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Model form uncertainty arises from physical assumptions made in constructing models
either to model physical processes that are not well understood or to reduce the physical
complexity. Understanding these uncertainties is important for both quantifying prediction
uncertainty and unraveling the source and nature of model errors. Physics-based uncer-
tainty quantification utilizes inherent physical model assumptions to estimate and ascertain
the sources of model form uncertainty or error. Compared to data-based approaches,
physics-based approaches can be extrapolated beyond available data and go beyond strictly
uncertainty estimation. In this work, an implied models approach is developed where the
transport equation for the model error is derived by taking the difference between the
exact transport equation for a quantity of interest and the transport equation implied by
a particular model form. The implied models approach is then specifically applied to the
modeling of the Reynolds stresses by the Boussinesq eddy viscosity model. Budgets of the
model error transport are analyzed to better understand the sources of error in two-equation
Reynolds-averaged Navier-Stokes models focusing on the relative contributions from the
Boussinesq hypothesis and the specific form of the eddy viscosity in turbulent channel
flow at various friction Reynolds numbers. The results indicate that the errors are largely
due to the misalignment of the mean strain rate tensor and the Reynolds stress tensor as
well as the high degree of anisotropy near the wall, with errors in the shear component
being dominant. An exploration of the k-ε and k-ω models reveals that both models benefit
from error cancellation. In particular, the improved results of the k-ω model over the k-ε
model are shown to be the direct result of this error cancellation. An exploration of the
effect of friction Reynolds number on the error budgets reveals that the errors saturate with
increasing Reynolds number owing to the relative decrease of anisotropy.
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I. INTRODUCTION

Reynolds-averaged Navier-Stokes (RANS) models and large-eddy simulation (LES) are widely
used due to their relatively cheap computational cost compared to direct numerical simulation
(DNS). However, the accuracy and fidelity of RANS and LES closure models are known to be
extremely susceptible to both parametric and model form uncertainty. The parametric uncertainty
in these models has been widely studied and deals with the uncertainty associated with the optimal
choice of the model coefficients. The model form uncertainty present in RANS and LES closure
models arises from the assumptions inherent in these models. Understanding the sources of model
form uncertainty or error present in these models is paramount to the interpretation of the model
outputs and the development of more accurate models.
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Data-driven techniques have long been employed to quantify uncertainty in turbulence models.
This has been achieved through both parametric uncertainty and, more recently, model form
uncertainty quantification methods. Parametric uncertainty techniques treat the turbulence model
parameters as random variables and propagate this uncertainty through the model, ultimately
obtaining a probability density function for the quantity of interest (QOI). These methods only
capture the uncertainty associated with the parameters, giving the user the optimal value of the
model parameters for a given flow. This means that the model form uncertainty is not quantified
or is embedded into the parametric uncertainty and so is not separately or well understood in this
approach. Examples of this as applied to turbulence modeling can be found in work from Meldi
et al. [1]. In that work, the authors studied the parametric uncertainty in two different models for
the turbulent energy spectrum by introducing stochasticity into the free model parameters and using
general polynomial chaos to propagate the uncertainty. In doing so, they look at the effect of these
free model parameters on the resulting energy spectrum and subsequently the Smagorinsky model
constant.

Model form uncertainty techniques have become increasingly more prevalent. Some of these
leverage parametric uncertainty quantification (UQ) methods by incorporating an additional uncer-
tainty parameter meant to quantify the model inadequacy or discrepancy. This has been done in the
work from Edeling et al. [2] and Oliver and Moser [3], both of which use Bayesian estimation. In
the former, parametric uncertainty as well as model inadequacy, through a multiplicative term, is
quantified for the k-ε turbulence model. In the latter, various model inadequacy formulations are
explored (multiplicative and additive through both the mean velocity and Reynolds stresses) and
applied to multiple RANS models.

Other model form UQ approaches have specifically focused on introducing machine learning al-
gorithms in aiding in the turbulence closure problem. These data-driven techniques use high-fidelity
data from DNS or experiments to aid in closure of and estimation of the uncertainty in the turbulence
model [4,5]. Generally, these works build off of existing UQ methodologies, such as Bayesian
estimation, and introduce machine learning techniques, such as Gaussian process regression [4] or
neural networks [4,5], in order to learn the functional form of the model discrepancy or inadequacy.
These machine learning techniques have the advantage of being able to achieve a more complex
model discrepancy but are ultimately still physics blind, save for the inclusion of data. It is important
to note that these data-driven methods are limited by the availability of high-fidelity data, which
in many cases is limited by computational cost or complexity, and the resulting model form
uncertainties are unlikely to be extrapolatable much beyond the available data.

More recent work from Iaccarino and co-workers [6–8] has attempted to inject additional physics
into model form uncertainty for RANS models. In all of these works, a physics-motivated approach
is taken in which the anisotropic Reynolds stress tensor ai j is decomposed into its eigenvalues and
eigenvectors, and perturbations are then introduced into the eigenvalues in order to provide error
bounds on the base RANS model. The decomposition of ai j results in a direct representation of
the magnitude, shape, and orientation of the Reynolds stresses via the turbulent kinetic energy,
eigenvalues, and eigenvectors of the anisotropy tensor, respectively. In this way, perturbations can
be introduced into these three different aspects of the Reynolds stresses and the uncertainty can
be propagated to the QOIs, such as the mean velocity. Ultimately, this method uses perturbations
towards the limiting states of the realizable Reynolds stresses as error bounds and in doing so
they are able to capture the behavior of flows that were previously indescribable using linear eddy
viscosity models for RANS closure, such as separated flows [8]. These approaches have been further
extended by Gorlé and co-workers to modeling the scalar flux vector [9] and the pressure scrambling
term in the scalar flux transport equation [10]. Additionally, this perturbation methodology has been
coupled with machine learning techniques in order to learn the appropriate perturbations necessary
to capture the physically correct flow [11,12].

The aforementioned works utilize methodologies that are able to characterize the uncertainty in
RANS closure models through physically motivated perturbations to the structure of the anisotropic
Reynolds stress tensor. In this way, this perturbation framework informs the user how to introduce

044606-2



IMPLIED MODELS APPROACH FOR TURBULENCE MODEL …

perturbations but not necessarily why these perturbations are needed. As such, the source of the
model error, as in why the model fails to capture the correct physical behavior, is still unknown. In
other words, this approach essentially highlights the shortcomings of the turbulence models but does
not necessarily indicate the root cause of such errors. The cause, in many cases, is the inadequacy
of the model assumptions, simplifications that are not necessarily applicable in all conditions, and
the failure of inadequacy of these assumptions can only be assessed using fully physics-based
UQ approaches. In some cases, these assumptions are easily identifiable and can be leveraged to
provide estimates of model form uncertainty as in the work of Klemmer and Mueller [13]. In that
work, a methodology was developed for assessing the uncertainty associated with a specific model
assumption by a hierarchical UQ approach. In that approach, a hierarchy of models was identified
and then the explicit assumptions were used to estimate the error between the different models in
the hierarchy. While they looked at turbulent combustion models, the physics-based nature of their
work is applicable to turbulence models as well. The present work builds upon this idea of utilizing
the physical assumptions, the difference being that the explicit nature of the assumptions, which is
not always known, is not the driving force behind the formulation. Instead, the present framework
uses the implicit knowledge of the model assumptions embedded within the fundamental governing
equations to characterize the sources of the model form uncertainty. In doing so, this framework
provides insight regarding the reasons and conditions under which model assumptions are wrong.

In this work, a physics-based UQ methodology is developed and applied to two-equation
RANS turbulence models in order to understand the model assumptions that contribute to model
inadequacy or error. In the approach, the individual model assumptions are isolated through
the derivation of a transport equation for the model error implied by the model. The general
implied models approach is outlined in Sec. II, and this approach is then applied to RANS turbulence
models in Sec. III. The results are presented in Sec. IV, where in Secs. IV A–IV C the implied
models approach is applied to an incompressible turbulent channel flow at Reτ = 180 and then in
Sec. IV D extended to higher Reτ .

II. IMPLIED MODELS APPROACH

Consider a quantity R to be modeled by M. The difference between them is the model error e,

e = R − M. (1)

The quantity R has an exact transport equation. Likewise, an analogous transport equation implied
by the model M can be derived. The difference between these transport equations is the model error
transport equation

De

Dt
= DR

Dt
− DM

Dt
. (2)

While this approach requires the existence of transport equations for R and M, the result provides
insightful information that would otherwise not be accessible with Eq. (1) alone. A transport equa-
tion for the error allows for a dynamical view of the processes that produce, transport, redistribute,
and dissipate the model error, while the error itself only provides a static picture of the model error
with no information as to its sources or transport mechanisms. As such, when available, a model
error transport equation is a powerful and insightful tool that provides an enhanced understanding
as well as specific identification of the model assumptions, through analysis of the budget of the
model error transport equations, that contribute most to the model error.

III. APPLICATION TO RANS TURBULENCE MODELING

In turbulence, a transport equation can be derived for almost any physical quantity. This fact
is exploited in the implied models approach such that a transport equation is derived for the error
from the transport equations for the true physical quantity and the model. In the present work, the
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anisotropic Reynolds stress tensor ai j will be considered as the true physical quantity

Ri j = ai j = u′
iu

′
j − 2

3 kδi j, (3)

where u′
iu

′
j is the Reynolds stress tensor and k = 1

2 u′
iu

′
i is the turbulent kinetic energy. The

anisotropic Reynolds stress tensor is modeled with the Boussinesq eddy viscosity model

Mi j = −2νT Si j, (4)

where νT is the eddy viscosity and Si j is the mean strain rate tensor. Substituting Eqs. (3) and (4)
into Eqs. (1) and (2) yields

ei j = ai j + 2νT Si j (5)

and

Dei j

Dt
= Dai j

Dt
+ 2νT

DSi j

Dt
+ 2Si j

DνT

Dt
, (6)

where D
Dt is the material derivative with convection by the mean velocity Uk . In order to obtain

a transport equation for the model error ei j , a transport equation for each of the three terms in
Eq. (6) needs to be specified. For the Reynolds stress and mean strain rate tensors, these are
straightforward. For an incompressible flow with constant viscosity, the transport equation for the
anisotropic Reynolds stress tensor is given by

Dai j

Dt
= − u′

iu
′
k

∂Uj

∂xk
− u′

ju
′
k

∂Ui

∂xk
+ 2

3
u′

ku′
�

∂Uk

∂x�

δi j

− ∂

∂xk

(
u′

iu
′
ju

′
k − 2

3
ku′

kδi j − ν
∂u′

iu
′
j

∂xk
+ 2ν

3

∂k

∂xk
δi j

)

− 1

ρ

〈
u′

i

∂ p′

∂x j
+ u′

j

∂ p′

∂xi

〉
+ 2

3ρ

∂u′
k p′

∂xk
δi j − εi j + 2

3
εδi j, (7)

where the terms on the first line are the production of the anisotropic Reynolds stresses and the terms
on the second line are anisotropic turbulent transport and viscous transport, respectively. On the
third line, the first three terms are pressure redistribution and the last two terms are the anisotropic
dissipation, where εi j is the dissipation rate tensor

εi j = 2ν

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
(8)

and ε = 1
2εii. The transport equation for the mean strain rate tensor is given by

DSi j

Dt
= −1

2

(
∂Uk

∂x j

∂Ui

∂xk
+ ∂Uk

∂xi

∂Uj

∂xk

)
− 1

ρ

∂2P

∂xi∂x j

+ ν
∂2Si j

∂xk∂xk
− 1

2

(
∂u′

iu
′
k

∂xk∂x j
+ ∂u′

ju
′
k

∂xk∂xi

)
, (9)

where the first term in parentheses can be rewritten as the sum of the inner products of the strain
rate tensor with itself and the rotation rate tensor with itself, the second term is the Hessian of the
pressure, the third term is viscous transport of the mean strain rate, and the last term in parentheses
is turbulent transport.

The transport equations for νT depend on the choice of the model. There are many different
choices for the eddy viscosity—in this work the k-ε and k-ω [14] formulations are explored—based
on the variables chosen to represent νT and also whether the transport equations for these variables
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are exactly derived or modeled. The k-ε and k-ω models are two of the most popular models and, as
they are two-equation models, they are two of the simplest RANS closure models that are complete
and appropriate to describe turbulent flows [15]. In this work, there are three different formulations
for evaluating the model error budgets. The first uses DNS data to evaluate the terms in the exact
transport equations for k, ε, and ω; this is a strictly a priori analysis. This analysis assesses the
model error associated solely with the assumptions present in the Boussinesq model. The second
and third methods both employ the model transport equations for k, ε, and ω and evaluate them
through a priori and a posteriori analysis, respectively. As discussed further below, together, the a
priori and a posteriori analyses assess the error cancellation present in the two models. The details
of these three approaches are outlined in Secs. III A, III B 1, and III B 2.

A. Exact transport equations

1. The k-ε model

In the k-ε model, the eddy viscosity is defined via the turbulent kinetic energy k and the
dissipation of turbulent kinetic energy ε,

νT = Cμ

k2

ε
, (10)

where Cμ is a model constant taken to be 0.09 [14]. The exact transport equations for the tur-
bulent kinetic energy k and dissipation of turbulent kinetic energy ε are exactly derived with no
assumptions, aside from incompressible flow with constant viscosity. The transport equation for the
turbulent kinetic energy is given by

Dk

Dt
= −u′

iu
′
j

∂Ui

∂x j
− ∂

∂x j

(
u′

jk + 1

ρ
u′

j p′ − ν
∂k

∂x j

)
− ε, (11)

where the first term is production, the second term in parentheses is transport via turbulence,
pressure fluctuations, and viscosity, respectively, and the last term is dissipation. The transport
equation for the dissipation is given by

Dε

Dt
= −2ν

(
∂u′

i

∂xk

∂u′
j

∂xk
+ ∂u′

k

∂xi

∂u′
k

∂x j

)
∂Ui

∂x j
− 2νu′

k

∂u′
i

∂x j

∂2Ui

∂xk∂x j
− 2ν

∂u′
i

∂xk

∂u′
i

∂xm

∂u′
k

∂xm

+ ∂

∂x j

(
ν

∂ε

∂x j
− νu′

j

∂u′
i

∂xm

∂u′
i

∂xm
− 2

ν

ρ

∂ p′

∂xm

∂u′
j

∂xm

)
− 2ν2 ∂2u′

i

∂xk∂xm

∂2u′
i

∂xk∂xm
, (12)

where the first line terms are production of dissipation, the first term in parentheses on the second
line is transport of dissipation, and the final term is dissipation of dissipation [16].

With all of these transport equations, a transport equation for the model error is derived by
substituting Eqs. (7), (9), (11), and (12) into Eq. (6). For the k-ε model with the exact transport
equations for k and ε, the error transport equation is given by

Dei j

Dt
= − eik

∂Uj

∂xk
− e jk

∂Ui

∂xk
+ 2νT

∂Ui

∂xk

∂Uj

∂xk
+ 2

3
(ekl − 2νT Skl )

∂Uk

∂xl
δi j (13a)

+ 1

ρ

∂νT

∂xk

(
∂P

∂xi
δ jk + ∂P

∂x j
δik

)
(13b)

+ ∂νT

∂xk

[
∂

∂x j

(
eik − 2νT Sik + 2

3
kδik

)
+ ∂

∂xi

(
e jk − 2νT S jk + 2

3
kδ jk

)]
(13c)

+ ∂

∂xk

[
−u′

iu
′
ju

′
k + 2

3
ku′

kδi j − νT

ρ

(
∂P

∂xi
δ jk + ∂P

∂x j
δik

)
+ ν

∂ei j

∂xk
− 2νSi j

∂νT

∂xk
(13d)
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− νT
∂

∂x j

(
eik − 2νT Sik + 2

3
kδik

)
− νT

∂

∂xi

(
e jk − 2νT S jk + 2

3
kδ jk

)]
(13e)

− 1

ρ

〈
u′

i

∂ p′

∂x j
+ u′

j

∂ p′

∂xi

〉
+ 2

3ρ

∂u′
k p′

∂xk
δi j − 2ν

∂νT

∂xk

∂Si j

∂xk
− 4

3
kSi j (13f)

+ 4νT Si j

k

[
−(ekl − 2νT Skl )

∂Uk

∂xl
− ∂

∂xk

[
ku′

k + 1

ρ
p′u′

k − ν
∂k

∂xk

]
− ε

]
(13g)

− 2ννT Si j

ε

[
∂

∂xl

(
∂ε

∂xl
− u′

l

∂u′
k

∂xn

∂u′
k

∂xn
− 2

ρ

∂ p′

∂xn

∂u′
l

∂xn

)
− 2ν

∂u′
k

∂xm∂xn

∂u′
k

∂xm∂xn

]
(13h)

+ 4ννT Si j

ε

[(
∂u′

k

∂xm

∂u′
l

∂xm
+ ∂u′

m

∂xk

∂u′
m

∂xl

)
∂Uk

∂xl
+ u′

m

∂u′
k

∂xl

∂2Uk

∂xl∂xm
+ ∂u′

k

∂xm

∂u′
k

∂xn

∂u′
m

∂xn

]
(13i)

− εi j + 2

3
εδi j . (13j)

Note that all the terms in Eq. (13) can be classified as production (nonviscous source), dissipation
(viscous source), redistribution (traceless), or transport (divergence of a flux). The terms in (13a)–
(13c) are the production terms; (13d) and (13e) are the transport terms; (13f)–(13i) are redistribution
terms; and the terms in (13j) are the dissipation terms. All terms from the transport equation for νT

are classified as redistribution because they are multiplied by Si j and as such are necessarily traceless
for an incompressible turbulent flow. The right-hand side of the transport equation of k is found in
(13g) and the right-hand side of the transport equation of ε is found in (13h) and (13i).

2. The k-ω model

For the k-ω model, the eddy viscosity is defined via the turbulent kinetic energy and the specific
dissipation ω as

νT = k

ω
, (14)

where ω is defined by its relation to the dissipation as ω = ε/Cμk [14]. The exact transport equation
for ω is then directly derived from its relation to ε using Eq. (12), which yields

Dω

Dt
= 1

Cμk

[
−2ν

(
∂u′

i

∂xk

∂u′
j

∂xk
+ ∂u′

k

∂xi

∂u′
k

∂x j

)
∂Ui

∂x j
− 2νu′

k

∂u′
i

∂x j

∂2Ui

∂x j∂xk
− 2ν

∂u′
i

∂xk

∂u′
i

∂xm

∂u′
k

∂xm

− 2ν2 ∂u′
i

∂xk∂xm

∂u′
i

∂xk∂xm
+ ∂

∂x j

(
νCμk

∂ω

∂x j
+νCμω

∂k

∂x j
− νu′

j

∂u′
i

∂xm

∂u′
i

∂xm
− 2

ν

ρ

∂ p′

∂xm

∂u′
j

∂xm

)]

− ω

k

[
∂

∂x j

(
−ku′

j − 1

ρ
p′u′

j + ν
∂k

∂xk

)
− u′

iu
′
j

∂Ui

∂x j
− Cμkω

]
. (15)

It should be noted that, since the definitions of νT are exactly equivalent in both the k-ε and k-ω
models, the model error transport equations are also exactly equal in these two formulations.

B. Model transport equations

1. A priori analysis

In the a priori analysis, all terms in the model error transport equation are evaluated with
DNS data, regardless of whether they originate from the model or the exact physical quantity.
This analysis provides insight into how well the models capture the underlying physics given the
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physically correct data. The transport equations used for the modeled quantities k, ε, and ω in this
formulation are given below.

The model transport equations for k, ε, and ω are constructed based on the idea that a transport
equation is comprised of three main components: production, transport, and dissipation. The model
transport equations for the standard k-ε model are given by

Dk

Dt
= −u′

iu
′
j

∂Ui

∂x j
− ε + ∂

∂x j

[(
ν + νT

σk

) ∂k

∂x j

]
, (16)

Dε

Dt
= −Cε1

ε

k
u′

iu
′
j

∂Ui

∂x j
− Cε2

ε2

k
+ ∂

∂x j

[(
ν + νT

σε

)
∂ε

∂x j

]
, (17)

where σk , Cε1, Cε2, and σε are all model constants. The typical values for these constants and those
used in this work are σk = 1.0, Cε1 = 1.44, Cε2 = 1.92, and σε = 1.3 [14]. The definition of νT is
the same as in Eq. (10). With the model transport equations for k and ε, the model error transport
is derived by replacing the right-hand side of the exact k and ε equations in (13) [the terms in
square brackets in (13g) and in (13h) and (13i), respectively] with the right-hand side of the model
equations.

The model transport equations for the standard k-ω model are given by

Dk

Dt
= −u′

iu
′
j

∂Ui

∂x j
− β∗kω + ∂

∂x j

[
(ν + σ ∗νT )

∂k

∂x j

]
, (18)

Dω

Dt
= −α

ω

k
u′

iu
′
j

∂Ui

∂x j
− βω2 + ∂

∂x j

[
(ν + σνT )

∂ω

∂x j

]
, (19)

where β∗, σ ∗, α, β, and σ are all model constants with standard values given by β∗ = 0.09, σ ∗ =
0.5, α = 5

9 , β = 3
40 , and σ = 0.5 [17]. The definition of νT is the same as in Eq. (14). The model

error transport equation for the k-ω model is derived analogously to the k-ε model.
At this point, only the standard, uncorrected models are being considered in order to assess

the error in the model of the lowest fidelity. Additionally, these model corrections are ad hoc and
problem specific, so the lowest level of fidelity should be assessed first in order to understand the
underlying physical inadequacies of the base models.

2. A posteriori analysis

In the a posteriori analysis, the same transport equations are used for the modeled k, ε, and ω

as shown just above. However, while DNS data are still used to evaluate all of the terms that come
from the transport of the true physical quantity DR

Dt , data from fully coupled RANS calculations are

used to evaluate terms from the modeled quantity DM
Dt . Looking at Eq. (6), this means that all terms

from Dai j

Dt are calculated using DNS data and all terms from 2νT
DSi j

Dt + 2Si j
DνT
Dt are calculated using

RANS data.
This a posteriori analysis serves two purposes. First, a comparison of the a priori and a posteriori

results for the model transport equations provides an indication of how different the real and
modeled k, ε, and ω are and how this influences the Reynolds stresses. Second, a comparison of the
a posteriori results for the model transport equations and the a priori results for the exact transport
equations provides an indication of how errors in the model transport equations for k, ε, and ω

compensate for errors in the baseline Boussinesq model.

IV. RESULTS

The test case for the implied models approach is an incompressible turbulent channel flow. Direct
numerical simulations at Reτ = 180, 395, and 590 were calculated using NGA, which is a structured
finite-difference solver [18,19], while the DNS data for Reτ = 1000, 2000, and 5200 are from Lee

044606-7



KERRY S. KLEMMER AND MICHAEL E. MUELLER

TABLE I. DNS parameters.

Reτ Lx Lz Nx × Ny × Nz x+ z+ y+
c

180 4πδ 4
3 πδ 256×257×256 8.8 3.0 2.3

395 2πδ πδ 254×513×192 9.7 6.5 2.6
590 2πδ πδ 384×513×384 9.3 4.6 4.1

and Moser [20]. The computational details of the NGA simulations can be found in Table I. Here
Lx and Lz are the domain size in the streamwise and spanwise directions, respectively, normalized
by the channel half-width δ; Nx, Ny, and Nz are the number of grid points in the streamwise, wall-
normal, and spanwise directions, respectively, resulting in the nondimensional uniform grid spacing
x+ and z+ in the streamwise and spanwise directions, respectively, and the nondimensional
nonuniform grid spacing y+

c in the wall-normal direction at the centerline. In all cases, the domain
size is the same and with resolution comparable to or better than previous simulations of Moser
et al. [21]. While data from Lee and Moser for the lower friction Reynolds numbers are available,
the data do not contain information from the ε and ω model transport equations and so cannot be
used to calculate the budgets for the shear component of the error for the model transport equations
(since S12 is the only nonzero component of the mean strain rate tensor).

It should be noted that, since the flow is both statistically stationary and homogeneous in two
directions (so zero mean velocity in the third), the right-hand side of all exact transport equations
is exactly zero (i.e., zero Lagrangian derivatives). This includes the model error transport equation
with exact equations for k, ε, and, ω. However, since the model transport equations for k, ε, and, ω

are not exact, their right-hand sides do not balance to zero when evaluated using DNS data in the
a priori analysis (so neither will the model error transport equation in these cases). This imbalance
does not occur when the model transport equations are coupled back to the mean velocity in an
a posteriori RANS calculation since the mean velocity is different and consistent with the model
transport equations. This raises the possibility of fortuitous error cancellation, as alluded to above,
which will be discussed subsequently in this section and assessed through the comparison of a priori
and a posteriori results.

A. Channel at Reτ = 180: A priori analysis

The initial test case for the implied models approach is the channel at Reτ = 180. The resulting
error and error budgets for the four nonzero error tensor components are shown in Fig. 1 and
in Figs. 2 and 3, respectively. In the budgets, Fig. 2 shows the error production, transport, and
dissipation, which are the same in all formulations, and Fig. 3 shows the model error redistribution
budgets with the exact and model formulations. All of the budgets are normalized using the
inner scale quantities, specifically the friction length scale δν (with y+ = y/δν) and the friction
velocity uτ .

The model error shown in Fig. 1 shows that the error in all four components is confined primarily
to the near-wall region. This is also clear in the model error budgets, in all three formulations, where
the error in both the shear and normal components is predominantly confined to the near-wall region
and the largest errors are in the shear component production and redistribution. It is possible to
understand the sources of the error contributing to each component in Figs. 2(a)–2(c) by looking at
the dominant terms in Eq. (13). For the different components, the dominant error production terms
are given by

Pe11 ≈ −2e12
∂U1

∂x2
+ 2νT

∂U1

∂x2

∂U1

∂x2
+ 2

3
(ekl − 2νT Skl )

∂Uk

∂x�

, (20)

Pe22 ≈ ∂νT

∂x2

∂e22

∂x2
+ 4

3

∂νT

∂x2

∂k

∂x2
+ 2

3
(ekl − 2νT Skl )

∂Uk

∂x�

, (21)
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FIG. 1. Model error in a turbulent channel at Reτ = 180.

Pe33 ≈ 2

3
(ekl − 2νT Skl )

∂Uk

∂x�

, (22)

Pe12 ≈ −e22
∂U1

∂x2
− 2

∂νT

∂x2

∂νT S12

∂x2
+ ∂νT

∂x2

∂e12

∂x2
, (23)

which, with the exception of the first two terms in Eq. (21) and the last two terms in Eq. (23),
correspond to the misalignment of the mean strain rate tensor and the Reynolds stress tensor,
which is also related to the isotropic eddy viscosity assumption. The alignment of these two tensors
with a scalar coefficient is the primary assumption embedded in the Boussinesq eddy viscosity
hypothesis, drawing an analogy between the Reynolds stresses and the viscous stresses. Through
this analogy, it is assumed that the turbulence is in equilibrium, so a viscosity coefficient can be
used to relate the mean strain rate tensor to the Reynolds stress tensor [15]. Figure 2(a) illustrates
how this assumption is not applicable particularly in the near-wall region. The production error in
the normal component Pe22 and the shear component Pe12 relating to the gradient of νT is large in the
presence of inhomogeneity, such as near a wall. The equilibrium turbulence assumption implicitly
assumes homogeneity, so the contribution of the gradient of the eddy viscosity to the model error is
consistent with the same fundamental assumption. These misalignment errors can be alleviated by
using a model that employs a nonlinear constitutive relation [22].

The error dissipation in the normal components comes from the entirety of (13j), which becomes
large when the dissipation becomes anisotropic, so this represents the error in the small-scale
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FIG. 2. Budget for ei j using νT evaluated with the exact transport equations: (a) production, (b) transport,
and (c) dissipation.
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FIG. 3. Redistribution for ei j with the exact and a priori model transport equations: (a) exact, (b) k-ε model,
and (c) k-ω model.

isotropy assumption of the Boussinesq approximation. This occurs largely in the vicinity of the
wall as seen in Fig. 2(c). Due to kinematic influence of the wall, the wall-normal velocity is damped
much faster than the other components near the wall, resulting in the anisotropy in the dissipation
tensor [23]. In this case where the k-ε and k-ω models are inadequate, the v2- f model could be used
instead as it is better suited to handle this issue of near-wall anisotropy [24]. Interestingly, at this
Reynolds number, the streamwise normal component of the dissipation tensor has a considerably
larger error than the spanwise normal component of the dissipation tensor, indicating the dominance
of the former. This is a low-Reynolds-number effect that is revisited in Sec. IV D.

The balance to production for the shear component error is redistribution. In the exact formula-
tion the dominant redistribution term is

Re12 ≈ − 4
3 kS12, (24)
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FIG. 4. Comparison of DNS with a posteriori k-ε and k-ω models at Reτ = 180: (a) mean streamwise
velocity, (b) shear stress, (c) turbulent kinetic energy, and (d) dissipation.
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FIG. 5. Error budgets for a posteriori k-ε analysis: (a) k-ε production, (b) k-ε transport, and (c) k-ε
redistribution.

while in the model formulations the dominant terms are the right-hand sides of the k and ε or k
and ω model transport equations. These errors are representative of the inadequacies of the k-ε and
k-ω model transport equations and, clearly from Fig. 3, these inadequacies dominate the error of
the shear component with the ω equation being grossly inadequate. However, as discussed in the
next section, the inadequacies of the model equations are introduced by design to cancel the errors
introduced by the Boussinesq hypothesis.

B. Channel at Reτ = 180: A posteriori analysis

Figure 4 shows a comparison of the a posteriori predictions from the k-ε and k-ω models
compared with DNS for the mean velocity, turbulent shear stress, turbulent kinetic energy, and
dissipation at Reτ = 180. For the most part, the k-ω model outperforms the k-ε model particularly
in predicting the mean velocity profile, which is conventional knowledge for wall-bounded flows.
This means that, in looking at Fig. 3, the relatively high error redistribution from the k-ω model is
indicative of the fact that this model does not necessarily more accurately capture the underlying
physics than the k-ε model, despite the better a posteriori predictions. Rather, there is more error
cancellation that occurs within the k-ω model that lends itself to better predictive capabilities in
wall-bounded flows. In particular, the underestimation of k [Fig. 4(c)] and overestimation of ε

[Fig. 4(d)] in both the k-ε and k-ω models have been shown to provide a more accurate value for νT ,
for example, in the book from Durbin and Pettersson Reif [24]. Thus, the k-ω model provides a more
accurate estimation of the mean velocity and turbulent shear stress despite being fundamentally less
correct.

A posteriori budget analysis provides further insight into the nature of this error cancellation.

As mentioned in Sec. III B 2, all terms that come from D2νT Si j

Dt in Eq. (6) are evaluated using data
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FIG. 6. Error budgets for a posteriori k-ω analysis: (a) k-ω production, (b) k-ω transport, and (c) k-ω
redistribution.
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FIG. 7. Exact and model turbulent kinetic energy budgets: (a) model k production, (b) model k transport,
and (c) model k dissipation.

from RANS calculations with either the k-ε or k-ω models. Figures 5 and 6 show the results of this
analysis, where the production, transport, and redistribution terms from the error budgets are shown.
The dissipation terms are not shown because they are unchanged from the a priori analysis: The
nonzero contribution to the dissipation terms comes only from the physical anisotropic dissipation
with the Boussinesq model itself assuming isotropic dissipation.

Comparing the results shown in Figs. 5 and 6 to those in Figs. 2 and 3, there are a few key
differences. In production, the shear component, which is dominant in the a priori results, is
not dominant in the a posteriori results. In contrast, the streamwise component has the largest
production magnitude; however, in general, all three normal components are of the same order
of magnitude. An additional point of interest is found in the redistribution terms. In the a priori
analysis, both the k-ε and k-ω models saw increased magnitude of the shear component of the
redistribution term as compared to the exact formulation with the k-ω model increasing by an order
of magnitude. In the a posteriori analysis, there is no such increase and the shear component of the
redistribution is actually larger for the k-ε model than the k-ω model. This supports the conclusion
that the k-ω model provides more accurate results over the k-ε model due to error cancellation
(between the Boussinesq model and the model transport equations) and not because it is more
physically accurate.

C. Channel at Reτ = 180: k, ε, and ω budgets

The budgets of the models equations for k, ε, and ω provide additional insight into the role
of error cancellation. This was carried out through both a priori and a posteriori analysis and
compared with the evaluation of the exact budgets. This analysis illustrates how well or not the
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FIG. 8. Exact and model dissipation budgets: (a) model ε production, (b) model ε transport, and (c) model
ε dissipation.
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FIG. 9. Exact and model specific dissipation budgets: (a) model ω production, (b) model ω transport, and
(c) model ω dissipation.

underlying physics is captured by Eqs. (16)–(19). These budget comparisons are shown in Figs. 7–9.
In first looking at the turbulent kinetic energy exact and model budgets, the dissipation of turbulent
kinetic energy is obviously exactly matched in the exact and a priori evaluation, while the a
posteriori dissipation in both models diverges from the exact dissipation in the near-wall region.
The production in the two models is the same (since the eddy viscosity is the same), though the a
priori analysis is not a good approximation for the exact k production and the a posteriori analysis
does not capture the correct location of the peak. In general, the a posteriori and a priori budgets are
not the same and do not match the exact budgets. However, this is due to the fact that the modeled
quantities k, ε, and ω from model transport equations are tuned to cancel the error in the Boussinesq
model and not to faithfully represent their physical counterparts.

The exact and model comparisons of the ε and ω budgets have generally less agreement than
the k budgets, which is to be expected as these model transport equations are meant to be very
general characterizations of complicated differential equations involving unknown double and triple
correlations [14]. As such, it is not surprising that the model budgets evaluated with the DNS
data do not capture the behavior of the exact budgets, particularly in the near-wall region, but do
mimic some qualitative features. Overall, the models themselves are consistently poor such that
the values of k, ε, and ω are either underestimated or overestimated to provide more accurately
approximated values of the eddy viscosity, mean velocity, and turbulent shear stress. Altogether,
Figs. 3–9 illustrate that, while the error redistribution is largest for the k-ω model in the a priori
analysis with the model transport equations, the error cancellation that occurs within this model,
as evidenced specifically by the a posteriori analysis shown in Fig. 6, serves to better approximate
wall-bounded flow characteristics compared with the k-ε model.

D. Extension to higher Reτ

The error budgets in the exact formulation for all four nonzero components of the error tensor
were calculated at five additional friction Reynolds numbers Reτ = 395, 590, 1000, 2000, and 5200,
where the data for Reτ = 1000, 2000, and 5200 comes from Lee and Moser [20].

Figure 10 shows the maximum (magnitude) in the error production, redistribution, and dissipa-
tion as a function of friction Reynolds number. As the Reynolds number increases, the qualitative
characteristics of the error budgets do not change. Looking first at the shear component of the
production and redistribution of the error, these errors are increasing in magnitude most strongly
with friction Reynolds number. However, the rate of this increase is slowing with increasing
Reynolds number, indicating that, if Reτ continued to increase, the errors would plateau. This
plateau in the error budgets can be seen more clearly in the normal component budgets. This
behavior stems from the decrease in the anisotropy in the turbulence between the streamwise and
spanwise components near the wall as the Reynolds number becomes large, which can be seen in
Fig. 11. With increasingly isotropic turbulence, the use of scalar quantities to describe the state

044606-13



KERRY S. KLEMMER AND MICHAEL E. MUELLER

102 103 104
-0.5

0

0.5

1

1.5

2

102 103 104
-2

-1.5

-1

-0.5

0

0.5

102 103 104
-0.3

-0.2

-0.1

0

0.1

0.2

(a) (b) (c)

FIG. 10. Maximum (magnitude) in the error (a) production, (b) redistribution, and (c) dissipation for the
error budgets with the exact νT transport equations.

of the flow becomes more appropriate [24]. Interestingly, given this discussion, one would expect
the production and redistribution of the error to decrease in magnitude, rather than increase, with
increasing Reynolds number. This then indicates some degree of error cancellation between the main
assumptions (alignment of Reynolds stress with mean strain rate and the use of scalar quantities for
the eddy viscosity).

Conversely, the dissipation of the error in Fig. 8(c) does not exhibit the same degree of saturation
with increasing Reynolds number. As mentioned previously, due to kinematic wall blocking, the
wall-normal velocity component is preferentially damped near the wall. Therefore, the wall-normal
normal component of the dissipation rate tensor is essentially zero, so the dissipation can never be
isotropic as assumed in the eddy viscosity model and the wall-normal normal component of the
dissipation tensor will always be overpredicted with an isotropic assumption. Instead, near the wall,
the turbulence tends toward a two-component, two-dimensional limit as the Reynolds number is
increased [25]. However, at the Reynolds numbers considered here, the turbulence near the wall is
more one component [25], which is the why the streamwise component of the dissipation of the error
is larger than the spanwise component. As the Reynolds number is increased further, the streamwise
and spanwise normal components would eventually become comparable. Note also that the scalar
dissipation increases with increasing Reynolds number [25], so the magnitude of the dissipation of
the error increases with increasing Reynolds number.

Taken together, these results indicate two interesting features of two-equation turbulence models.
First, even if the models implicitly assume a high Reynolds number, compensating errors can
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FIG. 11. Anisotropy in the turbulence with increasing Reτ .
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actually lead to lower errors at lower Reynolds number. Second, since the dissipation at the wall
can never be isotropic, two-equation turbulence models relying on an isotropic dissipation can only
be accurate by taking advantage of error cancellation, irrespective of Reynolds number.

E. Discussion

Both the sources of error and the error cancellation found in the k-ε and k-ω models in this work
are specific to turbulent channel flow. It is expected that fundamentally different flow configurations,
both canonical and otherwise, would have different sources of model error. For example, in a free
shear flow the influence of anisotropy in the dissipation is not expected to greatly contribute to
the error due to the general lack of small-scale anisotropic features in such flows. More complex
geometries that exhibit even more complicated turbulent flow physics, such as flows with separation,
would provide an interesting test case as these flows would likely uncover further sources of
error and potential mechanisms of error cancellation. The implied models approach provides a
quantitative framework to assess these model error sources.

In this work, the standard, uncorrected k-ε and k-ω models were analyzed using the implied
models approach. The assumptions in these models are known to break down in the vicinity of
walls, in which case wall functions can be employed or other models, such as v2- f or nonlinear
constituent relation models, that do not have the same shortcomings. An exploration of these more
complex models in canonical wall-bounded flows, as well as other canonical and noncanonical
flows, would reveal other sources of model error, which is ultimately the utility of the implied
models approach. This method allows for an investigation of the reasons for model inadequacies,
which has the potential to aid in the development of more accurate models.

V. CONCLUSION

In this paper, a physics-based approach for assessing model form uncertainty has been developed,
which provides information regarding the dynamics of model form error. The approach develops
a model error transport equation by taking the difference between the exact transport equation
for a quantity of interest and the transport equation implied by the model for the quantity. This
implied models approach was applied to the modeling of the Reynolds stresses, was tested on a
turbulent channel flow at various friction Reynolds numbers, and was used to quantitatively assess
the individual model assumptions in the Boussinesq model and show where they are prone to failure.
In general, the sources of error were the misalignment between the anisotropic Reynolds stress
tensor and the mean strain tensor and the anisotropy of the dissipation tensor near the wall. All of
the errors were found to be largest in the near-wall region, which was expected due to the deviation
from isotropy in this region. The error budgets are qualitatively similar as the Reynolds number
increases.

In analyzing the model error redistribution, the right-hand sides of the k, ε, and ω transport
equations appear, and it was found that error cancellation plays an important role in the accuracy of
the k-ε model and especially in the accuracy of the k-ω model, which has been shown to be more
accurate in wall-bounded flows for a posteriori calculations. The a priori error budget is extremely
inaccurate for the k-ω model, but this is compensated in a posteriori application by the resulting
errors in k and ω. The error cancellation that is clearly present in these models undermines their
broad applicability and brings into question the goal of turbulence model development. Should a
good model be derived from valid physical assumptions and be physically sound, or should a good
model simply provide good a posteriori predictions, even if due to fortuitous error cancellation?
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