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The weights of a deep neural-network model are optimized in conjunction with the
governing flow equations to provide a model for subgrid-scale stresses in a temporally
developing plane turbulent jet at Reynolds number Re0 = 6000. The objective function for
training is first based on the instantaneous filtered velocity fields from a corresponding
direct numerical simulation, and the training is by a stochastic gradient descent method,
which uses the adjoint Navier-Stokes equations to provide the end-to-end sensitivities of
the model weights to the velocity fields. In-sample and out-of-sample testing on multiple
dual-jet configurations show that its required mesh density in each coordinate direction
for prediction of mean flow, Reynolds stresses, and spectra is half that needed by the
dynamic Smagorinsky model for comparable accuracy. The same neural-network model
trained directly to match filtered subgrid-scale stresses, without the constraint of being
embedded within the flow equations during the training, fails to provide a qualitatively
correct prediction. The coupled formulation is generalized to train based only on mean-flow
and Reynolds stresses, which are more readily available in experiments. The mean-flow
training provides a robust model, which is important, though a somewhat less accurate
prediction for the same coarse meshes, as might be anticipated due to the reduced informa-
tion available for training in this case. The anticipated advantage of the formulation is that
the inclusion of resolved physics in the training increases its capacity to extrapolate. This
is assessed for the case of passive scalar transport, for which it outperforms established
models due to improved mixing predictions.

DOI: 10.1103/PhysRevFluids.6.050502

I. INTRODUCTION

The attractiveness of subgrid-scale models that reduce the resolution needs of large-eddy simula-
tion (LES) methods is well understood [1]. However, the required resolution to achieve sufficiently
universal subgrid-scale behavior, which simplifies modeling, remains higher than might be desired
[2] and, even for finely resolved LES, the modeling challenge is not necessarily simple [3]. Flexibil-
ity to produce diverse subgrid-scale behaviors is, in a sense, at odds with cleanly expressed models,
which are necessarily simpler than the diverse range of phenomenology that they seek to represent.
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Models with little empiricism, perhaps most notably dynamic models [4,5], are obviously attractive
for their anticipated convergence and concomitant portability, and are expected to see continued use
indefinitely, though models with greater parametric flexibility might afford opportunities for further
relaxing mesh resolution needs. We examine such an approach here and introduce subgrid-scale
models with many parameters. The hope is that the greater empiricism will reduce the resolution
requirements yet still provide useful extrapolation to new configurations, beyond the training data.
Maybe most importantly for motivation, we also seek procedures that are sufficiently flexible
to include additional subgrid-scale physical effects, beyond that expressed in the flow equations
and possibly beyond that which has been well described to date by governing equations. The
attractiveness of the dynamic procedure depends upon the turbulence physics that underlie its
spectral extrapolation procedure. Cases with coupled physics, such as turbulent combustion, do
not lend themselves directly to decoupled subgrid-scale predictions. We therefore also seek to use
the additional empiricism to increase flexibility in the proposed models to facilitate incorporation
of observations that lack as complete of a mathematical description as turbulence.

The approach we take uses the formulations, optimization procedures, and efficient implementa-
tions available for deep neural networks. As for any large-eddy simulation, the ·̄ filtered equations
will be solved numerically,
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with the closure hi j = hi j (u; �θ ), with model parameters �θ , dependent on the velocity and its
derivatives. The dimension of �θ is small for established subgrid-scale models and nominally zero
for models based on a dynamic procedure. For large-eddy simulation, the simplest approach, here
referred to as the direct approach, is to minimize

L(�θ ) = D
(
τ SGS

i j (ue, u�
e ue), hi j (ue; �θ )

)
, (3)

where D is an appropriate distance

D(a, b) =
∫ T

0

∫
�

‖a − b‖ dx dt (4)

and τ SGS
i j and ue are a priori trusted data, likely from a direct numerical simulation (DNS) or possibly

from advanced experimental methods. Accelerating optimization of �θ by using the gradient

∂L

∂�θ = ∂L

∂h
· ∂h

∂�θ (5)

is straightforward, with the center dot operator here representing an appropriate inner product as
needed. The first factor in (5) follows directly from the selected measure of mismatch (3), and the
second is the usual sensitivity gradient available from a back-propagation training algorithm, as
is available in any neural-network software [6]. One drawback is the availability of τ SGS

i j , which
is a complex quantity in a turbulent flow. Even when τ SGS

i j and ue are available from advanced
diagnostics or direct numerical simulation, it is alarming that the optimization problem (3) ignores
the governing equations (1) and (2), so the trained model is at most indirectly constrained by the
known and resolved physics expressed in the unclosed governing equations, which risks diminishing
its capacity for extrapolative prediction.

Such a direct approach, using a variant of (3), has been employed with some success in Reynolds-
averaged Navier-Stokes (RANS) modeling to close the mismatch with trusted data [7]. Of course,
in Reynolds-averaged descriptions, the mismatch is relatively simple to infer from mean flow fields.
In contrast, for large-eddy simulation, it is time dependent, three dimensional, and smaller scale, so
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it is difficult to design a training regimen that would with confidence close the mismatch [8,9]. Still
more challengingly, it is unclear how to anticipate the limits of model validity: How far from the
training data will the model successfully extrapolate? For this question, how even to define distance
is not obvious. Training on the mismatch (the direct approach) has the additional challenge that it
requires data specifically aligned with that mismatch. Such correspondingly rich data sets likely do
not exist in many machine-learning applications to fluid mechanics [10].

The approach we pursue is designed to both reduce the need for training data and remove the
requirement of obtaining the challenging data for τ SGS

i j . To constrain the models by the physics in (1)
and (2), we minimize

L(�θ ) = D(F (ue), F (u)), (6)

where F is a function of the flow field, ue indicates that F (ue) is derived from a trusted flow field,
even if ue is not necessarily known in detail, and u is the a posteriori solution of (1) and (2). Thus,
minimization of (6) is a PDE-constrained optimization problem, unlike (3). If ue is available, at
least in some � part of the domain, then F (u) = u can be simply used, though any convenient and
effective quantity of interest can, in principle, be selected.

Unfortunately, this indirect loss function (6) greatly increases the training challenge because any
new set of parameters �θ requires a new flow solution to determine u and thus F (u). Gradient-
based acceleration of the optimization, in particular, is more challenging to implement due to the
dimension of �θ . The gradient of (6) for the discretized form of (1) satisfies

∂L

∂�θ = ∂L

∂u
· ∂u
∂h

· ∂h

∂�θ , (7)

the middle factor of which describes the change in the flow solution due to changes in the closure
term h. The center dot is a dot product, and the dimension of ∂L

∂u matches the number of space and
time degrees of freedom in the discretization. For the continuous case of (1), (7) would be replaced
by functional derivatives that satisfy an adjoint partial differential equation (PDE). Adjoint-based
methods are well understood to efficiently provide such high-dimensional gradient information, and
we employ them here. Most of the details of the numerical implementation are available elsewhere
[11], where they were demonstrated for the limited case of F (u) = u for isotropic turbulence.
A similar approach has also been demonstrated in two-dimensional aerodynamics applications
[12], based on a similarly motivated framework previously demonstrated on illustrative model
applications [13]. The same challenges also motivate recent efforts to achieve more-robust learning
via more sophisticated network models, rather than building the governing equations directly into
the learning procedure [14]. Another approach uses reverse-mode differentiable programming to
implement adjoint PDEs [15], similar to algorithmic differentiation [16], and could be useful in
solving (7) for complex systems.

Building on the success for isotropic turbulence [11], several temporally developing planar tur-
bulent shear flows with Reynolds number 6000 are used to assess the method for the more complex
case of free shear flow, including its scalar mixing, and multiple training regimens. The numerical
simulation methods are summarized in Sec. II. The turbulent flows considered are introduced in
Sec. III. The neural-network model is standard; for completeness, its particulars are summarized in
Sec. IV. We also consider nontrivial F in (6) and portability of trained h to other flows (Sec. V). The
form of the trained h is analyzed in Sec. VI, and how it better represents turbulence on relatively
coarse meshes is analyzed in Sec. VII. The extrapolative capacity of the method is demonstrated
in Sec. VIII, where a model trained on subgrid-scale stresses is shown to be more effective than
established models when applied directly, without additional training, to scalar transport. Finally,
in Sec. IX we consider the implications of the mesh resolution. Conclusions are discussed in the
context of future directions in Sec. X.

050502-3



MACART, SIRIGNANO, AND FREUND

TABLE I. Conditions for the initial mean velocity profiles (13) for case A and (18) for cases B–D.

Case Configuration Re0 = Uj0H0/ν H1/H0 Uj1/Uj0 (L, H,W )/H0 Uniform mesh

A Single jet – –
B Dual jets 1.0 1.0

6000 16,20,12 1024 × 1280 × 768C Dual asym. 2.0 +0.5
D Dual antipara. 2.0 −0.5

II. FLOW SIMULATIONS

A. Governing equations

To provide the direct numerical simulation training and testing data, the incompressible-fluid
flow equations, including transport of a passive scalar ξ ,
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are discretized with sufficient resolution such that all turbulence scales are sufficiently resolved.
For the large-eddy simulations, (8) is replaced with either
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for comparison with established τ r
i j closure approaches, or (1), with the fitted neural-network closure

hi j . For the anisotropic residual stress τ r
i j = τ SGS

i j − τ SGS
kk δi j/3, we consider the Smagorinsky model

[17,18] with constant coefficient Cs = 0.18, the dynamic Smagorinsky model [4,5], and the model of
Clark et al. [19]. Differently from a previous demonstration [11], where h modeled ∇ · �τ r , here hi j

models τ r
i j directly for smoother optimization and greater modeling flexibility (Sec. V E). Moreover,

it enables us to compare the functional form of hi j to traditional models (Sec. VI).
The filter underlying the large-eddy simulation formulation is

φ(x, t ) =
∫

�

G(y, x)φ(x − y, t ) dy, (12)

though this is only explicitly used for comparison with direct numerical simulations and for
generating large-eddy simulation initial conditions. For this, G(y, x) has unit support in a � cube
centered on x [19].

B. Numerical discretization

Second-order centered differences are used on a staggered mesh [20], except for convective
terms in the scalar equation (10), which were discretized using a third-order weighted essentially
nonoscillatory (WENO) scheme [21]. Time integration is by a fractional-step method [22] and a
linearized trapezoid method in an alternating-direction implicit (ADI) framework for the diffusive
terms, as implemented by Desjardins et al. [23]. Mesh densities for the direct numerical simulation
cases listed in Table I were selected so that the Kolmogorov scale η = (ν3/ε)1/4, based on the
calculated viscous dissipation rate ε, is resolved with uniform mesh spacing �xDNS such that
�xDNS/η < 1.8 in the turbulence regions, which matches successful resolutions of turbulent jets
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FIG. 1. One-dimensional energy spectra from direct numerical simulation of a temporally evolving jet
(case A; see Table I) at the centerline (y/H0 = 0) and in the shear layer (y/H0 = 2, shown offset by a factor of
10), at time t = 62.5t j0: (a) streamwise and (b) spanwise spectra. Dashed lines are the filtered direct numerical
simulation data, with vertical lines indicating the �16 filter-cutoff wave number. Reference ∼κ−5/3 lines are
shown.

at similar Reynolds number [24–28]. Spectra in Fig. 1 confirm that several decades of turbulence
energy decay are resolved. The time step �tDNS was fixed, with initial Courant–Friedrichs–Lewy
(CFL) number about 0.37 that decreased to about 0.18 by the end of the simulation. A posteriori
large-eddy simulations used the same numerical methods together with subgrid-scale models or
the deep-learning model discussed subsequently in Sec. IV. Analogous filtered spectra in Fig. 1
with �16 show a relatively high energy at the cutoff wave number. This substantially increases the
modeling challenge, as is shown in Sec. III C.

The adjoint-based neural-network model training, which is described in Sec. IV B, uses the same
numerical methods for the forward solution with the exception of time integration, which is by the
fourth-order Runge-Kutta method for simplicity; thus the temporal adjoint solution is approximate.
Since the overall order of accuracy is limited by the pressure-projection step, it is comparable to that
of the forward solution. We further note that the adjoint solution is computed over only short time
horizons (Sec. IV B), for which the slightly different energy-conservation properties of the forward
and adjoint time integrators do not become appreciable. An exact (in space only) discrete adjoint
was solved.

III. CONFIGURATIONS

Free-shear-flow turbulence from multiple temporally developing planar jets, some with multiple
streams, will be used for training and testing. These are introduced in the following subsections.

A. Turbulent plane jets

The baseline turbulent plane jet has a rounded top-hat initial streamwise mean velocity

û(y) = Uj0

2

[
tanh

y/H0 + 1/2

δL
− tanh

y/H0 − 1/2

δL

]
(13)

of width ≈H0 bounded by shear layers of thickness ≈δL = 0.1H0. The Reynolds number is Re0 =
Uj0H0/ν = 6000.
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To seed transition to turbulence, spatially periodic fluctuations in the x-z plane are added to the
streamwise and cross-stream velocities:

ˆ̂u(y, z) = a û(y) cos

[
16πz

L

]
+ û(y), (14)

ˆ̂w(x, y) = a û(y) cos

[
16πx

W

]
, (15)

where a = 0.1, and L and W are the domain sizes in the periodic x and z directions, respectively
(see Table I). Three-dimensional random perturbations are superimposed on top of these at each
mesh point:

u(x, y, z) = {1 + a[rx(x, y, z) − 0.5]} ˆ̂u(y, z), (16)

w(x, y, z) = {1 + a[rz(x, y, z) − 0.5]} ˆ̂w(x, y), (17)

where rx and rz ∈ [0, 1] are uniformly distributed. The initial cross-stream velocity is v(x, y, z) = 0.
This single-jet baseline case is case A in Table I.

Additional dual-jet cases, which are anticipated to involve entrainment and merging processes not
seen in the single jet [29], are used for out-of-sample tests. These additional processes occur over
significantly longer duration than the development of approximate self-similarity in the single jet.
Three specific dual-jet cases are considered: symmetric parallel jets (case B), asymmetric parallel
jets (case C), and asymmetric antiparallel jets (case D). These have initial streamwise mean velocity
profile

û(y) = Uj0

2

[
tanh

(y + Hs,0)/H0 + 1/2

δL
− tanh

(y + Hs,0)/H0 − 1/2

δL

]

+ Uj1

2

[
tanh

(y − Hs,1)/H1 + 1/2

δL,1
− tanh

(y − Hs,1)/H1 − 1/2

δL,1

]
, (18)

where Hs = min(H0, H1), Hs,0 = (Hs + H0)/2, Hs,1 = (Hs + H1)/2, and δL,1 = (H1/H0)δL. The
primary and secondary jets are set to have the same Reynolds number (Re0 = Re1) based on their
speed and width. Perturbations are superimposed following the same long-wavelength and random
perturbations as for the single jet. Specific H1/H0 and Uj1/Uj0 ratios are listed in Table I.

B. Jet evolution

Reynolds averages are over the periodic streamwise (x) and transverse (z) directions and are
functions of the cross-stream (y) coordinate and time (t):

〈φ〉(y, t ) = 1

LxLz

∫ Lx

0

∫ Lz/2

−Lz/2
φ(x, y, z, t ) dz dx, (19)

with discrete analog

〈φ〉(y j, t n) = 1

NxNz

Nx∑
i=1

Nz∑
k=1

φ(xi, y j, zk, t n), (20)

where Nx and Nz are the number of mesh points in the x and z directions. Subsequently, presented
large-eddy simulation results were also ensemble averaged in time using at least two realizations
initialized with different random perturbations sampled from the same distributions.

The evolving centerline velocity Ucl (t ) ≡ 〈u〉(0, t ) and half-width y1/2(t ), defined by
〈u〉(y1/2, t ) = Ucl (t )/2, are shown in Fig. 2 for the single jet (case A). There is an adjustment
from the initial non-self-similar pluglike flow to an approximately linear spreading with ∼t−1/2

centerline velocity decay for t � 15t j0, t j0 = H0/Uj0, consistent with an onset of similarity. Spectra
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FIG. 2. (a) Half-width and (b) centerline velocity of the case A jet direct numerical simulation. Subse-
quently discussed large-eddy simulations are initialized at t = 5t j0, indicated by dotted lines. Comparisons for
this case are carried out at t = 62.5t j0, indicated by dashed lines.

at t = 62.5t j0, such as are used subsequently for model evaluation, are shown in Fig. 1. The
vorticity magnitude at t = 62.5t j0, as visualized in Fig. 3(a), shows a range of large- and small-scale
turbulence.

The large-eddy simulations are initialized by filtering the direct numerical simulation fields
at t = 5t j0. As seen in Fig. 2, this is prior to the period of approximate self-similarity, which
presumably increases the difficulty of matching statistics at later times. This initialization is also
more representative of realistic LES, for which fully developed filtered-DNS initial conditions are
typically unavailable. Primary comparisons for the single-jet case are made at t = 62.5t j0, which
is approximately four times the time for first achieving approximate self-similarity based on the

(a) DNS

(c) LES, Dynamic Smagorinsky

(b) Filtered DNS, Δ16

(d) LES, Adjoint ML
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FIG. 3. Vorticity magnitude at z = 0 for t = 62.5t j0: (a) direct numerical simulation case A (1024 ×
1280 × 768 mesh points); (b) the same field as (a) filtered using �/�DNS = 16 for an effective mesh of
64 × 80 × 48 points; (c) large-eddy simulation using the dynamic Smagorinsky subgrid-scale model, initial-
ized at t = 5t j0 (see Sec. III B), on 64 × 80 × 48 mesh points; and (d) the analogous 64 × 80 × 48 simulation
on using the adjoint-trained deep-learning model (Sec. IV).
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FIG. 4. Mean streamwise velocity for (a) single jet (case A), (b) symmetric parallel jets (case B), (c) asym-
metric parallel jets (case C), and (d) asymmetric antiparallel jets (case D), all normalized by case A similarity
variables. Profiles are shown starting at t = 5t j0.

mean velocity. At this time, the jet has grown to approximately 2.75 times its original width. As an
example, the vorticity magnitude of filtered DNS data is compared to large-eddy simulations using
the dynamic Smagorinsky and adjoint-trained machine-learning model in Figs. 3(b)–3(d). On this
coarse grid, the learned model, described in Sec. IV, produces turbulence that qualitatively better
matches the filtered direct numerical simulation. Quantitative comparisons of these and other model
predictions are presented in Sec. V.

Mean velocities for all cases are shown in Fig. 4. As expected, the single-jet profiles exhibit
approximately self-similar evolution for t � 15t j0. However, the dual-jet cases do not, so a suc-
cessful model will need to reproduce a presumably more challenging non-self-similar evolution.
Subsequent quantitative comparisons for the dual-jet cases are at t = 50t j0 (case B) and t = 42.5t j0

(cases C and D).

C. Baseline subgrid-scale models

The deep-learning subgrid-scale model is analyzed and compared primarily against a standard
dynamic Smagorinsky model [4,5]. Baseline performance of the dynamic Smagorinsky model is
established by comparing with filtered direct numerical simulations. Since there is not explicit fil-
tering during the large-eddy simulation, the nominal filter width and mesh resolution are equivalent:
� ≡ �N = N�DNS [18].

Figure 5 shows mean streamwise velocity predictions of the single-jet case (A) for �N=16,8,4,2.
The �16 case overpredicts the centerline velocity and underpredicts the jet spreading, though, as
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FIG. 5. Direct numerical simulation, filtered DNS, and dynamic Smagorinsky (DS) [4] large-eddy simula-
tion mean streamwise velocity u for the single jet (case A) at t = 62.5t j0 for filter sizes indicated: �16,8,4,2.

expected, agreement improves with finer meshes �8,4,2. This increases the separation between the
dynamic-model test-filter scale and the large turbulence scales, thereby improving the realism of
the isotropy assumption. The DNS mean filtered velocity is also shown in Fig. 5; this deviates only
slightly from the unfiltered mean velocity.

Budgets of turbulence kinetic energy provide a measure of the role of the models’ resolved-to-
subgrid scale energy transfer versus viscous dissipation. Upon filtering, energy may be decomposed
into resolved E f and residual (subgrid-scale) kr components as

E ≡ 1

2
uiui = 1

2
uiui︸ ︷︷ ︸
E f

+ 1

2
(uiui − uiui )︸ ︷︷ ︸

kr

. (21)

A gauge of model importance can be inferred from the relative amounts viscous dissipation of E f

by the resolved (filtered) velocity field

ε f ≡ 2νSi jSi j (22)

and the production rate of residual kinetic energy

Pr ≡ −τ r
i jSi j . (23)

For both of these, Si j is the filtered strain rate. Both ε f and Pr represent sink terms when positive.
Figure 6 compares the large-eddy simulation and filtered direct numerical simulation ε f and Pr

for the baseline jet. Ideally, ε f and Pr should match the filtered direct numerical simulation values
for the same filter size. As filter size increases, ε f is expected to decrease and Pr to increase, and both
do exhibit these trends. However, the dynamic Smagorinsky model increasingly overpredicts both
ε f and Pr with increasing filter size. This means that there is excessive removal of kinetic energy
from the resolved scales. For �4, Pr is a small fraction of ε f , so the model for τ r

i j plays only a minor
role. The �4 filtered εDNS

f is about half the unfiltered dissipation εDNS [Fig. 6(a)], so it dominates
the evolution of the resolved kinetic energy. However, the balance is different for �16. Here, the
subgrid-scale production dominates the resolved dissipation, making the model essential. Such a
challenge affords opportunities for improvement, so we focus on �16 for subsequent deep-learning
modeling.
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FIG. 6. Evaluation of the dynamic Smagorinsky (DS) model for the baseline single jet (case A): (a) re-
solved viscous dissipation ε f (22) and (b) residual kinetic energy production rate Pr (23) at t = 62.5t j0 for
filter sizes indicated.

IV. NEURAL-NETWORK MODEL AND TRAINING

The deep-learning model architecture, hyperparameters, and training algorithm are described in
this section. Section IV A presents the neural-network model. Section IV B discusses the training
algorithm.

A. Model architecture

We use a deep neural network G( �φ (x, t ); �θ ), where �φ represents space- and time-dependent
input data from the running simulation, with the following architecture:

H1 = σ (W 1 �φ + b1),

H2 = σ (W 2H1 + b2),

H3 = G1 � H2 with G1 = σ (W 5z + b5),

H4 = σ (W 3H3 + b3),

H5 = G2 � H4 with G2 = σ (W 6z + b6),

G( �φ ; �θ ) = W 4H5 + b4,

(24)

where σ is a tanh(. . .) element-wise nonlinearity, � denotes element-wise multiplication, and the
parameters are θ = {W 1,W 2,W 3,W 4,W 5,W 6, b1, b2, b3, b4, b5, b6}. The gated units G1 and G2

are chosen for their general capability to represent stiff, nonlinear behavior. Each layer includes
NH = 100 hidden units, all initialized using a standard Xavier initialization [30]. Inputs to the neural
network are normalized by the same set of constants for all cases.

In (1), h(x, t ; �θ ) = �(y)G( �φ (x, t ); �θ ), where in the implementation � simply sets the neural
network to zero at the y = ±H/2 boundary mesh points. We note that the discrete stress tensor hi, j,k

is not constrained to be exactly symmetric on the staggered mesh at finite resolution. Similarly, the
symmetric subgrid-scale stress components (e.g., τ r

12 versus τ r
21) appear in different equations (x

versus y momentum), which are not exactly constrained by the same symmetries as the (unfiltered)
Navier-Stokes equations [2]. Thus, further model flexibility in the finite-resolution limit may be
achieved by relaxing the symmetry requirement. The same argument applies for corresponding
tensor invariants; they will not hold for finite resolution, so are not imposed on the network. To
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be clear, as for any well-posed subgrid-scale model, symmetry and invariance properties will be
achieved with increasing resolution. Symmetry is revisited in Sec. V E and invariants in Sec. VII.

The output hi, j,k
ll is at the cell center x = (i� + �

2 , j� + �
2 , k� + �

2 ). For l �= m, the output hi, j,k
lm

is at the cell corners

x =
⎧⎨
⎩

(i�, j�, k� + �
2 ), if (l, m) = (1, 2)

(i�, j� + �
2 , k�), if (l, m) = (1, 3)

(i� + �
2 , j�, k�), if (l, m) = (2, 3).

(25)

The derivatives ∂hi j

∂x j
are then calculated at the cell faces using central differences with mesh size �,

for example,

∂h11

∂x

(
i�, j� + �

2
, k� + �

2

)
= hi, j,k

11 − hi−1, j,k
11

�
,

∂h12

∂y

(
i�, j� + �

2
, k� + �

2

)
= hi, j+1,k

12 − hi, j,k
12

�
,

∂h13

∂y

(
i�, j� + �

2
, k� + �

2

)
= hi, j,k+1

13 − hi, j,k
13

�
.

(26)

Models were implemented and tested using two different sets of input variables. We first tested
using �φ = (u, ∂xl u, ∂xl xl u) as an input, although this closure model is not Galilean invariant. For
the simpler case of isotropic turbulence, for which this approach was first tested [11], the model
appeared to learn Galilean invariance. However, for the jets here, not surprisingly, it was found to
be unstable in a posteriori simulations, at least for the amount of training evaluated. Therefore, a
Galilean invariant form with �φ = (∂xl u, ∂xl xl u) was used here.

The input �φ to (24) for a large-eddy simulation grid cell (i, j, k) includes the variables �φ i, j,k

for (i, j, k) as well as the six adjacent cells. Velocity-gradient inputs are calculated using the same
stencils as the convective and viscous operators. Thus, on-diagonal derivatives ul,l are evaluated at
cell centers, and off-diagonal derivatives ul,m, m �= l , are evaluated at cell faces. As an example,

u1,x

(
i�+ �

2
, j�+ �

2
, k�+ �

2

)
= u1

(
i�+ �, j�+ �

2 , k�+ �
2

)− u1
(
i�, j�+ �

2 , k�+ �
2

)
�

,

u1,y

(
i�, j�, k�+ �

2

)
= u1

(
i�, j�+ �

2 , k�+ �
2

) − u1
(
i�, j� − �

2 , k�+ �
2

)
�

,

u1,z

(
i�, j�+ �

2
, k�

)
= u1

(
i�, j�+ �

2 , k�+ �
2

) − u1
(
i�, j�+ �

2 , k�− �
2

)
�

.

(27)

B. Training algorithm

A stochastic gradient descent-type scheme is employed, in which the adjoint partial differential
equation is solved on random time subintervals m = 1, . . . , M during each optimization iteration,
each of which can be evaluated in parallel. The training algorithm is summarized below. We first
consider the case in which we seek to minimize (6) as discussed in Sec. I with F (u) = u(x, t ). The
extension to training on mean statistics is described in Sec. IV C.

(i) Initialize the parameters �θ 0 with samples from the Xavier distribution [30].
(ii) For training iteration k = 1, 2, . . . , K :

(a) Each subiteration m = 1, . . . , M selects a random time tm; the corresponding filtered
direct numerical simulation data for [tm, tm + Ts] is taken as the training target:
F (ue) = uDNS.
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(b) Equations (1) and (2) are solved over [tm, tm + Ts] with the filtered direct numerical
simulation data at tm projected onto a divergence-free manifold as the initial condition
[11].

(c) For each m, the adjoint is solved on [tm + Ts, tm] with objective function, rewritten from
(6),

Lm(θ ) =
∫

�

‖uDNS(tm + Ts, x) − u(tm + Ts, x)‖ dx. (28)

(d) The adjoint solution provides the gradient ∇�θ Lm(θ ) for m = 1, . . . , M.
(e) These M gradients are averaged as G = 1

M

∑M
m=1 ∇θLL(θ ).

(f) The parameter �θ for the deep-learning large-eddy simulation model is updated using the
RMSprop algorithm [31] with the gradient G:

�rk+1 = ρ�rk + (1 − ρ)G � G,

�θ k+1 = �θ k − αk

√
�rk+1 + ε

� G,
(29)

where αk is the learning rate, and we take ρ = 0.99 and ε = 10−8. The
√

�r�+1 operation is
element-wise. The learning rate αk is decreased by a factor of 1

2 every K iterations.
Taking K = 250 and M = 12 was found to be effective, though of course the optimal choice of

such hyperparameters will generally depend upon the application and the model architecture. The
time segments used had Ts = 5�tLES, with the large-eddy simulation time step �tLES = 10�tDNS.

C. Training on the Reynolds-averaged statistics

As discussed in Sec. I, direct numerical simulation data, or correspondingly resolved experi-
mental measurements, are not available in all cases. Therefore, as a relevant example of limited
availability of data, we train a model only on the mean velocity and resolved Reynolds stresses:
F (u) = (〈u〉; 〈u′u′〉)(y, t ). We obtain target data F (ue) = (〈uDNS〉; 〈(u′u′)DNS〉) from the filtered case
A, though in general measured data may be substituted without modification. In this case, the
objective function becomes

L(θ ) = 1

Ly

1

(T2 − T1)

∫ T2

T1

∫ Ly

0

3∑
i=1

c1

U 2
j0

(〈
uDNS

i − ui
〉2 + c1

U 2
j0

3∑
j=i

〈
uDNS

i uDNS
j − uiu j

〉2)
dy dt, (30)

with c1 = U 2
j0 = 467.4 found to be effective for the current application. Training this objective

function is computationally more challenging than with (28) since (30) requires solving the flow and
its adjoint on the full t ∈ [T1 = 5, T2 = 67.5]t j0 case A time horizon for each optimization iteration.
Despite solving over a relatively long time length, the adjoint equation remains well behaved.

V. MODEL PREDICTIONS

The objective functions, training data, and testing data for all cases are listed in Table II. We start
in Sec. V A with an a priori τ SGS

i j model, trained directly based on the subgrid-scale stress mismatch
(3). This simpler approach is demonstrated to be poor compared with the adjoint-based training in
the following sections: in-sample results for the baseline case A jet (Sec. V B) and out-of-sample
analysis of cases B, C, and D (Sec. V C). The performance for the averaged objective function (30)
is assessed in Sec. V D.

A. A priori training

The model of Sec. IV A is trained to minimize the a priori mismatch between the modeled and
filtered direct numerical simulation τ SGS

i j . This is the simple, direct approach: training requires only
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TABLE II. Objective functions, training data, and testing data for primary cases studied.

Objective function (F ) Training Testing Section

τ SGS
i j (u) Jet (13) Jet (13) V A

(a priori ML)
F (u) = u(x, t ) Jet (13) Jet (13) V B
(filtered velocity) Dual jets (18) V C

Dual asymmetric (18) V C
Dual antiparallel (18) V C

F (u) = (〈u〉; 〈u′u′〉)(y,t ) Jet (13) Jet (13) V D
(x and z averaged) Dual jets (18)

Dual asymmetric (18)
Dual antiparallel (18)

F (u) = u(x, t ) Jet (13) Jet (13) V E
(filtered velocity; hi j = hji) Dual jets (18)

Dual asymmetric (18)
Dual antiparallel (18)

5.5 h on 24 Nvidia K20X GPU nodes. The a priori τ SGS
i j agreement in Fig. 7(a) is good, as expected

since deep neural networks are well understood to fit data well. However, this fit is unconstrained
by how the model interacts with the governing equations, so it is unsurprising that the a posteriori
performance in a large-eddy simulation is poor [Fig. 7(b)], even for the mean velocity. Simply
minimizing the mismatch is insufficient, even for this relatively simple free-shear flow. In Fig. 7(b),
the adjoint-trained neural network with F (u) = u, which is discussed subsequently, performs far
better for the same network model.

B. Single-jet case (in sample)

In this case, the model is trained on filtered instantaneous velocity fields [F (u) = u(x, t )] from
case A and tested on the same configuration. In Fig. 8(a), we see that for �16 the deep-learning
model nearly perfectly reproduces the mean velocity, doing better than the dynamic Smagorinsky
(DS) model for the coarse �16 case and comparably to it for �8. In Fig. 8(b), it also better tracks the
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FIG. 7. The a priori trained deep-learning model for case A for �16 at t = 62.5t j0: (a) residual stress
agreement from filtered direct numerical simulations and the a priori trained model, and (b) predicted mean
streamwise velocity.
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FIG. 8. Single-jet (case A) in-sample comparison for learning (ML) and dynamics Smagorinsky (DS)
models: (a) mean streamwise velocity u1 at t = 62.5t j0 and (b) half-width y1/2 evolution for the indicated
filter sizes. The direct numerical simulation data are included for comparison.

evolution of y1/2: for both �8 and �16, the dynamic Smagorinsky model underpredicts jet spreading
at early times.

Resolved Reynolds stress components Ri j ≡ 〈(ui − 〈ui〉)(u j − 〈u j〉)〉 are compared in Fig. 9. As
expected, based on the mean-flow evolution, the trained model significantly outperforms dynamic
Smagorinsky at this coarse resolution. The complete Reynolds stress from the direct numerical
simulation, prior to filtering to match the large-eddy simulation model, is also shown to quan-
tify the subgrid-scale contribution to the turbulence stresses. One-dimensional energy spectra in
Fig. 10 confirm that the deep-learning model more accurately reproduces the spectral energy
distribution than the dynamic Smagorinsky model, and this is particularly evident at high wave
numbers.

C. Dual-jet cases (out of sample)

Out-of-sample mean-flow results are shown in Fig. 11 for all three dual-jet cases of Table I. The
corresponding resolved viscous dissipation rates are shown in Fig. 12.

For the symmetric parallel jets, case B, the deep-learning model on �16 has accuracy comparable
to the dynamic Smagorinsky model on �8 and predicts the resolved viscous dissipation rate. It
thus predicts the merging process for which it was not trained. Conversely, for this resolution, the
dynamic Smagorinsky model on the coarse �16 mesh substantially underpredicts the jet merging,
showing two distinct peaks of mean velocity. Similarly to case A, this corresponds to overprediction
of ε f near the high-shear regions.

The overall performance for the asymmetric parallel jets (case C) is similarly good: the
coarse-grid deep-learning model more accurately reproduces the jet spreading than the dynamic
Smagorinsky model for both �16 and �8 [Fig. 11(b)]. Of the three models, the deep-learning model
also most accurately reproduces the peak velocity of the lower jet (y ≈ −H0), though at the same
time it is less accurate for the peak velocity of the slower-speed upper jet (y ≈ 2H0). This might
be because the lower jet more closely matches the training case A, whereas the upper jet is slower
(U1 = U0/2) and wider (H1 = 2H0), as seen in Table I and Fig. 4. These trends are repeated in
Fig. 12(b) for the resolved dissipation rate.

The deep-learning model similarly outperforms the dynamic Smagorinsky model in the asym-
metric, antiparallel jets (case D) [Figs. 11(c) and 12(c)] for both �16 and �8. Unlike previous
cases, this configuration has much larger ε f in the high-shear, interjet region (y ≈ 0) than in the jets
themselves. The deep-learning model performs especially well in this region.
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FIG. 9. Resolved Reynolds stress components as labeled in the single-jet case A at t = 62.5t j0 for �16: the
new machine-learning model (ML), dynamic Smagorinsky (DS), and the filtered direct numerical simulation
(DNS). The unfiltered Reynolds stress components are also shown for reference.
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FIG. 11. Out-of-sample mean streamwise velocity u1 for �16 and the deep-learning (ML) and dynamic
Smagorinsky (DS) models: (a) case B at t = 50t j0, (b) case C at t = 42.5t j0, and (c) case D at t = 42.5t j0. The
�8 case is shown for reference.

One-dimensional energy spectra in Fig. 13 show that the deep-learning model performs particu-
larly well at high wave numbers. This might follow from the ability of the deep-learning model to
compensate for discretization errors, as considered for isotropic turbulence [11]. As can be seen in
Fig. 13, the deep-learning model nearly eliminates unphysical near-cutoff wave-number dissipation.

D. Training for mean statistics

It is, of course, expected that the reduced information content in this case will make training
subgrid-scale turbulence models more challenging. We take F (u) = (〈u〉; 〈u′u′〉)(y,t ), leading to the
loss function (30) developed in Sec. IV C trained on the single-jet case A. This corresponds to the
third set of tests in Table II. The same neural-network architecture (Sec. IV A) and training algorithm
(Sec. IV B) are used as for the previous demonstrations.

The results for the mean flow are shown in Fig. 14. In all cases, the model produces a reasonable
prediction, unlike the a priori training on the mismatch of Sec. V A. And, as expected, it performs
well in sample, which is expected since it was trained specifically to match its Reynolds stress data.
For the out-of-sample symmetric dual jet (case B), is also performs comparably to the model trained
on the filtered data. However, with its less rich training set, it is not expected to extrapolate as well as
the model trained with the richer three-dimensional filtered data. For the asymmetric out-of-sample
jets (cases C and D), it only closely matches the data on the sides of the dual jets that are similar to
the case A training data (y < 0; see Table I and Fig. 4). On the other sides, the model overpredicts
spreading, though not catastrophically, despite the huge reduction of training data size: the mean
flow statistics have NxNz times fewer degrees of freedom per (20) than the instantaneous velocity.
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10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

100 101

Case B

Case C (×102)

Case D (×104)

E
(κ

x
)/

U
2 j
0
H

0

κxH0

Filt. DNS
LES ML
LES DS

FIG. 13. Out-of-sample one-dimensional streamwise energy spectra at the point of peak resolved turbu-
lence kinetic energy for �16 at t = 50t j0 for case B, at t = 42.5t j0 for case C, and at t = 42.5t j0 for case D.
The straight line has κ−5/3 slope.

050502-17



MACART, SIRIGNANO, AND FREUND

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

−3 −2 −1 0 1 2 3

(a)
u

1
/
U

j
0

y/H0

0

0.1

0.2

0.3

0.4

0.5

−3 −2 −1 0 1 2 3

(b)

u
1

/
U

j
0

y/H0

DNS
ML u Asym.
ML u Sym.
ML u ; u u

0

0.1

0.2

0.3

0.4

0.5

0.6

−3 −2 −1 0 1 2 3

(c)

u
1

/
U

j
0

y/H0

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−3 −2 −1 0 1 2 3

(d)

u
1

/
U

j
0

y/H0

FIG. 14. Mean-flow development for training with (30) mean statistics (see Table II) for �16: in-sample
(a) case A at t = 62.5t j0 and out-of-sample (b) case B at t = 50t j0, (c) case C at t = 42.5t j0, and (d) case
D at t = 42.5t j0. Results for the baseline instantaneous field training (ML u Asym.) and its symmetrically
constrained variant of Sec. V E (ML u Sym.) are also shown.

It might be anticipated that expanded training data sets are likely necessary for this approach to be
more accurate. Additional implications of the mean-statistics training are discussed in Sec. VII.

E. A symmetric constraint

As introduced in Sec. IV A, the models discussed up to this point were not constrained to produce
symmetric stress outputs, which is not a rigid constraint for typical discretizations of the governing
equations. Corresponding results for a model that is trained to match the filtered velocity from
case A [F (u) = u], but now exactly constrained to produce symmetric stresses (hi j = h ji), are
shown Fig. 14 for both in-sample and out-of-sample cases. Its performance is markedly worse than
either previous model in most circumstances. This highlights performance gained by relaxing the
symmetry constraint, which is not consistent with the discretized form of the governing equations.

VI. THE h CLOSURE

With the trained model working effectively in testing cases, especially when the training is
based on the filtered instantaneous data, it is natural to analyze its form. As for any deep-learning
model, it is difficult to infer the mode of its operation, which in turn risks hindrance of its physical
interpretation for flows [10]. However, we can make some assessment of it. Here, we develop
simplified functional forms based on h from the trained neural network by calibrating candidate
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FIG. 15. Taylor-series expansion g from (32) fitted to the deep-learning (ML) model outputs h for the τ12

and τ21 nonsymmetric model components.

functional forms g that minimize

J ( �φ ) = D(h(u; �θ ), g(u; �φ )), (31)

as determined by a linear least-squares fit. Each candidate closure g has a low-dimensional set of
parameters �φ that are fitted to the h trained for F (u) = u based on evaluation at all mesh and time
points in case A. Attempts to interpret the fitted models are then made, and several of these h-fitted
models are implemented for a posteriori tests.

We start with a Taylor series expansion in filter width including terms up to O(�
2
), which thus

has 39 parameters per τ r
i j component (351 total):

gi j (u) = ai jkuk + �bi jkl
∂uk

∂xl
+ �

2
ci jklm

∂2uk

∂xl∂xm
. (32)

This expansion for two subgrid-scale stress components is shown in Fig. 15. We focus on com-
ponents for which the deep-learning model learns asymmetries (discussed in Sec. IV), with τ r

12
and τ r

21 shown in Fig. 15 as an example, though we made analogous observations for all other
components. The Taylor-series model (32) is able to reproduce the asymmetries learned by h
and, roughly, its variances. Other model forms, such as those discussed subsequently based on the
Smagorinsky and Clark models, are unable to do so. There seem to be two aspects to the relative
success of (32): (1) assigning separate parameters to asymmetric velocity gradient tensors (and
not using the symmetric strain-rate tensor Si j) and (2) including all velocity derivatives in gi j , not
just those with the same i, j indices. One would expect that asymmetries in decoupled closures
(for example, those based on the Boussinesq hypothesis) could be learned simply by including
the asymmetric velocity derivatives. However, the improvements of including non-index-matching
velocity derivatives reinforces the idea that h can learn inter-PDE couplings, consistently with the
overall discretization of the equations.

We can also infer properties of h by fitting it with the functional forms of standard low-degree-of-
freedom turbulence models. We first consider the constant-coefficient Smagorinsky model [17,18]

τ
r,Smag
i j = −2C2

s �
2|S|(Si j − 1

3 Skkδi j
)
, (33)
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FIG. 16. Performance on case A of baseline, h-fitted, and u-fitted models at t = 62.5t j0 and for �16: (a) the
constant-coefficient Smagorinsky model (Cs = 0.163: h fit; Cs = 0.118: �τ r

DNS fit), and (b) the Clark model (see
text).

where |S| = (2Si jSi j )1/2 is the filtered strain-rate magnitude. The fitting parameter is �φ = [C2
s ].

With all components of the model denoted �τ r,Smag = a(u) �φ , we can obtain Cs by minimizing
(31). For case A, this yields Cs = 0.163 for h(u; �θ ) and Cs = 0.118 for �τ r

DNS, both of which are
comparable to common values. Simulation results for these candidate coefficients are shown in
Fig. 16(a). The coefficient learned from h, Cs = 0.163, most accurately reproduces the mean flow
of the three. The learned coefficients (Cs = 0.163 and 0.118) also more correctly reproduce jet
spreading (not shown), but not as accurately as the full neural-network model.

We also consider the model of Clark et al. [19], which is obtained via a Taylor-series expansion
of �τ r in filter size �:

τ r,Clark
i j = τ

r,Smag
i j + τ

r,grad
i j

= τ
r,Smag
i j + 1

12

(
�

2 ∂ui

∂xk

∂u j

∂xk
− �

2

3

∂uk

∂xk

∂uk

∂xk
δi j

)
. (34)

The second term on its own is known as the gradient model, which, while accurate in a priori
evaluations because it provides a good approximation for filter-scale perturbations in an ideally
filtered DNS field, can cause numerical instabilities in a posteriori evaluation [32].

To fit coefficients with �φ = [C2
s ,Cg]T , we rewrite (34) as

�τ r,Clark = C2
s aSmag(u) + Cg agrad(u). (35)

With a(u) = [aSmag, agrad], the model is �τ r,Clark = a(u) �φ . Fitting to h(u) yields Cs = 0.151 and
Cg = 0.422, and fitting to �τ r

DNS yields Cs = 0.041 and Cg = 1.288. Of these, only the fit to h(u)
appears reasonable based on typical values. This is a surprise since one might expect that the
coefficients could be learned directly from the filtered data. However, the same assumption is
the reason a priori evaluation often incorrectly predicts a model’s a posteriori performance. A
posteriori results are shown in Fig. 16(b). With h-learned coefficients, results are comparable to
the unity-coefficient model, and, indeed, the DNS-fitted coefficients are inaccurate.

These results suggest that high-degree-of-freedom models can be interpreted in the context of
prespecified functional forms. In particular, we observe that asymmetries in the modeled subgrid-
scale stress can be codified using asymmetric velocity gradient tensors, and that h might learn
inter-PDE couplings between the different velocity components. However, low-degree-of-freedom
attempts to interpret highly parametrized models will often be found wanting, and this can be seen
in attempts to fit standard turbulence-model parameters to the neural-network form. While these can
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produce better-performing fitted (or at least not seriously performance degrading) parameters, they
do not match the a posteriori accuracy of the full model.

VII. PREDICTED TURBULENCE STRUCTURE

The agreement of the deep-learning model prediction with the usual statistical measures (mean,
turbulence stresses, energy spectrum) suggests an improved representation of realistic turbulence
at the resolved scales. Whether or not this agreement translates to an improved representation of
the turbulence structure, which would be important for extrapolation beyond the training metrics, is
quantified with barycentric maps. These track the eigenvalue invariants of the normalized resolved
Reynolds stress anisotropy ai j = Ri j/Rkk − δi j/3 [33] and as such quantify resolved turbulence
componentiality. Although an obvious downside for neural-network models is the lack of proof
about realizability and boundedness, barycentric maps offer an empirical assessment of this: the
lines connecting the vertices of such maps are physical bounds, and remaining within them is
not guaranteed. One could envision that a deep-learning model might, despite a PDE constraint,
sacrifice physical realism for a good fit to data; this is tested in this section. The degree to which a
deep-learning closure recovers the ideal turbulence structure supports its extrapolative capacity and
its additional adherence to the physics beyond reproduction of the training data.

Barycentric maps for the case A resolved turbulence and �16 machine-learning model are shown
in Figs. 17(a) and 17(b). All trajectories remain within the physical bounds, and this is also the case
for the dual-jet configurations (not shown). The trajectories within the maps show the variation of
componentiality in y. Key features of the direct numerical simulation [Fig. 17(a)] include a relative
two-component condition in the outer shear layers (|y| ≈ 4H0), predominantly plane strain (the line
bridging three- and two-componentiality) within the shear layers, and three-component turbulence
near the centerline (|y| � H0). Also shown are invariant maps of a posteriori large-eddy simulation
using the dynamic Smagorinsky model, the F (u) = (〈u〉; 〈u′u′〉) closure, and the h(u)-fitted Clark
model. Both the �16 h(u) states [Fig. 17(b)] and �8 dynamic Smagorinsky states [Fig. 17(d)]
show the general features of the direct numerical simulation, consistent with the ability of these
models to reproduce other turbulence statistics. However, the coarse �16 dynamic Smagorinsky
model [Fig. 17(c)] fails to achieve the same three-componentiality for |y| → 0.

Trajectories obtained using h trained with only mean statistics [F (u) = (〈u〉; 〈u′u′〉)] in
Fig. 17(e) only recover the turbulence structure for |y| � H0. This case fails to recover the two-
component limiting conditions in the outer shear layers (|y|/H0 ≈ 4), instead trending toward
one-component turbulence. More training data from richer flows might remedy this [7].

Finally, invariant trajectories of the h(u)-fitted Clark model from Sec. VI are shown in Fig. 17(f).
Despite its apparently good mean-flow prediction [Fig. 16(b)], the turbulence produced bears
little resemblance to the direct numerical simulation data. Thus, this model is not expected to
be extrapolative, efforts for which will likely benefit from better faithful representation of the
turbulence structure in addition to any particular statistics. For example, subfilter models for reacting
flows will almost certainly benefit from the capability to encode these dynamics [34,35]. As a
step toward assessing, out-of-sample tests of the h-fitted Clark model are presented along with
the machine-learning model for scalar mixing in the following section.

VIII. MIXING OF A PASSIVE SCALAR

In Sec. V A, it was shown that the high-dimensional neural-network model could, not surpris-
ingly, fit the filtered direct numerical simulation subgrid-scale stresses through a direct mismatch
loss function, though this fitted stress failed to provide a viable mode when subsequently used in
a simulation. This exemplifies the risk of fitting without physical constraints, which guard against
overfitting and unreliability for extrapolative prediction. Optimizing the model as embedded in the
governing equation (Secs. V B and V C) provided a model that reproduced turbulence statistics for
a class of similar flows, demonstrating some capacity for reliable extrapolation. Here, we further

050502-21



MACART, SIRIGNANO, AND FREUND

DNS

(a) 3-component

2-component 1-component 0

1

2

3

4

|y|
/H

0

LES ML u Δ16

(b) 3-component

2-component 1-component 0

1

2

3

4

|y|
/H

0

LES DS Δ16

(c) 3-component

2-component 1-component 0

1

2

3

4
|y|

/H
0

LES DS Δ8

(d) 3-component

2-component 1-component 0

1

2

3

4

|y|
/H

0

LES ML u ; u u Δ16

(e) 3-component

2-component 1-component 0

1

2

3

4

|y|
/H

0

LES h(u) Clark Δ16

(f) 3-component

2-component 1-component 0

1

2

3

4

|y|
/H

0

FIG. 17. Barycentric maps of normalized resolved Reynolds stress invariants at various cross-stream
locations |y|/H0 for case A at t = 62.5t j0, with data averaged ±y: (a) direct numerical simulation, (b) machine-
learning model with h(u) (see Table II), (c), (d) the dynamic Smagorinsky model fo �16,8, (e) training on
averaged statistics F (u) = (〈u〉; 〈u′u′〉) (see Table II), and (f) the Clark model fitted to h(u) (see Sec. VI).

evaluate the extrapolative capacity of the model by assessing passive scalar ξ mixing predictions.
Filtering (10) yields

∂ξ

∂t
+ u j

∂ξ

∂x j
= D

∂2ξ

∂x2
j

− ∂

∂x j
(u jξ − u jξ ), (36)

where D = 0. Only numerical diffusion was active in both the direct numerical simulation and the
large-eddy simulation, and then only for the scalar advection. The second term on the right-hand
side of (36) is the divergence of the unclosed residual scalar flux F ξ

j = u jξ − u jξ . We model F ξ
j

using the gradient-diffusion hypothesis, in which the eddy diffusivity is obtained using a scalar
analog of the dynamic Smagorinsky model [4].
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FIG. 18. Mean passive scalar for the deep-learning (ML), dynamic Smagorinsky (DS), and h-fitted Clark
model for �τ r for �16 for (a) case A at t = 62.5t j0, (b) case B at t = 50t j0, (c) case C at t = 42.5t j0, and (d) case
D at t = 42.5t j0. For comparison, �8 DS results are also shown.

The predicted mean scalar profiles for the four jet cases, simulated with �τ r obtained from
either the deep-learning model, the dynamic Smagorinsky model, or the h-fitted Clark model, are
evaluated in Fig. 18. The deep-learning model outperforms the others in all four cases. This is
particularly evident in the double-jet cases, for which the same �16 using dynamic Smagorinsky
underpredicts jet spreading and merging (see Fig. 11). This result is comparably accurate to
dynamic-Smagorinsky predictions for �8. Conversely, the h-fitted Clark model, with coefficients
obtained for case A, performs poorly for the out-of-sample dual-jet cases.

The results in this section provide evidence of potentially improved predictive accuracy of
coupled-PDE simulations using the deep-learning model. However, we note that the more compli-
cated case of two-way-coupled PDEs has yet to be investigated. Variable-density, nonreacting scalar
mixing, with a simple equation of state, is an obvious next step in analyzing two-way couplings.

IX. MESH DEPENDENCE

We finally consider the effect of different grid resolutions on the learned closure h. The a priori
convergence of h outputs with grid refinement is first shown. Then, a posteriori performance of the
model on finer grids, for which the model was not explicitly trained, is assessed.

A. Convergence with grid refinement

The preceding sections center around implicitly filtered large-eddy simulation �LES/�DNS =
�/�DNS, where �DNS and �LES distinguish the fine direct numerical simulation mesh and large-eddy
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training for the indicated models (Sec. V B). The corresponding convergence of ∂u/∂y is shown for reference.

simulation meshes. For constant �, we now consider a priori convergence of subgrid-scale closure
approximations with refinement of �LES. This enables estimation of discretization errors and the
degree to which h deviates from the expected convergence of the differential approximation of the
underlying numerical scheme.

For constant �, standard models for �τ r converge as O(�p
LES) for order-p spatial discretizations.

Here, p = 2. The deep-learning model is not constrained by this: as described in Sec. IV A, although
its inputs are the velocity first and second derivatives at adjacent mesh points, it is nonlinear and
so not constrained to show second-order convergence, at least for the resolutions we test. In theory,
it can compensate for coarse-grid truncation error in a posteriori large-eddy simulation, for which
numerical errors appear as additional, unclosed terms when compared to trusted target data [11].

Velocity gradients are computed from filtered direct numerical simulation data for � = �16.
The finite-difference approximations are evaluated for �LES/�DNS = 16, 8, 4, 2, 1 using the same
staggered variable placement as the solver (see Sec. II B).

To quantify the mesh convergence of the different closures, a relative difference [36] is computed
as

ε�x ≡ �2
(
�τ r

�x − �τ r
�x/2

)
, (37)

where �2 is the 2-norm and �τ r
�x and �τ r

�x/2 are closure approximations evaluated for mesh spacings
�LES and �LES/2.

Behavior is shown in Fig. 19 for both the deep-learning and Smagorinsky models. Also shown,
for reference, is the cross-stream u-velocity gradient evaluated on �LES. Both the velocity gradients
and the Smagorinsky model �τ r appear to follow O(�2

LES), as expected. Conversely, the deep-
learning model only approaches linear O(�LES) behavior over the available range of mesh densities.
This is presumably a consequence of the more complex and nonlinear properties that provide its
excellent a posteriori performance.

In the sense of optimal LES [3], discrepancies between the formal convergence of unclosed LES
solutions (or trusted DNS data) and the ideal closed LES solution are expected. The ideal LES
closure, which achieves the upper limit of accuracy with respect to trusted data, must approximate
Navier-Stokes physics that the filter operator (12) maps to its null space. These are, of course, not
representable in an LES solution space even with explicit filtering [3].

Figure 19 may be understood in this context by considering an optimal closure model

�τ r
�x = P�τ r

ideal + εP(�x) + c�xp, (38)
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FIG. 20. Predicted streamwise mean velocity for the single-jet case (A) for grid-filter ratios �/�DNS.
(a) Instantaneous-velocity training; (b) mean-flow and Reynolds stress training. Both models were trained
only on �16.

where τ r
ideal is the ideal LES closure model, P is a (nonunique) projection to the truncated �x LES

solution space, εP(�x) is the dynamical error in the Navier-Stokes solution due to the projection,
and c�xp is the spatial discretization error of the model inputs. Since P is linear and invertible, the
relative difference (37) eliminates P�τ r

ideal leaving only the error terms. Traditional LES closures do
not model εP(�x) and so converge as O(�xp). Conversely, the a posteriori trained (6) deep-learning
model does not, even though its inputs are O(�xp) accurate, which suggests that it at least partially
accounts for εP(�x).

B. Performance on out-of-sample meshes

The model is trained for a particular coarse resolution, for which, at least for established models,
discretization errors are known to couple with model errors. The performance of the model suggests
that it also compensates for discretization errors, which was assessed previously for isotropic
turbulence [11]. Hence, it comes with no a priori assurance that it will be as accurate away from
resolutions for which it was trained. We assess this by applying the h closure to finer grids than
the training �16. Figure 20 shows the performance over a range of �N using both instantaneous-
velocity training and mean-statistics training. The instantaneous-velocity-trained model in Fig. 20(a)
reproduces the mean profile on �4 nearly as well as for the �16 trained case, but not so well on �8.
The mean-flow training is more robust, as seen in Fig. 20(b). However, the implicit filter definition
used for a posteriori LES is still a potential source of error. The mean-flow training [Fig. 20(b)]
is presumably less sensitive to discrepancies between this and the a priori explicit filter definition,
although further testing is certainly warranted.

Finally, we note that a deep-learning model trained only for isotropic turbulence [11] performed
reasonably well when tested out of sample on the jet case A, although it was not as accurate as the
deep-learning models in Fig. 20. The model is at least stable and reasonably accurate when applied
to different grids and potentially to different flows. However, its overall extrapolative capacity, for
example, to different flow phenomena, is likely reduced.

X. ADDITIONAL DISCUSSION

In some sense, it is unsurprising that a high-degree-of-freedom model can outperform established
models with few if any parameters, at least for the modest degree of out-of-sample extrapolation we
attempted here. However, determining viable parameters for this is challenging. The adjoint-based
PDE-coupled training procedures used here seem to perform well for finding parameters sufficient
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for robust and extrapolative models. The predictive agreement with trusted data for coarse meshes is
striking. Still, given the number of parameters required and the challenging optimization procedures
needed, this should not be taken as an unqualified improvement. Indeed, a fair way to view results is
recognition of just how well dynamic Smagorinsky, as an example of established models, does with
neither significant parametrization nor a complicated training regimen. In closing, we revisit some
of the motivations beyond the basic goal of increasing accuracy for fixed mesh resolution.

One particular hope is that this framework will facilitate representation of turbulence when it is
coupled with additional physics, especially in cases where this coupling lacks models of the fidelity
available for incompressible turbulence. The final demonstration, where the model is shown to also
extrapolate to represent scalar mixing, is an example of this. Similarly, training of a robust model
based only on mean statistics provides an avenue for predictions even when part of the physics
(e.g., flame dynamics) might be insufficiently described to craft an explicit model. Generalizing
high-degree-of-freedom models to out-of-sample flow conditions or new physics couplings is a
main target for this procedure.

Even for inert incompressible turbulence, without the complexity of additional physics, we
also anticipate potential synergies between the highly parametrized approach we introduce and
established models and modeling approaches. Our efforts to interpret the successful neural-network
model by fitting the parameters of low-degree-of-freedom models are a first step toward using the
successful working representations to improve conventional models. A related opportunity is the
use of a posteriori successful neural-network models to aid coefficient discovery in moderately
parametrized models, based on physical reasoning, such as those that aim to codify nonlinearly
coupled multiphysical interactions. We anticipate a fruitful middle ground between fitting accuracy
and generalization where the two modeling approaches can complement and augment each other.

An outstanding issue, which is shared with all turbulence subgrid-scale modeling, is the interplay
of numerical errors associated with the coarse mesh resolution and the model closures. As trained
through solutions of the discrete flow equations and their adjoint, the current deep-learning models
account for errors introduced by the coarse discretizations, which is important for its predictive
success. A potential drawback is that it risks linking the trained model with the specific mesh spacing
(and discretization method) for which it is trained. In the present case, we demonstrated that this
is not a severe limitation: the model is robustly predictive for different meshes, though accuracy is
indeed reduced. Looking forward, it can be anticipated that systematically training for a range of
mesh resolutions might provide improved predictions. We can also speculate that the training on the
case A jet, which spreads by over a factor of 2 during the training period, might imbue the learned
model with some robustness in this regard since it exposes the model to different nominal resolutions
through the evolution of the flow. For example, if the development were exactly self-similar, then
the model requirements for the �16 mesh at some later time would match those for the �8 mesh at
the earlier time when the jet has half the later thickness. Systematic studies of extrapolative capacity
to different resolutions, mesh configurations, numerical methods, and flows are all warranted.

Finally, it is important to address a general challenge faced when applying adjoint methods to
turbulence. It is well understood that the chaos of turbulence will, for long enough times, lead to
divergence of sensitivity fields, which diminishes the utility of computed sensitivities. This is not a
challenge for the short-time adjoint solutions used in most of the present demonstrations, and we
anticipate that many applications of this method will not suffer from this because of the character
of the problem: a subgrid-scale model to provide a stress correction for the local instantaneous
resolved-scale turbulence. Since the large turbulence scales are relatively local in space and time,
the sensitivity will not accumulate significantly. In general, however, this might limit applications
with limited data availability, especially if it is sensitive to turbulence that is significantly distant
in space and time. Further work will be required to understand how the Lyapunov divergence of
turbulence might hinder the adjoint-based training. We do note that the adjoint equations remained
sufficiently well behaved when we trained and simulated over the entire time history of the jet flow
when training for mean statistics.
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