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Statistical quantities in channel (Poiseuille), Couette, and pipe flow, including Reynolds
stresses and their budgets, are studied for their dependence on the normalized distance
from the wall y+ and the friction Reynolds number Reτ . Any quantity Q can be normalized
in wall units, based on the friction velocity uτ and viscosity ν, and it is accepted that the
physics of fully developed turbulence in ducts leads to standard results of the type Q+ =
f (y+, Reτ ), in which f (. . .) means “only a function of,” and f is different in different flow
types. Good agreement between experiments and simulations is expected. We are interested
in stronger properties for Q, generalized from those long recognized for the velocity, but
not based on first principles. These include the law of the wall Q+ = f (y+); the logarithmic
law for velocity; and for the Reynolds-number dependence, the possibility that at a given
y+ it is proportional to the inverse of Reτ , that is, Q+(y+, Reτ ) = f∞(y+) + fRe(y+)/Reτ .
This has been proposed before, also on an empirical basis, and recent work by Luchini
[Phys. Rev. Lett. 118, 224501 (2017)] for Q ≡ U is of note. The question of whether the
profiles are the same in all three flows, in other words, that there is a single function f∞,
is still somewhat open. We arrive at different conclusions for different Q quantities. The
inverse-Reτ dependence is successful in some cases. Its failure for some of the Reynolds
stresses can be interpreted physically by invoking “inactive motion,” following Townsend
[The Structure of Turbulent Shear Flow, 2nd ed. (Cambridge University Press, Cambridge,
1976)] and Bradshaw [J. Fluid Mech. 30, 241 (1967)], but that is difficult to capture with
any quantitative theory or turbulence model. The case of the boundary layer is studied, and
it is argued that a direct generalization of Reτ is questionable, which would prevent a sound
extension from the internal flows.

DOI: 10.1103/PhysRevFluids.6.044604

I. INTRODUCTION

A. General considerations

The friction Reynolds number Reτ (≡ uτ h/ν) of channel-flow direct numerical simulation (DNS)
has risen from 180 to 5200 in the 30 years after the seminal work of Kim, Moin, and Moser [1], and it
is legitimate to expect conclusive answers which clearly indicate the asymptotic behavior of the flow
towards infinite Reynolds number. Here, Reτ represents the ratio of the channel half-width h and
the viscous length scale ν/uτ , where uτ ≡ (τw/ρ)1/2 is the friction velocity, τw the wall shear stress,
and ρ is the density of the fluid. A negative finding of the last decade has been that DNS fails to
produce a logarithmic layer closely enough to determine the Kármán constant κ , say to the point of
deciding on a value between 0.39 and 0.41. This constant is a key component in turbulence models.
DNS results show a strong drift in the local value of the quantity y+(dU +/dy+) [see Fig. 1(b)],
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FIG. 1. Distributions of U +, y+(dU +/dy+), u+u+, v+v+, w+w+, −u+v+ for channel flow for Reτ = 395
[11], 1020 [10], 2003 [12], 5186 [13]: (a) U +; (b) y+(dU +/dy+); (c) u+u+; (d) v+v+; (e) w+w+; (f) −u+v+.

which ideally should be uniform and equal 1/κ . It does not satisfy the expected independence on
y+, which below we name the IV property. We are basing this observation on the literature as of
2018, but a decisive increase in Reynolds number would need to be well beyond a factor of 2, so
that the computing cost would increase by well over 24.

This situation makes Luchini’s proposal attractive [2]. Much of his effort was directed at a
unification between the three flows (i.e., channel, Couette, and pipe) we are considering (see [3]).
The key is that he postulates a correction proportional to 1/Reτ at fixed y+. This correction is
plausible, but does not come from first principles; that would be possible only if the closure problem
of turbulence had been even partially solved. Some observers would try another power of Reτ .
In Luchini’s study the corrected velocity profiles come much closer to satisfying the law of the
wall, hereafter denoted by LW (common to all three flows), and logarithmic properties than the

044604-2



EMPIRICAL SCALING LAWS FOR WALL-BOUNDED …

uncorrected profiles; in addition, he was able to use a single empirical constant A1 for the three
flows, which was a very favorable result. On the other hand, the corrected profiles still had too
much statistical noise to deliver the value of κ , say between 0.39 and 0.41, as we envisioned; he
considered that the most likely value was 0.392 based on the aggregate evidence. The success of
his work for the mean velocity, always presented with scientifically rigorous warnings, led us to the
idea of testing the same type of correction for other statistical quantities.

The paper by Abe and Antonia [4] used published DNS data sets for channel, pipe, and boundary
layer and centered on the mean velocity U + and the energy dissipation rate ε+, and particularly their
integrals. The work aimed at verifying the LW and log properties, which was obtained quite closely,
independently leading to the estimate κ = 0.394. The log property was linked to overlap arguments
between inner and outer layers, as usual. The inner scaling established in their work for ε is indeed
considered as an inverse Reynolds-number dependence here [i.e., fRe(y+)/Reτ ]. The latter scaling
yields good collapse over a wide range of Reynolds numbers for Reτ � 300 and thus leads to a
reasonable finite-Reynolds-number correction. They also found that for the integrals, the scaling fol-
lowed the high-Reynolds-number trend even down to what are now considered low values, such as
Reτ = 180. These findings were another incentive to pose the same question for other quantities Q.

The charter of two recent papers (She, Chen, and Hussain [5] and Chen, Hussain, and She [6])
is far more ambitious than ours and is to provide analytical formulas for the velocity and Reynolds
stresses in wall-bounded flows, at all Reynolds numbers. The basis is Lie groups, symmetry argu-
ments, and random dilatations but tends to shift, and some results are recognized to be “anomalous.”
The approach does not agree with that of Oberlack [7], which was the pioneer for Lie groups. The
empirical content of the work, as opposed to first principles, is in our opinion significant; the words
“empirical parameters” are certainly used. A concrete concern is that the work appears to make
the strong prediction that the value of the Kármán constant is 0.45; this is hardly tenable, based on
experimental and DNS evidence.

Kaneda et al. [8] arrive at corrections very similar to the ones we examine here, but with a
different tone: they consider the dependence 1/Reτ to be motivated by theory [8]. Another recent
concept in this paper and in a line of recent papers is the analogy between the Kolmogorov spectral
energy cascade and a “momentum cascade” towards the wall; we consider it controversial and this
belongs elsewhere.

The general question of Reynolds-number dependence in wall-bounded turbulent flows is not
new, and was unavoidable in the 1988 boundary-layer DNS study of Spalart [9], which covered
a factor of 4 in Reynolds number Reδ∗ (based on the free-stream velocity U∞ and displacement
thickness δ∗). Some of the Reynolds stresses definitely violated the LW even down to the wall. For
the velocity profile, the violation of the log property was more subtle and could be blamed on “low-
Reynolds-number effects” since the highest equivalent Reτ was only in the 700 range. Boundary-
layer DNS at somewhat higher Reynolds numbers is now available (and avoids the “growth terms”
approximation of the 1988 study), but channel flow is a simpler situation to decipher, having a single
Reynolds number, and it offers higher Reτ values; this motivates our focus on duct flows. See the
Appendix for a detailed discussion. We are fortunate that the following teams have made their DNS
data available: Abe et al. [10,11], Hoyas and Jiménez [12], and Lee and Moser [13]. In this study, we
exclusively use these DNS data sets for channel flow together with those of Pirozzoli, Bernardini,
and Orlandi [14] and Avsarkisov et al. [15] for Couette flow and those of El Khoury et al. [16], Wu
and Moin [17], and Ahn et al. [18] for pipe flow.

B. Formalization of the various conjectures

As stated in the Abstract, the starting point is Q+ = f (y+, Reτ ) and is not a matter of debate. The
first property of interest is the LW and consists in the fact that Q+ = f (y+) only; this does not extend
to the center line, that is, it requires y � h. Consequently, f may not depend on the flow type. The
second property applies when y+ � 1, and consists in the fact that Q depends on uτ and y, but not
on ν; with this reduction in the number of parameters, the dependence is dictated by dimensional
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analysis, and consequently Q+ = f (y/h). This will be called IV for “independent of viscosity.”
The mean velocity U is widely believed to satisfy both LW and IV closely at sufficient Reynolds
numbers, that is, U + = f (y+) from the wall up followed by dU/dy = uτ /(κy) in the logarithmic
layer, but the situation for some Reynolds stresses, let alone the budgets, is far more uncertain even
in the present simple flows. In terms of Reynolds-number dependence, the proposed and less well-
known hyopthesis is expressed as Q+(y+, Reτ ) = f∞(y+) + fRe(y+)/Reτ , and “inverse Reynolds-
number dependence” or IRD will be our notation. The question of whether the IRD requires y � h
is open. Even when IRD is verified, the question is open whether f∞ and fRe are the same in different
flows, and fRe often is not. Given data at two Reynolds numbers, the IRD allows an extrapolation
to infinite Reynolds number, providing f∞ and denoted by LE for linear or Luchini extrapolation.
DNS evidence shown below is that the shear and wall-normal stresses, thus extrapolated, satisfy
IV, in other words, within the layer having constant total shear stress, they are both constant and
furthermore agree among the three flows; in other words, Q+ = f (−) = constant once y+ � 1. In
contrast, the other two stresses u2 and w2 violate, in turn, LW, no matter how small y+ is, IRD, and
IV. Their budgets also violate LW, even at the wall. The production terms since their variations are
minimal fail to explain many of the observed effects, which therefore are puzzling if turbulence is
approached via the local Reynolds-stress transport equation.

The paper proceeds by testing the various conjectures in order of assertiveness and in order
of different moments of the turbulence, when possible on all three flows. It will appear that the
conjectures work for some quantities and not others, and the unification of the three flows sought
by Luchini [2,3] is far from complete. A discussion follows, including the value of the inactive
motion concepts (Townsend [19]; Bradshaw [20]), and the great challenge of the textbook approach
to turbulence via the moment equations; the closure problem is not new. In the Appendix, we take
up the case of the boundary layer.

II. RESULTS

A. Raw statistical quantities

Figure 1 vividly illustrates the questions we are posing, using channel flow and not making
any observations that are not already in the literature. Considering the highest Reynolds number,
visually the velocity logarithmic layer extends roughly from y+ = 100 to 1000, that is, the mean
velocity approximately satisfies LW and IV (even though the total shear stress τ+ drops from 1
to 0.8). However, the Reynolds stresses fail to do so over the same interval, with w+w+ deviating
the most and also the one most suggestive of a logarithmic dependence on both y (to the right
of the peak) and Reτ . We also see that for U , the Reynolds-number dependence is nil near the
wall, and independence gradually applies to higher values of y+ with increasing Reτ . Among the
stresses, v+v+ and −u+v+ appear to have the same property, but only up to lower y+ values than
those for U +, while u+u+ and w+w+ simply do not. They of course satisfy an O(y2) behavior
towards the wall, but the coefficient in front of y+2 is conspicuously Reynolds-number dependent,
at least for values accessible to DNS (while it is not rigorous to draw this conclusion using only
values of y+ larger than 1, as in this figure, we indeed checked the behavior for smaller values
of y+ (say, y+ ≈ 0.1) (the distributions are not shown here)). This Re dependence is concomitant
with that on the wall value of the normalized dissipation ε+ [4]. The wall values of the normalized
pressure fluctuations and many other quantities also depend on Reynolds number. This extends
findings of Spalart [9] to much higher Reynolds numbers, and that paper included indications of
a logarithmic dependence on Reynolds number for various quantities. From 395 to 5186, the three
steps for log(Reτ ) are 0.95, 0.67, and 0.95. The visual distances between the curves are quite similar
to these numbers. Lozano-Duran and Jiménez [21] had similar evidence for the peak value of u+u+.
This is taken up below.

Figure 1(b) details the failure mentioned above of DNS to exhibit a decisive plateau for the
derivative of U + with respect to log(y+). We recognize that the profile at Reτ = 5186 displays a
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short flat region, but visually it does not seem to extend the behavior at lower Reynolds numbers,
and the “wave” could represent a residual lack of convergence. This is an opinion of the present
authors. Similarly, the part of the theory known as law of the wake would expect the upper peak of
this quantity, near y/h = 0.6, would be the same at all Reynolds numbers, but the profile at 1020
conflicts with the other three; this also resembles imperfect convergence.

B. Inverse Reynolds-number dependence

To begin testing IRD in all three flows, we picked the value y+ = 50 for the paper. Finding the
expected behavior at only one y+ value is only a necessary condition, but 50 appears well positioned
in view of Fig. 1 [at this y+ location, significant attention has also been given to the LW properties
of mean velocity in wall flows with more general pressure gradients (see [23,24])], and we verified
that the same trends applied at 100 and 200. We considered y+ = 50 as the beginning of the region
with very weak (local) viscous effects, in other words, the purely turbulent region. The same is
true at y+ = 200, but not at y+ = 15 where the turbulent kinetic energy (TKE) and its production
take large values. We plot quantities versus 1/Reτ in Fig. 2 which represents a conjecture related to
Luchini’s but with a key difference: he used g/Reτ , where the parameter g was 1 in channel flow, 0
in Couette flow, and 2 in pipe flow. IRD as we defined it is truly based on −dτ+/dy+, and therefore
Couette results would be expected to be flat. Figure 2 indicates linear behavior (that is, IRD) and
commonality between flows within about 0.1 units for U + and with even tighter agreement for v+v+
and −u+v+, but not for u+u+ or w+w+. This appears to be a new observation, although based on
literature data of course.

The results for U + with Reτ larger than 500 come close to confirming Luchini’s conjectures for
the values 0, 1, and 2 for g, and for the dependence following gA1y+/Reτ ; this is represented by the
slopes 50 (gA1 = 1) and 100 (gA1 = 2). Note that here we are testing a conjecture he made which
is stronger than strict IRD: he postulated that for U the fRe function is linear in y/h, and common to
the three flows once the factor of g is applied.

In sharp contrast with U +, the stresses v+v+ and −u+v+, satisfy IRD with the same value of
g for channel and pipe flow. This will be discussed. These two stresses give a strong indication of
their limit as Reτ → ∞, but for the two wall-parallel ones in Figs. 2(c) and 2(e), guessing the limit
would be daring, even though it is physically plausible that the limit is finite. It is equally curious
that channel and pipe flow agree over u+u+ and w+w+, whereas Couette flow is so far removed
from them. Finally, we observe that for −u+v+ the slope is equal to −50, as it must at y+ = 50 if
the shear rate dU +/dy+ and therefore the viscous stress conform with the LW.

C. Linear extrapolation to infinite Reτ

Motivated by the evidence from Fig. 2, we now examine whether LE produces, first, convincing
results and, second, profiles which satisfy the IV property. For this, we use the highest two Reτ

values in channel flow, namely, 2003 [12] and 5186 [13]. Based on the “ f∞, fRe” concept introduced
in the Abstract, the definition of LE directly follows:

Q+
LE(y+) ≡ f∞(y+) ≡ Reτ2Q+(y+, Reτ2) − Reτ1Q+(y+, Reτ1)

Reτ2 − Reτ1
. (1)

Note that this extrapolation approach is simpler than Luchini’s equations (19)–(22), while having
the same purpose; it also appears to produce smoother profiles. The figure naturally cannot extend
past y+ = 2003, and the effect of y/h reaching values not much smaller than 1 requires judgment;
the plausible effective range is less than 2003. However, seeking a range that satisfies both y+ � 1
and y/h � 1 is not unreasonable when h+(≡ Reτ ) = 2003.

The LE appears to be at best moderately successful for the mean velocity, in that the putative
plateau on y+(dU +/dy+) is much shorter than that on the profile at Reτ = 5186, but we have already
stated the possibility that the latter plateau (with κ ≈ 0.385) is fortuitous. A visual estimate of the
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FIG. 2. Distributions of U +, dU +/dy+, u+u+, v+v+, w+w+, −u+v+ for channel, Couette, and pipe flow
at y+ = 50 as a function of 1/Reτ : (a) U +; (b) dU +/dy+; (c) u+u+; (d) v+v+; (e) w+w+; (f) −u+v+. In (a),
the blue, red, and yellow green lines denote the 100, 50, and 0 slopes, respectively. In (d) and (f), the solid
lines denote the –75 and –50 slopes, respectively, the dashed ones the 0 slope. For channel flow (denoted as
“circle”), the DNS data of [11] for Reτ = 180, 395, and 640, [10] for Reτ = 1020, [12] for Reτ = 2003, [13]
for Reτ = 5186 are plotted. For Couette flow (denoted as “triangle”), the DNS data of [14] for Reτ = 171,
260, 507, and 986 and [15] for Reτ = 180, 250, and 550 are plotted. For pipe flow (denoted as “square”), the
DNS data of [16] for Reτ = 180, 360, 550, and 1000, [17] for Reτ = 1142, [22] for Reτ = 2003, and [18] for
Reτ = 3008 are plotted.

Kármán constant κ accounting for residual waviness over the narrow range [250,400] is roughly
from 0.394 to 0.396. This is close to Luchini’s 0.392 [3] [see Fig. 3(b)]. He derived his estimate from
a combination of evidence between the three flows. The present κ obtained from the LE is also close
to that of Abe and Antonia [4]. The latter authors obtained κ = 0.394 on the basis of the scaling
argument for the energy dissipation rate in a channel, pipe, and zero-pressure-gradient boundary
layer. Experimentally, Marusic et al. [26] reported a universal logarithmic behavior of U + with
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FIG. 3. Distributions of raw and extrapolated U +, y+(dU +/dy+), v+v+, and −u+v+ to infinite Reτ with
the use of LE [relation (1)]: (a) U +; (b) y+(dU +/dy+); (c) v+v+; (d) −u+v+. In the extrapolation, the two
DNS data at Reτ = 2003 [12] and 5186 [13] are used. In (c), the circle denotes the experimental data of [25]
in a pipe for Reτ ≈ 104.

κ = 0.39 over a wide range of Reynolds number (i.e., Reτ = 1.8 × 104 ∼ 6.3 × 105) by examining
data sets in two laboratory boundary layers [27,28], the superpipe using the hot-wire measurement
[29], and an atmospheric surface layer [30]. The log law with κ = 0.39 also provides a good fit to
the distributions of U obtained from the recent CICLoPE pipe experiment up to Reτ = 4 × 104 (see
Örlü et al. [31]).

We note that several authors with somewhat different tools to exploit the DNS evidence in three
flows all arrive at values for the Kármán constant between 0.39 and 0.40; this is outside the relatively
well-established bracket, which was 0.40 to 0.41 until roughly the year 2000. Importantly, high-
Reynolds-number pipe experiments point at values approaching 0.42 (McKeon et al. [32]), also
using different tools involving the center-line velocity, so that the uncertainty in the community
over κ subsists (see also Marusic et al. [26] who examined the uncertainty of κ in their work and
arrived at κ = 0.39 ± 0.02).

The behavior of −u+v+ after LE is as expected, strongly following IV and of course approaching
1. The LE makes it equal 1 − dU +/dy+, and dU +/dy+ is both well behaved and very small for
large y+. The other stress v+v+, after LE, rises when approaching the channel center line. This can
be attributed to “center-region effects” (meaning that we do not have y/h � 1), and the same figure
but for LE based on Reτ of 1020 and 5186 is consistent with this. We estimate that the IV value
for v+v+ in f∞ can be taken from the region near y+ = 200, and is close to 1.33. The latter value
agrees well with the measurement of Zhao and Smits [25] in a pipe flow at Reτ ≈ 104 (see Fig. 3
where the LE distribution shows a near plateau above y+ = 200 and is essentially identical with that
of [25]). We have also tested LE for Couette and pipe flow, using DNS data albeit at lower Reynolds
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FIG. 4. Distributions of extrapolated v+v+ to infinite Reτ with the use of LE [relation (1)] for Couette and
pipe flow: (a) pipe flow; (b) Couette flow. In the extrapolation, the two DNS data at Reτ = 550 and 1000 [16]
are used for pipe flow, whereas those at Reτ = 507 and 986 [15] are used for Couette flow. The circle denotes
the experimental data of [25] in a pipe for Reτ ≈ 104.

numbers than those for channel flow (see Fig. 4). Indeed, LE produces the IV property adequately
for the active motion, i.e., v+v+ ≈ 1.3 and −u+v+ ≈ 1 (the distribution of −u+v+ for Couette and
pipe flow is not shown) at y+ � 200.

D. Reynolds-stress budgets

Figure 5 examines the Reynolds-number dependence in channel flow for budgets, in a search for
a physical understanding of Figs. 1(c) to 1(f). The transport equation of u+

i u+
j is defined such that

0 = P+
i j + T +

i j + �+
i j + D+

i j − ε+
i j , (2)

where

P+
i j = −u+

j u+
k (∂U

+
i /∂x+

k ) − u+
i u+

k (∂U
+
j /∂x+

k ), (3)

T +
i j = −∂ (u+

i u+
j u+

k )/∂x+
k , (4)

�+
i j = −u+

j (∂ p+/∂x+
i ) − u+

i (∂ p+/∂x+
j ), (5)

D+
i j = ∂2(u+

i u+
j )/∂x+2

k , (6)

εi j
+ = 2(∂u+

i /∂x+
k )(∂u+

j /∂x+
k ). (7)

P+
i j , T +

i j , �+
i j , D+

i j , ε+
i j denote the production, turbulent diffusion, velocity-pressure gradient correla-

tion, molecular diffusion, and homogeneous dissipation, respectively.
The findings in Fig. 5 may be simplest to describe for u+u+: the production term is very well

behaved [its maximum value also approaches 0.5 (the theoretical maximum value) as Reτ increases],
which is crucial as it is the only external term locally, and is also the production term for the entire
turbulent kinetic energy. In other words, production differences do nothing to explain the differences
in Fig. 1(c). The most vivid effect here is on the near-wall molecular diffusion and dissipation (as
fully predicted by Bradshaw in 1967 [20], although he was varying an adverse pressure gradient
rather than the Reynolds number). These two viscous terms largely cancel. This would argue in favor
of modeling them together but that would, first, remove the common assumption that dissipation is
always a loss term, and second remove the numerical advantage of having a diffusion term, which
moreover is exact. The near-wall values are fairly consistent with a logarithmic dependence on Reτ ,
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FIG. 5. Budgets of Reynolds stresses normalized by u4
τ /ν for channel flow at Reτ = 395 [11], 1020 [10],

2003 [12], Reτ = 5186 [13]: (a) u+u+; (b) v+v+; (c) w+w+; (d) u+v+.

but this is not our focus. The pressure term has a definite trend, but it will be easier to see in the
budgets of the other stresses.

The budget of w+w+ has the same trends as that of u+u+ for the viscous terms. Its primary gain
term, from pressure, strongly increases with Reynolds number, this being offset by dissipation. A
Reynolds-stress model with a return-to-isotropy component could capture this trend, driven by the
rapid increase of u+u+ in Fig. 1(c) but only if, precisely, it had first captured the behavior of u+u+.

The behavior of the budgets of v+v+ and −u+v+ displays somewhat unexpected trends, consid-
ering the resilience of the stresses themselves in Fig. 1, but notice the much expanded vertical scales.
The gain term of −u+v+ which is proportional to v+v+ has a definite increase at higher Reτ , more
than offset by an increase of the pressure term. The identical increase in the gain term of −u+v+ as
Reτ increases is observed for pipe flow, but not for Couette flow (see Fig. 6 where the data of −P+

12
at y+ = 50 are plotted as a function of 1/Reτ for the three flows). This result is consistent with the
IRD of −u+v+ [see Fig. 2(f)]. At first sight, this will be very challenging to model. As for v+v+,
the pressure term and the opposing dissipation have fairly strong variations, but for both stresses
there is a tendency to saturate between Reτ of 2003 and 5186; in other words, we see no evidence
of a continuing logarithmic dependence on Reτ (the exception is the pressure term for −u+v+).

Overall, except for the near-wall viscous terms, the Reynolds-number dependence of the budgets
is, maybe surprisingly, weaker than the dependence of the stresses themselves in Fig. 1, especially
when it comes to w+w+. The guidance in terms of the expected “dialogue” between stresses and
budgets, needed to make substantial progress in modeling, is unfortunately not clear to us. As
mentioned, the local term-by-term “mechanisms” in conventional models are fully compatible with
solutions which satisfy LW and IV, and in such models the effect of the distance to the center line
expressed in wall units, i.e., Reτ , is weak indeed.
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FIG. 6. Distributions of −P+
12 for channel, Couette, and pipe flow at y+ = 50 as a function of 1/Reτ . The

solid and dahed lines denote the –3 and 0 slopes, respectively. For channel flow (denoted as “circle”), the DNS
data of [11] for Reτ = 180, 395, and 640, [10] for Reτ = 1020, [12] for Reτ = 2003, [13] for Reτ = 5186 are
plotted. For Couette flow (denoted as “triangle”), the DNS data of [14] for Reτ = 171, 260, 507, and 986 and
[15] for Reτ = 180, 250, and 550 are plotted. For pipe flow (denoted as “square”), the DNS data of [16] for
Reτ = 180, 360, 550, and 1000 are plotted.

III. DISCUSSION, TURBULENCE MODELING, AND FUTURE WORK

We have formulated as clearly as we could and tested a variety of conjectures regarding the
statistics of channel, Couette, and pipe flow, with emphasis on Reynolds-number and flow-type
dependence. The findings are unfortunately not simple, as the quantities separate into at least three
classes. First, the mean velocity U + is most probably well behaved, as found by Luchini [2,3],
but its Reynolds-number dependence at a given y+ value differs by a factor of approximately 2
between channel and pipe flow. Second, the Reynolds stresses v+v+ and −u+v+ are well behaved,
but without the factor of 2. Third, the stresses u+u+ and w+w+ are poorly behaved, although only
as judged by the simple conjectures we introduced. Again, these do not originate in first principles
or exact moment equations of turbulence.

As mentioned, Luchini [2,3] obtained his factor of 2 in the pipe by invoking dP+/dx+ rather
than dτ+/dy+. In general, we object to the pressure gradient proper in turbulence theories and
models (see Spalart and Speziale [33]) because this term has no local effect on vorticity, and we
believe terms derived from Reynolds stresses are more convincing. Actually, this is possible since
in a steady flow dP/dx = ∂τi1/∂xi, which equals 2∂τ/∂y in the axisymmetric flow; this has been
called the “turbulence force.” This argument removes a theoretical objection to the factor of 2. Other
interpretations also lessen the conflict, as illustrated in Fig. 7. The shear stress is −u+v+, but the
momentum flux across the surface at y is −(1 − y/R)u+v+, where R is the radius of curvature of
the wall (therefore, infinite in the plane flows). This quantity is shown in Fig. 7(a), and the difference
between the pipe-flow curve and 1 is roughly double the difference between the channel-flow curve
and 1; in other words, the behavior is similar to that of the velocity U + in Fig. 2(a). The effect
of cylindrical coordinates on the mean pressure is similar, as seen in Fig. 7(b). Again, pipe flow
strongly raises the effect relative to channel flow; this is because the mean momentum equation
dictates that P+ = −v+v+ + ∫

(w+w+ − v+v+)/r dr + c, where r ≡ R − y and c is an arbitrary
constant. This underlines the impact of differences between the normal Reynolds stresses. Note
that w+w+ − v+v+ depends on Reτ , so that the difference between the two flows is not a simple
function, and certainly not a simple factor of 2.

This leaves the third class of quantities, namely, u+u+ and w+w+. The theories of inactive
motion are convincing in addressing the Reynolds-number trends, but exceed the reach of the simple
conjectures we have tested here. In particular, there are strong hints that major quantities such as
the peak Reynolds stress u+u+

max, the wall dissipation rate ε+
w , the wall pressure intensity p+

w p+
w,
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FIG. 7. Distributions of −u+v+, −(1 − y/R)u+v+, P+, and v+v+ for channel and pipe flow at Reτ = 1020
[10] and 1000 [16]: (a) −u+v+, −(1 − y/R)u+v+; (b) P+; (c) v+v+.

and others have a logarithmic dependence on Reynolds number, in the DNS range for Reτ . This is
radically different from the inverse Reynolds-number dependence Luchini and we have introduced
for other quantities, and raises the possibility that their limit as Reτ → ∞ is not finite, which
may appear paradoxical. This is the limit in wall units, and it is yet possible that the limit, when
normalized with the center-line velocity in a duct or the edge velocity of a boundary layer, is finite
or even zero. There is conflicting evidence of this since the peak value of ww, normalized by the
center-line velocity squared, varies only from 0.0040 to 0.0038 as deduced from Fig. 1 but the same
test for uu yields 0.0176 and 0.0128, a much larger difference. Conjectures comparable in simplicity
to the present ones, but able to render inactive motion, may be proposed in the future, but a role for
the center-line velocity is not consistent with classical (local) arguments.

A. Turbulence modeling

The findings presented here are quite relevant to turbulence modeling because in our opinion
the analytical structure of conventional turbulence models naturally leads them to obey both LW
and IV. Gross disagreements of RANS with DNS for u+u+ and w+w+ are widespread, and mere
adjustments of constants in the models will be powerless against this. This observation is not new
at all. Bradshaw [20,34] explicitly suggested “modeling only the active part of the turbulence,” and
both Saffman and Wilcox have written similar comments. This posits the idea of a hypothetical
turbulence model, requiring a scientific endeavor which could involve two successive steps: first,
declaring the profiles of the newly conceived active Reynolds stresses, all the way across the y+
range, satisfying both LW and IV; second, creating the partial differential equations (PDE) which

044604-11



PHILIPPE R. SPALART AND HIROYUKI ABE

FIG. 8. Distributions of U + predicted with the use of the SA model [36] for channel, Couette, and pipe
flow at y+ = 50 as a function of 1/Reτ . The blue, red, and yellow green lines denote the 150, 75, and 0 slopes,
respectively. For channel flow (denoted as “circle”), the calculations have been made at Reτ = 180, 395, 1020,
2000, and 5200. For Couette flow (denoted as “triangle”), the calculations have been made at Reτ = 167, 369,
468, 959, 1886, and 4927. For pipe flow (denoted as “square”), the calculations have been made at Reτ = 180,
395, 1020, 2000, and 5200.

produce these profiles, so as to have a usable RANS model. Both steps are very arduous; we know of
no quantitative proposal even for the first one. We are envisioning an argument leading to a unique
result, even if it applies only to the plateaus in the log layer.

The variation of the viscous shear stress dU +/dy+ in Fig. 2(b) deserves comments, as it appears
to distinguish different types of turbulence models. A direct application of mixing-length theory
predicts the following dependence: d (dU +/dy+)/d (1/Reτ ) = −y+/(2l+) where l is the mixing
length. Assuming that l = κy as is standard and κ ≈ 0.4, we arrive at d (dU +/dy+)/d (1/Reτ ) ≈
−1.25. The figure shows that d (dU +/dy+)/d (1/Reτ ) ≈ +0.6. Therefore, assuming that the mixing
length is insensitive to pressure gradient (here quantified by 1/Reτ ) gives even the wrong sign for
the variation, a fact observed in DNS by Spalart and Watmuff [23] and very much confirmed in
both favorable and adverse pressure gradients by Johnstone et al. [24]. Luchini [35] has made very
similar observations.

Models based on transport PDEs do not behave like the mixing-length model. Figure 8, applying
the Spalart-Allmaras (SA) model [36], can be compared with Fig. 2(a). The mean velocity U + at
y+ = 50 now increases when Reτ decreases, and correctly orders Couette, channel, and pipe flow.
The slope is incorrect, being roughly 3

2 times that of DNS, but this is still a limited success. It
appears that the global nature of the PDE solution in the full domain (as opposed to the local nature
of the mixing-length model) injects the relatively subtle effect of Reτ at y+ = 50 with the correct
sign, and a magnitude which is not grossly inaccurate. In future work, the IRD will also be examined
for two-equation turbulence models [i.e., k − ε and Menter’s shear stress transport (SST) models].
Note that the IRD property is quite natural for turbulence models, whether mixing length or PDE
based, considering the dominant role of the shear stress, of which the gradient is proportional to
1/Reτ .

Anecdotally, turbulence models exist with known IV properties (plateaus) in the log layer.
The SSG-LRR-ω model [37] yields u+u+ = 2.9, v+v+ = 1.4, w+w+ = 2.1 whereas the SA-
QCR2013 model [38] yields u+u+ = 2.7, v+v+ = 1.5, w+w+ = 2.1 [see turbulence modeling
resource (TMR) website [39]]. For the SA model, the turbulent kinetic energy k is sometimes
estimated by using the approximation νt

√
2Si jSi j/a1, where a typical value for a1 is 0.31. Here,

this approximation is made solely for visualizing the normal stresses (it is not done while solving
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the Navier-Stokes equations) (see also [40]). The Reynolds-stress model (RSM) is definitely more
accurate, especially for v+v+, since above we propose the value 1.33. The quadratic constitutive
relation (QCR) model was optimized for the outer part of the boundary layer, where the anisotropy
is weaker; it is also a much simpler model.

B. Active turbulence

There are at least two incentives to define “active turbulence.” The first is understanding and
clarity in our knowledge of near-wall turbulence, and was pursued by Townsend [19], Bradshaw
[20], and others. The second is practical: Would such a model not render all of the turbulence, but
still make a sufficiently accurate contribution to the momentum equation? Channel flow provides an
extreme situation: the nonuniversal stresses u+u+ and w+w+ simply do not enter the momentum
equation. They also have a very weak effect on a boundary layer without pressure gradient. However,
this is not true anymore with strong pressure gradients, and corner flows also are very sensitive to
differences between the six stresses. We cannot propose a model that is “fully competent” in channel
flow, and channel flow alone.

Future work may produce concrete conjectures similar to those tested here that capture the behav-
ior of u+u+ and w+w+, presumably including the relatively well-accepted logarithmic dependence
on y in the neighborhood of y/h = 0.1, and an unknown dependence on Reτ . It seems that the
available corpus of DNS data is sufficient for this purpose, but creativity will be needed. A better
theoretical understanding of the g factor between channel and pipe flow would be most welcome.
The cause of the lower U + values produced by Couette flow DNS [14] (see [3]) needs to be explored;
it is possible some numerical aspects are responsible, and new DNS with a finer grid at a moderate
Reynolds number will not be difficult (although domain-size effects reported by Tsukahara et al.
[41] and Gandía-Barberá et al. [42] are troublesome in this flow). Now, Couette flow is prone to
develop global streamwise vortices in the center region of the channel. Gandía-Barberá et al. [42]
reported that the length and width of the rolls are approximately 50h and 2.5h, respectively, for
Reτ ≈ 130. At first sight, this should have very little impact at y+ = 50 when Reτ = 1000, but the
global vortices are an extreme type of inactive motion, and Fig. 2(c) shows vastly higher values of
u+u+ and w+w+ in Couette flow than in the other two. Together, Figs. 2(c)–2(e) indeed show that
the correlation coefficient between u and v, which is an aspect of the “structure” of the turbulence,
is significantly lower in Couette flow.

IV. CONCLUSIONS

Unquestionably, the assumptions of universal behavior which turbulence theory and modeling
rest on are never fully secure, even in the present very simple flows. The removal of experimental
uncertainty by DNS, leading to near perfection for simple geometries over a fairly wide range
of Reynolds number, and the attendant expectation for high precision seem to first and foremost
clarify the (partial) failures of the theory. On the other hand, the evidence of success for the inverse
Reynolds-number dependence (IRD) of several quantities is a positive result, which appears even
for the log layer when Reτ is finite. Indeed, the active motion (i.e., vv and uv) follows the IRD
excellently for the three flows, which in the case of uv is intrinsically linked to the IRD of U .
Also, we have proposed the linear extrapolation (LE) to infinite Reynolds number of a quantity
Q on the basis of the IRD; the resulting relation (1) successfully predicts the extremely large
Reynolds-number behaviors (i.e., κ ≈ 0.394 and v+v+ ≈ 1.3). Our analysis indicates that for the
three flows, the value of f∞ in the law of the wall Q+ = f (y+) remains intrinsically unchanged for
the active motion, while that of fRe(y+) depends on the total shear stress τ .

To summarize, this study appears to clarify only some aspects of wall-bounded turbulence. The
logical next step, namely extending theory and modeling to relevant flows with varied pressure
gradients and three dimensionality, will be an even greater challenge.
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APPENDIX: CASE OF THE BOUNDARY LAYER

The boundary layer shares the essential near-wall physics of turbulence with the three internal
flows we explored in this paper. Our reason for not including it across the paper is that in our
opinion a Reynolds number equivalent to Reτ is not available, so that the IRD conjecture cannot be
formulated with rigor.

In Fig. 9, we present a subset of the quantities displayed in Fig. 1, using DNS data of a zero-
pressure-gradient turbulent boundary layer (TBL) made available by Spalart [9], Schlatter and Örlü
[45], Jiménez et al. [44], Sillero et al. [46], and Abe [43]. The figures confirm the close agreement
on the mean velocity U + from various sources [Fig. 9(a)], the smooth rise of v+v+ with Reynolds
number apparently to a high-Reynolds-number asymptote [Fig. 9(d)], and the less regular behavior
of u+u+ with uncertain behavior for its peak value [Fig. 9(c)]. We note the vigorous theoretical
and experimental work devoted recently to ascertaining whether as the Reynolds number rises to
∞, the peak value in wall units rises without limit or asymptotes to a finite level (Monkewitz [47];
Chen and Sreenivasan [48]). This is a question we left fully open here. There is no doubt the same

�

�

�

�

�

�

�

�

� �

(a) (b)

(c) (d)

FIG. 9. Distributions of U +, τ+, u+u+, and v+v+ for TBL for Reθ = 1000 [43], 1968 [44], 4062 [45], and
6500 [46]: (a) U +; (b) τ+; (c) u+u+; (d) v+v+. In (a), the circle denotes the DNS data of [9] for Reθ = 1410.
In (b), the red line denotes the integral of Eq. (A4) of Spalart [9] [or, equivalently, (A1) of this paper] for
Reθ = 6500 [46]. Note that δ99 denotes the 99% boundary-layer thickness.
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authors have a similar interest in the internal flows. Aside from the peak of u+u+, quantities such
as the wall dissipation ε+ and the pressure rms p+

rms open the same question, with the pressure rms
quite important in practice for aircraft cabin noise. It rises logarithmically with Reynolds numbers
at DNS-accessible Reynolds numbers [see Fig. 14 of Spalart [9]; Fig. 7(b) of Sillero et al. [46]], a
fact which is compatible with the attached-eddy hypothesis (Townsend [19]), but the ultimate trend
is not known.

The boundary layer has many possible definitions for its thickness: displacement thickness δ∗;
momentum thickness θ ; and then competing definitions for the full thickness δ, either by the 99%
or 99.5% velocity level, or integrals of the total shear stress (Spalart [9]) or of the velocity defect
multiplied by U∞/uτ (Monkewitz [47]) which can be traced to Clauser [49].

A key point is that in the internal flows with streamwise pressure decrease, −1/Reτ sets the
slope of the total shear stress versus y+. The TBL has no such pressure decrease, and at first sight
would resemble Couette flow. However, Spalart in 1988 [9] showed that this is not compatible
with the momentum equation, and derived an equation for dτ+/dy [his (A4)] which is an exact
consequence of the velocity law of the wall (an analogous relation has been proposed by Nakamura
et al. [50] on a TBL with an adverse pressure gradient) and the slow decrease of uτ as the streamwise
distance x increases. The algebra is not immediate, and a fortuitous cancellation between UUx and
VUy simplifies the result much, leading to a single term in (A4) [note that U and V denote the
mean streamwise (x) and wall-normal (y) velocities, respectively; the subscripts denote the partial
derivative]. This equation is

∂τ+

∂y
= d log(uτ )

dx
U +2. (A1)

This was expanded by Monkewitz and Nagib [51], including a version of Spalart’s (A6). Spalart
showed that at higher Reynolds numbers ∂τ+/∂y was approximately equal to −0.5/δ with δ the full
boundary-layer thickness, so that Reτ might logically be approximately equal to 2δ+. As a result,
formulating the IRD rigorously is difficult since it hinges on Reτ . This is an important consequence
obtained from this analysis and highlights a discernible difference in the Re effect between the
internal and external flows.

Figure 9(b) presents facts of interest. First, the slope of the stress, calculated from Spalart’s (A4),
agrees closely with the slope of the true stress from the DNS at the same Reynolds number over
most of the region showed. This suggests that the algebra is correct [note that (A4) is valid all the
way to the wall, not only in the log layer, and κ is not involved], that the DNS data set does satisfy
the mean-velocity law of the wall as x increases, and that the estimates of δ are consistent. At the
Reynolds numbers available today, the curves have residual curvature, and do not approach a slope
of −0.5. The second fact is a spurious “ramp” in the stress for y/δ less than about 0.01 in two of the
data sets; this ramp is not compatible with the momentum equation. The other two data sets are a
little wavy and disagree somewhat with (A4), which suggests a lack of convergence. We are clearly
approaching the limit of the quality of current DNS data sets; in other words, we are exhibiting
detailed quantities which are too sensitive for the figures to appear perfect. The shape of v+v+ at
the highest Reynolds number, similarly, does not suggest a “family” the way the curves in Fig. 1(d)
do.

We conclude that a firm definition of Reτ and therefore the IRD is not today available in the
boundary layer. We also note that the meaning of Spalart’s (A4) and (A8) is unfortunately ignored
by most of the community, which ignores the dependence of τ+ on y. Figure 9(b) is very clear, and
should be helpful in this domain.
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