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In the present work we show how the subgrid-scale (SGS) energy transfer among re-
solved scales in large eddy simulations (LESs) can be used to evaluate unknown constants
in SGS models and derive new models. The essence of the method is that for a given LES
velocity field energy transfers among resolved scales can be computed without reference
to a particular SGS model and then used to estimate the total SGS energy transfer for
an unknown, full velocity field. The total transfer becomes a physical constraint on any
proposed SGS model and can be used to obtain and update model constants at each
time step in actual LES, allowing self-contained simulations. The method is evaluated by
implementing it in LESs of high Reynolds number isotropic turbulence and for several
classical SGS modeling expressions. It is shown that the performance of models depends
not only on their ability to capture the total SGS dissipation (which is enforced by the
method) but also by distribution of the SGS dissipation among scales of motion (which
is enforced by a model). However, the main conclusion is that a broad class of modeling
expressions that only qualitatively approximate the SGS dissipation distribution among
scales perform very well in LESs as long us the total dissipation constraint is satisfied. We
also discuss the relation of the method to the well-known dynamic modeling procedure.
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I. INTRODUCTION

The equations for large eddy simulations (LESs) are traditionally obtained with the filtering
approach proposed by Leonard [1] where a spatial filter that strongly attenuates scales of motion
smaller than the prescribed filter width � is applied to the Navier-Stokes equations. Alternatively,
when Fourier spectral methods are used it is natural to use a sharp spectral filter which offers
two benefits: a clear distinction between resolved and unresolved scales delineated by a wave
number cutoff kc, and a clean interpretation of physical quantities in the framework of classical
phenomenology and analytical theories of turbulence which are formulated in terms of Fourier
modes.

If the filtered quantities are denoted by an overbar, the LES equations for an incompressible flow
become
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where ui = (u1, u2, u3) = (u, v,w), p, and ν are the velocity, pressure, and kinematic viscosity,
respectively, and τi j is the subgrid-scale (SGS) stress tensor

τi j = uiu j − ui u j . (3)

The form of Eqs. (1) and (2) requires that the filtering and differentiation commute ([2,3]). In
practice, however, the above equations are frequently the starting point in SGS modeling without
regard to formal requirements for their derivation in the filtering framework. The important point is
that the LES equations have the form of the Navier-Stokes equations for the filtered velocity ui plus
the additional force term which is the divergence of the subgrid scale stress tensor (3), and which
is required to close the LES equations. Various SGS models differ in how the SGS stress tensor is
expressed (or modeled) in terms of the filtered velocity ui.

There are a number of excellent reviews of theory and practice of SGS modeling (e.g., [4–9]), but
they will be discussed in detail only when needed for the purposes of this work. However, it is useful
to note that despite a significant effort in this field over more than 50 years, two broad categories of
successful models (as indicated by their widespread use in practice) date to the period between the
early 1960s and early 1990s. Among the most important category are the eddy viscosity models.
Their origin goes back to Boussinesq who proposed that the effects of turbulence can be accounted
for by the viscosity increased over its value in laminar flows. With the advent of computers
and attempts to perform general circulation simulations, the eddy viscosity concept was used by
Smagorinsky [10] to model “The lateral transfer of momentum and heat by the nonlinear diffusion,
which parametrically is supposed to simulate the action of motions of sub-grid scale. . . ,” starting
the modern era of LES and SGS modeling. Later the Smagorinsky model coupled with the dynamic
procedure of Germano [11] has become probably most widely used tool in LESs of a variety of
turbulent flows. Another approach to LESs, known as implicit large eddy simulations (ILESs), was
originally proposed by Boris et al. [12]. It is based on the observation that truncation errors in
certain discretizations of Navier-Stokes equations introduce numerical dissipation with the implicit
effects of the discretization qualitatively similar to the effects of the explicit SGS models. Such
similarities are used to support the ILES approach as a turbulence modeling tool [13–15]. Those, as
well as other SGS modeling procedures, are normally evaluated by performing multiple LESs for
different physical conditions and adjusting model constants iteratively until the best agreement with
appropriate benchmarks is reached. A typical example is a need to modify a theoretically predicted
value of the constant for the classical Smagorinsky model depending on type of flow (CS = 0.18
for homogenous turbulence, derived by Lilly [16]; CS = 0.21 for Rayleigh-Bénard convection used
by Eidson [17], and Table 1 in that reference also lists nine values of CS ranging from 0.10 to
0.24 for different turbulent flows; CS = 0.06–0.1, depending on Reynolds number, inferred from the
dynamic model LESs for channel flow by Piomelli [18]). In order to avoid ambiguities in comparing
LES results with direct numerical simulation (DNS) benchmarks Toosi and Larsson [19] developed
a method to evaluate quantitatively the relative error in such comparisons.

The category of SGS models of interest in this paper was originated by Kraichnan [20] who
was first to employ an analytical theory of turbulence, the test field model (TFM), to compute a
scale-dependent eddy viscosity. It should be stressed that even though the term “eddy viscosity”
is used, the primary quantity in the model is the energy transfer across a wave number cutoff kc

between large scales (k < kc) and subgrid scales (k > kc), i.e., the SGS energy transfer which is
then appropriately normalized to cast it in a form of a more familiar concept of the eddy viscosity.
Results of Kraichnan’s analysis were confirmed later by Leslie and Quarini [21] who also extended
the methodology to investigate the energy backscatter and effects of graded filters on the eddy
viscosity expressions. Chollet and Lesieur [22] provided an additional verification in the framework
of eddy damped quasi-normal Markovian (EDQNM) approximation. A good overview of these
approaches can be found in Lesieur [23] and Lesieur et al. [24]. The theoretical eddy viscosity
obtained in these publications is immediately applicable to the spectral energy equation and in the
same form to LESs of isotropic turbulence performed using Fourier spectral methods (see [5]).
However, there are several limitations of this approach. The derivation assumes an infinite inertial
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range spectrum and model constants depend on a value of the Kolmogoroff constant. It is also
not obvious how to extend the model to inhomogeneous turbulence which requires the physical
space representation. One possible approach is the structure-function model proposed by Métais
and Lesieur [25]. Despite these uncertainties, the fundamental strength of this model is that it is
based on a physically sound theory, offering a major advantage over many typical models based on
phenomenological considerations.

In this paper we approach the SGS modeling task along similar lines, i.e., employing a computed
SGS energy transfer. The main difference is that the SGS transfer is obtained not from the theory but
directly from evolving LES fields. The methodology is informed by an extensive literature on the
subject of interscale energy transfer in turbulence obtained through analyses of DNSs. The method-
ology used for the analysis of interscale energy transfer is outlined by Domaradzki and Rogallo
[26], Domaradzki et al. [27], and Domaradzki and Liu [28]. Studies based on this methodology
for isotropic turbulence were conducted by Domaradzki [29], Domaradzki and Rogallo [26], Yeung
and Brasseur [30], and Domaradzki et al. [31–33]. Using the same framework studies of the energy
exchange between scales of turbulence in low Reynolds number shear flows have been carried out
by Domaradzki et al. [27]. More recently extensive investigations of energetics for turbulent channel
flow at high Reynolds numbers have been carried out by Lee and Moser [34] and Cimarelli et al.
[35,36]. The proposed approach offers a synthesis of information available from that research for
the task of SGS modeling. The first attempt to derive a SGS model within this framework was made
by Anderson and Domaradzki [37]. The model’s implementation in LESs of channel flow showed
good performance for Reynolds numbers up to Reτ = 2000. However, the implementation was not
able to provide sufficient levels of SGS dissipation in LESs of isotropic turbulence in the limit of
very high Reynolds numbers [38]. In the present work the failure of the original implementation
is traced back to the scale distribution of the modeled SGS dissipation, and a modified approach
is developed that leads to excellent results in LESs of isotropic turbulence in the invicid limit. The
essence of the method is that for a given LES velocity field energy transfers among resolved scales
can be used to estimate the total SGS energy transfer for an unknown, full velocity field. The total
transfer then becomes a physical constraint on any modeled scale distribution of the transfer and is
used to obtain and update model constants at each time step in actual LESs, leading to self-contained
simulations.

II. SELECTION OF FLOW AND NUMERICAL METHODS

For the purposes of developing and testing the proposed modeling procedure we choose isotropic,
homogeneous turbulence at very high Reynolds numbers, simulated using pseudospectral Fourier
methods. This choice could be criticized as of limited interest to the current LES practice preoc-
cupied with wall bounded flows in complex geometries, wall modeling for high Reynolds/Mach
number incompressible/compressible flows, and additional physical phenomena such as heat trans-
fer, chemical reactions, etc. Nevertheless we believe that our choice is an unavoidable first step, on
several counts, to advance the proposed method. First, isotropic turbulence is the case for which
physical theories and DNSs provide most complete and unambiguous information about details of
energy transfer among scales of motion. Therefore, isotropic turbulence is the case for which that
information can be most directly exploited in model development. Second, sometimes SGS models
that show promise in LESs of low Reynolds number turbulence may fail catastrophically at high
Reynolds numbers. This is due to the fact that as the viscous dissipation in LESs diminishes with an
increasing Reynolds number, the model alone may fail to provide sufficient SGS dissipation. The
best example of such a behavior is the similarity model of Bardina et al. [39] (see Fig. 2 below).
Third, pseudospectral Fourier methods largely eliminate the effects of numerical dissipation in
simulations. This is important because unquantified numerical dissipation in simulations performed
with finite volume/finite differences methods often clouds interpretation of LES results, even to
the extend of suggesting that a SGS model is entirely unnecessary (ILESs). Obviously, no such
a conclusion will be reached in pseudospectral simulations in the inviscid limit where an explicit
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source of dissipation, e.g., a SGS model, is required to prevent a tendency toward an equipartition
of energy for a finite number of wave number modes.

For the purpose of simulations the flow is assumed to be contained in a cube of side L = 2π ,
and periodic boundary conditions in all three spatial directions are imposed on the independent
variables. The domain is discretized in physical space using N uniformly spaced grid points in each
direction resulting in a mesh size �x = L/N and a total of N3 grid points. The independent variables
are transformed between physical and spectral space using the discrete Fourier transform

u(k) = 1

N3

∑
x

u(x) exp(−ik · x) (4)

and the inverse transform

u(x) =
∑

k

u(k) exp(ik · x), (5)

where x are the mesh points in physical space and k are the discrete wave numbers with compo-
nents ki = ±ni�k, ni = 0, 1, 2, . . . , N/2, i = 1, 2, 3, and �k = 2π/L = 1. The distinction
between physical and spectral representation for a given quantity is made through its argument x or
k, respectively.

For homogeneous turbulence, Navier-Stokes equations [Eqs. (1)–(2) with the SGS term ne-
glected] can be transformed into spectral (Fourier) space (see, e.g., Lesieur [23] and Pope [8]):

iknun(k, t ) = 0, (6)(
∂

∂t
+ νk2

)
un(k, t ) = Nn(k, t ) − ikn p(k, t ), (7)

where wave numbers k are associated with scales of turbulent motions and Nn is the Fourier
transform of the nonlinear term

Nn(k, t ) = −ik j

∫
dp u j (p, t )un(k − p, t ). (8)

The equation for the energy amplitudes 1
2 |u(k, t )|2 = 1

2 un(k, t )u∗
n(k, t ), where the asterisk denotes

a complex conjugate, follows from (7)

∂

∂t

1

2
|u(k, t )|2 = −2νk2 1

2
|u(k, t )|2 + T (k, t ), (9)

where T (k, t ) is the nonlinear energy transfer

T (k, t ) = Re[u∗
n(k)Nn(k, t )], (10)

and Re is the real part of a complex expression. Physical quantities of interest for isotropic
turbulence are described in terms of the scalar wave number k = |k| by averaging over thin spherical
shells defined for an arbitrary quantity f (k) as

〈 f (k)〉 = 1

Nk

∑
k

f (k), (11)

where 〈. . .〉 denotes the shell average and the summation extends over all Nk modes in the shell of
thickness �k centered at k = |k|. For instance, the energy spectrum is defined as

E (k, t ) = 4πk2〈 1
2 un(k, t )u∗

n(k, t )〉 (12)

and the corresponding dissipation spectrum is

D(k, t ) = 2νk2E (k, t ). (13)
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Similarly, T (k, t ) integrated in spectral space over spheres of radius k = |k|, provides the classical
energy transfer T (k, t ) in the spectral energy equation

∂

∂t
E (k, t ) = −2νk2E (k, t ) + T (k, t ). (14)

For brevity, in subsequent formulas, explicit time dependence will be omitted.
The equations are solved using a pseudospectral numerical method of Rogallo [40] in the

implementation of Yeung and Pope [41]. We have employed the forcing scheme of Sullivan et al.
[42] in which the total energy of several low wave number modes is kept constant while evolution of
individual modes through nonlinear interactions, subject to the global energy constraint, is allowed.
Specifically, the sum of squared amplitudes of velocity modes in a sphere of radius Kf = 3.5�k
is kept constant. This is accomplished by multiplying all modes in the forced sphere by the same
constant factor, usually not larger than 1.002, at the end of each time step. This restores the energy
in the sphere to the value at the beginning of the time step.

Turbulence is characterized by several physical parameters that are related to spectral quantities.
The integral of E (k) over k gives turbulent kinetic energy per unit mass 3

2 u′2, where u′ is the r.m.s.
turbulent velocity. The integrated dissipation spectrum gives the dissipation rate of the turbulent
kinetic energy, ε. The Taylor microscale is computed as λ = (15u′2ν/ε)1/2, and the microscale
Reynolds number is Reλ = u′λ/ν. An important timescale for the evolution of turbulence is the
large eddy turnover time Te = Lp/u′, where Lp is the integral length scale

Lp = π

2u′2

∫ ∞

0
k−1E (k) dk. (15)

The macroscale Reynolds number is defined using Lp as Re = u′Lp/ν.

III. SGS QUANTITIES AND MODELING EXPRESSIONS

In spectral LESs, a cutoff wave number kc is introduced to separate resolved and subgrid scales
(SGSs), and evolution equations for the resolved scales k � kc are sought. The spectral energy
equation for scales k � kc is

∂

∂t
E<(k|kc) = T <(k|kc) + TSGS(k|kc) − 2νk2E<(k|kc), (16)

where the notation Q<(k|kc) indicates that, in computing the quantity Q, only modes satisfying the
inequality k � kc, i.e. scales that are fully known in LESs with the cutoff kc, are retained. The SGS
energy transfer term, TSGS(k|kc), is the only term in (16) that requires information about modes
k > kc, which are unknown in LESs. Since Eq. (16) is simply Eq. (14), rewritten for modes k � kc,
the SGS energy transfer term is

TSGS(k|kc) = T (k) − T <(k|kc), k � kc, (17)

where T (k) is the full nonlinear transfer from Eq. (14) in the resolved range k � kc. Equation (17)
provides a simple method to compute TSGS(k|kc) through two calculations of the transfer term and
was first used by Domaradzki et al. [29,43] in the context of the analysis of DNS data. Note that for
T <(k|kc) the operation signified by superscript “<” is not simply a sharp spectral filter applied to
T (k). The filter is applied to the velocity field un(k) and then the regular transfer term expression
(10) is used for the filtered field to produce T <(k|kc). Therefore, T <(k|kc) is effectively the energy
transfer for a subset of modes in the computational domain.

Energy dynamics in theories of turbulence are often described by an equation for the energy of
all modes below kc, E (kc) ≡ ∫ kc

0 E (k) dk,

∂

∂t
E (kc) = −2ν

∫ kc

0
k2E (k) dk + 
(kc), (18)
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where the classical energy flux


(kc) =
∫ kc

0
T (k) dk (19)

provides the energy transfer rate from all scales below kc to those above kc. Because the nonlinear
term in Navier-Stokes equations is energy conserving the transfer T (k) integrated over entire
wave number domain [0, kmax = N/2] vanishes and 
(kmax) = 0, i.e., there is no energy flux to
scales that are not represented in the domain. For the same reason the transfer term T <(k|kc) for
a subset of modes obtained using sharp spectral filter with cutoff kc is energy conserving, i.e.,∫ kc

0 T <(k|kc) dk = 0. Note that integrating equation (16) over resolved wave numbers gives Eq. (18)

for E (kc). Because the term
∫ kc

0 T <(k|kc) dk vanishes, the SGS energy transfer integrated over its
wave number domain, the so-called total SGS dissipation, satisfies the condition

εSGS(kc) ≡
∫ kc

0
TSGS(k|kc) dk = 
(kc). (20)

The total SGS dissipation can also be computed using standard LES formulas in the physical
space representation

εSGS(x) = τi j (x)Si j (x), (21)

where the SGS stress tensor is given by (3) and Si j is the resolved rate-of-strain tensor

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (22)

In the above formulas the overbar denotes a general filtering procedure, and the space dependent
SGS dissipation represents the energy transfer term in LES equations. For a spherical, sharp spectral
filter with cutoff kc in the above formulas the filtering and differentiation are performed in spectral
space and multiplication of τi j and Si j in the physical space. The total SGS dissipation is

εSGS(kc) = 1

N3

∑
x

εSGS(x), (23)

with summation over all N3 mesh points x. Note, however, that while values of integrated SGS
transfers (20) and (23) are the same, there is no equivalent spectral space formula corresponding to
the local SGS dissipation in the physical space representation (21).

Note that negative values of T (k) signify energy losses at wave numbers k. However, tradition-
ally, the energy flux 
, the SGS energy transfer TSGS, and the SGS dissipation εSGS are chosen to
be positive if the resolved scales experience energy loss. For consistency with T (k), we are not
adopting this latter convention. If definitions (17)–(21) are employed, negative 
(kc) will signify
energy losses for the range k � kc and negative values of TSGS(k|kc) will represent energy losses at
k through the SGS interactions. Similarly, the SGS dissipation εSGS(kc) in Eq. (23) will be negative.
When positive values of these quantities are needed we will simply use absolute values.

The SGS spectral energy equation can be formally rewritten as

∂

∂t
E<(k|kc) = T <(k|kc) − 2νth(k|kc)k2E<(k|kc) − 2νk2E<(k|kc), (24)

where the SGS energy transfer is expressed in the same functional form as the molecular dissipation
term by introducing the theoretical eddy viscosity

νth(k|kc) = − TSGS(k|kc)

2k2E<(k|kc)
. (25)
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FIG. 1. Spectral eddy viscosity functions. Solid line: Chollet-Lesieur, Eq. (27); symbols ◦: function C2 f2,
Eq. (29); dotted line: constant eddy viscosity, Eq. (28); broken line: SVV viscosity, Eq. (30).

Frequently it is nondimensionalized using values of the energy spectrum at the cutoff

ν+
th(k|kc) = νth(k|kc)√

E (kc)/kc
. (26)

Assuming infinite inertial range spectrum k−5/3, theoretical formulas for TSGS(k|kc) can be com-
puted numerically [20,22,23], and the normalized eddy viscosity (26) is well fitted by the expression
given by Chollet [44]

ν+
th(k|kc) = CK

−3/2
(
0.441 + 15.2e−3.03kc/k

) ≡ CK
−3/2 f1(k|kc), (27)

where CK is the Kolmogorov constant, taken usually as 1.4, and f1 is a spectral model shape
function.

In order to allow implementation of the spectral eddy viscosity also for LESs in the physical space
variables two approaches are possible. The simplest is to use a constant spectral eddy viscosity that
provides the same value of the total SGS energy transfer as the k-dependent eddy viscosity (27). For
the assumed k−5/3 energy spectrum such a constant spectral eddy viscosity from [25] is

ν+
const (k|kc) = 2

3
CK

−3/2 f0(k|kc), (28)

where the shape function f0 = 1. The second approach is to replace function f1(k|kc) in (27) by
a different function that can be easily interpreted in the physical space. We propose the following
expression:

f1(k|kc) ≈ C2(D2 + (k/kc)4) ≡ C2 f2(k|kc), where C2 = 0.8 and D2 = 0.55, (29)

which is similar to a physical space eddy viscosity fit proposed by Lesieur et al. [24,25] in the
context of the structure function SGS model. For LES equations in the physical space the constant
spectral eddy viscosity (28) will lead to a standard Laplacian term ∇2 and the approximation (29)
to a sum of the Laplacian and a hyperviscosity term proportional to ∇6. Additionally, adjusting
constant D2 in (29) allows us to control relative contributions to the SGS transfer from the eddy
viscosity plateau and its cusp (see Fig. 1).
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Another class of spectral models, qualitatively different from the models outlined above, are
spectral vanishing viscosity (SVV) models introduced by Karamanos and Karniadakis [45]. The
functional form of the kernel of a SVV model proposed by Lamballais et al. [46] is

f3(k|kc) = ν+
SVV (k|kc) =

{
0 if k � Akc,

exp
[
−( 1−k/kc

A−k/kc

)2
]

otherwise.
(30)

The main difference between the SVV viscosity and the previous models is that a fraction of the
resolved wave number range, defined by constant A, is unaffected by the model. We will choose here
A = 0.35 to confine the action of the eddy viscosity to one half of the wave number range adjacent to
the cutoff kc. In Fig. 1 we plot spectral shapes of all four eddy viscosity models. It should be added
that the general concept of the wave-number-dependent eddy viscosity for homogenous turbulence
is strongly supported by an independent analysis of Langford and Moser [47], who found that it
was the dominant term in a multiterm formulation of the optimal SGS model. Thus while there
might be differences between specific eddy viscosity formulas, there is a general agreement that the
formulas considered in this paper constitute a proper framework for LES modeling of homogenous,
isotropic turbulence. Note also that we are not attempting to normalize the curves in Fig. 1 (e.g., by
the maximum value) because in the method proposed in the next section each spectral function will
be multiplied by an appropriate constant that will force the model SGS dissipation to be equal to the
SGS dissipation determined for a given velocity field independently of the model. It will be shown
that enforcing this condition allows for a greater freedom in choosing the form of eddy viscosity
models.

IV. DETERMINATION OF THE TOTAL SGS ENERGY TRANSFER FROM
RESOLVED LES FIELDS

A. Interscale energy transfer

For the purposes of model development we follow Domaradzki et al. [28,33] and Anderson and
Domaradzki [37] and decompose the wave number space into three discrete wave number regions
denoted by R1, R2, R3:

R1: 0 � k < k1,

R2: k1 � k < k2, (31)

R3: k2 � k < ∞,

where k2 = kc is the SGS wave number cutoff and k1 = akc is an intermediate cutoff in the resolved
range (constant a < 1, usually set to 1/2). Thus region R3 represents SGS scales, unresolved in
LESs, and regions R1 and R2 represent respective large and small resolved scales. Using this
decomposition the nonlinear term (8) can be decomposed as

Nn(k) =
3∑

p=1

3∑
q�p

3∑
m=1

N pqm
n (k). (32)

Each term in (32) describes effects of nonlinear interactions between two regions p and q on the
third region m. The corresponding energy transfer term is

T pqm(k) = Re[u∗
n(k)N pqm

n (k)], (33)

which describes the energy rate change for modes in region m caused by nonlinear interactions
between regions p and q. The decomposition of the energy transfer term (10) is

T (k) =
3∑

p=1

3∑
q�p

3∑
m=1

T pqm(k). (34)
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Several familiar expressions in SGS modeling can be rewritten in this notation. The SGS transfer
for the cutoff kc is

TSGS(k|kc) = T 131 + T 231 + T 331 + T 132 + T 232 + T 332, (35)

where terms on the r.h.s. account for interactions between two bands (first two indices) that must
involve SGS band 3, affecting resolved bands (third index: bands 1 and 2). The SGS transfer for the
cutoff k1 = akc is

TSGS(k|akc) = T 121 + T 131 + T 221 + T 231 + T 331, (36)

where terms on the r.h.s. account for interactions between two bands (first two indices) that must
involve SGS bands 2 and/or 3, affecting resolved band 1 (third index). Truncating (35) to region 1
gives

[TSGS(k|kc)]1 = T 131 + T 231 + T 331, (37)

and combining this expression with (36) provides the Germano identity

TSGS(k|akc) − [TSGS(k|kc)]1 = T 121 + T 221, (38)

where the r.h.s. is the SGS transfer within resolved range R1 ∪ R2 with cutoff k1, i.e., with terms on
the r.h.s. accounting for interactions involving bands 1 and 2, affecting band 1 (third index)

T res
SGS(k|akc) = T 121 + T 221. (39)

Note that in symbolic equations above terms with all three same indices such as T 111 are neglected
because, as discussed before, nonlinear interactions among any subset of modes obtained using
sharp spectral filters are energy conserving and do not affect total energy of any band.

The original interscale transfer model (ITM) of Anderson and Domaradzki [37] is based on the
decomposition of the energy transfer within the resolved range scales

T res(k|kc) = T 111 + T 121 + T 221 + T 112 + T 122 + T 222. (40)

In this decomposition terms T 111 and T 222 are energy conserving, and T 112 and T 122 will lead to
energy accumulation in range R2 unless SGS interactions with scales in R3 keep removing the energy
from R2. The ITM model attempts to model this SGS energy transfer by explicit cancellation of the
energy accumulation terms in (40)

T res
LES(k|kc) = T res(k|kc) − T 112 − T 122, (41)

where the SGS dissipation of the ITM model is

T ITM
SGS (k|kc) = −T 112 − T 122. (42)

The difficulties met by this version of the model at high Reynolds numbers, noted in the Intro-
duction, can be traced to distribution of SGS energy transfer in wave number space. Because the
energy transfer between two neighboring wave number bands is most effective in the vicinity of the
band boundary, the model expression (42) overestimates the SGS dissipation at k = k1 = akc and
underestimates it in the vicinity of the actual LES cutoff kc. This leads to failure at high Reynolds
numbers when effects of the molecular viscosity are not available to counteract this behavior, a
situation very similar to the origin of failure of a pure similarity model at high Reynolds numbers.
Because of that the model (42) has been abandoned. However, the above observations suggested a
modified approach, discussed in this paper, that removes the source of difficulties by rescaling the
energy transfer from the test cutoff k1 to the actual LES cutoff kc.

Since T res
SGS can be computed directly for a given LES field we investigate if that fact can be used

to estimate the SGS energy transfer for the full velocity fields with cutoff kc. To be more specific we
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assume that the velocity field is consistent with the infinite inertial range spectrum k−5/3, k1 = 1
2 kc,

and we focus on the total transfers, integrated over respective wave number domains:

TSGS(kc) =
∫ kc

0
dkTSGS(k|kc) = εSGS(kc), (43)

T res
SGS

(
1

2
kc

)
=

∫ 1
2 kc

0
dkT res

SGS

(
k|1

2
kc

)
. (44)

Note that integrated SGS transfer terms are indicated by dependence only on the cutoff wave number
but not on k. In this notation the Germano identity (38) integrated over region R1 becomes

TSGS

(
1

2
kc

)
−

∫ 1
2 kc

0
dkTSGS(k|kc) = T res

SGS

(
1

2
kc

)
. (45)

For the infinite inertial range energy flux across the spectrum is constant, allowing us to replace the
first term in (45) by TSGS(kc). The second term is a fraction of the total transfer TSGS(kc) because
the integration interval covers only a fraction of a wave number domain contributing to TSGS(kc),
formally ∫ 1

2 kc

0
dkTSGS(k|kc) = bTSGS(kc), (46)

where b is a constant to be determined. With the above substitutions the equation for TSGS(kc)
becomes

TSGS(kc) = 1

1 − b
T res

SGS

(
1

2
kc

)
. (47)

The constant b can be obtained using several approaches. One is by using properties of the
infrared scale locality functions for the energy flux 
(k|kc) introduced by Kraichnan [48,49].

(k|kc) measures the amount of the energy flux through kc that is due to nonlinear interactions
involving wave numbers less than k. The classical scaling is (k/kc)4/3, implying that contribution of
scales k < 1

2 kc to the energy transfer across kc is the fraction b = 2−4/3 = 0.40 of the total transfer at
kc. We have also reanalyzed DNS data from isotropic simulations performed with 5123 resolution in
our previous work [33,50], obtaining for the inertial range part of the spectrum value b = 0.33–0.34.
Assuming applicability of the spectral eddy viscosity form (29), the constant b can also be obtained
as

b =
∫ 1

2 kc

0 f2(k|kc)2k2E (k) dk∫ kc

0 f2(k|kc)2k2E (k) dk
≈ 0.36. (48)

Finally, assuming a constant eddy viscosity in the formula above, i.e., f2 = f0 = 1 will give the same
result as the scaling theory, b = 0.4. These results are largely consistent with each other, and there
are no strong reasons to prefer any particular choice. We have selected b = 0.40 for the purposes of
this work. For this choice the total SGS transfer is expressed in terms of the resolved SGS transfer
with a fortuitous prefactor

TSGS(kc) = 5

3
T res

SGS(
1

2
kc). (49)

It is well known that a SGS model must provide sufficient total SGS dissipation to be successful.
For a given LES velocity field the above expression provides the total SGS dissipation computed
from physics of interscale interactions for that field. Because of that link to physics of energy transfer
we expect that (49) can serve as an useful constraint on SGS models. A related approach was
considered by Park and Mahesh [51], who used a SGS dissipation of the dynamic Smagorinsky
model for a given velocity field as a constraint for another, improved SGS model. Here we rely on
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the physical prediction of the total SGS dissipation (47), which will become a first-order condition
that must be satisfied by any successful SGS model for that field. However, as we will see, the
total SGS dissipation must be distributed appropriately among all scales k < kc to obtain good LES
results. The distribution of the total SGS dissipation is a higher order condition since many different
distributions will produce very similar LES results. We will consider SGS dissipation distributions
given by shape functions for several spectral eddy viscosity models discussed before (27)–(30).
Specifically, the eddy viscosity implemented in actual LESs is

νeddy(k|kc) = Cm(t ) fi(k|kc), i = 0, 1, 2, 3, (50)

where functions fi are given in (27)–(30). The multiplicative constant Cm(t ) is determined from the
first-order constraint

Cm(t ) = TSGS(kc)∫ kc

0 fi(k|kc)2k2E (k) dk
. (51)

In (51) TSGS(kc) is expressed in terms of SGS transfer among resolved scales (49), computed at each
time step in LESs with the spectral eddy viscosity given by (50). Such LESs are self-contained in a
sense that once a shape function is assumed the remaining information is obtained from the ongoing
LESs. In fact, we discuss later how also a shape function can be derived from LESs itself, making
the entire procedure only minimally dependent on extraneous information input.

B. Comparison with the dynamic SGS modeling

At this point it is useful to note similarities and differences between the described procedure and
the dynamic modeling approach since both employ the same Germano identity (45). The Germano
identity does not invoke any specific SGS model but merely relates the SGS transfers computed
for the full velocity field at two different cutoffs (here kc and (1/2)kc) to the SGS transfer at cutoff
(1/2)kc computed for the resolved LES field. The dynamic modeling involves two steps. First, a
SGS modeling expression must be selected; e.g., in the context of the present work it could be
a wave-number-dependent eddy viscosity (50). It should be stressed, however, that the Germano
identity does not impose restrictions on SGS models that may be considered. In addition to the
Smagorinsky model the dynamic procedure has been applied to variety of other models, e.g., to
the Bardina mixed model by Zang et al. [52] and to the Vreman model by You and Moin [53].
The second step in the dynamic approach is to determine model coefficients. While it was shown
by Ghosal et al. [54] that it is possible to formulate a general integral equation for space- and
time-dependent coefficients, in practice a limited number of coefficients is determined by the least
squares method as originally proposed by Lilly [55]. In most cases just one coefficient is sought, in
the current context Cm in (50), and the dynamic procedure, using (45), leads to∫ 1

2 kc

0
Cm

(
1

2
kc

)
fi

(
k|1

2
kc

)
2k2E (k) dk −

∫ 1
2 kc

0
Cm(kc) fi(k|kc)2k2E (k) dk = T res

SGS

(
1

2
kc

)
, (52)

where the explicit notation is used to distinguish model application at different cutoffs. In principle
this is one equation for two unknowns, Cm( 1

2 kc) and Cm(kc). Enforcing constant energy flux for the
model at both cutoffs,∫ 1

2 kc

0
Cm

(
1

2
kc

)
fi

(
k|1

2
kc

)
2k2E (k) dk =

∫ kc

0
Cm(kc) fi(k|kc)2k2E (k) dk, (53)

and the spectral form k−5/3 for E (k) produces a well-known inertial range scaling Cm(kc) =
2−4/3Cm( 1

2 kc), allowing us to compute the Cm coefficient for the cutoff kc:

Cm(t ) = T res
SGS( 1

2 kc)

24/3
∫ 1

2 kc

0 fi(k| 1
2 kc)2k2E (k) dk − ∫ 1

2 kc

0 fi(k|kc)2k2E (k) dk
. (54)
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With the assumption (53) the above equation is equivalent to Eq. (51), and both can be rewritten in
exactly the same form:

Cm(t ) = T res
SGS( 1

2 kc)

(1 − b)
∫ kc

0 fi(k|kc)2k2E (k) dk
. (55)

The difference between both methods is how the parameter b is determined. The dynamic
procedure provides an explicit expression that depends on the model selected:

b =
∫ 1

2 kc

0 fi(k|kc)2k2E (k) dk∫ kc

0 fi(k|kc)2k2E (k) dk
. (56)

The present method determines b irrespective of the model, from a physical estimate of the global
SGS transfer for a given velocity field. The difference arises because both approaches set different
objectives. In the proposed approach the objective is to find the best estimate of the total SGS
transfer using a resolved LES field. In the dynamic procedure the objective is to find the best estimate
of model coefficients using a resolved LES field. The common feature is that both approaches use
the Germano identity to accomplish their respective goals. In the dynamic procedure a model is
selected first and the Germano identity is used subsequently to determine a model constant. In
particular this implies that the predicted SGS transfer TSGS(kc) will depend not only on a given
velocity field but also on a selected model; i.e., for the same velocity field but different models the
dynamic procedure will give different values of TSGS(kc). The simplest example to illustrate such a
behavior is to consider two eddy viscosity models, one that is nonzero for the entire resolved range
0 < k < kc [e.g., (27)–(29)] and another one with a restricted spectral support 0.5kc < k < kc [e.g.,
(30)]. For the latter the integral in (45) vanishes, leading to TSGS(kc) = T res

SGS( 1
2 kc), or equivalently,

the constant b = 0 in (55); for the other the formula (47) applies with the value of b determined
independently of a model, where based on physical considerations b = 0.4 is chosen, which is also
likely the maximum value consistent with energy transfer processes in the inertial range. Therefore,
for a given velocity field the total SGS transfer predicted by the dynamic procedure, depending on
the model, may vary between the total resolved SGS transfer T res

SGS and (5/3)T res
SGS, the latter value

corresponding to the eddy viscosity constant in k. In the proposed method the total SGS transfer
as determined by the latter form is enforced for an arbitrary SGS model. On physical grounds the
method that uses a unique value of the total SGS transfer for a unique velocity field is preferred to
the method which predicts a range of model-dependent values. Nevertheless, the dynamic procedure
is valuable and very successful in practice because the predicted range for total SGS transfer is in
an approximate agreement with the expected range based on physical considerations. In particular,
both methods will produce comparable values of b for classical models defined by shape functions
f0 and f1.

V. RESULTS

A. Spherical, sharp spectral filter

For the purposes of testing the concepts we have performed multiple large eddy simulations.
Because a large number of different models need to be evaluated, we have used a relatively low
resolution of 323 mesh points in most cases. That resolution is consistent with other investigations
that required multiple runs to test new SGS models (e.g., Langford and Moser [56]) and was found
sufficient for drawing conclusions that were reinforced by performing several runs with the resolu-
tion increased to 643 modes. The majority of cases were initialized with the Kolmogoroff spectral
form, k−5/3, with no prefactors, and were run until a statistically steady state was reached. The
simulations were continued in the steady state to collect statistics. Note that turbulence parameters
defined at the end of Sec. II depend on the viscous dissipation ε, which is dominated by the high
wave number part of the energy spectrum, not available in LESs. For high Reynolds numbers
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TABLE I. Spectral models.

Case Model

ivis Eq. (28): 2
3CK

−3/2

iviscl Eq. (27): CK
−3/2(0.441 + 15.2e−3.03kc/k )

ceddy Eq. (50): f0 = 1

CLeddy Eq. (50): f1 = (0.441 + 15.2e−3.03kc/k )

CLedk4 Eq. (50): f2 = [D2 + (k/kc )4]

SVVmod Eq. (50): f3 = exp [−( 1−k/kc
A−k/kc

)
2
] for k/kc � A; otherwise f3 = 0

considered in this work the unknown viscous dissipation ε is assumed to be equal to the energy
flux 
 across the spectrum. In forced LESs we estimate 
 = ε in a steady state as a difference
between the measured energy input rate by forcing and the known viscous dissipation in the resolved
range. The viscous dissipation in the resolved range was found to be four orders of the magnitude
less than estimated ε. Using this estimate the Taylor microscale Reynolds number Reλ in all cases
exceeded 104, confirming that considered LESs are for high Reynolds number turbulence where the
Kolmogoroff theory should apply. The simulations were run for 2000 time steps, which corresponds
to about seven large eddy turnover times Te, and the results were generally averaged over the last
three eddy turnover times. In order to facilitate distinguishing among different models in subsequent
figures we will use notation summarized in Table I. In Table II we collect details of LESs for case
“ivis” (eddy viscosity constant in k), which is representative of the models considered.

In Fig. 2 we plot results of LESs for two classical spectral eddy viscosity models given by
expressions (27) and (28), with nondimensionalization given by (26). To emphasize the need for an
appropriate SGS model in such simulations we also plot results for DNSs under the same conditions,
the so called no-model LESs, and for the Bardina similarity model

τ sim
i j = ūi ū j − ūi ū j, (57)

where the overbar signifies filtering with the Gaussian filter with the filter width � = 2�x. In
both the latter cases a lack of a physically adequate SGS dissipation quickly leads to the energy
equipartition for modes outside the forcing band, characterized by the energy spectrum proportional
to k2. On the other hand the models (27) and (28) tend to remain close to the spectral k−5/3 shape
throughout the simulation time. The dip in the spectra at the last wave number is caused by averaging
over the wave number band centered at that wave number. Because of truncations performed as part

TABLE II. LES parameters.

Quantity Value

�t 0.005
Nsteps 2000
ν 2.5 × 10−7

u′2 1.095
Forcing factor 1.00125
ε 0.519
λ 2.79 × 10−3

Reλ 1.17 × 104

Lp 1.35
Te 1.29
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FIG. 2. Results for classical eddy viscosity models. Line with symbols ◦: initial condition; solid line: case
“ivis”; broken line: case “iviscl”; dotted line: no-model LESs; broken-dotted line: similarity model (57) with
Gaussian filter. In this and all subsequent figures thin straight lines show, as appropriate, −5/3 and 2 slopes,
and a boundary of the forcing band at k = 3. For compensated spectra (b) horizontal lines mark expected range
of values for the Kolmogoroff constant.

of dealising, the modes in the band of finite thickness with wave numbers greater than the band
center are set to zero, reducing the energy content in the last band compared with bands away from
the cutoff.

The overall quality of predicted spectral slopes can be better evaluated by plotting compensated
spectra in a form of a k-dependent Kolmogoroff function

CK (k) = E (k)

ε2/3k−5/3
. (58)

According to experimental and DNS investigations, CK (k) is expected to be a constant with a value
in the range 1.4–2.1 for the perfect Kolmogoroff range [57,58]. Function (58) is shown in Fig. 2(b)
for both models at the end of respective runs. The values of CK (k) are not constant and fall only
roughly within the expected range, and in both cases there are signs of overdissipation as the cutoff is
approached. The Chollet-Lesieur model (27) provides a better prediction in a sense that CK (k) shows
less variation than the prediction for the constant eddy viscosity model (28). We are not attempting
to improve predictions by optimizing the model constant CK

−3/2 but accept the recommendation
of Chollet and Lesieur [22] CK = 1.4. The results for these two classical models at the same, low
resolution are consistent with results in the literature (see [22] and [23]) and can serve as benchmarks
that any new modeling approach should meet or exceed.

The interscale energy transfer model has been implemented for three shape functions f0, f1, f3,
the first two corresponding to benchmark models with constant parameters. The energy spectra are
shown in Fig. 3. It is seen that for functions f0 and f1 the spectra are in a good agreement with
spectra obtained using benchmark models (Fig. 2). In fact, minor improvements are observed when
compensated spectra shown in Fig. 3(b) are considered. However, for the function f3 the energy
spectrum does not match the k−5/3 form: the spectral slope is flatter immediately after the forcing
band and much steeper in the vicinity of the cutoff. The observed behavior is likely caused by
an insufficient energy transfer from scales k < (1/2) kc, where the eddy viscosity is zero, and an
excessive transfer from scales k > (1/2) kc, where the eddy viscosity is rapidly rising with k. We
can thus conclude that the quality of LES predictions is dependent not just on properly capturing
the total SGS transfer TSGS but also on its proper distribution among resolved wave numbers k < kc

by a model shape function.
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FIG. 3. Models with shape functions f0, f1, and f3. Line with symbols ◦: initial condition; solid line: case
“ceddy”; broken line: case “CLeddy”; broken-dotted line: case “SVVmod.”

To assess the sensitivity of LES predictions to changes in the SGS transfer scale distribution
we have used the model (29) for function f2 with four different values of parameter D2 =
1.10, 0.55, 0.275, 0. The ratio of the plateau value of the eddy viscosity to the peak value at
the cusp decreases from about 0.5 for D2 = 1.10 to zero, with intermediate values of 0.35 and 0.22
for D2 = 0.55 and D2 = 0.275, respectively. The value D2 = 0.55 corresponds to the theoretical
distribution (27), while values D2 = 1.10 and D2 = 0.275 give respectively larger and smaller
relative weight to the plateau contribution to the total transfer. The value of D2 = 0 concentrates
the SGS transfer in scales closer to the cutoff, similarly to the SSV case (30). The energy spectra
for all cases are shown in Fig. 4. It is seen that the case D2 = 0 produces similar behavior as the
SSV viscosity, while the remaining three cases, D2 > 0, show acceptable agreement with the k−5/3

spectrum. However, as the constant D2 decreases the spectra begin to deteriorate, which is better
seen in the plot of the compensated spectra shown in Fig. 4(b).

Additional insight into the dependence of spectral results on a shape function can be gained
by investigating a wave number distribution of the resolved SGS energy transfer T res

SGS(k|akc) [see
Eq. (39)]. This quantity, computed for a = 1/2, and cast in the form of the k-dependent eddy vis-
cosity (25), is shown in Fig. 5 for LES cases with D2 = 1.10, 0.55, 0.275, and for the LES case run
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(b) Compensated energy spectra

FIG. 4. Model with shape function f2 (case “CLedk4”) and different values of D2. Line with symbols ◦:
initial condition; solid line: D2 = 1.10; broken line: D2 = 0.55; broken dotted line: D2 = 0.275; dotted line:
D2 = 0.
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FIG. 5. Spectral eddy viscosities computed from LESs performed with shape function f2 (case “CLedk4”)
and different values of D2. Solid line: D2 = 1.10; broken line: D2 = 0.55; broken dotted line: D2 = 0.275.
Dotted line: eddy viscosity from LES data for case “ceddy”; line with symbols ◦: analytical expression (29).

with the eddy viscosity constant in k (function f0; see Fig. 3). All four curves are normalized with
their peak values at k/kc = 1 and compared with the theoretical shape function f2 for D2 = 0.55.
The curves obtained from LES data exhibit qualitatively the same behavior as the theoretical eddy
viscosity: a plateau for k/kc � 1/2 followed by a cusp as the cutoff wave number is approached.
Also, a plateau level obtained from LES data is correlated with the plateau level of a shape function
used in LESs, i.e., as D2 in LESs decreases so does the computed plateau level. Quantitatively,
however, the plateau values computed from LES data can be by a factor of 2 less than plateau values
for shape functions used to generate those data. The most likely explanation for this quantitative
inconsistency is that in computing T res

SGS(k|(1/2)kc) nonlinear interactions with unresolved scales
k > kc are unaccounted for, reducing the SGS energy transfer from the range k < (1/2) kc, and thus
the level of the eddy viscosity in that range. Nevertheless, these results are encouraging, showing
that the assumed shape functions are in many respects consistent with the corresponding quantities
computed from actual LES data. This also suggests that rather than prescribing and testing various
shape functions it should be possible to infer a shape function directly from LESs, further reducing
dependence of the method on information extraneous to actual simulations. A simple strategy is
to start LESs with the eddy viscosity constant in k (shape function f0) and, after nonlinear energy
transfer is established, compute a shape function from the analysis of T res

SGS(k|(1/2)kc). As suggested
by Fig. 5 such a function will constitute a very good fit to the theoretical shape function for a given
LES and can be used to continue the simulation. We have tested the viability of such an approach
by performing a precursor LES run with the shape function f0 for about half of the eddy turnover
time, extracting a numerical shape function from the LES data at the end of the precursor run,
and continuing LESs with the numerical shape function for the same time as all other analyzed
simulations. In Fig. 6 we compare results from this procedure with results of continuing the run
with the model f0 for the same time period. Both runs produce spectra of comparable quality though
with different values of the Kolmogoroff constant outside the forcing band.

B. Additional topics: Different resolutions, different initial conditions, and graded filters

To assess the dependence of the method on numerical resolution for several cases LESs have
been performed with 643 modes and compared with results obtained in simulations with 323 modes
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FIG. 6. A model with a shape function computed from a precursor LES. Line with symbols ◦: initial
condition; solid line: case “ceddy”; broken line: results using a shape function computed from case “ceddy.”

reported in the previous section. In Fig. 7 we show such a comparison for the case “ceddy” (see
Table I). Both runs were initialized with the inertial range spectral form and the same seed for a
random number generator and were run for the same number of time steps Nsteps = 2000 with the
same time step �t = 2.5 × 10−7. The spectrum for the lower resolution case is shifted to the right
of the spectrum for the higher resolution case because wave numbers k in both cases are normalized
by the cutoff wave number kc. The extent of the forcing band for each case is indicated by short
vertical lines, and a straight diagonal has a slope of −5/3. The raw spectra for both cases are not
smooth, especially inside the forcing bands, because of small number of modes captured by the
averaging procedure over shells with thickness �k = 1. The choppiness of spectra diminishes for
the higher resolution case, especially for larger k/kc, and the fluctuations can be further decreased by
considering thicker shells with �k = 2. However, the important observation is that outside forcing
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FIG. 7. Energy spectra for the model “ceddy” at different resolutions. Straight diagonal line: ∼k−5/3.
Line with symbols ◦: initial condition; solid line above k−5/3 line: resolution 323 modes; broken-dotted line:
resolution 643 modes; solid line below k−5/3 line: resolution 643 with averaging over thicker shells.
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FIG. 8. A pulse spectrum initial condition. Line with symbols ◦: initial condition; solid line: case “ivis”;
broken line: case “ceddy.”

bands both spectra follow each other closely and are in a good agreement with the Kolmogoroff
form. We conclude that while higher resolution results are smoother, there are no indications that
the dynamics predicted by the method is dependent on the two resolutions considered.

Forced turbulence spectra tend asymptotically toward the Kolmogoroff k−5/3 form, and SGS
models should be able to capture this behavior independently of the initial condition. We have
performed several LESs with a pulse-type initial condition where E (k) = 0 for k > 4. In Fig. 8
we show the initial spectrum and results of its evolution in LESs obtained using the k-independent
theoretical eddy viscosity (28) and the corresponding interscale transfer model with the constant
function f0 = 1. Both models lead to spectra qualitatively consistent with expected behavior though
the theoretical eddy viscosity is somewhat overdissipative. Note that the overall energy level for
spectra in these runs is more than twice larger than in LESs initialized with the k−5/3 function
because the forcing algorithm leads to larger energy input for the flatter initial spectrum. The fact
that the final spectra in all LESs are consistent with the k−5/3 form with a reasonable value of
the Kolmogoroff constant is encouraging, indicating that the proposed modeling approach properly
captures dynamics of turbulence at high Reynolds numbers.

While a sharp spectral filter is a natural choice in LESs and turbulence studies using Fourier
modes, in LESs performed with finite volume or finite difference numerical codes graded filters are
normally employed. Additionally, for Cartesian grids 3D filters are written as a product of 1D filters.
It is thus natural to ask if and how the modeling procedure proposed here can be extended to such
a more typical LES framework in the physical space representation. To investigate this question
we have used Gaussian and box filters, both with the filter width � = 2�x. Specifically, the 1D
Gaussian filter kernel is

G(x, x′) =
√

6

π�2
exp

(
−6|x − x′|2

�2

)
(59)

and the 1D box filter kernel

G(x, x′) =
{

1/� if |x − x′| � �/2,
0 otherwise. (60)

The filtering operation in Cartesian coordinates for an arbitrary function f (x, y, z) is then given by
the formula

f (x, y, z) =
∫

dx′ dy′ dz′G(x, x′)G(y, y′)G(z, z′) f (x′, y′, z′). (61)
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FIG. 9. Models with shape functions f0, f2, and f3 using Gaussian filtering. Line with symbols ◦: initial
condition; solid line: case “ceddy”; broken line: case “CLedk4”; broken-dotted line: case “SVVmod.”

We have performed LESs using the proposed procedure in exactly same form as described in
previous sections, merely replacing the sharp spectral filtering by graded filters as given by formulas
above. There is a subtle difference in interpretation of quantities computed using the sharp spectral
filter and graded physical space filters. For both cases all quantities in LESs are represented on a
mesh with a finite mesh size �x, implying spectral support with a cutoff wave number kc = π/�x.
When a sharp spectral filter is applied at an intermediate wave number, say (1/2)kc, the resulting
filtered quantities lose completely information about scales (1/2)kc < k < kc; those scales are truly
unknown, subgrid scales. In case of the physical space filters a filtered field still has the same spectral
support as the full, unfiltered field, and, for invertible filters, there is no information loss. In such
a case the velocity field u′

i = ui − ui is often called a subfilter velocity. A good discussion of how
differences between sharp spectral filter and graded physical space filters affect interpretation of
LES results is given by Langford and Moser [47] and Domaradzki and Adams [59]). While these
differences could suggest that physical quantities computed with different filters in our modeling
procedure could lead to incongruent outcomes, we were surprised to find that this was not the case.
This conclusion is confirmed by plots of energy spectra shown in Fig. 9 obtained in LESs using
the Gaussian filter and shape functions f0, f2, and f3. Very similar results were obtained using the
box filter, so they are not shown here. The results are in a close agreement with the corresponding
results of LESs performed with the spectral filter, shown in Fig. 3. Note that since shape functions
f0 and f2 have a direct physical space representation, these two models can be implemented entirely
in the physical space if filters (59) or (60) are used. In that case T res

SGS( 1
2 kc) required in the model is

obtained using the physical space formula (21) for εSGS(x).

VI. CONCLUSIONS

A subgrid-scale (SGS) modeling procedure has been developed that is based on the interscale
energy transfer among resolved scales in an actual LESs. The total, unknown SGS transfer is
estimated using the computed SGS transfer within the resolved range and a few, well-established
facts concerning turbulence dynamics at very high Reynolds numbers. The total SGS transfer then
becomes a first-order constraint that any proposed SGS eddy viscosity model should satisfy. The
procedure was evaluated using low-resolution LESs for forced, high Reynolds number isotropic
turbulence for which the inertial range dynamics is expected. Several common models, characterized
by different shape functions for a distribution of SGS transfer among scales of motion, were
implemented and tested. It was concluded that details of shape functions can be considered as a less
important, second-order constraint, in a sense that an entire class of shape functions would lead to
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very similar spectral results in LESs. In particular, shape functions for wave-number-dependent eddy
viscosity, suggested by the classical theories of turbulence, with a low wave number plateau and a
cusp at the cutoff wave number were able to produce energy spectra in as good agreement with the
inertial range form as LES results reported in the literature for models with fixed, time-independent
coefficients. On the other hand models using shape functions with a cusp but without a low wave
number plateau were unable to produce or maintain the inertial range spectrum in LESs. Therefore,
in addition to satisfying quantitatively the global SGS energy transfer constraint, a qualitatively
correct wave number distribution of the SGS transfer is needed to produce good LES results. It
should be noted that the eddy viscosity computed from DNS results at low Reynolds numbers is
characterized by a cusp and a negligible value of the plateau [43], similar to the SSV model and
the shape function f2 with D2 = 0. This strongly suggests that as the Reynolds number of a flow
decreases, the plateau value decreases as well, eventually going to zero as the dynamics become
dominated by viscous effects and energy spectra become much steeper than the Kolmogoroff form.
In the present modeling procedure such a behavior could be accounted for by making constant
D2 dependent on Reynolds number. However, it was shown that prescribing the SGS transfer
distribution through shape functions may be replaced entirely by deriving shape functions from
the data available in a given LES. This has a potential of making LES fully self-contained, with
required information about the total SGS transfer and its scale distribution available from an LES
run in question.

We have also briefly addressed a question how to extend the proposed modeling procedure to a
framework of the physical space representation, typical of SGS modeling for practical applications.
We have determined that it is possible to compute the total SGS energy transfer constraint using the
physical space formula (23) and physical space filters, implemented as a tensor product of 1D filters
(59) and (60) in Cartesian coordinates. We have also proposed a general expression f2 for a shape
function that has a straightforward physical space representation; it additionally allows us to control
the plateau level of a spectral eddy viscosity through a free parameter D2.

Finally, one may also speculate how the proposed method could be used for LESs of inhomoge-
nous flows, which must be simulated in the physical representation. One obvious approach would
be to use the total estimated SGS transfer as a constraint on a model constant, in the same way as the
dynamic procedure uses the Germano identity. Another one could be using the total SGS transfer as
an additional constraint in the classical dynamic procedure, i.e., optimizing model coefficients with
respect to the Germano identity and the total SGS transfer.

ACKNOWLEDGMENT

The author is grateful to Prof. P. K. Yeung for making his excellent numerical code available for
research in isotropic turbulence.

[1] A. Leonard, Energy cascade in large eddy simulations of turbulent fluid flows, Adv. Geophys. A 18, 237
(1974).

[2] S. Ghosal and P. Moin, The basic equations for the large eddy simulation of turbulent flows in complex
geometry, J. Comp. Phys. 118, 24 (1995).

[3] O. V. Vasilyev, T. S. Lund, and P. Moin, A general class of commutative filters for LES in complex
geometries, J. Comput. Phys. 146, 82 (1998).

[4] B. Galperin and e. S. A. Orszag, Large Eddy Simulation of Complex Engineering and Geophysical Flows
(Cambridge University Press, Cambridge, 1993).

[5] M. Lesieur and O. Metais, New trends in large-eddy simulations of turbulence, Annu. Rev. Fluid Mech.
28, 45 (1996).

[6] U. Piomelli, Large-eddy simulations: Achievements and challenges, Prog. Aero. Sci. 35, 335 (1999).

044609-20

https://doi.org/10.1016/S0065-2687(08)60464-1
https://doi.org/10.1006/jcph.1995.1077
https://doi.org/10.1006/jcph.1998.6060
https://doi.org/10.1146/annurev.fl.28.010196.000401
https://doi.org/10.1016/S0376-0421(98)00014-1


LARGE EDDY SIMULATIONS OF HIGH REYNOLDS …

[7] C. Meneveau and J. Katz, Scale-invariance and turbulence models for large eddy simulations, Annu. Rev.
Fluid Mech. 32, 1 (2000).

[8] S. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000).
[9] P. Sagaut, Large-Eddy Simulation for Incompressible Flows, 2nd ed. (Springer-Verlag, Berlin, 2002).

[10] J. Smagorinsky, General circulation experiments with the primitive equations, Mon. Weath. Rev. 93, 99
(1963).

[11] M. Germano, U. Piomelli, P. Moin, and W. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys.
Fluids 3, 1760 (1991).

[12] J. P. Boris, F. F. Grinstein, E. S. Oran, and R. L. Kolbe, New insights into large eddy simulation, Fluid
Dyn. Res. 10, 199 (1992).

[13] L. G. Margolin and W. J. Rider, A rationale for implicit turbulence modeling, Int. J. Numer. Meth. Fluids
39, 821 (2002).

[14] F. Grinstein and C. Fureby, Recent progress on MILES for high Reynolds number flows, J. Fluids Eng.
124, 848 (2002).

[15] Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, edited by F. F. Grinstein, L. G.
Margolin, and W. J. Rider (Cambridge University Press, Cambridge, 2007).

[16] D. Lilly, The representation of small-scale turbulence in numerical simulation experiments, in Proc.
IBM Scientific Computing Symp. on Environmental Sciences, edited by H. H. Goldstine (IBM, Yorktown
Heights, NY, 1967) pp. 195–210.

[17] T. Eidson, Numerical simulation of the turbulent Rayleigh-Bénard problem using subgrid modelling,
J. Fluid Mech. 158, 245 (1985).

[18] U. Piomelli, High Reynolds number calculations using the dynamic subgrid-scale stress model, Phys.
Fluids A 5, 1484 (1993).

[19] S. Toosi and J. Larsson, Anisotropic grid-adaptation in large eddy simulations, Comput. Fluids 156, 146
(2017).

[20] R. Kraichnan, Eddy viscosity in two and three dimensions, J. Atmos. Sci. 33, 1521 (1976).
[21] D. Leslie and G. Quarini, The application of turbulence theory to the formulation of subgrid modelling

procedures, J. Fluid Mech. 91, 65 (1979).
[22] J. Chollet and M. Lesieur, Parameterization of small scales of three-dimensional isotropic turbulence

utilizing spectral closures, J. Atmos. Sci. 38, 2767 (1981).
[23] M. Lesieur, Turbulence in Fluids, 3rd ed. (Kluwer Academic, Dordrecht, 1997).
[24] M. Lesieur, O. Metais, and P. Comte, Large Eddy Simulations of Turbulence (Cambridge University Press,

Cambridge, 2005).
[25] O. Metais and M. Lesieur, Spectral large-eddy simulations of isotropic and stably-stratified turbulence,

J. Fluid Mech. 239, 157 (1992).
[26] J. Domaradzki and R. Rogallo, Local energy transfer and nonlocal interactions in homogeneous, isotropic

turbulence, Phys. Fluids A 2, 413 (1990).
[27] J. Domaradzki, W. Liu, C. Härtel, and L. Kleiser, Energy transfer in numerically simulated wall-bounded

turbulent flows, Phys. Fluids 6, 1583 (1994).
[28] J. A. Domaradzki and W. Liu, Approximation of subgrid-scale energy transfer based on the dynamics of

resolved scales of turbulence, Phys. Fluids 7, 2025 (1995).
[29] J. Domaradzki, Analysis of energy transfer in direct numerical simulations of isotropic turbulence, Phys.

Fluids 31, 2747 (1988).
[30] P. Yeung and J. Brasseur, The response of isotropic turbulence to isotropic and anisotropic forcing at the

large scales, Phys. Fluids A 3, 413 (1991).
[31] J. Domaradzki, W. Liu, and M. Brachet, An analysis of subgrid-scale interactions in numerically simulated

turbulence, Phys. Fluids A 5, 1747 (1993).
[32] R. M. Kerr, J. A. Domaradzki, and G. Barbier, Small-scale properties of nonlinear interactions and

subgrid-scale energy transfer in isotropic turbulence, Phys. Fluids 8, 197 (1996).
[33] J. A. Domaradzki and D. Carati, An analysis of the energy transfer and the locality of nonlinear

interactions in turbulence, Phys. Fluids 19, 085112 (2007).

044609-21

https://doi.org/10.1146/annurev.fluid.32.1.1
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1063/1.857955
https://doi.org/10.1016/0169-5983(92)90023-P
https://doi.org/10.1002/fld.331
https://doi.org/10.1115/1.1516576
https://doi.org/10.1017/S0022112085002634
https://doi.org/10.1063/1.858586
https://doi.org/10.1016/j.compfluid.2017.07.006
https://doi.org/10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2
https://doi.org/10.1017/S0022112079000045
https://doi.org/10.1175/1520-0469(1981)038<2747:POSSOT>2.0.CO;2
https://doi.org/10.1017/S0022112092004361
https://doi.org/10.1063/1.857736
https://doi.org/10.1063/1.868272
https://doi.org/10.1063/1.868514
https://doi.org/10.1063/1.866980
https://doi.org/10.1063/1.857966
https://doi.org/10.1063/1.858850
https://doi.org/10.1063/1.868827
https://doi.org/10.1063/1.2772248


J. ANDRZEJ DOMARADZKI

[34] M. Lee and R. D. Moser, Spectral analysis of the budget equation in turbulent channel flows at high
Reynolds number, J. Fluid Mech. 860, 886 (2019).

[35] A. Cimarelli, E. De Angelis, and C. M. Casciola, Paths of energy in turbulent channel flows, J. Fluid
Mech. 715, 436 (2013).

[36] A. Cimarelli, E. De Angelis, J. Jiménez, and C. M. Casciola, Cascades and wall-normal fluxes in turbulent
channel flows, J. Fluid Mech. 796, 417 (2016).

[37] B. W. Anderson and J. A. Domaradzki, A subgrid-scale model for large-eddy simulation based on the
physics of interscale energy transfer in turbulence, Phys. Fluids 24, 065104 (2012).

[38] M. Anderer, Explicit subgrid-scale models for the simulation of turbulent flows with high order discon-
tinuous Galerkin methods, Technical report, University of Stuttgart, 2015.

[39] J. Bardina, J. Ferziger, and W. Reynolds, Improved turbulence models based on large eddy simulation of
homogeneous incompressible turbulence, Technical Report TF-19, Stanford University, 1983.

[40] R. Rogallo, Technical Report Technical Memorandum No. 81315, National Aeronautics and Space
Administration Technical Memorandum (1981).

[41] P. Yeung and S. Pope, An algorithm for tracking fluid particles in numerical simulations of homogeneous
turbulence, J. Comput. Phys. 79, 373 (1988).

[42] N. P. Sullivan, S. Mahalingam, and R. M. Kerr, Deterministic forcing of homogeneous, isotropic turbu-
lence, Phys. Fluids 6, 1612 (1994).

[43] J. A. Domaradzki, R. Metcalfe, R. Rogallo, and J. Riley, Analysis of Subgrid-Scale Eddy Viscosity with
Use of Results from Direct Numerical Simulations, Phys. Rev. Lett. 58, 547 (1987).

[44] J. Chollet, Two-point closures as a subgrid-scale modeling tool for large eddy simulations, in Turbulent
Shear Flows IV, edited by L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw
(Springer-Verlag, Berlin Heidelberg, 1985).

[45] G.-S. Karamanos and G. E. Karniadakis, A spectral vanishing viscosity method for large-eddy simula-
tions, J. Comput. Phys. 163, 22 (2000).

[46] E. Lamballais, V. Fortuné, and S. Laizet, Straightforward high-order numerical dissipation via the viscous
term for direct and large eddy simulation, J. Comp. Phys. 230, 3270 (2011).

[47] J. A. Langford and R. D. Moser, Optimal LES formulations for isotropic turbulence, J. Fluid Mech. 398,
321 (1999).

[48] R. Kraichnan, The structure of isotropic turbulence at very high Reynolds numbers, J. Fluid Mech. 5, 497
(1959).

[49] R. Kraichnan, Inertial-range transfer in two- and three-dimensional turbulence, J. Fluid Mech. 47, 525
(1971).

[50] J. Domaradzki and D. Carati, A comparison of spectral sharp and smooth filters in analysis of nonlinear
interactions and energy transfer in turbulence, Phys. Fluids 19, 085111 (2007).

[51] N. Park and k. Mahesh, A velocity-estimation subgrid model constrained by subgrid scale dissipation,
J. Comp. Phys. 227, 4190 (2008).

[52] Y. Zang, R. Street, and J. Koseff, A dynamic mixed subgrid-scale model and its applications to turbulent
recirculating flows, Phys. Fluids 5, 318 (1993).

[53] D. You and P. Moin, A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy
simulation in complex geometries, Phys. Fluids 19, 065110 (2007).

[54] S. Ghosal, T. Lund, P. Moin, and K. Akselvoll, A dynamic localization model for large-eddy simulation
of turbulent flows, J. Fluid Mech. 286, 229 (1995).

[55] D. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids 4, 633
(1992).

[56] J. A. Langford and R. D. Moser, Optimal large-eddy simulation results for isotropic turbulence, J. Fluid
Mech. 521, 273 (2004).

[57] K. R. Sreenivasan, On the universality of the Kolmogorov constant, Phys. Fluids 7, 2778 (1995).
[58] R. Kerr, Velocity, scalar and transfer spectra in numerical turbulence, J. Fluid Mech. 211, 309 (1990).
[59] J. A. Domaradzki and N. A. Adams, Direct modelling of subgrid scales of turbulence in large eddy

simulations, J. Turbulence 3, N24 (2002).

044609-22

https://doi.org/10.1017/jfm.2018.903
https://doi.org/10.1017/jfm.2012.528
https://doi.org/10.1017/jfm.2016.275
https://doi.org/10.1063/1.4729618
https://doi.org/10.1016/0021-9991(88)90022-8
https://doi.org/10.1063/1.868274
https://doi.org/10.1103/PhysRevLett.58.547
https://doi.org/10.1006/jcph.2000.6552
https://doi.org/10.1016/j.jcp.2011.01.040
https://doi.org/10.1017/S0022112099006369
https://doi.org/10.1017/S0022112059000362
https://doi.org/10.1017/S0022112071001216
https://doi.org/10.1063/1.2760281
https://doi.org/10.1016/j.jcp.2007.12.020
https://doi.org/10.1063/1.858675
https://doi.org/10.1063/1.2739419
https://doi.org/10.1017/S0022112095000711
https://doi.org/10.1063/1.858280
https://doi.org/10.1017/S0022112004001776
https://doi.org/10.1063/1.868656
https://doi.org/10.1017/S0022112090001586
https://doi.org/10.1088/1468-5248/3/1/024

