPO algorithm and additional
implementation details are provided in Appendix B.

V. TRAINING THE FISH TO SWIM

We trained the three-link fish to (i) swim parallel to the x-direction in a driftless environment and
(ii) swim towards a target point in the absence and presence of drift. We refer to the first task as
direction control for short, and the second task as naive and drift-aware target seeking, respectively,
based on their awareness of drift.

For the purpose of efficient training we imposed a finite time interval, following which the system
state was reset to the initial state for a new round of training. Each round is referred to as an episode.
In all training episodes, we initialized the fish center to be at the origin of the inertial frame, and we
initialized the shape angles α1, α2 and body orientation β by sampling from a uniform distribution
over all permissible angles to maximize the chances for robust learning. We fixed the maximum
episode length to 150 time steps, with no early termination allowed. In training the target-seeking
policies, the target was initially placed at a fixed distance (three-unit length) from the fish center
but at a random orientation. For the drift-aware policy, a drift was introduced in the form of a
nonzero total linear momenta px, py in Eqs. (4). The drift magnitude was sampled from a uniform
distribution between zero and 0.15 and its direction from a uniform distribution between zero and
2π , such that the drift was kept constant within a training episode. Based on the nondimensional
scales introduced in Sec. III, one unit of drift aligned parallel to a straight fish causes it to translate
one unit length per unit time.

For the direction-control policy, we performed 24 runs of RL training with 10 000 episodes in
each run. The training process is illustrated in terms of reward evolution, calculated by taking the
sum of all rewards in an episode in Appendix B, Fig. 8(a). There was some variability among
the seeds, but most trained policies performed very well; only a single policy did not converge by
the end of training episodes. Note that fluctuations in reward after policy convergence are partly due
to the stochasticity built into the policy itself and partly due to variation in task difficulty given the
random initial conditions: different initial conditions require different amounts of time and effort
for the fish body to align with the x-axis.

It is worth pointing out here the training results of the direction-control policy were affected
significantly by the episode length. In order to swim in a desired direction starting from an arbitrary
initial orientation, the fish has to first turn in that direction, then swim forward. Policies trained
with longer episodes performed better in the swimming portion of the trajectory but failed to make
large-angle turns, as training data collected on swimming significantly outweighed those collected
on turning. On the other hand, policies trained with shorter episodes made turns of any angle, but
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(a) (b)

FIG. 3. Visualizing the direction-control RL policy. (a) Given the direction-control task, we visualize the
mean RL policy actions (α̇1, α̇2) as vector fields in the observation space of (α1, α2, β ). Two example observa-
tion trajectories starting at β(0) = 0, α1(0) = 0, α2(0) = 0 (blue) and β(0) = 2π/3, α1(0) = −π/3, α2(0) =
π/3 (orange) are plotted with slices of the mean policy at β = 0, π/3, 2π/3. The inset shows a flattened view
of the slice at β = 0. (b) Physical space trajectories of the corresponding examples shown in (a) are plotted
together with the fish body configurations at the starting point and chosen points near the ends.

were less likely to swim straight after turning. We chose the episode length, following several trial-
and-error trainings, to be 150 as a reasonable compromise to learn to both turn and swim effectively.

The evolution of rewards during training of the two target-seeking policies are plotted in
Fig. 8(b), each with 20 runs of the RL algorithm and 15 000 episodes in each run. The naive
policy converged faster than the drift-aware policy, and both policies converged slower than the
direction-control policy. These results indicate that the task itself, as well as variations in the
environment and number of observations, affects the convergence rate, that is, the learning difficulty.
Note that the numerical value of the reward is not directly comparable between policies for different
tasks.

We evaluated the performance of the trained policies by testing them under two types of
conditions: conditions similar to those seen during training and perturbed conditions not seen during
training, as discussed next.

VI. BEHAVIOR OF TRAINED FISH

To visualize the RL direction-control policy, we plot in Fig. 3(a) the action vector fields (α̇1, α̇2)
over the observation space (α1, α2, β ). These vector fields depend on the orientation β of the fish in
the physical space such that the control policy (α̇1, α̇2) forms a foliation over β. Three slices of this
foliation are highlighted. The right-hand side of Fig. 3(a) provides a closer look at the policy slice
at β = 0; the arrows indicate the mean actions advised by the policy for a given set of observations
α1, α2 at β = 0. In Fig. 3(b), we show the details of two trajectories in the physical space starting
from two distinct configurations. In the first test, the fish starts at zero orientation, β(0) = 0, in
a straight shape, (α1(0), α2(0)) = (0, 0). The goal of the fish is simply to swim forward. In the
second test, the initial orientation and shape are β(0) = 2π/3 and (α1(0), α2(0)) = (−π/3, π/3),
from which the fish needed to turn and swim along the x-axis. In both cases, the fish is able to turn
to the desired direction and swim steadily. In Fig. 3(a), we highlight the corresponding trajectories
in the (α1, α2, β ) space. As the fish moves through the physical space, β changes, causing the fish to
take actions from distinct slices of the foliation of action vector fields. Both trajectories tend to the
same periodic swimming cycle around β = 0, indicating that the control actions are similar once
both fish are aligned with the desired swimming direction.

We further explore the shape changes undertaken by the second (red) fish by superimposing
these shape changes onto the scalar fields curl2A1, curl2A2 and curl2Aβ introduced in Sec. III [see
Fig. 4(a)]. The corresponding motion in the physical space is depicted in red in Fig. 4(b). The shape
deformations produced by the RL policy can be interpreted as consisting of two regimes: an initial

050505-8



LEARNING TO SWIM IN POTENTIAL FLOW

(a) (b)

FIG. 4. RL provides smooth transition between turning and swimming gaits. (a) The shape space trajectory
of the fish reorienting itself to swim parallel to the x-axis produced by mean RL policy is superimposed to the
scalar curl fields from Fig. 2(b). Note that this trajectory starts off-centered and smoothly moves to cycles that
are symmetric about the origin. (b) The physical space trajectory due to the mean RL policy (red) in comparison
to a manually patched turning-to-swimming trajectory (green and black) using circular gaits in Fig. 2. Without
further fine-tuning on the shape of the gaits, the manually patched result shows a more abrupt and unnecessary
turn angle. In both simulations, the fish start in a straight configuration with an orientation of β(0) = π/3 at
the origin.

turning regime followed by a forward swimming regime. The turning regime is indicated by the
initial portion of the shape trajectory enclosing most of the blue area in the curl2Aβ image; the
integral in Eq. (7) along this portion of the trajectory is negative, leading to a clockwise rotation.
The swimming regime is indicated by the periodic shape changes enclosing the rectangular orange
portion in the curl2A1 image. The area integral of curl2A1 along this portion of the trajectory is
positive, whereas the corresponding area integrals of curl2A2 and curl2Aβ are identically zero,
leading to net motion in the positive x-direction. These shape deformations and resulting turning and
swimming motions can be compared to a manually designed shape trajectory based on the turning
(green) and swimming (black) gaits in Figs. 2(a) and 2(b). Specifically, starting from a straight fish
configuration, we follow the solid portion of the green trajectory (turning) in Figs. 2(a) and 2(b),
and transition into the black trajectory (swimming) at the second intersection of the green and black
shape trajectories. The resulting motion in the physical space is superimposed onto Fig. 4(b). Both
the RL and manually patched gaits lead the fish to turn and swim parallel to the x-axis; however, in
the RL produced motion, the transition between turning and swimming is smoother. Note that, in
the swimming regime, the RL policy produces cyclic shape deformations that do not maximize the
area integral of curl2A1 (shape trajectory does not enclose the whole orange portion in the curl2A1

image). Indeed, maximizing this integral is not optimal for forward swimming as discussed next.
The key lies in the fact that the physics of the problem, specifically, the rotational motion of the fish,
couples displacements in the x- and y-directions. Our model-free RL policy captures this effect with
no explicit knowledge of the physics of the system.

To better explain this optimality of the RL policy, we manually prescribed cyclic shape changes
that follow rectangular trajectories reminiscent of the trajectory generated by the RL policy for
forward swimming. The manually designed shape trajectories all share the same width as the RL
policy albeit at different lengths, namely, 1.2 (small), 2.4 (medium), and 3.6 (large) to enclose
increasingly larger regions of the orange portion of the curl2A1 (see right column of Fig. 5). These
cyclic deformations result in net displacements in the x-direction with zero-mean excursions in the
y-direction. The y-excursions are due to the fact that, even though the area integrals of curl2A2 and
curl2Aβ over the regions enclosed by these shape trajectories are identically zero, leading to zero net
rotation over a full cycle of shape deformations, the instantaneous rotations β of the fish body couple
displacements in the x- and y-directions, as evident from Eqs. (9). For the cyclic shape changes in
Fig. 5(a), the amplitude of y-excursions is small but so is the net displacement in the x-direction;
meanwhile in Fig. 5(c), both the net displacement in the x-direction and the amplitude of the
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(a)

(b)

(c)

(d)

FIG. 5. Racing against the RL fish. To test the optimality of our direction-control RL policy, we compare
forward swimming performance between the geometrically designed gaits and RL results. In (a)–(c) we use
rectangular gaits with length equal to 1.2 (small), 2.4 (medium), and 3.6 (large), respectively, and width
all equivalent to shape space trajectory following the mean actions from RL policy in (d). All shape space
trajectories are shown superimposed on top of the curl2A1 field on the right. Physical space trajectories on the
left show that the mean RL policy achieves its excellent performance by choosing an optimal amount of lateral
oscillation during forward swimming, while the small and large rectangular gaits move slower due to either
insufficient or overwhelming sideways motion. Note that fish in (a)–(c) are initialized with the same shape
but slightly different initial orientations to ensure they all swim in exactly the x-direction. In addition, all fish
utilize the maximum actions allowed at each time step.

y-excursions are large. The fastest fish is the one that maximizes forward motion while minimizing
lateral movements, as shown in Fig. 5(b) and recapitulated in the RL result shown in Fig. 5(d).
It is worth emphasizing that the RL policy arrives at this optimal solution merely by sampling
observations, actions, and rewards, with no prior or developed knowledge of the physics of the
problem.

Next, we investigated the effect of the initial orientation β(0) ∈ [−π, π ] on the amount of control
effort required to turn and swim parallel to the x-axis. Figure 6(a) shows three examples of fish
following the trained policy starting from three distinct initial orientations β(0) = 0, π/3, and 2π/3
and a straight configuration centered at the origin of the physical space. To measure the actuation
effort needed in these motions, we used the integral

∫ τ

0 Tshape dt of the actuation energy Tshape =
1
2 (J + m2a2)(α̇2

1 + α̇2
2 ), which is the energy imparted to the fluid by the fish shape changes (see

Appendix A). Figure 6(b) shows the actuation effort versus the initial orientation of a straight fish.
Here the fish was instructed by the stochastic policy with the same action noise as in the training
process. The actuation effort, as well as its variation due to noise, is larger for larger turning angles.

Lastly, we examined the behavior and effort of a fish swimming instructed to reach a known target
in an environment with zero drift. Figure 6(c) shows examples of the fish swimming motion in the
physical space for targets located at ψ = π/6 and ψ = 5π/6. All tests ran until the fish reached
the target or a maximum interval of 1000 time steps was exceeded. We varied the target angular
position while maintaining the fish initial shape and orientation (the fish always started straight in
the x-direction), and we calculated the actuation effort as a function of the target orientation [see
Fig. 6(d)]. The actuation effort increases as the target moves from the front to the back of the fish,
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(a) (b)

(c) (d)

FIG. 6. Performance of RL policies in a driftless environment. (a) Swimming trajectories (center of mass)
arrived at by the mean action of the direction-control policy are shown for fish starting at orientations β = 0
(blue), π/3 (red), and 2π/3 (yellow). (b) The actuation effort of reorientation is roughly proportional to the
absolute value of the initial fish orientation due to the amount of turning maneuvers required. Results shown
are based on 25 stochastic policy rollouts per tested orientation angle. (c) Center of mass (blue) and nose
(grey) swimming trajectories using the mean action of the naive target-seeking policy are shown with two
targets located at an angular position of π/6 and 5π/6. The fish is considered to have reached the target when
its nose is within ε = 0.2 distance from the target (dotted circles). (d) Actuation effort needed to perform
shape increases as the target angular position changes away from zero. Results shown use 25 stochastic policy
rollouts per tested target angle. Note that solid lines and shaded regions of (b) and (d) show the median results
and variations between 25th and 75th percentile, respectively. In (b), performance is calculated based on the
actuation effort it takes for the fish to turn in the x-direction, while in (d) it is based on the effort it takes to
reach the target.

because it requires larger turns in order for the fish to align its heading direction with the direction
of the target; this is consistent with our findings based on the direction-control policy. It is worth
emphasizing that the direction-control task is equivalent to the target-seeking task with the target
placed at x = +∞. It is also worth noting that the reward function is measured from the nose of the
fish, thus breaking the fore-aft symmetry of the fish, and leading to control action that favors turning
and swimming headfirst towards the target.

We tested the behavior and effort of the target-seeking fish in the presence of nonzero drift.
Figures 7(a) and 7(c) show a comparison between the naive and drift-aware policies for targets
located at ψ = π/6 and ψ = 5π/6, with drift of magnitude of 0.1 pointing to the x-direction and
the −y-direction, respectively. The naive policy (grey lines) is able to reach the target, even though
it does not directly observe the drift, albeit following different actions and swimming trajectories
than the drift-aware policy (orange lines). Specifically, when following the drift-aware policy, the
fish curls less when the drift is helpful and curls more when the drift is unfavorable. We assessed
the performance of the two policies for various drift magnitudes and directions. In Fig. 7(b), we
calculated the actuation effort as a function of the drift magnitude with a fixed drift direction for two
target locations. The naive policy outperforms the drift-aware policy for small drift (drift magnitudes
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(a) (b)

(c) (d)

FIG. 7. Performance of target-seeking policies in the presence of drift. We compare the swimming trajec-
tories and actuation efforts of target-seeking policies for different drift magnitudes and direction. (a), (c) Naive
policy (grey) and drift-aware policy (orange) produce similar average actions in environments with constant
(0.1) drift in the positive x-direction and negative y-direction, respectively. Both panels showcase trajectories
reaching targets located three unit lengths away with angular position ψ of π/6 and 5π/6. (b) For a fixed drift
direction (positive x-direction), actuation effort as a function of drift magnitude evolves differently depending
on target angular position ψ . When drift is against the direction of the target (left), both policies fail to reach the
target on average for large enough drift (cross marks). No failures are observed when drift facilitates swimming
towards the target (right). In both cases, the drift-aware policy significantly outperforms the naive policy at large
drift magnitudes by saving actuation effort. Intriguingly, inclusion of extra observations in drift-aware policies
seems to result in slightly suboptimal performance when the drift magnitude is very small. (d) With the drift
magnitude fixed to 0.15, the naive policy fails to reach the target if the drift direction is near the opposite end
of the target angular position ψ . However, at this drift magnitude, the drift-aware policy can still reach both
targets regardless of the drift direction. Note that solid lines and shaded regions of (b) and (d) show the median
results and variations between 25th and 75th percentile, respectively.

less than 0.025) even when the drift is adversarial, but the naive policy loses or even fails to finish
the task when the drift is large, especially when the drift is in the adverse direction to the target
location. This implies that it might be wise to discard some sensory input (observations) when the
perturbation due to drift is weak, especially if these extra observations act more like a distraction
than a clue. But as the perturbation gets stronger, it is necessary to take more observations into
account. Both the naive and drift-aware policies are not able to complete the task in the given
amount of time when the drift magnitude is very large and its direction is adversarial to the target
location. This is because the shape actuation has no direct control over the drift itself. In Fig. 7(d),
we fixed the magnitude of drift to 0.15 and changed its direction. Using the actuation effort as our
performance metric as before, the drift-aware policy has better or similar performance under all
tested conditions. The naive policy fails when the drift acts in the adverse direction relative to the
target while the drift-aware policy is always able to reach the target before the episode terminates.

VII. CONCLUDING REMARKS

We considered a three-link fish swimming in potential flow. We reviewed that swimming in
potential flow can be expressed as a combination of a dynamic phase (drift) and geometric phase
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(driftless) over the shape of fish body deformation [44]. In the driftless case, net locomotion is purely
determined by the fish shape deformations, and geometric techniques can be used for gait design and
motion planning over the fish shape space [52,54], but shape actuation cannot control the drift itself.
Yet, even in the driftless regime, motion planning starting from arbitrary fish orientation and shape
is not trivial. In this paper, we applied model-free reinforcement learning techniques for controlling
the fish motion, and we arrived at optimal policies for swimming (i) in a desired direction and
(ii) towards a target in the absence and presence of drift. The RL-based policies produce behavior
that is robust to variations in the fish initial shape and orientation and target location. We used
the actuation effort as a measure of the policy performance under various initial conditions and in
various environments, and we quantified the robustness of the RL policies to the presence of drift.
We found that although the fish has no control over the drift itself, the fish learns to take advantage
of the presence of moderate drift to reach its target. Therefore, it might be wise to discard some
sensory input (observations) for weak signals because these extra observations could act more like
a distraction than a clue. We also found that for small drift, the drift-naive policy outperforms the
drift-aware policy even when drift is adversarial to the target location. However, large adversarial
drift hinders the fish ability to locate the target. Importantly, these insights into the RL policies were
achievable by combining tools from geometric mechanics with RL-based control. Geometric tools
such as the concept of shape space, combined with the RL notion of the action space, provide a
useful and novel framework for visualizing and interpreting the RL policies as action vector fields
over the shape space.

A few comments on the advantages and limitations of our implementation are in order. Despite
algorithmic advantages, obtaining an RL policy is computationally costly, especially when the
environment simulator involves high-fidelity fluid-structure interaction models. To circumvent this
problem, recent work on training fish to swim uses a limited set of observations and actions [39]. For
example, the zebrafish model of [39] allows only five discrete actions, each corresponding to a fixed
amplitude of body curvature change. Reduced-order fluid models, such as the potential flow model
used here, offer an enticing framework for designing control laws that can later be tested and refined
using more realistic flow environments, as done in [20] for a manually designed swimming gait in
[44]. Specifically, in the simplified potential flow environment employed here, we are able to train
continuous action policies using a rich set of observations, with an eye on probing the performance
of these policies in more realistic flow environments in future work.

Lastly, we invite interested readers to visit our source repository for the complete details of our
implementation [68].
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APPENDIX A: PHYSICS OF THE FISH MODEL

We review the derivation of the equations of motion governing the swimming of an articulated
three-link fish in potential flow (Fig. 1).

1. Fish kinematics

Consider planar motions of the three-link fish. Let x = (x, y) denote the position of the center
of mass G of the middle link, and let β denote the orientation of the fish relative to a fixed inertial
frame, here taken to be the angle between the x-axis and the major axis of symmetry of the middle
link. Let α1 and α2 be the rotation angles of the front link relative to the middle link and the middle
link relative to the rear link; that is to say, (α1, α2) represents the shape of the three-link fish. It
is convenient for the following development to introduce a body-fixed frame (b1, b2, b3), attached

050505-13



YUSHENG JIAO et al.

at G and co-rotating with the middle link. This body-fixed frame is related to the inertial frame
(e1, e2, e3) via a rigid-body rotation such that e1 = cos βb1 − sin βb2, e2 = sin βb1 + cos βb2, and
e3 = b3.

The velocity (ẋ, ẏ) of the center of mass of the middle link, when expressed in the body-fixed
frame, is given by

v = v1b1 + v2b2 = (ẋ cos β + ẏ sin β )b1 + (−ẋ sin β + ẏ cos β )b2. (A1)

Assuming all three links are made of identical ellipsoids of half length a, half width b, and half
height c, the velocities of the centers of mass G1 and G2 of the front and rear link, expressed in
the body-fixed frame of the middle link, are given by (i = 1, 2, denote the front and rear link,
respectively)

vi = (v1 ∓ aα̇i sin αi − aβ̇ sin αi )b1 + (v2 ± aβ̇ + aα̇i cos αi ± aβ̇ cos αi )b2. (A2)

The angular velocities of the middle, front, and rear links are given by β̇, β̇ + α̇1, and β̇ − α̇2,
respectively. For our simulations, we used a:b:c = 5:1:5 as the geometry of the ellipsoids.

2. Kinetic energy of the articulated body

In the absence of the fluid, the kinetic energy of the articulated three-link body is given by

Tbody = 1

2
msv · v + 1

2
Jsβ̇

2 + 1

2

∑
i

[msvi · vi + Js(β̇ ± α̇i )
2], (A3)

where ms = 4
3πabcρs and Js = 1

5 (a2 + b2)ms are the mass and moment of inertia of each solid link
with ρs the density of the links.

3. Kinetic energy of the fluid

The three-link fish is submerged in an unbounded domain of incompressible and irrotational
fluid, such that the fluid velocity u = ∇φ can be expressed as the gradient of a potential function φ.
It is a standard result in potential flow theory that the kinetic energy of the fluid can be expressed in
terms of the variables of the submerged solid [44,45,59]. In the case of a single ellipsoid, the kinetic
energy of the fluid is given by Tfluid = [(m1av

2
1 + m2av

2
2 ) + Jaβ̇

2]/2, where m1a, m2a, and Ja are the
added mass and added moment of inertia due to the presence of the fluid, expressed in a body-fixed
frame that coincides with the major and minor axes of the ellipsoid. These quantities depend on the
geometric properties a, b, c of the submerged ellipsoid, as are given in Appendix B of [69]. For a
nonspherical body, the added masses m1a, m2a depend on the direction of motion: the added mass is
larger when moving in the direction of the minor axis of symmetry of the ellipsoid, that is to say, in
the transverse direction; hence m1a � m2a.

In the case of the three-link fish, the kinetic energy of the fluid is of the form

Tfluid = 1

2
m1av

2
1 + 1

2
m2av

2
2 + 1

2
Jaβ̇

2 + 1

2

∑
i

Ja(β̇ ± α̇i )
2

+ 1

2

∑
i

m1a(v1 cos αi ± v2 sin αi + aβ̇ sin αi )
2

+ 1

2

∑
i

m2a(∓v1 sin αi + v2 cos αi ± aβ̇ cos αi ± aβ̇ + aα̇i )
2
. (A4)
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Here we transform the velocity components of head and tail by α1 and α2, respectively, to match the
added mass components.

4. Kinetic energy of the body-fluid system

The kinetic energy of the fish-fluid system is obtained by taking the sum of Eqs. (A3) and (A4),
which can be expressed in matrix form as follows:

T = Tbody + Tfluid = 1

2

⎡
⎢⎢⎢⎢⎣

v1

v2

β̇

α̇1

α̇2

⎤
⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎣

Ilock Icouple

IT
couple Ishape

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v1

v2

β̇

α̇1

α̇2

⎤
⎥⎥⎥⎥⎦. (A5)

Here, Ilock is a 3 × 3 locked mass matrix, function of α1 and α2,

Ilock =
[
M H

HT J

]
, (A6)

where M is a 2 × 2 mass matrix given by

M =
[

m1(1 + ∑
i cos2 αi ) + m2

∑
i sin2 αi

1
2 (m1 − m2)(sin 2α1 − sin 2α2)

1
2 (m1 − m2)(sin 2α1 − sin 2α2) m2(1 + ∑

i cos2 αi ) + m1
∑

i sin2 αi

]
, (A7)

J is a moment-of-inertia scalar given by

J = 3J + m1a2
∑

i

sin2 αi + m2a2
∑

i

(1 + cos αi )
2, (A8)

and H is given by

H =
[ 1

2 (m1 − m2)a
∑

i sin 2αi − m2a
∑

i sin αi
1
2 (m1 − m2)a(cos 2α2 − cos 2α1) + m2a(cos α1 − cos α2)

]
. (A9)

Here we used m1 = ms + m1a, m2 = ms + m2a, and J = Js + Ja. Note that H couples the transla-
tional and rotational motion of the articulated body. In the case of a single ellipsoid, H is identically
zero.

Further, Icouple is a 3 × 2 matrix that couples rigid-body motion with shape deformation:

Icouple =
⎡
⎣ −m2a sin α1 m2a sin α2

m2a cos α1 m2a cos α2

J + m2a2(1 + cos α1) −J − m2a2(1 + cos α2)

⎤
⎦. (A10)

Finally, Ishape is a 2 × 2 matrix associated with shape deformation:

Ishape =
[

J + m2a2 0
0 J + m2a2

]
. (A11)

The total linear and angular momenta P1, P2, and � expressed in body frame are given by P1 =
∂T/∂v1, P2 = ∂T/∂v2, and � = ∂T/∂β̇ to arrive at Eq. (3) of the main text:⎡

⎣P1

P2

�

⎤
⎦ = Ilock

⎡
⎣v1

v2

β̇

⎤
⎦ + Icouple

[
α̇1

α̇2

]
. (A12)
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APPENDIX B: PROXIMAL POLICY OPTIMIZATION (PPO) ALGORITHMS

We implement the clipped advantage proximal policy pptimization (PPO) method proposed by
[67] for our RL training. PPO maximizes a surrogate objective that clips off unwanted changes
when the policy deviates too much from the policy of the previous cycle to ensure faster and more
robust convergence. We refer readers to the original reference cited above as well as the OpenAI’s
documentation of the PPO algorithm [70] and their baseline implementations [71] for a thorough
explanation of the theory and details behind this method.

Our implementation can be separated into two parts. The main loop simulates the environment
using action sequence at generated by the agent, and stores the observed rollouts for future updates
(see Algorithm 1). Note that no and na are used to indicate the number of observable states
and actions. Equations describing the fish-fluid interactions were integrated numerically using an
adaptive time step, explicit RK45 method between each decision step of 0.1 unit of time. This
choice of decision time step size limits the maximum rotation allowed for the fish head and tail to
be 0.1 radian per step.

Parameters of the actor-critic networks of the RL agent are updated every N time steps for K
epochs. Here the value of K is chosen to be 80 and the value of N is set to 4050, an integer
multiple of the episode length 150. For simplicity, we assume our continuous action variables follow
a multivariate normally distributed policy πθ with mean value represented by a neural network
parametrized by θ and constant diagonal covariance matrices, and the critic or value function Vφ (ot )
is also represented by a neural network with parameters φ. Specifically, both the mean policy and
value function are implemented as feed-forward neural networks with two hidden layers and tanh
activation functions. The sizes of the two hidden layers were fixed to 64 and 32, respectively. Each
diagonal entry of the covariance matrix is set to 0.52. Finally, using the collected trajectories during
the previous N time steps, the parameters θ, φ are updated according a total loss function L(θ, φ)
via a back-propagating gradient-based optimizer (see Algorithm 2). Note that since we did not
perform systematic hyperparameter tuning, readers might want to explore different values for better
performance.

Algorithm 1. Environment simulation.

1: for time step t = 0, 1, . . . do

2: if t = 0 or episode terminates then

3: store time step of episode termination,

4: reset state st ∼ P(s0)

5: evaluate observation: ot ∼ o(st )

6: end if

7: sample action from policy at ∼ πθ (at |ot )

8: evolve next state according to fish physics st+1 ∼ P(st+1|st , at )

9: evaluate next observation ot+1 ∼ o(st+1) and reward rt ∼ r(at , ot+1)

10: if t = 0 or mod(t, N ) �= 0 then

11: append current action, observation, reward, and probability of sampling the action to assemble vectors

aN×na , oN×no, rN×1, and πθold (a|o)N×1

12: else

13: update agent networks according to Algorithm II

14: end if

15: end for
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Algorithm 2. Updating the agent.

1: for update epoch number κ = 0, 1, . . . K do

2: compute the truncated return using rewards rN×1 and assemble into vector RN×1

3: estimate infinite-horizon return using RN×1 and VT = Vφ (oT ) if bootstrapping is desired [see Eq. (B2)]

4: using oN×no and value function Vφ , evaluate expected returns at each time step and store into VN×1

5: compute the advantage A = RN×1 − VN×1 and normalize by its mean and variance if desired

6: evaluate the probability of realizing aN×na based on oN×no for the policy πθ , and store to πθ (a|o)N×1

7: compute the action-likelihood ratio: �θ = πθ (a|o)N×1

πθold (a|o)N×1

8: compute clipped surrogate loss function:

Lclip(θ ) = mean [min [�θ · A, clip(�θ , 1 − ε, 1 + ε) · A]]

9: compute the value-function loss: Lvalue(φ) = 0.5 × mean [(RN×1 − VN×1)2]

10: compute the total loss: L(θ, φ) = −Lclip(θ ) + Lvalue(φ) − α × entropy [πθ ]

11: update parameters (θ, φ) to minimize the total loss using a gradient-based optimizer (e.g., Adam [72])

12: end for

Another important side note is that since it is in general impossible to obtain an unrealized infinite
horizon return Rt = �∞

t ′ γ t ′−t rt ′ , we need to choose an appropriate estimator of this value based on
finite length simulations. We can either simply truncate rewards after some step k by using

R̂t |truncation = rt + γ rt+1 + γ 2rt+2 + · · · + γ k−1rt+k, (B1)

or we can use the trained value function (critic) to approximate the residual contribution to the return
via k-step bootstrapping,

R̂t |bootstrapping = rt + γ rt+1 + γ 2rt+2 + · · · + γ kVφ (ot+k+1). (B2)

We compared these two approaches for the direction-based task and observed that bootstrapping
results in faster convergence and higher rewards in general [see Fig. 8(a)]. As a result, bootstrapping
is used for all tasks depicted in the main text, where k was determined by the number of available

(a) (b) (c)

FIG. 8. Evolution of rewards during the training process. (a) Total rewards per episode achieved by policies
trained to swim parallel to the x-axis in a driftless environment using bootstrapped (blue) and truncated (black)
return estimates. Here solid lines indicate the median, and the shaded region shows the variation between 25th
and 75th percentile for 24 runs of the learning algorithm. (b), (c) Total rewards obtained by policies trained to
swim towards a given target, both of which adopt bootstrapped return estimates. Red in (b) represents naive
policies trained in a driftless environment, while yellow in (c) represents policies trained in the presence of
drift, with drift magnitude and direction supplied as additional observations to the policy. Again, lines and
shaded regions indicate median and 25th to 75th percentile range, respectively.
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future rewards. Namely, k decreased from 149 to zero as the number of time steps increased from
1 to 150 in each episode. In addition, we show the difference in training rewards and convergence
speed between the naive policy and the drift-aware policy in Fig. 8(b). In general, the inclusion of
more observations increased the time to convergence and variance in training rewards.
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