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Physics of superfluid helium-4 vortex tangles in normal-fluid strain fields
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By employing dimensional analysis, we scale the equations of the mesoscopic model
of finite temperature superfluid hydrodynamics. Based on this scaling, we set up three
problems that depict the effects of kinematic, normal-fluid strain fields on superfluid
vortex loops, and characterize small-scale processes in fully developed turbulence. We
also develop a formula for the computation of energy spectra corresponding to super-
fluid vortex tangles in unbounded domains. Employing this formula, we compute energy
spectra of superfluid vortex patterns induced by uniaxial, equibiaxial, and simple-shear
normal-fluid flows. By comparing the steady-state superfluid spectra and vortex structures,
we conclude that normal-flow strain fields do not play an important role in explaining
the phenomenology of fully developed superfluid turbulence. This is in sharp contrast
with the role of vortical normal-flow fields in offering plausible, structural explanations
of superfluid vortex patterns and spectra entailed in numerical turbulent solutions of the
mesoscopic model.
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I. INTRODUCTION

The advent of quantum theory posed the problem of quantizing fluid dynamics. The most obvious
choice, i.e., quantizing the Navier-Stokes fluid, leads to unsurpassable mathematical difficulties with
uncontrollable singularities [1]. This could be because Navier-Stokes is a statistical, dissipative field
theory and, traditionally, quantum mechanics was successful operating on conservative classical
field theories. Indeed, things become better with the quantization of (nonlinear) Schrödinger (NLS)
type fluids, that can explain superfluidity via spontaneous breaking of the particle number symmetry
which induces a ground state (superfluid) whose topological defects (superfluid vortices) interact
with the fluctuations of the quantum field (normal fluid) [2–7]. The superfluid has a hydrodynamic
description at all scales, while the fluctuations have a much richer phenomenology: they can be
studied at the level of quantum field theory [8], or in the realm of statistical physics, with quantum
kinetic theory [9,10] and hydrodynamics, employing, in the latter case, either the mesoscopic model
(MM) [11,12] or its statistical mechanics [7,13–19], which we refer to here as effective continuum
model (ECM). A key, and historically important, example of ECM is the celebrated Hall-Vinen-
Bekarevich-Khalatnikov equations. An excellent discussion of this crucial physics is available in
book form [20]. The first two approaches provide very detailed physics information that is not
required in many technological and astrophysical applications of superfluids. On the other hand,
ECM equations need to be tailored to the particular flows in mind, and are not expected to have a
general validity. In this sense, the MM, having been based on simpler principles of fluid physics,
and by not having the complexity of combined NLS-kinetic theory formulations, strikes a balance
between general validity and computational complexity. Indeed, as discussed in [11,12] there is an
analogy between superfluids and complex fluids that ensures the consistency and completeness of
the MM. The analogy is not exact since, while the mass of a polymer system is localized at polymer
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positions, the “mass” attributed to a vortex is a quantity distributed over fluid volumes. On the other
hand, the relation of ECM with MM is similar to the relation of Reynolds stress models (RSMs)
with direct numerical simulations (DNS) in classical turbulence theory. Similar to what happens
there, the implications of MM for ECM ought to be a key research topic, which, at present, and not
withstanding its technical difficulty, appears to be highly underdeveloped [14,21]. It is important
to realize that the defects modeled in the MM are in one-to-one correspondence with those of the
NLS equation, since they are discrete, while those modeled in the ECM approaches correspond
to coarse-grained superfluid vorticity, i.e., to continuum superfluid vorticity distributions. Because
of these, quantities such as vortex line density or intervortex spacing are unambiguously defined
within the MM framework, but have no meaning within the ECM one. The above are reflected upon
the different sets of mutual friction coefficients employed in the two approaches, since in the ECM
approach the coefficients depend upon the flow encountered by the superfluid vortices, while in
the MM they are flow independent material properties. This is similar to the difference between
the coefficients in the DNS and RSM approaches in classical turbulence. The former employ the
material viscosity, while the latter, as, for example, in the case of eddy viscosity models, employ
much larger, flow dependent coefficients. This disparity in the magnitude of the coefficients leads to
very different flow physics, since the much higher eddy viscosity values damp the instabilities that
lead to turbulence, hence RSM equations can only model smooth flow fields evolving over the scale
of the turbulent large eddies, and are unable to resolve velocity or pressure fluctuations.

At the mesoscopic level, superfluid vortices lose their small-scale compressibility, and can
schematically be described as superfluid vortices= incompressible Euler vortices+ reconnections
(where the latter were introduced in computational superfluids research in the pioneering contri-
butions of Schwarz [7,22,23]). Notably, the superfluid (quantum vacuum or ground state) is not
identical to the condensate, since its energy also includes the zero-point energy of the quasiparticles
that comprise the normal fluid [20,24]. It is because of this convention that the normal fluid is exclu-
sively associated with thermal effects in the system, since the quasiparticle energy levels (above their
zero-point energy) depend on the fluid temperature. The normal fluid obeys a forced Navier-Stokes
equation with delta-function forcing due to its interactions with the superfluid vortices (mutual
friction). Due to its similarity with complex fluids models, the MM is capable of resolving all
hydrodynamic scales in the normal -fluid. This becomes particularly important in light of recent
MM results showing that the most interesting interactions between the topological defects of the
ground state and the fluctuations occur at the large wave-number end of the normal-fluid turbulence
spectrum [11,25]. A key MM achievement is the indication of the important role of interactions
between vortices in the two fluids in the generation and structure of superfluid turbulence, and in
dissipation processes and enstrophy damping of normal-fluid turbulence [11,12,21,26]. Although a
focus on vortex structure is justified by the latter’s dominant role in homogeneous, isotropic turbu-
lence phenomenology and energetics, the rotation rate tensor is only part of the object measuring the
“strength” of flow effects, i.e., the velocity gradient tensor. The latter involves also the strain rate
tensor that, in classical turbulence, characterizes turbulence energy dissipation rate and turbulent
material-line and polymer stretching [27,28]. Therefore, it is important to consider the response of
superfluid topological defects to generic strain rate fields, which are ubiquitous in turbulent flows,
and could help us understand superfluid vortex structures, energy spectra [11], or vortex length
dynamics [25] in finite temperature flows. Indeed, a turbulent flow is not so much a special type of
flow, as it is an envelope of all possible flow types. One can identify, for example, stagnation points
(that correspond to the straining fields studied here) within a fluctuating Navier-Stokes flow field.
Depending on their persistence properties, such microflows can have significant dynamical effects.
For example, a biextensional flow can flatten vorticity blobs into vortex sheets, hence, providing a
k−2 spectral signature to the flow, and uniaxial flow fields can be associated with vortex stretching,
an important mechanism of energy transfer between flow scales. Our viewpoint here is slightly
different, since, unlike the classical turbulence case, we consider the effect of strong normal-fluid
strain on superfluid, rather than normal-fluid, vorticity. This is similar with analogous developments
in other turbulence physics fields, such as turbulence in polymeric fluids or suspensions where the
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interaction between flow strain and polymers or particles is very important. This article presents
the results of such an analysis for simple-shear, uniaxial, and biaxial extensional flows. In this first
step, and in order to isolate small timescale physics, we do not include the reaction of the defects on
the fluctuations. Such a reaction will be important at mesoscopic to large evolution timescales, and
qualifies for further investigation.

II. MATHEMATICAL MODEL OF FINITE TEMPERATURE SUPERFLUID FLOWS
AND ITS SCALING

We follow the latest version of MM vortex dynamics [12], but with kinematically prescribed
normal fluid. Accordingly, the superfluid vortices obey the equation

Ẋv = −X′
v × (X′

v × Vs) + αX′
v × [X′

v × (Vn − Vs)] + βX′
v × (Vn − Vs),

where Xv (t ) is a generic position on a superfluid vortex, Vs is the the Biot-Savart superfluid
velocity, X′

v is the unit tangent vector at a vortex line position, Vn is the normal-fluid velocity on
a vortex, α = −[b(1 + b) + a2]/[(1 + b)2 + a2], and β = a/[(1 + b)2 + a2], where a = D⊥/ρsκ

and b = ρn/ρs, and D⊥ is a coefficient of the drag force on superfluid vortices that are normal
to the difference of vortex and normal-fluid velocities [12]. In our calculations, the values of the
dimensionless coefficients are α = −0.094 and β = 0.211.

It is important, as a complement to the discussion in [12], to comment here on the physics of
the employed vortex dynamics. According to the above mathematical model, three forces act on
superfluid vortices: vacuum lift (VL; Magnus) force, viscous friction (VF; Hall-Vinen) force, and
quasiparticle lift (QL; Iordanskii) force. All of these forces have been experimentally measured,
and are extensively discussed in excellent monographs [20,29]. We have neglected the inertial and
elastic-tension forces [11]. We add some important comments on the relevance of the QL force in
incompressible quantum fluid turbulence. This force originates in the scattering of quasiparticles by
defects in the vacuum. It is anticipated by the fact that quasiparticles are excitations of the vacuum,
so they can interact with defects in the latter. Although quasiparticles are quantum objects, previous
derivations of QL force employed classical physics. In particular [29], the force was derived in roton
scattering processes, where rotons were modeled as classical particles (geometrical optics approx-
imation in wave mechanics), and in phonon scattering processes, where phonons were modeled
as sound (linear) waves. Hence, in both cases, the analyses employed the classical objects whose
quanta are the corresponding quasiparticles. Indeed, high frequency rotons are more particlelike,
while low frequency phonons are more wavelike, but the actual situation involves interactions best
described by quantum field theory (QFT) [30]. A remarkable feature of the QFT approach [30]
is the derivation, within the same analysis framework, of both VF and QL forces. Both roton and
phonon quasiclassical computations give similar results, but the two forces ought not to be summed
[29], since they are in fact the same force which encodes the analog of Aharonov-Bohm (AB) effects
in superfluids [20,29]. The superfluids AB effect is more analogous to the gravimagnetic AB effect
rather than the original electromagnetic one. This is because a superfluid vortex and the quasiparticle
flow around it, correspond directly to a gravimagnetic flux tube and the fluid flow around it [20,31].
This is a key fact, since, in the phonon case, previous analyses employing sound waves require
a compressible normal fluid, and indicate a classical character for the QL force. However, this
force can be relevant to the incompressible flows here, because it is a quantum mechanical (AB
effect) force, and the waves scattered by the vacuum vortices are quantum probability waves [32].
Moreover, the connection with the AB effect ensures the topological character of QL force [32],
hence also its independence from particular approaches employed in its derivation (which explains
the similar results obtained for phonons and rotons). The topological nature of the force can be easily
understood: since the superfluid is vorticity free, according to Stokes’ theorem, the only possibility
for it to develop recirculating flow around linear defects and accompanying lift forces, is when its
flow domain is not simply connected.
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A. Generic strain dominated flow fields

Since a uniform flow is dynamically irrelevant (any uniform flow field could be removed via
a Galilean transformation), the velocity gradient tensor Gi j ≡ ∂ui/∂x j measures, in a sense, the
“strength” of flow effects. Here, u(x, t ) is the fluid flow velocity, and latin indices denote the direc-
tions of Euclidean space. Gi j can be decomposed into the sum of a symmetric and an anisymmetric
tensor: Gi j = ei j + ωi j , where ei j is the strain rate tensor, and ωi j is the rotation rate tensor, although
other names are also in use. ei j ≡ (∂ui/∂x j + ∂u j/∂xi )/2 and ωi j ≡ (∂ui/∂x j − ∂u j/∂xi )/2. Since
ωi j is antisymmetric, it is equivalent to the known pseudovector of flow vorticity ω(x, t ). The tensor
ei j , which can be written as ei j = ti j + di j , where ti j = δi jell/3 is the diagonal, volume rate of
expansion tensor and di j = ei j − δi jell/3 is the rate of shear strain tensor or deviator. In our case,
the normal fluid is incompressible, so there is no difference between the deviator and the rate of
strain tensor.

There are three simple flow fields that exemplify key strain physics: uniaxial flow, where a
material line is stretched along one dimension and compressed along the other two, equibiaxial
flow with one compressing and two stretching flow directions, and simple shear, which is a more
compound flow field exemplifying both strain (nonzero deviator) and rotation (nonzero rotation
tensor). By definition, if εi j is the strain tensor, we can write Gi j = ε̇i j , where the dot over the
symbol denotes differentiation with respect to time. Then, if ε̇ is a constant strain rate, we have for
the case of simple shear

Gi j =
⎛
⎝0 ε̇ 0

0 0 0
0 0 0

⎞
⎠,

and for the two extensional flow cases

Gi j =
⎛
⎝ε̇ 0 0

0 mε̇ 0
0 0 −(1 + m)ε̇

⎞
⎠,

where m = −0.5 for uniaxial extensional flow, and m = 1 for equibiaxial extensional flow. In the
calculations, it is ε̇ = 10 s−1. The velocity field can easily be computed as ui(x) = Gi jx j , where x j

is the j coordinate of position x in the flow. To test the effects of different initial conditions, we have
performed two sets of calculations. The first is called R1 and is the basis of our presentation, hence
results presented without additional specification are assumed to be R1 results. The second, called
R2, is mentioned for comparison purposes. In R1, the initial conditions consist of 20 randomly
distributed superfluid vortex rings, of typical diameter equal to D = 0.04 cm. In R2, the initial
conditions consist of 40 randomly distributed superfluid vortex rings, of typical diameter equal to
D = 0.02 cm. The particulars of R2 were chosen so that we have the same initial vortex length
in both cases. The rings are placed around the origin of the coordinate system that we use in
the definition of the kinematic strain-flow fields. Hence, the origin is a stagnation point in all
flows. Employing D and the quantum of circulation κ = 9.97 × 10−4 cm2 s−1, we compute the
characteristic superfluid inverse timescale τ = 0.1557 s−1. This gives a ratio χ = ε̇/τ ≈ 64.2. This
(high) value of χ indicates that in the hypothetical case that the superfluid vortices were material
lines in the normal flow, the latter’s gradients would have deformed the vortices at a much faster rate
than any deformations due to the self-induced superfluid flow. However, the superfluid vortices are
not passively transported by the normal fluid, and the strong mutual friction effects will induce
novel vortex tangle organizations. Our aim is to compute the vortex length dynamics and the
energy spectra that correspond to these organizations, and subsequently, to compare these data with
corresponding results of fully developed turbulence MM computations [11]. In this way, we hope to
draw important conclusions about the structure of finite temperature superfluid turbulence.
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B. Dimensional analysis of the incompressible superfluid dynamics equations

Next, we develop a scaling framework for superfluid hydrodynamics. We start with the Reynolds
number for the normal fluid Re = ud/νn where u and d are characteristic normal-fluid velocities
and length scales, and νn is the normal-fluid viscosity. Re is the ratio of inertia over viscous effects,
and is equal to Re = D2ε̇νn = 6.86. Where we have used that for T = 1.3 K in our calculations,
the normal-fluid viscosity is νn = 2.33 × 10−3 cm2 s−1. Since, in a turbulent flow, Re = O(1) at the
small scales, we conclude that our setup is characteristic of vortex-small turbulent scale interactions.
Taking into account that most turbulence strain takes place at small scales, this is a physically well
motivated parameter choice. Moreover, as shown in the direct MM calculation of [11], the small
scales are the key for understanding interactions between normal-fluid, high enstrophy, small-scale
vortices and superfluid vortices, with the latter damping the former by absorbing their energy to
increase their length [11,25], while inducing instabilities that destroy the normal-fluid vortices
[21]. Remarkably, as shown in [21,26], these instabilities appear in straight normal-fluid vortices,
and vortex rings are not similarly affected. In actual turbulent flows, small-scale vortices are
approximately straight, since they correspond to high enstrophy events, representing the end stages
in the evolution of curved, larger-scale vortices which, through self-stretching, generate turbulence
direct cascade events, and become straight in the process [28,33]. These remnants of the cascade
process develop then instabilities due to mutual-friction interactions with the superfluid vortices
[21].

Other useful nondimensional numbers are the densities ratio π = ρn/ρs = 0.047, and the ratio
of normal-fluid over superfluid inertia: I = πunD/κ = ρnD2ε̇/ρsκ = 0.755, where we used the
characteristic normal-fluid velocity un = Dε̇ = 0.4 cm s−1, and the ratio of densities ρn/ρs = 0.047.
Hence, at small turbulent normal-fluid scales, the inertia of the two fluids is comparable, and this
is consistent with the damping action reported in [11]. We also need to compare the inertia in
the two fluids with mutual friction effects. Since mutual friction depends on the difference vvn

between vortex and normal-fluid velocities [12], and the latter changes as the system evolves, one
can employ the Biot-Savart velocity to characterize the vortex velocity in the initial conditions
only. Accordingly, u� = 2κ/D = 0.05 cm s−1. Notably, although the viscous drag related mutual
friction force is directed along the vvn velocity difference, the vacuum lift mutual friction force
involves the sinθ of the typical angle θ between vvn and the unit tangent along the vortices. Since
in the initial conditions the vortices have a random orientation with respect to vvn, a reasonable
estimate is sinθ ≈ 0.637, the average value of sinθ when θ ∈ [0, π ]. Finally, we assume that the
mutual friction length scales (delta-function smoothing scale and length scale along the superfluid
vortices) are of the same order as normal-fluid length scales characterizing viscous stress gradients.
These issues have been extensively discussed in [11]. Then the ratio of viscous stress over lift
force is F� = νnun/sinθκ (un − u�) = 4.2, and the ratio of viscous stress over drag force is Fd =
νnun/νc(un − u�) = 0.5, where νc = 2.223νn is the drag-force coupling viscosity [12]. Evidently,
viscous and mutual friction effects are of the same order, exactly as depicted in direct superfluid
turbulence calculations [11,25]. These five numbers, Re, I , F�, Fd , and π , constitute a complete
scaling of superfluid hydrodynamics, since all other relations between forces are their combinations.
It is important to note that, in agreement with the character of the MM, the comparisons are
between normal-fluid quantities with discrete (rather than average) topological defect quantities.
For example, the ratio of superfluid inertia over the lift force is ReF�I−1π = 1.79, and the ratio
of superfluid inertia over the drag force is ReFd I−1π = 0.213. In agreement with our results,
these numbers predict a significant effect of mutual friction forces on the superfluid vortex tangle,
and the generation of new superfluid vorticity. Notably, the quantum of circulation κ scales the
“mesoscopic” superfluid inertia of a single topological defect. In general, the macroscopic superfluid
inertia would be characterized by the large-scale superfluid velocity us and the size of the flow
domain d . The dimensionless number S = usd/κ can be interpreted as a quantum vortex tangle
structure indicating quantity, since, as suggested in [34], the structure number S can be plausibly
associated with tangle polarization. In contrast with κ , however, the “macroscopic” superfluid
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circulation usd depends on the particular flow aspects, and it is the output of a MM calculation,
rather than a quantity that could be used to scale a problem without any prior knowledge of the
system. The actual S values of technological or natural superfluid flows depend on the microscopic
efficiency of the mutual fiction force to extract energy from the normal fluid and on the particular
characteristics of the flow structure within the turbulent inertial range of the normal fluid, among
others. In analogy with magnetohydrodynamics, one can define the “superfluid vortex dynamo”
problem. This problem, however, is much more complicated than its magnetic analog since the
dynamics of vortex lines are more complicated than those of magnetic lines. The examination of
this problem is a key task for MM calculations and experimental investigations alike. Contrasting
the five numbers needed for scaling superfluid dynamics, with only one needed for classical fluid
dynamics, indicates the complex nature of the former as compared with the latter.

III. FORMULA FOR SUPERFLUID VORTEX ENERGY SPECTRA IN UNBOUNDED DOMAINS

Consider first a single vortex tube occupying the space curve X(s, t ) at time t , where s is a
parameter along the curve. From now on we suppress the t dependence. Then the vorticity field ω

is given by

ω(x) = �

∫
γ (|x − X(s)|/σ )

σ 3

∂X(s)

∂s
ds,

where � is the circulation of the tube and γ is related to the vorticity distribution within the core of
the vortex tube of radius σ . The spherically symmetric function γ has the following normalization:∫

γ (y)dy = 4π

∫
γ (y)y2dy = 1.

The Fourier transform of ω is given by

ω̂(k) = �γ̂ (kσ )
∫

eik·X(s) ∂X(s)

∂s
ds,

where we use 1/2π and e−ik·x factors when taking the inverse transform, and we define k = 2π/�,
with � a length scale. The energy spectrum is given by

E (k) = 1

2(2π )3

∫
|ω̂|2d�k = �2γ̂ (kσ )2

2(2π )3

∫∫∫
eik·[X(s)−X(s′ )] ∂X(s)

∂s
· ∂X(s′)

∂s′ ds ds′d�k,

where d�k is the dimensionless, differential solid angle, and obeys the normalization∫
E (k)dk = 1

2

∫
u(x) · u(x)dx. (1)

Integration over �k gives

E (k) = �2γ̂ (kσ )2

(2π )2

∫∫
sin(k|X(s) − X(s′)|)

k|X(s) − X(s′)|
∂X(s)

∂s
· ∂X(s′)

∂s′ ds ds′.

For multiple tubes, we obtain the double sum

E (k) =
∑

i

∑
j

�i� j γ̂i(kσi )γ̂ j (kσ j )

(2π )2

∫∫
sin(k|Xi(s) − X j (s′)|)

k|Xi(s) − X j (s′)|
∂Xi(s)

∂s
· ∂X j (s′)

∂s′ ds ds′.

We test this formula and its algorithmic implementation by reproducing the spectrum of a single
superfluid vortex ring as in [35,36]. Notably, the method assumes that a regularization of the singular
superfluid vorticity is applied. We have employed here the algebraic smoothing kernel of [37]

γ (y) = 3

4π

1

(y2 + 1)5/2
,
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FIG. 1. Energy spectrum of a single superfluid vortex ring in helium-4. The radius of the ring is R =
0.03 cm. There are 8192 wave numbers (k ≡ 1/�) between length scales �max = 12 cm and �min = 9.76 ×
10−5 cm.

which transforms superfluid vortices from singular lines to finite core tubes of radius σ . It is
important to note that a similar method for computation of superfluid vortex spectra was employed
in [38]. Our formula differs from their formula in that we perform an analytical integration over
the dimensionless solid angle �k , and we include finite core effects. The latter is required by our
approach of regularization of the Biot-Savart integral via smoothing of the singular delta-function
vorticity over a small, albeit finite, vortex core [39]. Our method has some advantages: (a) the
analytic angular integration is exact, hence, it does not need to be performed numerically and
introduce truncation errors, (b) the inclusion of finite core effects makes our spectrum formula
consistent with the numerical analysis, i.e., with the method employed for evolving the vortices. In
other words, the spectrum computation incorporates in a consistent way the numerical smoothing of
the Biot-Savart kernel. This is not necessarily a feature of other methods that regularize vortex
dynamics, but assume singular vortices when computing the spectra. In spectra computations,
σ = 0.125ξ , where ξ = 7.8125 × 10−4 cm is the discretization length along the vortices. Using
this value of ξ , a typical vortex ring in the initial conditions is discretized into N = 160 vortex
elements. The physical meaning of σ cutoff is to indicate the scale where the superfluid velocity
field is damped. The latter is achieved without introducing any dissipation in the flow, which is a
particularly attractive feature of vortex methods.

Employing our algorithms (Figs. 1 and 2), we have reproduced all spectrum features in [35]: the
characteristic “ringing,” the low wave-number k2 scaling corresponding to the ring’s linear impulse,
and the large wave-number k−1 scaling corresponding to the isolated vortex line spectrum. The
k2 scaling has a long history in classical vortex dynamics [40,41]. In the context of superfluids,
the k2 regime was observed in [42], where it was correctly attributed to the 1/r3 far-field velocity
field scaling. This connection between k2 energy spectrum scaling and 1/r3 velocity variation was
also indicated by Saffman [41]. In general, a far-field 1/r3 velocity variation implies nonzero ring
impulse.

IV. RESULTS

Direct MM calculations of superfluid turbulence [11,25] have provided a plethora of information
regarding vortex line dynamics and spectral structure. We summarize these results here: The normal-
fluid energy presents three spectral scaling regimes: k−5/3 at small wave numbers that correspond to
the Kolmogorov spectrum of classical turbulence, and where mutual-friction effects are not of the
same order as inertial effects, a k−2.2 regime at large wave numbers that corresponds to creeping
flow motions around the vortices [12,18], and an intermediate cutoff k−6 regime which, due to the
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FIG. 2. Compensated energy spectrum of a single superfluid vortex ring in helium-4. There is a k2 scaling
in the small k regime that corresponds to the linear impulse of the ring (left), and a k−1 scaling at large k that
corresponds to the energy spectrum of an isolated line vortex (right).

presence of superfluid vortices and mutual-friction forcing, is less sharp than the exponential cutoff
of classical turbulence. The corresponding scaling regimes in superfluids are k−5/3 at large scales,
k−1 at small distances (isolated vortex-line spectrum), and k−3 at intermediate scales [11,25]. The
latter is the signature of spiral, mutual-friction induced vortex structures [25]. As shown in [25],
the energy k−3 regime corresponds to a k−2 regime in the superfluid pressure spectra, which is
the pressure spectrum of isolated vortex filaments. Due to computational complexity limitations,
[11] did not have the required range of scales to conclusively determine the physical nature of
the superfluid k−5/3 regime. It was conjectured though, that the Kolmogorov-type spectrum in
the superfluid is the result of termination of the growth of instability generated superfluid vortex
structures [12,21], as “vortices emanating outwards from different instability centers (which are
coherent vortical structures within the normal-fluids inertial range) collide with each other and
agglomerate, in a process reminiscent of caustics formation in particulate suspensions” [11]. For
completeness, it is important to note here, that not all superfluid turbulent flows are similar to those
computed in [11,25]. In particular, there is evidence that the so-called ultraquantum turbulence of
[43] does not present a Kolmogorov scaling. Overall, for reasons discussed above, previous efforts
to understand the phenomenology of superfluid turbulence focused on the effects of normal-fluid
vorticity. Here, we examine normal-fluid strain, and by examining length dynamics and energy
spectra of superfluid vortices, we draw conclusions about the potential of these flows in explaining
the phenomenology of fully developed turbulence.

As expected from our scaling analysis, all flow fields lead to vortex tangle growth (Fig. 3).
Although all three curves are exponentials of the type L ∼ eat , equibiaxial extensional flow has
a = 5.7, uniaxial extensional flow a = 3, and shear flow a = 2.5. Both R1 and R2 results lead to
qualitatively similar conclusions. These growth rates are faster than the corresponding L ∼ t3 rate
computed for vortex tangles kinematic normal-fluid turbulence calculations [25]. To understand this
phenomenology better, we need to examine vortex tangle configurations and the accompanying
energy spectra. Our discussion will employ intuition provided by MM superfluid vortex dynamics
[12]. To exemplify this intuition, we shall consider a vortex ring moving with velocity Ẋv in a
normal-fluid flow with velocity Vn, where Ẋv ‖ Vn. Then the ring shrinks due to Hall-Vinen force,
when it either moves against the flow, or it moves with the flow, but ‖Vn‖ � ‖Ẋv‖. The ring grows
when it moves with the flow and ‖Vn‖ � ‖Ẋv‖. Moreover [12], the Iordanskii force contributes
a ring velocity that opposes Ẋv − Vn. Another useful intuition is the instability responsible for
transferring energy from the normal-fluid to the superfluid vortices [12], which is the MM analog
of the Ostermeier-Glaberson instability in ECM, and can occur when the normal-fluid velocity is
parallel to the vortex contour. Notably, all calculations terminate at the same superfluid vortex tangle
length. This is because computational complexity scales with the number of superfluid vortices in
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FIG. 3. Left: Superfluid vortex tangle length L versus time for equibiaxial extensional flow (left curve),
uniaxial extensional flow (middle curve), and simple-shear flow (right curve). Right: Same results for R2 initial
conditions.

the system, and beyond this length it is not practically feasible to continue the computation. As we
show below, the results are useful because the spectra achieve a steady state before the computations
become too complex. Evidently, due to their different capacities for superfluid vorticity generation,
the same length is produced at different times for each of the applied strain fields.

Although vortex length is an important physics indicator, we can gain further insight into
normal-fluid strain effects, by computing the vortical impulse I and angular vortical impulse L
of the superfluid vortex tangle. These quantities are defined as

I = κ

2

∫
Xv × X′

vdξ, L = κ

3

∫
Xv × (Xv × X′

v )dξ,

where ξ is the length parametrization along a vortex contour, and the integrals are meant to run over
the whole superfluid vortex tangle. I and L are (correspondingly) the global (or total) momentum
and angular momentum of a fluid that are associated with its vorticity [44]. In our case, this is a
trivial correspondence, since all superfluid flow is due to the vortex tangle. Similar to vortex length,
equibiaxial strain is the most effective in imparting momentum and angular momentum to the fluid
(Fig. 4, top). Interestingly, shear strain is slightly more effective than uniaxial extensional strain in
augmenting I and L. Figure 4 (bottom) shows the same results for R2 initial conditions. Although the
angular vortical impulse results are similar, there is an important difference in the vortical impulse
data. The uniaxial extensional flow vortical impulse is much closer to the equibiaxial extensional
flow curve, instead of being similar to the simple shear curve as in the R1 case. This indicates
an interesting effect of vortex configurations in uniaxial extensional flow on the rate with which
momentum is transferred from the normal fluid to the superfluid.

A. Uniaxial extension

The initial vortex tangle [Fig. 5(a)] is a blob of vorticity around the origin of the coordinate
system. Notably, our scaling analysis has shown that Hall-Vinen (drag force) effects are larger than
Iordanskii (lift force) effects by a factor 5.34. Under the influence of the lift force, the loops move
towards the extensional axis (horizontal), where they become stretched. Although this would be
the complete phenomenology of polymers in such a flow [27,45], resulting in a vortex filament, in
superfluids, we have stronger, viscous drag effects. The latter cause the loops to grow along the
extensional axis as they approach it, an effect combined with a simultaneous growth normal to
the horizontal [Figs. 5(b)–5(e)], due to the outward flow field. Loop growth due to the extensional
velocity is much more pronounced than that due to compressive velocity components [Fig. 5(f)],
since, according to the kinematics of this flow, the latter are small close to the horizontal, while the
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FIG. 4. Top: Vortical impulse I (left) and angular vortical impulse L (right) magnitudes versus time. The
equibiaxial flow results correspond to the leftmost curves, while the shear-flow curves are marked by circles.
Bottom: Same results for R2 initial conditions.

former increases with distance from the origin. The net result is two conical surfaces connected by
a narrow bridge.

We have checked that the shape of energy spectra reached a steady state before the end of
the calculation (Fig. 6). In comparison with the single ring spectra, a new scaling regime of

(a) (b) (c)

(d) (e) (f)

FIG. 5. Uniaxial extensional flow. (a)–(e) Evolution of superfluid vortex tangle at times t =
[0, 0.31, 0.63, 0.95, 1.29] s. The horizontal is coinciding with the extensional axis. All figures are drawn with
the same scale. In (f), time is the same as in (e), but the view is along the extensional axis, so that key structural
details are better indicated. These vortex configurations are also reproduced in the R2 results.

044702-10



PHYSICS OF SUPERFLUID HELIUM-4 VORTEX TANGLES …

E
(k

) 
(c

m
3  

s−
2
)

k (cm−1)

10−11

10−9

10−7

10−5

 1  10  100  1000
E

(k
) 

(c
m

3  
s−

2
)

k (cm−1)

10−12

10−10

10−8

10−6

 1  10  100  1000

E
(k

) 
(c

m
3  

s−
2
)

k (cm−1)

10−11

10−9

10−7

10−5

 1  10  100  1000

FIG. 6. Top: Energy spectrum of superfluid vortex tangles in uniaxial extension at t = 1.0 s, after the
initial transients has ceased, and the shape has reached a steady state. There are four scaling regimes: k2

at smallest k, k10/3 at larger but still small k (k ∈ [1.0, 5.5]), k−7/3 at intermediate k (k ∈ [15, 75]), and k−1

at high k (k ∈ [147, 1900]). The final cutoff is due to the numerical smoothing of the Biot-Savart kernel.
The numerical estimate of the end of the k2 regime is kt = 1.3. Bottom (left): Demonstration of spectrum
convergence. Spectra at five different times are shown. From the lower to the upper curves, the times are
t = [0.47, 0.66, 0.82, 0.92, 1.00] s. The last three spectrum curves allow identical scaling conclusions. Bottom
(right): R2 results for times t = [1.06, 1.10] s. The scaling of the wave-number regime before the spectrum
peak has switched from k10/3 (in the R1 data) to k7/3.

E (k) ∼ k−7/3 appears between the high wave-number k−1 range, and the peak of the spectrum.
Since k−2 is the spectrum of vortex sheets, this scaling appears to correspond to the intermediate
scale vortex sheets formed in the system. The small deviation from the k−2 scaling could be related
to sheet curvature effects. On the other hand, the low wave-number scaling of k10/3 is much steeper
than the corresponding k2 single-ring scaling, and it is the spectral signature of the large-scale
geometrical shape of the vortex tangle. It is intriguing that the surface outlined by the superfluid
vortices appears to be a catenoid, which is an example of a minimal surface, i.e., a surface whose
mean curvature is everywhere zero, and its area is smaller than the area of all possible surfaces
bounded by the same two circles, each on different ends of the structure [46]. Such surfaces are
easily realizable in soap-film experiments [46], and it is remarkable that they appear in such a
different physics context here. The R2 data (Fig. 6) present the same spectral structure and scalings,
with an important difference. The scaling exponent in the wave-number regime preceding the peak
of the spectrum is 7/3, i.e., much smaller than the 10/3 exponent in the R1 case. This could very
well be the spectral analog of the difference between R1 and R2 data in the vortical impulse results.
It is an interesting connection that can hint at the experimental control of superfluid vortex dynamics
processes. Notably, the scaling at the smallest wave numbers is k2. This is easy to understand by
employing the Maclaurin series expansion of the sine function in our E (k) formula. Then, we can
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Equibiaxial strain flow. (a)–(e) Evolution of superfluid vortex tangle at times t =
[0, 0.12, 0.25, 0.50, 0.72] s. The vertical is coinciding with the compressive axis. All figures are drawn with the
same scale. In (f), time is the same as in (e), but the view is along the compressive axis, so that key structural
details are better indicated. These vortex configurations are also reproduced in the R2 results.

compute the sum of the coefficients of the k2 and k4 terms. These are

Ck2 = −
∑

k

∑
i

∑
j

�i� j γ̂i(kσi )γ̂ j (kσ j )

(2π )2

∫∫ |Xi(s) − X j (s′)|2
6

∂Xi(s)

∂s
· ∂X j (s′)

∂s′ ds ds′,

Ck4 =
∑

k

∑
i

∑
j

�i� j γ̂i(kσi )γ̂ j (kσ j )

(2π )2

∫∫ |Xi(s) − X j (s′)|4
120

∂Xi(s)

∂s
· ∂X j (s′)

∂s′ ds ds′.

Since E = Ck2 k2 + Ck4 k4 + O(k6) for k 	 1/�, where � is the size of the large-scale flow motions,
the k2 scaling should appear below the scale kt = √

Ck2/Ck4 . Indeed, in all cases, there is very good
agreement between the actual transition wave numbers, and the corresponding kt values computed
with these formulas (Figs. 6, 8, and 11).

The fact that all spectra present a low wave-number k2 regime, allows one to conclude that the
vortical impulse I is nonzero. This connection emanates from the following analysis of the double
integral in the expression for Ck2 :

K =
∑

i

∑
j

∫∫
|Xi(s) − X j (s

′)|2 ∂Xi(s)

∂s
· ∂X j (s′)

∂s′ ds ds′.

Employing the identities |Xi(s) − X j (s′)|2 = |Xi(s)|2 + |X j (s′)|2 − 2Xi(s) · X j (s′) and∮
[∂X(s)/∂s]ds ≡ 0, we have

K = −2
∑

i

∑
j

∫∫
[Xi(s) · X j (s

′)]
[
∂Xi(s)

∂s
· ∂X j (s′)

∂s′

]
ds ds′.

Applying the Binet-Cauchy vector identity(
Xi(s) × ∂Xi(s)

∂s

)
·
(

X j (s
′) × ∂X j (s′)

∂s′

)
= [Xi(s) · X j (s

′)]
[
∂Xi(s)

∂s
· ∂X j (s′)

∂s′

]

−
(

∂Xi(s)

∂s
· X j (s

′)
)(

Xi(s) · ∂X j (s′)
∂s′

)
,
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FIG. 8. Top: Energy spectrum of superfluid vortex tangles in equibiaxial extension at t = 0.54 s, after
the initial transients have ceased, and the shape has reached a steady state. There are four scaling regimes:
k2 at smallest k, k10/4 at larger but still small k (k ∈ [3, 7.5]), k−9/5 at intermediate k (k ∈ [15, 70]), and k−1

at high k (k ∈ [170, 1500]). The final cutoff is due to the numerical smoothing of the Biot-Savart kernel.
The numerical estimate of the end of the k2 regime is kt = 3.6. Bottom (left): Demonstration of spectrum
convergence. Spectra at five different times are shown. From the lower to the upper curves, the times are
t = [0.21, 0.35, 0.44, 0.50, 0.54] s. The last three spectrum curves allow identical scaling conclusions. Bottom
(right). R2 results for times t = [0.68, 0.64] s. The scalings are identical with R1 scalings. However, the k−9/5

scaling at intermediate k is now observed over a wider wave-number interval [15,185].

and inserting into K, the last group of terms in the Binet-Cauchy identity results in zero, and so
K = −2(2I/κ )2, which makes the connection between I and the k2 scaling regime evident.

B. Equibiaxial extension

The resulting vortex tangle structure resembles the corresponding one for uniaxial extensional
flow [Figs. 7(a)–7(e), where the compressive direction coincides with the vertical]. The physical
explanation with respect to the effect of viscous drag and lift forces is also similar. The key
difference is that since there are two extensional directions, the bridge connecting the two conical
structures is thicker. In a sense, the Hall-Vinen force due to the two extensional velocity components,
expands loops and expels them along the vertical, “feeding” the Hall-Vinen force induced growth
effect of the incoming compressive flow [Fig. 7(f)]. Without the insight provided by superfluid
vortex dynamics, and by only employing experience from material lines in a flow, it would not have
been possible to understand the emerging vortex structure geometry.

We have checked that the shape of energy spectra reached a steady state before the end of the
calculation (Fig. 8). In comparison with the single-ring spectra, a new (short in wave-number space)
scaling regime of E (k) ∼ k−9/5 appears between the high wave-number k−1 range, and the peak of
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FIG. 9. Superfluid vortex sheetlike structure formation (t = 0.72 s) in equibiaxial extensional flow. The
sheets have a fractal structure, composed of a hierarchy of quasicircular loops one within the other.

the spectrum. Moreover, the low wave-number scaling of k10/4 is steeper than the corresponding k2

single-ring scaling. The 10/4 exponent could be the spectral signature of the large-scale shape of
the vortex structure, which appears to be a physical analog of geometrical one-sheeted hyperboloids
[47]. On the other hand, the observed smaller-scale hierarchical patterns (Fig. 9) are unique
examples of fractal vortex sheets in hydrodynamics of spin-0 superfluids (where the topological
defects are linear), and could be the focus of future experimental investigations. Their strikingly
self-similar features might be responsible for the difference between the E (k) ∼ k−9/5 scaling here,
and the E (k) ∼ k−7/3 scaling observed in the uniaxial case. As explained above, we also observe
the anticipated k2 scaling at the smallest wave numbers. The R2 spectral scalings are identical with
those of R1, but the E (k) ∼ k−9/5 scaling is now valid over a wider wave-number range. This hints
at an interdependence between the support of the k−9/5 scaling and the size of the vortex structures.

C. Simple shear

Simple-shear strain is a two-dimensional flow, with only one nonzero velocity component along
the x axis, that varies linearly along the y axis. There is different flow direction for positive and
negative y coordinates. The most important dynamical effect [Figs. 10(a)–10(d)] is loop growth
normal to the flow, due to drag force action. There are two distinct areas of growth separated by a
nexus corresponding to the origin of the coordinate system. Because of the linear velocity variation,
greater distances from the nexus correspond to larger velocities, hence to larger growth, and larger
loops. On the other hand, the lift force tends to displace the loops along the x direction, and the
direction of this displacement depends on the direction of flow or (equivalently) on the sign of the
y coordinate [Figs. 10(e) and 10(f)]. It is easy to verify [27] that simple shear can be decomposed
into pure strain (along a line of slope 45◦) with rate ε̇/2, and pure rotation with rate ε̇/2. Our
scaling indicates small Iordanskii force effects, hence, there are only weak signs of vortex tilting
[Fig. 10(e)], and the phenomenology is dominated by the Hall-Vinen force.

We have checked that the shape of energy spectra reached a steady state before the end of the
calculation (Fig. 11). In comparison with the single-ring spectra, a new scaling regime of E (k) ∼
k−5/3 appears between the high wave-number k−1 range, and the peak of the spectrum. It does not
appear to be a direct connection between this scaling and the large-scale k−5/3 energy-spectra regime
of fully developed turbulence in the superfluid component [11]. Moreover, the low wave-number
scaling of k12/5 is only slightly steeper than the corresponding k2 single-ring scaling, which can be
explained by the absence of any novel geometrical shape, and the typically circular rings that make
up the tangle. As explained above, we also observe the anticipated k2 scaling at the smallest wave
numbers. R2 scaling features are identical with those in the R1 data.
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(a) (b) (c)

(d) (e) (f)

FIG. 10. Simple shear. (a)–(d) Evolution of superfluid vortex tangle at times t = [0.76, 1.14, 1.52, 1.90] s.
The graphs show the tangle’s projection on the plane normal to the direction of velocity (x direction). All
figures are drawn with the same scale. In (e) and (f), time is the same as in (d). The view in (e) is along the
axis which is normal to the plane of shear (z direction), and (f) along the direction of velocity gradient (y axis).
These vortex configurations are also reproduced in the R2 results.
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FIG. 11. Top: Energy spectrum of superfluid vortex tangles in simple shear at t = 1.41 s, after the
initial transients have ceased, and the shape has reached a steady state. There are four scaling regimes: k2

at smallest k, k12/5 at larger but still small k (k ∈ [1, 8]), k−1.6 at intermediate k (k ∈ [7.5, 67]), and k−1

at high k (k ∈ [192, 1640]). The final cutoff is due to the numerical smoothing of the Biot-Savart kernel.
The numerical estimate of the end of the k2 regime is kt = 1.8. Bottom (left): Demonstration of spectrum
convergence. Spectra at five different times are shown. From the lower to the upper curves, the times are
t = [0.21, 0.35, 0.44, 0.50, 0.54] s. The last three spectrum curves allow identical scaling conclusions. Bottom
(right): R2 results for times t = [1.59, 1.55] s. The scalings are identical with R1 scalings.
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V. CONCLUSIONS

Direct numerical calculations with the MM indicated the spectral and vortex structure of finite
temperature superfluid temperature [11,25]. Subsequently, there has been success in explaining this
phenomenology in terms of interactions between vortex structures in the two fluids [12,21], that
reconfirmed the key role of vorticity in turbulence physics [28]. However, the conceptual analogy
between complex fluids and superfluids suggests that strain (and not only vortical) fields could
also play an important role in superfluid turbulence generation. However, the present investigation
indicates that this is not the case: simple (normal-fluid) strain fields generate superfluid vortex
structures and accompanying spectra that are not observed in turbulence calculations. Indeed, none
of the new energy spectra scalings match (for example) the intermediate k−3 superfluid turbulence
scaling [11], that has been shown to correspond to interactions between normal-fluid vortex tubes
and superfluid loops [21]. The lack of evidence of strain effects on the phenomenology of superfluid
turbulence could, perhaps, be understood by reconsidering the comment in [11]: “vortices emanating
outwards from different instability centers (which are coherent vortical structures within the normal-
fluids inertial range) collide with each other and agglomerate, in a process reminiscent of caustics
formation in particulate suspensions.” Thus, new superfluid vortices are generated within vortical
rather than strain normal-flow fields, and propagate away from the instability centers [11]. In the
process, they gradually lose their curvature, hence, by the time they pass through turbulent flow
stagnation points (similar to the ones considered here), they resemble more straight vortices rather
than the rings in the initial conditions that we employed here.

Another important point is that, although vortex interactions in the two fluids explain very well
the generation of turbulence in the superfluid via energy transfer from the normal fluid [12,21], there
is no corresponding chaotic tangle formation in the simple strain field cases. The resulted patterns
are too ordered, and do not agree with emerging structures in actual turbulent solutions. Indeed,
the simple-strain fields and their accompanying vortex growth mechanisms appear to iron out any
posssible Ostermeier-Glaberson type of instabilities, that are so instrumental in superfluid tubulence
generation [11,12,25].

On the other hand, the simple-strain fields could be employed in fundamental experimental stud-
ies of superfluid hydrodynamics [48–50]. Indeed, the difference in intuition between the behavior
of polymers or colloids in a normal fluid on one hand, and that of superfluid vortices on the other,
could provide an excellent experimental test of the MM and superfluid defect dynamics in general.
Moreover, these flow fields could be applied to simple devices employing superfluid flow. Similarly,
the fractal vortex sheets of equibiaxial extension are very interesting structures by themselves. In
this respect, it will be useful to introduce, in future investigations, the feedback from the superfluid
to the normal fluid.

We have also performed a comparative analysis between different initial conditions. We have
shown that, overall, the results are highly reproducible. There is formation of similar vortex
structures and there are similar vortex length dynamics. The spectral structure is also reproducible
including most of the corresponding scaling exponents. However, we have demonstrated that, in the
uniaxial extensional flow case, linear impulse results can depend on the initial conditions and this
could affect the scaling exponent in the wave-number regime preceding the spectrum peak. This
indicates an interesting effect of vortex configuration in uniaxial extensional flow on the rate with
which momentum is transferred from the normal fluid to the superfluid, and hints at an important
role that these measures might play in superfluid vortex dynamics. This feature could be employed
by experimentalists to control the physics of such structures.
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