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The presence of mean velocity gradients induces anisotropies in turbulent flows, which
affect even the smallest scales of motion at finite Reynolds numbers. By performing direct
numerical simulations of the Navier-Stokes equations, we study the return to isotropy of
a homogeneous turbulent flow initially in a statistically stationary state under a uniform
shear, S = ∂U1

∂x2
, in the conceptually simple situation where the mean shear is suddenly

released. In particular, we characterize the timescales involved in the dynamics. We observe
that the Reynolds stress tensor, which measures the large-scale flow anisotropy, relaxes
towards an isotropic form over a timescale of the order of the large-eddy turnover time of
turbulence, in qualitative agreement with previous studies with different types of initially
imposed mean velocity gradient. We also investigate how the correlations of the velocity
gradient tensor relax to isotropy with time. In particular, we focus on the properties of
the one-point vorticity correlations 〈ωiω j〉 and 〈ωiω jωk〉. The nonzero off-diagonal term
of the second-order correlation tensor, i.e., the correlation between the streamwise and the
transverse components of vorticity, 〈ω1ω2〉, decreases towards 0 over a time of the order
of the Kolmogorov timescale. In comparison, the anisotropies in the diagonal components
〈ω2

i 〉 (i = 1, 2, or 3) relax over a time significantly longer than the Kolmogorov timescale.
This difference can be explained by an elementary theoretical analysis of the dynamics
of the anisotropy tensor bω

i j ≡ 〈ωiω j 〉
〈ωkωk 〉 − 1

3 δi j at the instant when the shear is released. We
also observe that the skewness of the spanwise component of vorticity, Sω3 , relaxes slowly
towards zero. The relaxation of a small-scale quantity over a time much longer than the
Kolmogorov timescale, as surprising as it may seem, is in fact consistent with a known
relation between velocity-gradient correlations and the pressure-rate-of-strain correlation,
and raises the important question of separation between the timescales characterizing the
return to isotropy at large and small scales.

DOI: 10.1103/PhysRevFluids.6.044601

I. INTRODUCTION

Whereas the paradigm of homogeneous, isotropic turbulence (HIT) provides a convenient frame
to analyze flows at high Reynolds numbers [1–6], HIT can be realized only in numerical simulations
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or achieved approximately in specially designed experimental facilities, such as decaying grid
turbulence in a wind tunnel. In practical situations, fluids are set into motion typically by inducing
relative velocities, usually in a very anisotropic manner [7,8]. This is in particular the case of flows
close to walls, which are subject to strong shear. In situations where the anisotropic forcing is
localized, in space and/or in time, the turbulent fluctuations ultimately decay, and in so doing,
they are expected to possess isotropic properties.

We focus here on the simplified problem of homogeneous anisotropic turbulence, more specif-
ically, on its evolution when the imposed forcing is released. A convenient way to generate
homogeneous anisotropic turbulence consists in applying a uniform velocity gradient to the flow.
Flows subject to a pure strain, leading to either axisymmetric contraction or expansion, provide
an important example, particularly relevant to flows through conduits of variable cross section
in engineering devices [9–12]. Another well-studied example is the case of sheared turbulence.
Early work has been devoted mostly to the development, in space [13–15] or in time [16–18] of
sheared turbulence, including situations where the shear is released [19]. Interestingly, the properties
of turbulence in the presence of a uniform shear in a confined system, when the flow reaches a
statistically steady state, turn out to be relevant not only to the structure of the fine scales [20–28],
but even to the description of the large scales of the motion [21,29–31]. In fact, the properties
of homogeneous shear flows (HSFs) in a steady state even seem to provide useful insight on
the structure, e.g., in the logarithmic layer of a turbulent channel flow [32]. Here we study the
evolution of a homogeneous shear flow initially in a statistically stationary state followed by the
turning off of the shear, which we denote as the homogeneous shear released turbulence (HSRT)
following [19], and we investigate the degree of anisotropy in the large and small scales of the
flow.

The Reynolds stress tensor, 〈uiu j〉, which equals 1
3 〈u2〉δi j in an isotropic flow, provides a very

natural way to quantify the flow anisotropy. The Reynolds stress is sensitive to the largest scales of
the flow, which are assumed to relax slowly towards isotropy after the imposed mean gradient is
released. For a homogeneous flow in the absence of any forcing, the return of the Reynolds stress
tensor towards the isotropic form is driven by the viscous dissipation and by the pressure-rate-of-
strain correlation, 〈psi j〉 [33], where si j ≡ (∂iu j + ∂ jui )/2 is the rate of strain tensor of the turbulent
fluctuation and ∂iu j denotes throughout the partial derivative ∂u j/∂xi. Understanding these different
terms is not only of fundamental interest; it has also important potential implications in engineering
[8]. For lack of a complete understanding, modeling the return to isotropy rests on a simplifying
assumption of linearity [34], with later improvements [35,36], all of which assume that the Reynolds
stress evolves at the timescale corresponding to the largest eddies or the integral timescale of the
flow; see [8] for a review.

The classical K41 theory hypothesizes that the degree of anisotropy of turbulent fluctuations
decreases from large to small scales [1,8,37]. In the case of a turbulent HSF in a statistically
stationary state, it is worth pointing out that the anisotropy induced by the shear decreases very
slowly with scale [20,22,23,38], slower than anticipated based on phenomenological arguments
[39,40]. For this reason, it is intrinsically interesting to ask how the sizable anisotropy present at
all scales in a turbulent HSF at moderate Reynolds numbers decays when the shear is released.
On general grounds, the small-scale anisotropies are expected to decay much faster than those
affecting the largest scales of the flow. In particular, the anisotropy in the velocity gradient is
expected to decay with the Kolmogorov timescale, the smallest timescale of the turbulence. It
is, however, interesting to notice that the pressure-rate-of-strain correlation, 〈psi j〉, can be ex-
pressed as an integral over space of the triple correlation function of the velocity gradient tensor,
T̃abcde f (x) ≡ 〈∂aub(0)∂cud (0)∂eu f (x)〉. A consequence of the relation between 〈psi j〉, which governs
the decay of the Reynolds stress, and T̃abcde f , a correlation function of the velocity derivatives, hence
a small-scale quantity, is that the expectation that anisotropies related to the velocity gradient tensor
should decay over a very fast timescale [12,36] should be considered with care. One of the main
objectives of this work is to characterize the timescales involved in the relaxation of HSF towards
isotropy after the shear is released.

044601-2



RETURN TO ISOTROPY OF HOMOGENEOUS …

To this end, we investigate by direct numerical simulation (DNS) the decay of the Reynolds stress
tensor and the correlations of the velocity gradient tensor in homogeneous shear-released turbulent
flows that are initially maintained at statistically steady states at moderate Reynolds numbers. Our
results concerning the relaxation of the Reynolds stress tensor are generally consistent with earlier
studies [36]: the relaxation to isotropy occurs over the integral timescale of the flow. We find,
however, that the relaxation of the velocity gradient correlations towards isotropy cannot be simply
reduced to a universal functional form by nondimensionalizing time by the Kolmogorov timescale.
We rationalize our observations by studying the decay of the anisotropy in the vorticity correlation
tensor, 〈ωiω j〉, of which the different components decay with different characteristic timescales.
Our analysis can be applied to other types of decaying anisotropic flows and the predictions
of the decaying timescales for different components of velocity gradient tensors are consistent
with the observations from DNS reported in the literature. We also discuss the relaxation of the
pressure-rate-of-strain correlation function towards 0, its isotropic value.

Our paper is organized as follows. Section II briefly describes the numerical work carried out
here. The dynamics of relaxation of the large scales of the flow towards isotropy is discussed in
Sec. III. In Sec. IV we present our numerical results concerning the relaxation of the small scales
towards isotropy. In particular, we compare our numerical results concerning the time evolution of
the the vorticity correlation functions, 〈ωiω j〉 and 〈ωiω jωk〉 with elementary analytic considerations,
which provide insight about the timescales of the decay involved in different components. Finally,
we summarize our results in Sec V.

II. DIRECT NUMERICAL SIMULATIONS

A. General approach

The present investigation is entirely based on DNS of the Navier-Stokes equations. We first
simulated a turbulent homogeneous shear flow, by decomposing the turbulent velocity field U, as
the sum of a mean shear, 〈U〉 = S x2 e1, where S is the shear rate, plus a fluctuation, u. We used a
pseudospectral code, assuming the fluctuation u to be periodic in all three spatial directions, and
homogeneous in space [41]. As demonstrated in earlier work [20,21], the flow reaches a statistically
steady state in a finite box, albeit with important fluctuations at large scales.

After the flow has reached the statistically steady state, we merely released the shear rate to S = 0
and studied the subsequent evolution of the flow. Specifically, we studied the decay of turbulence
from two runs at different Reynolds numbers. To address the variability induced by the large-scale
fluctuations of the flow, for each initial Reynolds number, we accumulated statistics by simulating
the decay of turbulence starting from a large number of different initial configurations. Throughout
the paper, the angle brackets “〈〉” denote ensemble averages over different realizations and over
space.

B. Simulations of homogeneous shear flow

We briefly discuss here the simulations of the flow in the presence of a mean shear. The code
used here is based on the pseudospectral method introduced by Rogallo [41]. Our implementation
has been described in [21]. We denote by x1, x2, and x3 the coordinates in the streamwise, normal,
and spanwise directions. As it was the case in [32,42], the homogeneous shear flow is simulated
in a periodic domain of size L1 = 4π and L2 = L3 = 2π using the method introduced in [41].
Numerically, we used a mesh with 2N × N × N , with N = 100 and N = 160 for the two different
runs. We adjusted the viscosity ν to keep the ratio between the mesh size, �x = 2π/N and the
Kolmogorov length, ηK = (ν3/ε)1/4, where ε is the rate of dissipation, to be approximately constant:
�x/ηK ≈ 2.2, which ensures a satisfactory resolution of all scales of the flow. The values of the
viscosity and the resolution, N , are indicated in Table I.

With the values chosen, the Reynolds number defined as Re = SL2
2/ν reaches the values of Re =

5.56 × 103 for the N = 100 case, and Re = 1.04 × 104 for N = 160. To quantify the intensity of
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TABLE I. Comparison between the moments and the skewnesses of components of the velocity gradient,
and the Reynolds number of the homogeneous shear flow determined from the full simulations and from the
Nc samples of configurations used as the starting point to study the restoration of isotropy. Columns 1 and 2
(respectively 3 and 4) correspond to the low (respectively high) Reynolds number run. The Reynolds number,
Re, the duration of the runs, Tr , made dimensionless by mutliplying by the shear, S, the viscosity, ν, and the
resolution, N , are indicated in the upper part.

Re = 5.56 × 103 Re = 5.56 × 103 Re = 1.04 × 104 Re = 1.04 × 104

STr = 1320 Nc = 41 STr = 734 Nc = 39
ν = 7.1 × 10−3 N = 100 ν = 3.8 × 10−3 N = 160

〈u1u1〉 1.71 1.60 1.65 1.76
〈u2u2〉 0.92 0.90 0.85 0.94
〈u3u3〉 0.98 0.94 0.91 1.0
〈u1u2〉 −0.53 −0.48 −0.49 −0.51
〈ω1ω1〉 27.5 27.1 45.8 49.6
〈ω2ω2〉 24.0 23.9 41.3 44.7
〈ω3ω3〉 23.3 23.1 41.0 44.6
〈ω1ω2〉 6.06 6.04 7.90 8.25
Rλ 113 107 155 160
〈(∂2u1)2〉 10.9 10.8 18.2 19.8
〈(∂2u1)3〉 26.6 26.5 51.2 57.5
S∂2u1 0.74 0.75 0.66 0.65
〈ω3

3〉 −51.5 −50.7 −106.4 −121.6
Sω3 −0.46 −0.43 −0.41 −0.41

turbulence in a flow, it is customary to use the Taylor microscale-based Reynolds number [8]. Given
the anisotropy of the flow, different definitions of the Taylor microscale-based Reynolds number
are possible [43]. In this work, we use the definition that are traditionally measured using standard
hot-wire anemometry, as done, e.g., in [22,23]:

Rλ = 〈u2
1〉1/2 × λ

ν
with λ2 =

〈
u2

1

〉
〈(∂1u1)2〉 , (1)

where ∂1 denotes ∂/∂x1. Using the values of 〈u2
1〉 and 〈(∂1u1)2〉 averaged over these runs, the Taylor

microscale-based Reynolds numbers are found to be Rλ = 113 at the lower resolution and Rλ = 155
at the higher one. The corresponding values of Rλ are in the low range reached in the experiments
[22,23], but are otherwise comparable with those obtained numerically in [30]. Another point of
comparison is provided by simulations of turbulent channel flow. In a channel flow at Reτ = 1000
[44], the values of Rλ in the log layer are comparable to those of the present simulations, as discussed
in [32]. Note that the values shown here slightly differ from those reported earlier in Ref. [42], which
gave Rλ = 120 and Rλ = 145, respectively. The difference is partially due to the strong fluctuations
in the instantaneous values of the spatial averages of u2

1 and (∂1u1)2, and partially to the longer
duration of the run, Tr , used here, compared to that in [42]. With the current runs, we estimate the
uncertainties for the values of Rλ to be approximately 3%.

For each Reynolds number, while integrating the equations of motion in the presence of a shear
[32,42], a total of Nc (Nc = 41 for Rλ = 113 and Nc = 39 for Rλ = 155) configurations of the entire
velocity fields were saved, all corresponding to the flow in the statistically stationary state, and well
separated from each other in time. We used each of these configurations as the starting point of a
new simulation with the mean shear released, as explained in the following subsection.

In the statistically steady state, one can define the following two timescales to characterize the
fluid motion, namely, the Kolmogorov timescale, τη, and the large eddy turnover time, TE , defined
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by

τη =
(ν3

ε

)1/4
and TE = L2

〈u2
1〉1/2

, (2)

where L2 is the extent of the box in the normal direction, x2. The definition of τη corresponds to the
definition used in an isotropic turbulent flow, but differs by no more than a few percents of any other
definition using different components of velocity gradient or their combinations. The definition of
TE , however, is admittedly more arbitrary. The timescales defined by Eq. (2), and determined in the
statistically stationary regime, will be used to characterize the dynamics after the shear is released.

C. Simulations of the flow after releasing the shear

Starting from the fluctuation u of the turbulent homogeneous shear flow, we release the shear at
a given time. As the solutions are still periodic in space, the evolution equation can be integrated in
a straightforward manner with a standard pseudospectral code. We used here the code described in
[45]. We kept the same viscosity and the same spatial resolution in our runs as in the calculations
of sheared turbulence. We stress that the runs with and without shear differ in an essential way:
whereas shear induces a spontaneous forcing mechanism [21], the runs are not forced after the
shear is released, and decay in time. Each decaying run was integrated for a time corresponding to
approximately one large-eddy-turnover timescale TE defined by Eq. (2).

1. Statistical convergence

As the results presented after the shear is released rest on averaging over an ensemble of
simulations each with a different starting point, it is important to provide an estimate of the statistical
uncertainties. To evaluate the quality of the statistics obtained from the Nc configurations, we
compared some lower-order moments of the homogeneous shear flow obtained by averaging over
the entire time of the run, and from the Nc selected configurations, for each of the two Reynolds
numbers investigated. As shown in Table I, the Reynolds stress tensor, 〈uiu j〉, as well as the second
moments of the vorticity components, 〈ωiω j〉 determined from the entire run and from the Nc

configurations differ by less than ∼10%. Table I also shows the third moments of ∂2u1 and of
ω3, which provide a measure of the anisotropy of the homogeneous turbulent shear flow. The
corresponding estimates of the skewness of these two quantities differ by less than ∼7%. With
the values shown in Table I, the value of the large-eddy-turnover time is TE ≈ 4.8 S−1.

In addition, we have evaluated separately the sample to sample fluctuations of the various
moments computed from different configurations, and we found the fluctuations to be consistent
with the 10% differences shown in Table I. For the Reynolds number, the values of Rλ obtained
from individual configurations differ by less than ∼3.5%.

III. RETURN TO ISOTROPY: LARGE-SCALE PROPERTIES

In this section, we discuss the return of the flow to isotropy from the point of view of the
turbulence properties at large scales characterized by the Reynolds stress tensor 〈uiu j〉. As was
done for other flows (see, e.g., [12,36,46,47]), we introduce the anisotropy tensor, b, defined by

bi j ≡ 〈uiu j〉
〈ukuk〉 − 1

3
δi j . (3)

Figure 1(a) shows the evolution of the nonzero components of the tensor b with time, for the two
Reynolds numbers. Time has been normalized by the corresponding large-eddy turnover time TE ,
defined by (2). The evolution of the tensor b at the two Reynolds numbers with t/TE is very close
to each other, which indicates that the properties of the decaying turbulent shear flow, as described
by the Reynolds stress tensor or equivalently by the tensor b, return to isotropy over a characteristic
time TE .
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FIG. 1. (a) Evolution of components of the Reynolds stress anisotropy tensor bi j . (b) Trajectories of the
return to isotropy of HSRT on the ξ -η invariant map. The green lines delineate the Lumley triangle. In both
plots, the full lines correspond to Rλ = 155 and the dashed lines to Rλ = 113. The trajectories of the two
Reynolds numbers on the Lumley triangle essentially superpose.

By construction, the tensor b is traceless and symmetric. As a result, aside from an overall
rotation, it can be fully characterized by two extra quantities. We use here the two sets of invariants
ξ and η, or II and III defined in [8] as

6η2 = bi jb ji, II = −3η2, (4)

6ξ 3 = bi jb jkbki, III = 2ξ 3. (5)

The Reynolds stress tensor at any instant can be represented by a point on a plane defined by its
corresponding invariants ξ and η, or II and III, and the points of all realizable turbulent flows are
confined inside the area called the Lumley triangle [8,48]. When the flow is isotropic, b = 0, all
the invariants ξ , η, II and III are zero. The return of the flow toward isotropy can therefore be
represented by a trajectory of the invariants ξ and η (or equivalently II and III) towards the origin in
the corresponding plane. Figure 1(b) shows the trajectories describing the return to isotropy in the
(ξ, η) plane for the two Reynolds numbers studied here. Despite the differences visible in Fig. 1(a),
the two trajectories are very close to each other, implying at most a very weak dependence on the
Reynolds number. The trajectories are not exactly straight lines: they first move closer to the right
boundary of the Lumley triangle, ξ = η, which physically corresponds to axisymmetric turbulence
with one large eigenvalue. This is consistent with previous observation [36,49] that turbulence tends
to become axisymmetric while relaxing to an isotropic state. Interestingly, as one moves away from
the wall towards the center in a turbulent channel flow, the relaxation towards isotropy of b also
occurs along the right side of the Lumley triangle; see Fig. 11.1 of [8].

For decaying homogeneous turbulence, the evolution equation for the Reynolds stress tensor,
derived from the Navier-Stokes equations, reads

d

dt
〈uiu j〉 = Ri j − εi j, (6)

where the quantities on the right-hand-side (r.h.s.) of Eq. (6), εi j , the dissipation tensor, and Ri j , the
pressure-rate-of-strain correlation tensor, are defined as

εi j ≡ 2ν

〈
∂ui

∂xk

∂u j

∂xk

〉
(7)
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FIG. 2. Time dependence of the rates of return to isotropy of the invariants II and III. The blue lines
correspond to ρII = − E/ε

II
d II
dt and the magenta lines to ρIII = − E/ε

III
d III
dt . The solid and dashed lines correspond

to Rλ = 155 and Rλ = 113, respectively.

and

Ri j ≡ 2

ρ
〈psi j〉. (8)

Simple approximations are often used to model the evolution of the Reynolds stress tensor, in the
spirit originally proposed by Rotta [34]:

d

dt
〈uiu j〉 = ε

[
−2CRbi j − 2

3
δi j

]
, (9)

where ε = 2ν〈si jsi j〉 = 1
2εii is the turbulent energy dissipation rate. This parametrization implicitly

assumes that the relaxation process is controlled by a single relaxation timescale, ∝ TE . The Rotta
model, Eq. (9), predicts that the trajectory in the (ξ, η) plane is simply a straight line, connecting
the initial value (ξ (0), η(0)) to the isotropic value (0,0). As shown in Fig. 1(b), predictions of this
simple model are at odds with the DNS data, as also observed previously [36,49]. The deviations of
the trajectories from the straight-line representation on the (ξ, η) plane, shown in Fig. 1(b), can be
better seen by studying the decay rates of the invariants II and III, defined as

ρII = −E/ε

II

d II

dt
and ρIII = −E/ε

III

d III

dt
, (10)

where E ≡ 〈uiui〉/2 is the turbulent kinetic energy. For these quantities, the Rotta model predicts
that ρII and ρIII are constant values with the relation ρII = 2

3ρIII [cf. Eq. (11.37) in Ref. [8]].
Figure 2 shows the evolution in time of ρII and 2

3ρIII from the DNS data. During the time interval
t/TE � 0.6, the values of ρII and 2

3ρIII vary: they are larger at earlier time and later gradually
decay, by approximately a factor of 2, which means a faster rate of return to isotropy at the
beginning. This can be related to the evolution of the nonzero components of bi j , shown in Fig. 1(a).
Namely, although the absolute value of b33, the anisotropy corresponding to the spanwise velocity
component, starts out smaller than any of that of the three other nonzero components of b, it relaxes
over a significantly longer timescale. This is qualitatively consistent with a slower decay rate at
t/TE � 0.25, hence a lower value of ρII and ρIII, as shown in Fig. 2. At later times, t/TE > 0.6, the
value of ρIII seems to increase rapidly. As a caveat, we observe that the determination of ρII and ρIII

becomes delicate for t/TE � 0.6, as the statistical uncertainties are playing an essential role when
the tensor b itself is small. More realizations would be necessary to confirm the tendency observed
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in Fig. 2 at later times. Nevertheless, we notice that the trend is clearly visible at both Reynolds
numbers, and that a similar observation has been reported before in previous numerical simulations
of decaying anisotropic turbulence [46].

Most previous studies of the return to isotropy are for axisymmetric turbulent flows. It is
instructive to compare the relaxation rate towards isotropy of the shear-released flow with other
axisymmetric flows. Flows involving an axisymmetric expansion (AXE), corresponding to a positive
value of the invariant III, and represented by a point close to the right boundary of the Lumley
triangle in the (II, III) plane, are reported to return slower towards isotropy than flows involving an
axisymmetric contraction (AXC), with III < 0 [36,47]. Specifically, the values of ρII in previous
examples of AXE were found to be close to 0.5. For the HSRT studied here, the invariants III are
also positive, and the Reynolds stress states also lie on the right side of the Lumley triangle, but with
significantly larger values of ρII ≈ 2, indicating a much faster return towards isotropy. In fact, the
values of ρII for HSRT are comparable to those observed in AXC, with III < 0 and Reynolds stress
invariants close to the left side of the Lumley triangle [36,47]. This observation points to a lack of
universality of the return to isotropy, which is not very surprising when considering a large-scale
quantity, such as the Reynolds stress tensor. A finer understanding of the physical processes is
necessary to accurately describe the return of the flow towards isotropy.

In terms of modeling, we notice that the existence of significantly different timescales, implied by
Figs. 1(a) and 2, cannot be simply captured by the nonlinear generalization of the relaxation model
proposed in [50]. The initial phase of decay of the large-scale anisotropy is possibly related to a fast
adjustment of the flow structure towards some universal anisotropic structure that then relaxes at a
slower rate towards isotropy and might be treated by small perturbations of the isotropic turbulence.
We speculate that the first stage is flow dependent, whereas the second phase corresponds to the
numerically observed slower decay and could be captured by models that rely on the Reynolds stress
tensor alone. These two distinct dynamical phases have been observed also in other anisotropic
turbulent flows [46,47], as well as in decaying isotropic turbulence [51].

The suggestion that the relaxation to isotropy involves more than one timescale is an invitation
to discuss more precisely the two terms involved in the evolution equation of the Reynolds stress
tensor, Eq. (6). The dissipation tensor, εi j , defined by Eq. (7), involves only velocity derivatives
and is therefore often assumed to return to isotropy very fast [12,36]. The pressure-rate-of-strain
correlation tensor, Ri j , defined by Eq. (8), is often attributed to the large-scale properties of the flow,
and therefore assumed to vary on a longer timescale ∼TE . It is useful to recall in this context that
pressure can be expressed as a solution of the Poisson equation: ∇2 p(x) = −ρ∂iu j∂ jui. Considering
the idealized case of a flow without boundary, this leads to the explicit expression for Ri j in terms
of the third-order correlation of the velocity gradient tensor [8]:

Ri j = 1

4π

∫
dx′

||x′|| 〈∂kul (x′)∂l uk (x′)(∂iu j + ∂ jui )(0)〉, (11)

which means that the decay towards 0 of the anisotropic tensor b, which depends on the large-
scale flow property, is governed by a quantity that depends explicitly on the flow anisotropy at the
smallest scales, namely, the third-order correlation of the velocity gradients. This casts doubt on the
oversimplifying argument, according to which the smallest scales of the flow relax towards isotropy
over the smallest flow timescale (the Kolmogorov time τη). We will revisit these aspects in Sec. IV.

IV. RETURN TO ISOTROPY: SMALL-SCALE PROPERTIES

A. Return of vorticity and dissipation towards isotropy

A straightforward way to extend the discussion of the relaxation to isotropy at large scale in
Sec. III to the relaxation to isotropy at smaller scales consists in considering instead of the velocity
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FIG. 3. Evolution of the components of the anisotropy tensor bω
i j , as a function of t/τη. (a) diagonal

components bω
ii for i = 1 (blue), 2 (red), and 3 (magenta); (b) the nonzero off-diagonal component bω

12. The
full lines represent the solution at Rλ = 155 and the dashed lines at Rλ = 113.

fluctuations the vorticity components, ωi, and to define a tensor bω by

bω
i j = 〈ωiω j〉

〈ω2〉 − 1

3
δi j . (12)

Whereas the trace of 〈ωiω j〉 is known to decay over a slow timescale ∼TE , the relaxation of the
tensor bω is often postulated to occur over a fast timescale [12,36]. One of the reasons to focus on
bω is that it can be analyzed with the help of the analytic considerations presented in Sec. IV C. In
the presence of a mean shear, symmetry imposes that only the diagonal components of bω

i j , and one
off-diagonal term bω

12, are nonzero.
Figure 3 shows the evolution of the tensor bω

i j as a function of time for the two runs. The diagonal
components bω

11, bω
22, and bω

33 [see Fig. 3(a)] are shown separately from the only nonzero off-diagonal
component bω

12 [see Fig. 3(b)]. We begin by noticing that in Fig. 3 the values of bω
i j are much smaller

than those of bi j , almost by an order of magnitude. This is a consequence of the restoration of
isotropy at small scales, so ω is not so much affected by the large-scale anisotropy induced by the
mean shear. In Fig. 3 time is made dimensionless by τη. The off-diagonal component bω

12 crosses 0 at
∼4τη and overshoots slightly before returning slowly to 0. In comparison, the diagonal components
of bω decay monotonically towards 0, on a timescale that is �10 × τη or on the order of TE over the
range of Reynolds number studied here, i.e., slower than the fast relaxation observed for bω

12 at very
short timescales. The behavior of bω

i j therefore suggests that the dynamics of small-scale quantities
involve more than one timescale.

In the case of turbulent shear flows, the anisotropy at the smallest scales also manifests itself by
the third moment of the fluctuation of the velocity gradient, ∂2u1, and of the spanwise component
of vorticity, ω3 [20,32]. The corresponding skewnesses: S∂2u1 ≡ 〈(∂2u1)3〉/〈(∂2u1)2〉3/2 and Sω3 ≡
〈ω3

3〉/〈ω2
3〉3/2 are of order 1 and decrease slowly with Rλ, as ∼R−0.5

λ [23]. The values of S∂2u1 and
Sω3 are indicated in Table I. The time dependence of the skewnesses of ∂2u1 and ω3 is shown in
Fig. 4. The dashed and full blue lines indicate S∂2u1 , at Rλ = 113 and 155, whereas the dashed and
full magenta lines show −Sω3 , respectively, at Rλ = 113 and 155. Time is made dimensionless by
the large eddy-turnover time, TE . The relaxation of both S∂2u1 and −Sω3 occurs over a time of order
TE , although the limited range of Reynolds numbers covered by the present study prevents us from
drawing a strong conclusion about the relaxation timescale. On the other hand, the evolutions of S∂2u1

and −Sω3 at the initial stage, i.e., for τ/τη ∼ O(1), also differ, consistent with earlier observations
of the different behavior of the components of εi j and 〈ωiω j〉.
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FIG. 4. Evolution of the skewness of ∂2u1, S∂2u1 (blue) and of ω3, Sω3 (magenta). The full lines correspond
to Rλ = 155 and the dashed lines to Rλ = 113.

To study the return to isotropy of the small scales, it is interesting to also consider the evolution
of εi j , which is discussed in Appendix A.

B. Return to isotropy of the velocity gradient tensor

In the previous section, we presented numerical results on the decay of anisotropy, characterized
by several small-scale quantities related to vorticity and dissipation. We now characterize the return
to isotropy using the systematic characterization proposed in [42]. Namely, we introduce the second-
and third-order velocity gradient correlation tensors:

T
2,flow
abcd = 〈∂aub∂cud〉 and T

3,flow
abcde f = 〈∂aub∂cud∂eu f 〉, (13)

which depend on the particular flow considered, as indicated by the superscripts. For homogeneous

isotropic turbulence (HIT), both T
2,HIT

and T
3,HIT

depend on one scalar only, i.e.,

T
2,HIT
abcd = 〈∂aub∂aub〉T 2,HIT

abcd and T
3,HIT
abcde f = 〈tr(s3)〉T 3,HIT

abcde f , (14)

where tr(s3) = si js jkski. The explicit forms of T2,HIT and T3,HIT involve only the identity tensor
δi j , the permutation tensor εi jk , and numerical factors [42]. For any turbulent flow, we consider the

dimensionless form of the tensors T
2,flow

and T
3,flow

by defining

T2,flow = T
2,flow

〈∂aub∂aub〉 and T3,flow = T
3,flow

〈tr(s3)〉 . (15)

The expressions for Tn,flow can be directly compared to Tn,HIT , thus providing an explicit way to
measure the anisotropy of the flow as measured by the second- and third-order moments of the
velocity derivatives. To this end, we write

Tn,flow = ζTn,HIT + �n,flow, (16)

where the tensor � is taken as the deviation with respect to isotropy. Both the scalar coefficient ζ

and the tensor � are obtained by minimizing the norm of ||Tn,flow − ζTn,HIT ||.
To proceed, we use the following elementary symmetry considerations. In the case of HIT, all the

components of the tensor with an odd number of any of 1, 2, and 3 among the indices are zero. In the
homogeneous shear flow (HSF) considered here, all components of the Tn,HSF with an odd number
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FIG. 5. Evolution of norms of odd and even parts of deviation �n
od,ev normalized by ||Tn,HIT || (n = 2, 3),

(a) ||�2
ev||/||T2,HIT ||, (b) ||�2

od ||/||T2,HIT ||, (c) ||�3
ev||/||T3,HIT ||, and (d) ||�3

od ||/||T3,HIT ||. Time has been
scaled on all graphs by TE , except in the inset of panel (b), where it was scaled by τη.

of 3 are zero. However, components of Tn,HSF with an odd number of 1 and 2 may be nonzero. We
therefore write

�n,flow = �n,flow
od + �n,flow

ev , (17)

where the components of �n,flow
od (�n,flow

ev ) are nonzero only when the number of 1 and 2 are odd
(even). Combining Eqs. (16) and (17) allows us to estimate the deviation with respect to isotropy,
by separating the contributions. In the following, we will drop the “ f low” superscript, as we are
restricting ourselves to the homogeneous shear-released turbulence only.

We also notice that the diagonal components of bω always involve an even number of any of the
three spatial indices. In comparison, the off-diagonal terms involve an odd number of some indices.
Similar to the HSF case, terms with an odd numbers of 3 are automatically 0, but terms with an odd
number of indices 1 or 2 may be nonzero.

Figure 5 shows the temporal evolution of the norms of the even and odd components of �2,3.
Namely, �2

ev decreases slowly towards 0, with a long timescale, of the order of TE . In comparison,
�2

od decays first very quickly, in a time of the order of a few τη. The further relaxation occurs over a
longer timescale. The odd components of the third moment, �3

od , also decays slowly, possibly over
a timescale of order TE . We stress that the size of ||�3

od || is, in the dimensionless form chosen, �0.5,
so the large anisotropy imprinted on the velocity gradient by the shear in the steady state remains
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significant for a long time, of the order TE . Similarly, we observe that the comparatively smaller even
component of �3

ev also decays rather slowly, with a timescale of order TE over the range of Reynolds
number studied here. The behavior of �2,3 generally corroborates the observations in Fig. 3 and
Fig. 4. We recall that the diagonal components of bω contribute to the even components of �2. The
off-diagonal term bω

12 as well as the skewness S∂2u1 and Sω3 contribute to the odd components of �2

and �3.
To summarize, we find that, aside from the odd components of �2, which exhibits a very fast

decay, over a timescale of a few τη, followed by a slower decay, over a longer timescale, the even
component of �2, as well as the third-order components, �3, all decay with a slower timescale.
Our numerical results, however, do not allow us to clearly identify the characteristic timescales of
the decay. In the following section, we consider the initial decay rates at t = 0+ with the help of a
theoretical analysis of the equations.

C. Theoretical analysis

In this subsection, we analyze the evolution of the tensor bω by taking advantage of the absence
of the pressure term in the equation for vorticity.

Returning to the definition, Eq. (12), we obtain the equation of evolution for bω:

dbω
i j

dt
= 1

〈ω2〉
[

d〈ωiω j〉
dt

− χ

(
1

3
δi j + bω

i j

)]
with χ ≡ d〈ω2〉

dt
. (18)

To estimate the various terms in Eq. (18), we use the Navier-Stokes equations for the components
of the velocity fluctuations in the presence of the external shear:

∂

∂t
uk + Sx2∂1uk + Sδk1u2 + ul∂l uk = ν∇2uk − 1

ρ
∂k p′, (19)

which leads to the following equations for the partial derivatives of the velocity, ∂ juk:
( ∂

∂t
+ Sx2∂1 + ul∂l

)
∂ juk + Sδk1∂ ju2 + Sδ j2∂1uk + (∂ jul∂l uk ) = ν∇2(∂ juk ) − 1

ρ
∂2

jk p′. (20)

The equation for the vorticity can be readily obtained by using the identity ωi = εi jk∂ juk . Separating
the three components of the vorticity, one obtains

Dω1

Dt
= −S∂1u3 + ωk∂ku1 + ν∇2ω1, (21)

Dω2

Dt
= −S∂3u2 + ωk∂ku2 + ν∇2ω2, (22)

Dω3

Dt
= −S∂3u3 + ωk∂ku3 + ν∇2ω3, (23)

where we have introduced the (Lagrangian) time derivative operator D
Dt ≡ ∂t + Sx2∂1 + ul∂l .

The equations for the second moments of ωi can be readily deduced from Eqs. (21)–(23). We
show below the results for 〈ω1ω1〉 and 〈ω1ω2〉, the results for 〈ω2ω2〉 and 〈ω3ω3〉 being similar:

1

2

d

dt
〈ω1ω1〉 = −S〈ω1∂1u3〉 + 〈ω1ωk∂ku1〉 + ν〈ω1∇2ω1〉, (24)

d

dt
〈ω1ω2〉 = −S〈ω1∂3u2 + ω2∂1u3〉 + 〈ωk (ω1∂ku2 + ω2∂ku1)〉 + ν〈ω2∇2ω1 + ω1∇2ω2〉. (25)

In the statistically steady state, the time derivatives on the left-hand side of Eqs. (24) and (25) are
all identically zero, which imposes that the terms on the r.h.s. of the equations sum up to 0. More
specifically, the first term that contains the shear rate S is balanced by the sum of the other two terms
on the r.h.s. When the shear is released at t = 0, the first term vanishes but the values of all other
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terms remain the same at t = 0+. Therefore, the time derivatives of the moments at t = 0+ simply
become

d

dt
〈ω1ω1〉

∣∣∣∣
t=0+

= 2

(
〈ω1ωk∂ku1〉

∣∣∣∣
t=0

+ ν〈ω1∇2ω1〉
∣∣∣∣
t=0

)
= +2S〈ω1∂1u3〉

∣∣∣∣
t=0−

(26)

and, similarly, for 〈ω1ω2〉 and χ (0+):

d

dt
〈ω1ω2〉

∣∣∣∣
t=0+

= +S〈ω1∂3u2 + ω2∂1u3〉
∣∣∣∣
t=0−

, (27)

χ (0+) = 2S〈ω1∂1u3 + ω2∂2u3 + ω3∂3u3〉. (28)

This, in turn, leads to the following equations for bω
11 and bω

12:

dbω
11

dt

∣∣∣∣
t=0+

= 1

〈ω2〉
{

2S〈ω1∂1u3〉 − χ (0+) ×
[

1

3
+ bω

11(0)

]}
, (29)

dbω
12

dt

∣∣∣∣
t=0+

= 1

〈ω2〉
[
S(〈ω1∂3u2〉 + 〈ω2∂1u3〉) − χ (0+) × bω

12(0)
]
. (30)

We analyze first the evolution of bω
12. For the present discussion, it is important to notice that the

terms on the r.h.s. of Eq. (30) involve only terms of the form 〈∂aub∂cud〉 with an even number of
index 1, 2, or 3, which are nonzero even in the case of HIT flows, for which

〈ω1∂3u2〉 = 〈ω2∂1u3〉 = −〈(∂3u2)2〉 = − 2ε

15ν
∼ − τ−2

η . (31)

This provides a very good estimate for d
dt 〈ω1ω2〉 at t = 0+, since the deviation of the tensor

〈∂aub∂cud〉 from its HIT value, with the same dissipation and viscosity, is small. Furthermore, the
expression for χ (0+), Eq. (28), involves terms of the form 〈∂aub∂cud〉 with an even number of
indices 3, but an odd number of indices 1 or 2. According to the arguments of Corrsin [39] and
Lumley [40], these terms can be estimated as

〈ω1∂1u3〉 ∼ 〈ω2∂2u3〉 ∼ 〈ω3∂3u3〉 ∼ S/τη, (32)

so χ (0+) ∼ S2/τη.
Last, 〈ω1ω2〉 itself is a combination of terms of the form 〈∂aub∂cud〉, with an even number of

index 3 but an odd number of index 1 or 2, so according to the arguments already used [39,40]:

〈ω1ω2〉 ∼ 〈ω2〉 × (Sτη ) ∼ S/τη and bω
12 ∼ Sτη, (33)

which justifies that the magnitude of bω
12 is in fact small and decreasing with the Reynolds number,

consistent with the observations of Fig. 3. In addition, where Sτη 
 1, the consequence of these
estimates is that the term χ (0+) bω

12 is subdominant in the r.h.s. of Eq. (30), which is of order
dbω

12/dt |t=0+ ∼ S. Balancing the various terms in Eq. (30) therefore imposes that at t = 0+, the
timescale of the dynamics of bω

12 is of order τη. This conclusion is consistent with the observation in
Fig. 3 that bω

12 = 〈ω1ω2〉/〈ω2〉 evolves fast, over a characteristic timescale τη.
Turning now to the diagonal component bω

11, we observe that the terms on the r.h.s. of Eq. (29)
involve only terms with an odd number of 1 and 2, and an even number of 3, which can be estimated
according to Eq. (32). Taking into account the weak value of bω

11(0) 
 1
3 , we conclude that the r.h.s.

of Eq. (29) is of the order dbω
11/dt |t=0+ ∼ S2τη. The magnitude of bω

11 itself, which is zero for HIT,
is similarly estimated by using (〈

ω2
i

〉 − 〈ω2〉/3
)

∼ S/τη, (34)

which leads to a an estimate of the initial values of the diagonal terms as bω
ii (0) ∼ (S/τη )/〈ω2〉 ∼

Sτη. According to these estimates, all nonzero components of bω
i j (0) are of the order of Sτη 
 1.

Together, the estimates for bω
11(0) and dbω

11/dt |t=0+ lead to the conclusion that bω
11 evolves with
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FIG. 6. Evolution of the normalized third moment of the spanwise component of vorticity, ω3. The
relaxation of this moment occurs over a timescale of the order TE , as predicted by the elementary considerations
developed in this text. As shown in the inset, however, the evolution of the third moment is nonmonotonic. The
full lines correspond to Rλ = 155 and the dashed lines to Rλ = 113.

a characteristic timescale of S−1. It is straightforward to generalize these estimates to the other
diagonal components of bω. The conclusion of this analysis is therefore that the diagonal terms of
bω evolve much more slowly than bω

12.
While the Corrsin and Lumley argument [39,40] is plausible, given known measurements [37],

deviations from this simple prediction have been reported, in particular for the third moment of ∂2u1

in a turbulent shear flow [23]. Although the range of Reynolds numbers in numerical simulations is
rather limited, and therefore does not allow us to reach an unambiguous conclusion regarding the
magnitude of the deviations from isotropy, it was observed [42] that the even and odd components
of the second-order tensor 〈∂aub∂cud〉 may actually decay differently with the Reynolds number,
possibly with two different power laws: ∝ 〈ω2〉(S/τη )(Sτη )α

2
ev,od , where the exponents α2

od and α2
ev

describe the rate of decay of the odd and even components, respectively. An elementary order
of magnitude analysis then leads to the prediction that the diagonal components bω

ii decay over a
characteristic timescale of the order S−1(Sτη )α

2
ev−α2

od . The values provided in Ref. [42] are α2
ev ≈ 1

and α2
od ≈ 1/2, which implies that the characteristic timescale is of order (S−1 τη )1/2, i.e., half way

between τη and TE . We note that data from our two runs with Rλ = 113 and 155 indeed suggest that
(S−1 τη )1/2 describes better the decay process of bω

ii . The range of the Reynolds number in our study,
however, is not sufficient to unambiguously distinguish whether the timescale is (S−1 τη )1/2 or TE .

The analysis presented here for 〈ω3ω3〉 can be easily extended to the third moment 〈ω3ω3ω3〉:
d

dt
〈ω3

3〉
∣∣∣∣
t=0+

= +3S
〈
ω2

3∂3u3
〉
. (35)

As it was the case for 〈ω3ω3〉, a straightforward application of the timescale analysis, taking into
account possible deviations from the Corrsin-Lumley argument [39,40], leads to the prediction that
the characteristic timescale of relaxation of 〈ω2

3〉 is ∼S−1, possibly up to corrections in the form
of powers of ∼(Sτη )α

3
ev−α3

od , where α3
od and α3

ev describe the dependence on Rλ of the odd and even
deviations of the tensors T3,HSF from the isotropic case.

We notice that Eq. (35) predicts that at t = 0+, d
dt 〈ω3

3〉 > 0. Since the initial steady-state value
of 〈ω3

3〉 is negative, this inequality does predict that the third moment 〈ω3
3〉 decays towards the

isotropic value of 0, as expected. The actual time dependence of 〈ω3
3〉, however, is nonmonotonic.

As shown in Fig. 6, in particular the inset, 〈ω3
3〉/〈ω3

3〉(0) first decays for a very short time, and
then increases, before decreasing and relaxing towards zero at long times. The validity of the
approximation 〈ω3

3〉(t ) ≈ 〈ω3
3〉(0) + 3S〈ω2

3∂3u3〉 × t , therefore turns out to be rather limited: the
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first-order approximation at t = 0+ is clearly insufficient to unambiguously predict the evolution
at longer times. Nonetheless, despite this obvious shortcoming, the considerations developed here
lead to a simple estimate of the timescales involved, compatible with our own numerical data.

The observation that the moments of quantities that characterize the small-scale properties
of the flow decay with a timescale that is much longer than the Kolmogorov scale points to a
subtle relation between the temporal and spatial scales of motion. As observed in Sec. III, the
pressure-rate-of-strain correlation, Ri j , can be expressed in an elementary manner in terms of the
third moments of the velocity derivative correlations, Eq. (11). A fast decay, over a timescale τη

of the third-order correlation tensor of ∂aub, would have been difficult to combine with the slow
decay of Ri j , and ultimately with that of the Reynolds stress tensor. We note that this observed slow
decay of the anisotropy of the small scales in the shear-released flow resembles the slow change of
the energy dissipation rate in a freely decaying HIT. While the two problems might be governed by
different dynamics, they share one common feature that the small-scale quantity is tied to large-scale
dynamics by averaged balance equations: dk/dt = −ε and Eq. (11), respectively.

V. DISCUSSION AND CONCLUSIONS

We have investigated the return to isotropy of a homogeneous turbulent flow, initially in the
presence of a large-scale uniform shear and in statistical steady state, after the imposed shear is
released. Our investigation complements other studies, considering the return towards isotropy of
turbulent flows with different imposed mean gradients [12].

From a fundamental point of view, one of the main motivations of this work was to understand
how the anisotropy of the flow, present at all scales, relaxes when the source of anisotropy is
removed. Previous studies show that in the case of a shear flow, the small scales are anisotropic
and that anisotropy decreases with the increase of the Reynolds number, although slower than
that expected from elementary considerations based on the Kolmogorov theory. For example,
experimental data indicate that the value of the skewness of ∂2u1 decays as ∼R−1/2

λ , slower than
the expected scaling of R−1

λ , and is still O(1) at Rλ ≈ 100 [23]. In this work, we investigated two
flows at Rλ = 113 and 155, respectively, in which the small-scale anisotropy is significant. We
focused specifically on the anisotropy present at the largest scales, measured by the Reynolds stress
tensor, as well as at the smallest scales, measured by the moments of the velocity gradient tensor,
〈∂aub∂cud〉 or 〈∂aub∂cud∂eu f 〉.

Our results show that the return to isotropy of the Reynolds stress tensor in the homogeneous
shear-released turbulence is qualitatively similar to what has been observed in other flows [12,36],
albeit with some minor difference in the rate of return to isotropy, compared to the rate of decay of
the kinetic energy.

One of the major results of this work is that the decay of the anisotropy present at the smallest
scales, characterized in particular by the second moment of the vorticity tensor, bω [see Eq. (12)],
involves more than one timescale. Whereas the off-diagonal term, bω

12 decays first very fast, with
a characteristic timescale ∼τη, the diagonal terms bω

ii decay over a much longer timescale. Our
simplified analysis, using the Corrsin-Lumley estimate for the small-scale anisotropy [39,40],
suggests a timescale of the order S−1, i.e., the timescale associated with the large scales of the
flow. The deviations due to the dependence on Rλ of the odd and even components of the moments
of the velocity gradient tensor [42] could suggest a different timescale, ∼ (S−1τη )1/2. The limited
range of values of Rλ covered by our simulations, however, does not allow us to unambiguously
distinguish the two.

The elementary theoretical arguments used above can also explain why the skewness of the
spanwise component of the vorticity, ω3, also decays very slowly. Thus, the relatively large
anisotropy at small scales, such as ω3, or equivalently, the normal derivative of the streamwise
velocity component, persists over a long time. A straightforward extension of the analysis presented
in Sec. IV C also makes it clear that the relaxation towards isotropy depend on the specific properties
of the flow.
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FIG. 7. Evolution of the components of the dissipation anisotropy tensor bε
i j , defined by Eq. (7), as a

function of t/τη (a); and as a function of t/TE , (b). Full lines correspond to the solution at Rλ = 155 and
dashed lines to Rλ = 113.

The possibility that quantities measuring the anisotropy at small scales, based on the velocity
gradient tensors, decay over a long timescale, compared to τη, is clearly of theoretical interest.
We notice in this respect that the relation between the pressure-rate-of-strain correlation tensor
Ri j [see Eq. (8)] responsible for the return to isotropy of the large scale, and the third-order
correlation 〈∂aub∂cud∂eu f 〉, through Eq. (11), was making it in fact rather implausible that the former
would relax rapidly to isotropy whereas the latter would relax over a much longer timescale. To
conclude, the present study demonstrates that the separation between the timescales characterizing
the return to isotropy at large and small scales does not reduce to a straightforward extension of
Kolmogorov phenomenology. A proper understanding and modeling of these effects requires further
investigation.
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APPENDIX A: RETURN OF THE TENSOR εi j TO ISOTROPY

We briefly consider in this Appendix the return to isotropy of the dissipation tensor, defined
by Eq. (7), which plays a role in the return to equilibrium of the anisotropy tensor b via Eq. (6).
To that end, we consider the anisotropy tensor defined as bε

i j ≡ εi j

2ε
− 1

3δi j . This tensor provides an
alternative way to describe the relaxation of small-scale quantities when the shear is released.

Figure 7 shows how the components of bε
i j change with time, both as a function of τ/τη and as a

function of τ/TE for the two Reynolds numbers, where the timescales τη, the Kolmogorov timescale,
and TE , the integral timescales, are defined by Eq. (2), as explained in Sec. II B. Comparison of
Figs. 7(a) and 7(b) suggests that overall, the anisotropy of εi j actually decays over a timescale
given by TE , rather than by the Kolmogorov time. Interestingly, the magnitude of the component bε

33
increases rapidly, over a timescale of order τη, before it finally decays gradually towards zero over a
timescale of order TE , which is different from other components. This suggests that the dynamics of
small-scale quantities are controlled by mechanisms involving more than one timescale, depending
on the components of the tensor.
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FIG. 8. Evolution of norms of odd and even parts of deviation �n
od,ev normalized by its values at t = 0.

||�2
ev||(t )/||�2

ev||(0), time t normalized by (a) τη and (b) TE , ||�2
od ||(t )/||�2

od ||(0), time t normalized by (c) τη,
and (d) TE , ||�3

ev||(t )/||�3
ev||(0), time t normalized by (e) τη and (f) TE , ||�3

od ||(t )/||�3
od ||(0), time t normalized

by (g) τη and (h) TE .
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APPENDIX B: TIME EVOLUTION OF �n
od,ev NORMALIZED BY TE AND τη

In this Appendix we show in Fig. 8 the quantities shown in Fig. 5 in a different way, where we
use the value at t = 0 instead of ||Tn,HIT || to normalize ||�n

od,ev||. In addition, for every quantity
of ||�n

od,ev|| (n = 2, 3), we show the time normalization for both TE and τη. As a result, curves in
every panel of Fig. 8 start from unity, and this helps us to evaluate which timescale collapses those
curves better. One could readily see that TE works better for ||�2

ev|| and ||�3
od,ev||, while τη is the

better choice for ||�2
od ||.
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